[PATCH] kernel-doc: drivers/base fixes
[linux-2.6/suspend2-2.6.18.git] / arch / i386 / mach-voyager / voyager_smp.c
blob72a1b9cae2e41beb4b80bd4a523382504ff67e9f
1 /* -*- mode: c; c-basic-offset: 8 -*- */
3 /* Copyright (C) 1999,2001
5 * Author: J.E.J.Bottomley@HansenPartnership.com
7 * linux/arch/i386/kernel/voyager_smp.c
9 * This file provides all the same external entries as smp.c but uses
10 * the voyager hal to provide the functionality
12 #include <linux/config.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/delay.h>
17 #include <linux/mc146818rtc.h>
18 #include <linux/cache.h>
19 #include <linux/interrupt.h>
20 #include <linux/smp_lock.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/bootmem.h>
24 #include <linux/completion.h>
25 #include <asm/desc.h>
26 #include <asm/voyager.h>
27 #include <asm/vic.h>
28 #include <asm/mtrr.h>
29 #include <asm/pgalloc.h>
30 #include <asm/tlbflush.h>
31 #include <asm/arch_hooks.h>
33 /* TLB state -- visible externally, indexed physically */
34 DEFINE_PER_CPU(struct tlb_state, cpu_tlbstate) ____cacheline_aligned = { &init_mm, 0 };
36 /* CPU IRQ affinity -- set to all ones initially */
37 static unsigned long cpu_irq_affinity[NR_CPUS] __cacheline_aligned = { [0 ... NR_CPUS-1] = ~0UL };
39 /* per CPU data structure (for /proc/cpuinfo et al), visible externally
40 * indexed physically */
41 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
42 EXPORT_SYMBOL(cpu_data);
44 /* physical ID of the CPU used to boot the system */
45 unsigned char boot_cpu_id;
47 /* The memory line addresses for the Quad CPIs */
48 struct voyager_qic_cpi *voyager_quad_cpi_addr[NR_CPUS] __cacheline_aligned;
50 /* The masks for the Extended VIC processors, filled in by cat_init */
51 __u32 voyager_extended_vic_processors = 0;
53 /* Masks for the extended Quad processors which cannot be VIC booted */
54 __u32 voyager_allowed_boot_processors = 0;
56 /* The mask for the Quad Processors (both extended and non-extended) */
57 __u32 voyager_quad_processors = 0;
59 /* Total count of live CPUs, used in process.c to display
60 * the CPU information and in irq.c for the per CPU irq
61 * activity count. Finally exported by i386_ksyms.c */
62 static int voyager_extended_cpus = 1;
64 /* Have we found an SMP box - used by time.c to do the profiling
65 interrupt for timeslicing; do not set to 1 until the per CPU timer
66 interrupt is active */
67 int smp_found_config = 0;
69 /* Used for the invalidate map that's also checked in the spinlock */
70 static volatile unsigned long smp_invalidate_needed;
72 /* Bitmask of currently online CPUs - used by setup.c for
73 /proc/cpuinfo, visible externally but still physical */
74 cpumask_t cpu_online_map = CPU_MASK_NONE;
75 EXPORT_SYMBOL(cpu_online_map);
77 /* Bitmask of CPUs present in the system - exported by i386_syms.c, used
78 * by scheduler but indexed physically */
79 cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
82 /* The internal functions */
83 static void send_CPI(__u32 cpuset, __u8 cpi);
84 static void ack_CPI(__u8 cpi);
85 static int ack_QIC_CPI(__u8 cpi);
86 static void ack_special_QIC_CPI(__u8 cpi);
87 static void ack_VIC_CPI(__u8 cpi);
88 static void send_CPI_allbutself(__u8 cpi);
89 static void enable_vic_irq(unsigned int irq);
90 static void disable_vic_irq(unsigned int irq);
91 static unsigned int startup_vic_irq(unsigned int irq);
92 static void enable_local_vic_irq(unsigned int irq);
93 static void disable_local_vic_irq(unsigned int irq);
94 static void before_handle_vic_irq(unsigned int irq);
95 static void after_handle_vic_irq(unsigned int irq);
96 static void set_vic_irq_affinity(unsigned int irq, cpumask_t mask);
97 static void ack_vic_irq(unsigned int irq);
98 static void vic_enable_cpi(void);
99 static void do_boot_cpu(__u8 cpuid);
100 static void do_quad_bootstrap(void);
102 int hard_smp_processor_id(void);
104 /* Inline functions */
105 static inline void
106 send_one_QIC_CPI(__u8 cpu, __u8 cpi)
108 voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi =
109 (smp_processor_id() << 16) + cpi;
112 static inline void
113 send_QIC_CPI(__u32 cpuset, __u8 cpi)
115 int cpu;
117 for_each_online_cpu(cpu) {
118 if(cpuset & (1<<cpu)) {
119 #ifdef VOYAGER_DEBUG
120 if(!cpu_isset(cpu, cpu_online_map))
121 VDEBUG(("CPU%d sending cpi %d to CPU%d not in cpu_online_map\n", hard_smp_processor_id(), cpi, cpu));
122 #endif
123 send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
128 static inline void
129 wrapper_smp_local_timer_interrupt(struct pt_regs *regs)
131 irq_enter();
132 smp_local_timer_interrupt(regs);
133 irq_exit();
136 static inline void
137 send_one_CPI(__u8 cpu, __u8 cpi)
139 if(voyager_quad_processors & (1<<cpu))
140 send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
141 else
142 send_CPI(1<<cpu, cpi);
145 static inline void
146 send_CPI_allbutself(__u8 cpi)
148 __u8 cpu = smp_processor_id();
149 __u32 mask = cpus_addr(cpu_online_map)[0] & ~(1 << cpu);
150 send_CPI(mask, cpi);
153 static inline int
154 is_cpu_quad(void)
156 __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
157 return ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER);
160 static inline int
161 is_cpu_extended(void)
163 __u8 cpu = hard_smp_processor_id();
165 return(voyager_extended_vic_processors & (1<<cpu));
168 static inline int
169 is_cpu_vic_boot(void)
171 __u8 cpu = hard_smp_processor_id();
173 return(voyager_extended_vic_processors
174 & voyager_allowed_boot_processors & (1<<cpu));
178 static inline void
179 ack_CPI(__u8 cpi)
181 switch(cpi) {
182 case VIC_CPU_BOOT_CPI:
183 if(is_cpu_quad() && !is_cpu_vic_boot())
184 ack_QIC_CPI(cpi);
185 else
186 ack_VIC_CPI(cpi);
187 break;
188 case VIC_SYS_INT:
189 case VIC_CMN_INT:
190 /* These are slightly strange. Even on the Quad card,
191 * They are vectored as VIC CPIs */
192 if(is_cpu_quad())
193 ack_special_QIC_CPI(cpi);
194 else
195 ack_VIC_CPI(cpi);
196 break;
197 default:
198 printk("VOYAGER ERROR: CPI%d is in common CPI code\n", cpi);
199 break;
203 /* local variables */
205 /* The VIC IRQ descriptors -- these look almost identical to the
206 * 8259 IRQs except that masks and things must be kept per processor
208 static struct hw_interrupt_type vic_irq_type = {
209 .typename = "VIC-level",
210 .startup = startup_vic_irq,
211 .shutdown = disable_vic_irq,
212 .enable = enable_vic_irq,
213 .disable = disable_vic_irq,
214 .ack = before_handle_vic_irq,
215 .end = after_handle_vic_irq,
216 .set_affinity = set_vic_irq_affinity,
219 /* used to count up as CPUs are brought on line (starts at 0) */
220 static int cpucount = 0;
222 /* steal a page from the bottom of memory for the trampoline and
223 * squirrel its address away here. This will be in kernel virtual
224 * space */
225 static __u32 trampoline_base;
227 /* The per cpu profile stuff - used in smp_local_timer_interrupt */
228 static DEFINE_PER_CPU(int, prof_multiplier) = 1;
229 static DEFINE_PER_CPU(int, prof_old_multiplier) = 1;
230 static DEFINE_PER_CPU(int, prof_counter) = 1;
232 /* the map used to check if a CPU has booted */
233 static __u32 cpu_booted_map;
235 /* the synchronize flag used to hold all secondary CPUs spinning in
236 * a tight loop until the boot sequence is ready for them */
237 static cpumask_t smp_commenced_mask = CPU_MASK_NONE;
239 /* This is for the new dynamic CPU boot code */
240 cpumask_t cpu_callin_map = CPU_MASK_NONE;
241 cpumask_t cpu_callout_map = CPU_MASK_NONE;
242 EXPORT_SYMBOL(cpu_callout_map);
243 cpumask_t cpu_possible_map = CPU_MASK_ALL;
244 EXPORT_SYMBOL(cpu_possible_map);
246 /* The per processor IRQ masks (these are usually kept in sync) */
247 static __u16 vic_irq_mask[NR_CPUS] __cacheline_aligned;
249 /* the list of IRQs to be enabled by the VIC_ENABLE_IRQ_CPI */
250 static __u16 vic_irq_enable_mask[NR_CPUS] __cacheline_aligned = { 0 };
252 /* Lock for enable/disable of VIC interrupts */
253 static __cacheline_aligned DEFINE_SPINLOCK(vic_irq_lock);
255 /* The boot processor is correctly set up in PC mode when it
256 * comes up, but the secondaries need their master/slave 8259
257 * pairs initializing correctly */
259 /* Interrupt counters (per cpu) and total - used to try to
260 * even up the interrupt handling routines */
261 static long vic_intr_total = 0;
262 static long vic_intr_count[NR_CPUS] __cacheline_aligned = { 0 };
263 static unsigned long vic_tick[NR_CPUS] __cacheline_aligned = { 0 };
265 /* Since we can only use CPI0, we fake all the other CPIs */
266 static unsigned long vic_cpi_mailbox[NR_CPUS] __cacheline_aligned;
268 /* debugging routine to read the isr of the cpu's pic */
269 static inline __u16
270 vic_read_isr(void)
272 __u16 isr;
274 outb(0x0b, 0xa0);
275 isr = inb(0xa0) << 8;
276 outb(0x0b, 0x20);
277 isr |= inb(0x20);
279 return isr;
282 static __init void
283 qic_setup(void)
285 if(!is_cpu_quad()) {
286 /* not a quad, no setup */
287 return;
289 outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
290 outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
292 if(is_cpu_extended()) {
293 /* the QIC duplicate of the VIC base register */
294 outb(VIC_DEFAULT_CPI_BASE, QIC_VIC_CPI_BASE_REGISTER);
295 outb(QIC_DEFAULT_CPI_BASE, QIC_CPI_BASE_REGISTER);
297 /* FIXME: should set up the QIC timer and memory parity
298 * error vectors here */
302 static __init void
303 vic_setup_pic(void)
305 outb(1, VIC_REDIRECT_REGISTER_1);
306 /* clear the claim registers for dynamic routing */
307 outb(0, VIC_CLAIM_REGISTER_0);
308 outb(0, VIC_CLAIM_REGISTER_1);
310 outb(0, VIC_PRIORITY_REGISTER);
311 /* Set the Primary and Secondary Microchannel vector
312 * bases to be the same as the ordinary interrupts
314 * FIXME: This would be more efficient using separate
315 * vectors. */
316 outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
317 outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
318 /* Now initiallise the master PIC belonging to this CPU by
319 * sending the four ICWs */
321 /* ICW1: level triggered, ICW4 needed */
322 outb(0x19, 0x20);
324 /* ICW2: vector base */
325 outb(FIRST_EXTERNAL_VECTOR, 0x21);
327 /* ICW3: slave at line 2 */
328 outb(0x04, 0x21);
330 /* ICW4: 8086 mode */
331 outb(0x01, 0x21);
333 /* now the same for the slave PIC */
335 /* ICW1: level trigger, ICW4 needed */
336 outb(0x19, 0xA0);
338 /* ICW2: slave vector base */
339 outb(FIRST_EXTERNAL_VECTOR + 8, 0xA1);
341 /* ICW3: slave ID */
342 outb(0x02, 0xA1);
344 /* ICW4: 8086 mode */
345 outb(0x01, 0xA1);
348 static void
349 do_quad_bootstrap(void)
351 if(is_cpu_quad() && is_cpu_vic_boot()) {
352 int i;
353 unsigned long flags;
354 __u8 cpuid = hard_smp_processor_id();
356 local_irq_save(flags);
358 for(i = 0; i<4; i++) {
359 /* FIXME: this would be >>3 &0x7 on the 32 way */
360 if(((cpuid >> 2) & 0x03) == i)
361 /* don't lower our own mask! */
362 continue;
364 /* masquerade as local Quad CPU */
365 outb(QIC_CPUID_ENABLE | i, QIC_PROCESSOR_ID);
366 /* enable the startup CPI */
367 outb(QIC_BOOT_CPI_MASK, QIC_MASK_REGISTER1);
368 /* restore cpu id */
369 outb(0, QIC_PROCESSOR_ID);
371 local_irq_restore(flags);
376 /* Set up all the basic stuff: read the SMP config and make all the
377 * SMP information reflect only the boot cpu. All others will be
378 * brought on-line later. */
379 void __init
380 find_smp_config(void)
382 int i;
384 boot_cpu_id = hard_smp_processor_id();
386 printk("VOYAGER SMP: Boot cpu is %d\n", boot_cpu_id);
388 /* initialize the CPU structures (moved from smp_boot_cpus) */
389 for(i=0; i<NR_CPUS; i++) {
390 cpu_irq_affinity[i] = ~0;
392 cpu_online_map = cpumask_of_cpu(boot_cpu_id);
394 /* The boot CPU must be extended */
395 voyager_extended_vic_processors = 1<<boot_cpu_id;
396 /* initially, all of the first 8 cpu's can boot */
397 voyager_allowed_boot_processors = 0xff;
398 /* set up everything for just this CPU, we can alter
399 * this as we start the other CPUs later */
400 /* now get the CPU disposition from the extended CMOS */
401 cpus_addr(phys_cpu_present_map)[0] = voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK);
402 cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 1) << 8;
403 cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 2) << 16;
404 cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 3) << 24;
405 printk("VOYAGER SMP: phys_cpu_present_map = 0x%lx\n", cpus_addr(phys_cpu_present_map)[0]);
406 /* Here we set up the VIC to enable SMP */
407 /* enable the CPIs by writing the base vector to their register */
408 outb(VIC_DEFAULT_CPI_BASE, VIC_CPI_BASE_REGISTER);
409 outb(1, VIC_REDIRECT_REGISTER_1);
410 /* set the claim registers for static routing --- Boot CPU gets
411 * all interrupts untill all other CPUs started */
412 outb(0xff, VIC_CLAIM_REGISTER_0);
413 outb(0xff, VIC_CLAIM_REGISTER_1);
414 /* Set the Primary and Secondary Microchannel vector
415 * bases to be the same as the ordinary interrupts
417 * FIXME: This would be more efficient using separate
418 * vectors. */
419 outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
420 outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
422 /* Finally tell the firmware that we're driving */
423 outb(inb(VOYAGER_SUS_IN_CONTROL_PORT) | VOYAGER_IN_CONTROL_FLAG,
424 VOYAGER_SUS_IN_CONTROL_PORT);
426 current_thread_info()->cpu = boot_cpu_id;
430 * The bootstrap kernel entry code has set these up. Save them
431 * for a given CPU, id is physical */
432 void __init
433 smp_store_cpu_info(int id)
435 struct cpuinfo_x86 *c=&cpu_data[id];
437 *c = boot_cpu_data;
439 identify_cpu(c);
442 /* set up the trampoline and return the physical address of the code */
443 static __u32 __init
444 setup_trampoline(void)
446 /* these two are global symbols in trampoline.S */
447 extern __u8 trampoline_end[];
448 extern __u8 trampoline_data[];
450 memcpy((__u8 *)trampoline_base, trampoline_data,
451 trampoline_end - trampoline_data);
452 return virt_to_phys((__u8 *)trampoline_base);
455 /* Routine initially called when a non-boot CPU is brought online */
456 static void __init
457 start_secondary(void *unused)
459 __u8 cpuid = hard_smp_processor_id();
460 /* external functions not defined in the headers */
461 extern void calibrate_delay(void);
463 cpu_init();
465 /* OK, we're in the routine */
466 ack_CPI(VIC_CPU_BOOT_CPI);
468 /* setup the 8259 master slave pair belonging to this CPU ---
469 * we won't actually receive any until the boot CPU
470 * relinquishes it's static routing mask */
471 vic_setup_pic();
473 qic_setup();
475 if(is_cpu_quad() && !is_cpu_vic_boot()) {
476 /* clear the boot CPI */
477 __u8 dummy;
479 dummy = voyager_quad_cpi_addr[cpuid]->qic_cpi[VIC_CPU_BOOT_CPI].cpi;
480 printk("read dummy %d\n", dummy);
483 /* lower the mask to receive CPIs */
484 vic_enable_cpi();
486 VDEBUG(("VOYAGER SMP: CPU%d, stack at about %p\n", cpuid, &cpuid));
488 /* enable interrupts */
489 local_irq_enable();
491 /* get our bogomips */
492 calibrate_delay();
494 /* save our processor parameters */
495 smp_store_cpu_info(cpuid);
497 /* if we're a quad, we may need to bootstrap other CPUs */
498 do_quad_bootstrap();
500 /* FIXME: this is rather a poor hack to prevent the CPU
501 * activating softirqs while it's supposed to be waiting for
502 * permission to proceed. Without this, the new per CPU stuff
503 * in the softirqs will fail */
504 local_irq_disable();
505 cpu_set(cpuid, cpu_callin_map);
507 /* signal that we're done */
508 cpu_booted_map = 1;
510 while (!cpu_isset(cpuid, smp_commenced_mask))
511 rep_nop();
512 local_irq_enable();
514 local_flush_tlb();
516 cpu_set(cpuid, cpu_online_map);
517 wmb();
518 cpu_idle();
522 /* Routine to kick start the given CPU and wait for it to report ready
523 * (or timeout in startup). When this routine returns, the requested
524 * CPU is either fully running and configured or known to be dead.
526 * We call this routine sequentially 1 CPU at a time, so no need for
527 * locking */
529 static void __init
530 do_boot_cpu(__u8 cpu)
532 struct task_struct *idle;
533 int timeout;
534 unsigned long flags;
535 int quad_boot = (1<<cpu) & voyager_quad_processors
536 & ~( voyager_extended_vic_processors
537 & voyager_allowed_boot_processors);
539 /* For the 486, we can't use the 4Mb page table trick, so
540 * must map a region of memory */
541 #ifdef CONFIG_M486
542 int i;
543 unsigned long *page_table_copies = (unsigned long *)
544 __get_free_page(GFP_KERNEL);
545 #endif
546 pgd_t orig_swapper_pg_dir0;
548 /* This is an area in head.S which was used to set up the
549 * initial kernel stack. We need to alter this to give the
550 * booting CPU a new stack (taken from its idle process) */
551 extern struct {
552 __u8 *esp;
553 unsigned short ss;
554 } stack_start;
555 /* This is the format of the CPI IDT gate (in real mode) which
556 * we're hijacking to boot the CPU */
557 union IDTFormat {
558 struct seg {
559 __u16 Offset;
560 __u16 Segment;
561 } idt;
562 __u32 val;
563 } hijack_source;
565 __u32 *hijack_vector;
566 __u32 start_phys_address = setup_trampoline();
568 /* There's a clever trick to this: The linux trampoline is
569 * compiled to begin at absolute location zero, so make the
570 * address zero but have the data segment selector compensate
571 * for the actual address */
572 hijack_source.idt.Offset = start_phys_address & 0x000F;
573 hijack_source.idt.Segment = (start_phys_address >> 4) & 0xFFFF;
575 cpucount++;
576 idle = fork_idle(cpu);
577 if(IS_ERR(idle))
578 panic("failed fork for CPU%d", cpu);
579 idle->thread.eip = (unsigned long) start_secondary;
580 /* init_tasks (in sched.c) is indexed logically */
581 stack_start.esp = (void *) idle->thread.esp;
583 irq_ctx_init(cpu);
585 /* Note: Don't modify initial ss override */
586 VDEBUG(("VOYAGER SMP: Booting CPU%d at 0x%lx[%x:%x], stack %p\n", cpu,
587 (unsigned long)hijack_source.val, hijack_source.idt.Segment,
588 hijack_source.idt.Offset, stack_start.esp));
589 /* set the original swapper_pg_dir[0] to map 0 to 4Mb transparently
590 * (so that the booting CPU can find start_32 */
591 orig_swapper_pg_dir0 = swapper_pg_dir[0];
592 #ifdef CONFIG_M486
593 if(page_table_copies == NULL)
594 panic("No free memory for 486 page tables\n");
595 for(i = 0; i < PAGE_SIZE/sizeof(unsigned long); i++)
596 page_table_copies[i] = (i * PAGE_SIZE)
597 | _PAGE_RW | _PAGE_USER | _PAGE_PRESENT;
599 ((unsigned long *)swapper_pg_dir)[0] =
600 ((virt_to_phys(page_table_copies)) & PAGE_MASK)
601 | _PAGE_RW | _PAGE_USER | _PAGE_PRESENT;
602 #else
603 ((unsigned long *)swapper_pg_dir)[0] =
604 (virt_to_phys(pg0) & PAGE_MASK)
605 | _PAGE_RW | _PAGE_USER | _PAGE_PRESENT;
606 #endif
608 if(quad_boot) {
609 printk("CPU %d: non extended Quad boot\n", cpu);
610 hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_CPI + QIC_DEFAULT_CPI_BASE)*4);
611 *hijack_vector = hijack_source.val;
612 } else {
613 printk("CPU%d: extended VIC boot\n", cpu);
614 hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_CPI + VIC_DEFAULT_CPI_BASE)*4);
615 *hijack_vector = hijack_source.val;
616 /* VIC errata, may also receive interrupt at this address */
617 hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_ERRATA_CPI + VIC_DEFAULT_CPI_BASE)*4);
618 *hijack_vector = hijack_source.val;
620 /* All non-boot CPUs start with interrupts fully masked. Need
621 * to lower the mask of the CPI we're about to send. We do
622 * this in the VIC by masquerading as the processor we're
623 * about to boot and lowering its interrupt mask */
624 local_irq_save(flags);
625 if(quad_boot) {
626 send_one_QIC_CPI(cpu, VIC_CPU_BOOT_CPI);
627 } else {
628 outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
629 /* here we're altering registers belonging to `cpu' */
631 outb(VIC_BOOT_INTERRUPT_MASK, 0x21);
632 /* now go back to our original identity */
633 outb(boot_cpu_id, VIC_PROCESSOR_ID);
635 /* and boot the CPU */
637 send_CPI((1<<cpu), VIC_CPU_BOOT_CPI);
639 cpu_booted_map = 0;
640 local_irq_restore(flags);
642 /* now wait for it to become ready (or timeout) */
643 for(timeout = 0; timeout < 50000; timeout++) {
644 if(cpu_booted_map)
645 break;
646 udelay(100);
648 /* reset the page table */
649 swapper_pg_dir[0] = orig_swapper_pg_dir0;
650 local_flush_tlb();
651 #ifdef CONFIG_M486
652 free_page((unsigned long)page_table_copies);
653 #endif
655 if (cpu_booted_map) {
656 VDEBUG(("CPU%d: Booted successfully, back in CPU %d\n",
657 cpu, smp_processor_id()));
659 printk("CPU%d: ", cpu);
660 print_cpu_info(&cpu_data[cpu]);
661 wmb();
662 cpu_set(cpu, cpu_callout_map);
664 else {
665 printk("CPU%d FAILED TO BOOT: ", cpu);
666 if (*((volatile unsigned char *)phys_to_virt(start_phys_address))==0xA5)
667 printk("Stuck.\n");
668 else
669 printk("Not responding.\n");
671 cpucount--;
675 void __init
676 smp_boot_cpus(void)
678 int i;
680 /* CAT BUS initialisation must be done after the memory */
681 /* FIXME: The L4 has a catbus too, it just needs to be
682 * accessed in a totally different way */
683 if(voyager_level == 5) {
684 voyager_cat_init();
686 /* now that the cat has probed the Voyager System Bus, sanity
687 * check the cpu map */
688 if( ((voyager_quad_processors | voyager_extended_vic_processors)
689 & cpus_addr(phys_cpu_present_map)[0]) != cpus_addr(phys_cpu_present_map)[0]) {
690 /* should panic */
691 printk("\n\n***WARNING*** Sanity check of CPU present map FAILED\n");
693 } else if(voyager_level == 4)
694 voyager_extended_vic_processors = cpus_addr(phys_cpu_present_map)[0];
696 /* this sets up the idle task to run on the current cpu */
697 voyager_extended_cpus = 1;
698 /* Remove the global_irq_holder setting, it triggers a BUG() on
699 * schedule at the moment */
700 //global_irq_holder = boot_cpu_id;
702 /* FIXME: Need to do something about this but currently only works
703 * on CPUs with a tsc which none of mine have.
704 smp_tune_scheduling();
706 smp_store_cpu_info(boot_cpu_id);
707 printk("CPU%d: ", boot_cpu_id);
708 print_cpu_info(&cpu_data[boot_cpu_id]);
710 if(is_cpu_quad()) {
711 /* booting on a Quad CPU */
712 printk("VOYAGER SMP: Boot CPU is Quad\n");
713 qic_setup();
714 do_quad_bootstrap();
717 /* enable our own CPIs */
718 vic_enable_cpi();
720 cpu_set(boot_cpu_id, cpu_online_map);
721 cpu_set(boot_cpu_id, cpu_callout_map);
723 /* loop over all the extended VIC CPUs and boot them. The
724 * Quad CPUs must be bootstrapped by their extended VIC cpu */
725 for(i = 0; i < NR_CPUS; i++) {
726 if(i == boot_cpu_id || !cpu_isset(i, phys_cpu_present_map))
727 continue;
728 do_boot_cpu(i);
729 /* This udelay seems to be needed for the Quad boots
730 * don't remove unless you know what you're doing */
731 udelay(1000);
733 /* we could compute the total bogomips here, but why bother?,
734 * Code added from smpboot.c */
736 unsigned long bogosum = 0;
737 for (i = 0; i < NR_CPUS; i++)
738 if (cpu_isset(i, cpu_online_map))
739 bogosum += cpu_data[i].loops_per_jiffy;
740 printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
741 cpucount+1,
742 bogosum/(500000/HZ),
743 (bogosum/(5000/HZ))%100);
745 voyager_extended_cpus = hweight32(voyager_extended_vic_processors);
746 printk("VOYAGER: Extended (interrupt handling CPUs): %d, non-extended: %d\n", voyager_extended_cpus, num_booting_cpus() - voyager_extended_cpus);
747 /* that's it, switch to symmetric mode */
748 outb(0, VIC_PRIORITY_REGISTER);
749 outb(0, VIC_CLAIM_REGISTER_0);
750 outb(0, VIC_CLAIM_REGISTER_1);
752 VDEBUG(("VOYAGER SMP: Booted with %d CPUs\n", num_booting_cpus()));
755 /* Reload the secondary CPUs task structure (this function does not
756 * return ) */
757 void __init
758 initialize_secondary(void)
760 #if 0
761 // AC kernels only
762 set_current(hard_get_current());
763 #endif
766 * We don't actually need to load the full TSS,
767 * basically just the stack pointer and the eip.
770 asm volatile(
771 "movl %0,%%esp\n\t"
772 "jmp *%1"
774 :"r" (current->thread.esp),"r" (current->thread.eip));
777 /* handle a Voyager SYS_INT -- If we don't, the base board will
778 * panic the system.
780 * System interrupts occur because some problem was detected on the
781 * various busses. To find out what you have to probe all the
782 * hardware via the CAT bus. FIXME: At the moment we do nothing. */
783 fastcall void
784 smp_vic_sys_interrupt(struct pt_regs *regs)
786 ack_CPI(VIC_SYS_INT);
787 printk("Voyager SYSTEM INTERRUPT\n");
790 /* Handle a voyager CMN_INT; These interrupts occur either because of
791 * a system status change or because a single bit memory error
792 * occurred. FIXME: At the moment, ignore all this. */
793 fastcall void
794 smp_vic_cmn_interrupt(struct pt_regs *regs)
796 static __u8 in_cmn_int = 0;
797 static DEFINE_SPINLOCK(cmn_int_lock);
799 /* common ints are broadcast, so make sure we only do this once */
800 _raw_spin_lock(&cmn_int_lock);
801 if(in_cmn_int)
802 goto unlock_end;
804 in_cmn_int++;
805 _raw_spin_unlock(&cmn_int_lock);
807 VDEBUG(("Voyager COMMON INTERRUPT\n"));
809 if(voyager_level == 5)
810 voyager_cat_do_common_interrupt();
812 _raw_spin_lock(&cmn_int_lock);
813 in_cmn_int = 0;
814 unlock_end:
815 _raw_spin_unlock(&cmn_int_lock);
816 ack_CPI(VIC_CMN_INT);
820 * Reschedule call back. Nothing to do, all the work is done
821 * automatically when we return from the interrupt. */
822 static void
823 smp_reschedule_interrupt(void)
825 /* do nothing */
828 static struct mm_struct * flush_mm;
829 static unsigned long flush_va;
830 static DEFINE_SPINLOCK(tlbstate_lock);
831 #define FLUSH_ALL 0xffffffff
834 * We cannot call mmdrop() because we are in interrupt context,
835 * instead update mm->cpu_vm_mask.
837 * We need to reload %cr3 since the page tables may be going
838 * away from under us..
840 static inline void
841 leave_mm (unsigned long cpu)
843 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
844 BUG();
845 cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
846 load_cr3(swapper_pg_dir);
851 * Invalidate call-back
853 static void
854 smp_invalidate_interrupt(void)
856 __u8 cpu = smp_processor_id();
858 if (!test_bit(cpu, &smp_invalidate_needed))
859 return;
860 /* This will flood messages. Don't uncomment unless you see
861 * Problems with cross cpu invalidation
862 VDEBUG(("VOYAGER SMP: CPU%d received INVALIDATE_CPI\n",
863 smp_processor_id()));
866 if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
867 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
868 if (flush_va == FLUSH_ALL)
869 local_flush_tlb();
870 else
871 __flush_tlb_one(flush_va);
872 } else
873 leave_mm(cpu);
875 smp_mb__before_clear_bit();
876 clear_bit(cpu, &smp_invalidate_needed);
877 smp_mb__after_clear_bit();
880 /* All the new flush operations for 2.4 */
883 /* This routine is called with a physical cpu mask */
884 static void
885 flush_tlb_others (unsigned long cpumask, struct mm_struct *mm,
886 unsigned long va)
888 int stuck = 50000;
890 if (!cpumask)
891 BUG();
892 if ((cpumask & cpus_addr(cpu_online_map)[0]) != cpumask)
893 BUG();
894 if (cpumask & (1 << smp_processor_id()))
895 BUG();
896 if (!mm)
897 BUG();
899 spin_lock(&tlbstate_lock);
901 flush_mm = mm;
902 flush_va = va;
903 atomic_set_mask(cpumask, &smp_invalidate_needed);
905 * We have to send the CPI only to
906 * CPUs affected.
908 send_CPI(cpumask, VIC_INVALIDATE_CPI);
910 while (smp_invalidate_needed) {
911 mb();
912 if(--stuck == 0) {
913 printk("***WARNING*** Stuck doing invalidate CPI (CPU%d)\n", smp_processor_id());
914 break;
918 /* Uncomment only to debug invalidation problems
919 VDEBUG(("VOYAGER SMP: Completed invalidate CPI (CPU%d)\n", cpu));
922 flush_mm = NULL;
923 flush_va = 0;
924 spin_unlock(&tlbstate_lock);
927 void
928 flush_tlb_current_task(void)
930 struct mm_struct *mm = current->mm;
931 unsigned long cpu_mask;
933 preempt_disable();
935 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
936 local_flush_tlb();
937 if (cpu_mask)
938 flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
940 preempt_enable();
944 void
945 flush_tlb_mm (struct mm_struct * mm)
947 unsigned long cpu_mask;
949 preempt_disable();
951 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
953 if (current->active_mm == mm) {
954 if (current->mm)
955 local_flush_tlb();
956 else
957 leave_mm(smp_processor_id());
959 if (cpu_mask)
960 flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
962 preempt_enable();
965 void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
967 struct mm_struct *mm = vma->vm_mm;
968 unsigned long cpu_mask;
970 preempt_disable();
972 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
973 if (current->active_mm == mm) {
974 if(current->mm)
975 __flush_tlb_one(va);
976 else
977 leave_mm(smp_processor_id());
980 if (cpu_mask)
981 flush_tlb_others(cpu_mask, mm, va);
983 preempt_enable();
985 EXPORT_SYMBOL(flush_tlb_page);
987 /* enable the requested IRQs */
988 static void
989 smp_enable_irq_interrupt(void)
991 __u8 irq;
992 __u8 cpu = get_cpu();
994 VDEBUG(("VOYAGER SMP: CPU%d enabling irq mask 0x%x\n", cpu,
995 vic_irq_enable_mask[cpu]));
997 spin_lock(&vic_irq_lock);
998 for(irq = 0; irq < 16; irq++) {
999 if(vic_irq_enable_mask[cpu] & (1<<irq))
1000 enable_local_vic_irq(irq);
1002 vic_irq_enable_mask[cpu] = 0;
1003 spin_unlock(&vic_irq_lock);
1005 put_cpu_no_resched();
1009 * CPU halt call-back
1011 static void
1012 smp_stop_cpu_function(void *dummy)
1014 VDEBUG(("VOYAGER SMP: CPU%d is STOPPING\n", smp_processor_id()));
1015 cpu_clear(smp_processor_id(), cpu_online_map);
1016 local_irq_disable();
1017 for(;;)
1018 halt();
1021 static DEFINE_SPINLOCK(call_lock);
1023 struct call_data_struct {
1024 void (*func) (void *info);
1025 void *info;
1026 volatile unsigned long started;
1027 volatile unsigned long finished;
1028 int wait;
1031 static struct call_data_struct * call_data;
1033 /* execute a thread on a new CPU. The function to be called must be
1034 * previously set up. This is used to schedule a function for
1035 * execution on all CPU's - set up the function then broadcast a
1036 * function_interrupt CPI to come here on each CPU */
1037 static void
1038 smp_call_function_interrupt(void)
1040 void (*func) (void *info) = call_data->func;
1041 void *info = call_data->info;
1042 /* must take copy of wait because call_data may be replaced
1043 * unless the function is waiting for us to finish */
1044 int wait = call_data->wait;
1045 __u8 cpu = smp_processor_id();
1048 * Notify initiating CPU that I've grabbed the data and am
1049 * about to execute the function
1051 mb();
1052 if(!test_and_clear_bit(cpu, &call_data->started)) {
1053 /* If the bit wasn't set, this could be a replay */
1054 printk(KERN_WARNING "VOYAGER SMP: CPU %d received call funtion with no call pending\n", cpu);
1055 return;
1058 * At this point the info structure may be out of scope unless wait==1
1060 irq_enter();
1061 (*func)(info);
1062 irq_exit();
1063 if (wait) {
1064 mb();
1065 clear_bit(cpu, &call_data->finished);
1069 /* Call this function on all CPUs using the function_interrupt above
1070 <func> The function to run. This must be fast and non-blocking.
1071 <info> An arbitrary pointer to pass to the function.
1072 <retry> If true, keep retrying until ready.
1073 <wait> If true, wait until function has completed on other CPUs.
1074 [RETURNS] 0 on success, else a negative status code. Does not return until
1075 remote CPUs are nearly ready to execute <<func>> or are or have executed.
1078 smp_call_function (void (*func) (void *info), void *info, int retry,
1079 int wait)
1081 struct call_data_struct data;
1082 __u32 mask = cpus_addr(cpu_online_map)[0];
1084 mask &= ~(1<<smp_processor_id());
1086 if (!mask)
1087 return 0;
1089 /* Can deadlock when called with interrupts disabled */
1090 WARN_ON(irqs_disabled());
1092 data.func = func;
1093 data.info = info;
1094 data.started = mask;
1095 data.wait = wait;
1096 if (wait)
1097 data.finished = mask;
1099 spin_lock(&call_lock);
1100 call_data = &data;
1101 wmb();
1102 /* Send a message to all other CPUs and wait for them to respond */
1103 send_CPI_allbutself(VIC_CALL_FUNCTION_CPI);
1105 /* Wait for response */
1106 while (data.started)
1107 barrier();
1109 if (wait)
1110 while (data.finished)
1111 barrier();
1113 spin_unlock(&call_lock);
1115 return 0;
1117 EXPORT_SYMBOL(smp_call_function);
1119 /* Sorry about the name. In an APIC based system, the APICs
1120 * themselves are programmed to send a timer interrupt. This is used
1121 * by linux to reschedule the processor. Voyager doesn't have this,
1122 * so we use the system clock to interrupt one processor, which in
1123 * turn, broadcasts a timer CPI to all the others --- we receive that
1124 * CPI here. We don't use this actually for counting so losing
1125 * ticks doesn't matter
1127 * FIXME: For those CPU's which actually have a local APIC, we could
1128 * try to use it to trigger this interrupt instead of having to
1129 * broadcast the timer tick. Unfortunately, all my pentium DYADs have
1130 * no local APIC, so I can't do this
1132 * This function is currently a placeholder and is unused in the code */
1133 fastcall void
1134 smp_apic_timer_interrupt(struct pt_regs *regs)
1136 wrapper_smp_local_timer_interrupt(regs);
1139 /* All of the QUAD interrupt GATES */
1140 fastcall void
1141 smp_qic_timer_interrupt(struct pt_regs *regs)
1143 ack_QIC_CPI(QIC_TIMER_CPI);
1144 wrapper_smp_local_timer_interrupt(regs);
1147 fastcall void
1148 smp_qic_invalidate_interrupt(struct pt_regs *regs)
1150 ack_QIC_CPI(QIC_INVALIDATE_CPI);
1151 smp_invalidate_interrupt();
1154 fastcall void
1155 smp_qic_reschedule_interrupt(struct pt_regs *regs)
1157 ack_QIC_CPI(QIC_RESCHEDULE_CPI);
1158 smp_reschedule_interrupt();
1161 fastcall void
1162 smp_qic_enable_irq_interrupt(struct pt_regs *regs)
1164 ack_QIC_CPI(QIC_ENABLE_IRQ_CPI);
1165 smp_enable_irq_interrupt();
1168 fastcall void
1169 smp_qic_call_function_interrupt(struct pt_regs *regs)
1171 ack_QIC_CPI(QIC_CALL_FUNCTION_CPI);
1172 smp_call_function_interrupt();
1175 fastcall void
1176 smp_vic_cpi_interrupt(struct pt_regs *regs)
1178 __u8 cpu = smp_processor_id();
1180 if(is_cpu_quad())
1181 ack_QIC_CPI(VIC_CPI_LEVEL0);
1182 else
1183 ack_VIC_CPI(VIC_CPI_LEVEL0);
1185 if(test_and_clear_bit(VIC_TIMER_CPI, &vic_cpi_mailbox[cpu]))
1186 wrapper_smp_local_timer_interrupt(regs);
1187 if(test_and_clear_bit(VIC_INVALIDATE_CPI, &vic_cpi_mailbox[cpu]))
1188 smp_invalidate_interrupt();
1189 if(test_and_clear_bit(VIC_RESCHEDULE_CPI, &vic_cpi_mailbox[cpu]))
1190 smp_reschedule_interrupt();
1191 if(test_and_clear_bit(VIC_ENABLE_IRQ_CPI, &vic_cpi_mailbox[cpu]))
1192 smp_enable_irq_interrupt();
1193 if(test_and_clear_bit(VIC_CALL_FUNCTION_CPI, &vic_cpi_mailbox[cpu]))
1194 smp_call_function_interrupt();
1197 static void
1198 do_flush_tlb_all(void* info)
1200 unsigned long cpu = smp_processor_id();
1202 __flush_tlb_all();
1203 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
1204 leave_mm(cpu);
1208 /* flush the TLB of every active CPU in the system */
1209 void
1210 flush_tlb_all(void)
1212 on_each_cpu(do_flush_tlb_all, 0, 1, 1);
1215 /* used to set up the trampoline for other CPUs when the memory manager
1216 * is sorted out */
1217 void __init
1218 smp_alloc_memory(void)
1220 trampoline_base = (__u32)alloc_bootmem_low_pages(PAGE_SIZE);
1221 if(__pa(trampoline_base) >= 0x93000)
1222 BUG();
1225 /* send a reschedule CPI to one CPU by physical CPU number*/
1226 void
1227 smp_send_reschedule(int cpu)
1229 send_one_CPI(cpu, VIC_RESCHEDULE_CPI);
1234 hard_smp_processor_id(void)
1236 __u8 i;
1237 __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
1238 if((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER)
1239 return cpumask & 0x1F;
1241 for(i = 0; i < 8; i++) {
1242 if(cpumask & (1<<i))
1243 return i;
1245 printk("** WARNING ** Illegal cpuid returned by VIC: %d", cpumask);
1246 return 0;
1249 /* broadcast a halt to all other CPUs */
1250 void
1251 smp_send_stop(void)
1253 smp_call_function(smp_stop_cpu_function, NULL, 1, 1);
1256 /* this function is triggered in time.c when a clock tick fires
1257 * we need to re-broadcast the tick to all CPUs */
1258 void
1259 smp_vic_timer_interrupt(struct pt_regs *regs)
1261 send_CPI_allbutself(VIC_TIMER_CPI);
1262 smp_local_timer_interrupt(regs);
1265 /* local (per CPU) timer interrupt. It does both profiling and
1266 * process statistics/rescheduling.
1268 * We do profiling in every local tick, statistics/rescheduling
1269 * happen only every 'profiling multiplier' ticks. The default
1270 * multiplier is 1 and it can be changed by writing the new multiplier
1271 * value into /proc/profile.
1273 void
1274 smp_local_timer_interrupt(struct pt_regs * regs)
1276 int cpu = smp_processor_id();
1277 long weight;
1279 profile_tick(CPU_PROFILING, regs);
1280 if (--per_cpu(prof_counter, cpu) <= 0) {
1282 * The multiplier may have changed since the last time we got
1283 * to this point as a result of the user writing to
1284 * /proc/profile. In this case we need to adjust the APIC
1285 * timer accordingly.
1287 * Interrupts are already masked off at this point.
1289 per_cpu(prof_counter,cpu) = per_cpu(prof_multiplier, cpu);
1290 if (per_cpu(prof_counter, cpu) !=
1291 per_cpu(prof_old_multiplier, cpu)) {
1292 /* FIXME: need to update the vic timer tick here */
1293 per_cpu(prof_old_multiplier, cpu) =
1294 per_cpu(prof_counter, cpu);
1297 update_process_times(user_mode_vm(regs));
1300 if( ((1<<cpu) & voyager_extended_vic_processors) == 0)
1301 /* only extended VIC processors participate in
1302 * interrupt distribution */
1303 return;
1306 * We take the 'long' return path, and there every subsystem
1307 * grabs the apropriate locks (kernel lock/ irq lock).
1309 * we might want to decouple profiling from the 'long path',
1310 * and do the profiling totally in assembly.
1312 * Currently this isn't too much of an issue (performance wise),
1313 * we can take more than 100K local irqs per second on a 100 MHz P5.
1316 if((++vic_tick[cpu] & 0x7) != 0)
1317 return;
1318 /* get here every 16 ticks (about every 1/6 of a second) */
1320 /* Change our priority to give someone else a chance at getting
1321 * the IRQ. The algorithm goes like this:
1323 * In the VIC, the dynamically routed interrupt is always
1324 * handled by the lowest priority eligible (i.e. receiving
1325 * interrupts) CPU. If >1 eligible CPUs are equal lowest, the
1326 * lowest processor number gets it.
1328 * The priority of a CPU is controlled by a special per-CPU
1329 * VIC priority register which is 3 bits wide 0 being lowest
1330 * and 7 highest priority..
1332 * Therefore we subtract the average number of interrupts from
1333 * the number we've fielded. If this number is negative, we
1334 * lower the activity count and if it is positive, we raise
1335 * it.
1337 * I'm afraid this still leads to odd looking interrupt counts:
1338 * the totals are all roughly equal, but the individual ones
1339 * look rather skewed.
1341 * FIXME: This algorithm is total crap when mixed with SMP
1342 * affinity code since we now try to even up the interrupt
1343 * counts when an affinity binding is keeping them on a
1344 * particular CPU*/
1345 weight = (vic_intr_count[cpu]*voyager_extended_cpus
1346 - vic_intr_total) >> 4;
1347 weight += 4;
1348 if(weight > 7)
1349 weight = 7;
1350 if(weight < 0)
1351 weight = 0;
1353 outb((__u8)weight, VIC_PRIORITY_REGISTER);
1355 #ifdef VOYAGER_DEBUG
1356 if((vic_tick[cpu] & 0xFFF) == 0) {
1357 /* print this message roughly every 25 secs */
1358 printk("VOYAGER SMP: vic_tick[%d] = %lu, weight = %ld\n",
1359 cpu, vic_tick[cpu], weight);
1361 #endif
1364 /* setup the profiling timer */
1365 int
1366 setup_profiling_timer(unsigned int multiplier)
1368 int i;
1370 if ( (!multiplier))
1371 return -EINVAL;
1374 * Set the new multiplier for each CPU. CPUs don't start using the
1375 * new values until the next timer interrupt in which they do process
1376 * accounting.
1378 for (i = 0; i < NR_CPUS; ++i)
1379 per_cpu(prof_multiplier, i) = multiplier;
1381 return 0;
1385 /* The CPIs are handled in the per cpu 8259s, so they must be
1386 * enabled to be received: FIX: enabling the CPIs in the early
1387 * boot sequence interferes with bug checking; enable them later
1388 * on in smp_init */
1389 #define VIC_SET_GATE(cpi, vector) \
1390 set_intr_gate((cpi) + VIC_DEFAULT_CPI_BASE, (vector))
1391 #define QIC_SET_GATE(cpi, vector) \
1392 set_intr_gate((cpi) + QIC_DEFAULT_CPI_BASE, (vector))
1394 void __init
1395 smp_intr_init(void)
1397 int i;
1399 /* initialize the per cpu irq mask to all disabled */
1400 for(i = 0; i < NR_CPUS; i++)
1401 vic_irq_mask[i] = 0xFFFF;
1403 VIC_SET_GATE(VIC_CPI_LEVEL0, vic_cpi_interrupt);
1405 VIC_SET_GATE(VIC_SYS_INT, vic_sys_interrupt);
1406 VIC_SET_GATE(VIC_CMN_INT, vic_cmn_interrupt);
1408 QIC_SET_GATE(QIC_TIMER_CPI, qic_timer_interrupt);
1409 QIC_SET_GATE(QIC_INVALIDATE_CPI, qic_invalidate_interrupt);
1410 QIC_SET_GATE(QIC_RESCHEDULE_CPI, qic_reschedule_interrupt);
1411 QIC_SET_GATE(QIC_ENABLE_IRQ_CPI, qic_enable_irq_interrupt);
1412 QIC_SET_GATE(QIC_CALL_FUNCTION_CPI, qic_call_function_interrupt);
1415 /* now put the VIC descriptor into the first 48 IRQs
1417 * This is for later: first 16 correspond to PC IRQs; next 16
1418 * are Primary MC IRQs and final 16 are Secondary MC IRQs */
1419 for(i = 0; i < 48; i++)
1420 irq_desc[i].handler = &vic_irq_type;
1423 /* send a CPI at level cpi to a set of cpus in cpuset (set 1 bit per
1424 * processor to receive CPI */
1425 static void
1426 send_CPI(__u32 cpuset, __u8 cpi)
1428 int cpu;
1429 __u32 quad_cpuset = (cpuset & voyager_quad_processors);
1431 if(cpi < VIC_START_FAKE_CPI) {
1432 /* fake CPI are only used for booting, so send to the
1433 * extended quads as well---Quads must be VIC booted */
1434 outb((__u8)(cpuset), VIC_CPI_Registers[cpi]);
1435 return;
1437 if(quad_cpuset)
1438 send_QIC_CPI(quad_cpuset, cpi);
1439 cpuset &= ~quad_cpuset;
1440 cpuset &= 0xff; /* only first 8 CPUs vaild for VIC CPI */
1441 if(cpuset == 0)
1442 return;
1443 for_each_online_cpu(cpu) {
1444 if(cpuset & (1<<cpu))
1445 set_bit(cpi, &vic_cpi_mailbox[cpu]);
1447 if(cpuset)
1448 outb((__u8)cpuset, VIC_CPI_Registers[VIC_CPI_LEVEL0]);
1451 /* Acknowledge receipt of CPI in the QIC, clear in QIC hardware and
1452 * set the cache line to shared by reading it.
1454 * DON'T make this inline otherwise the cache line read will be
1455 * optimised away
1456 * */
1457 static int
1458 ack_QIC_CPI(__u8 cpi) {
1459 __u8 cpu = hard_smp_processor_id();
1461 cpi &= 7;
1463 outb(1<<cpi, QIC_INTERRUPT_CLEAR1);
1464 return voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi;
1467 static void
1468 ack_special_QIC_CPI(__u8 cpi)
1470 switch(cpi) {
1471 case VIC_CMN_INT:
1472 outb(QIC_CMN_INT, QIC_INTERRUPT_CLEAR0);
1473 break;
1474 case VIC_SYS_INT:
1475 outb(QIC_SYS_INT, QIC_INTERRUPT_CLEAR0);
1476 break;
1478 /* also clear at the VIC, just in case (nop for non-extended proc) */
1479 ack_VIC_CPI(cpi);
1482 /* Acknowledge receipt of CPI in the VIC (essentially an EOI) */
1483 static void
1484 ack_VIC_CPI(__u8 cpi)
1486 #ifdef VOYAGER_DEBUG
1487 unsigned long flags;
1488 __u16 isr;
1489 __u8 cpu = smp_processor_id();
1491 local_irq_save(flags);
1492 isr = vic_read_isr();
1493 if((isr & (1<<(cpi &7))) == 0) {
1494 printk("VOYAGER SMP: CPU%d lost CPI%d\n", cpu, cpi);
1496 #endif
1497 /* send specific EOI; the two system interrupts have
1498 * bit 4 set for a separate vector but behave as the
1499 * corresponding 3 bit intr */
1500 outb_p(0x60|(cpi & 7),0x20);
1502 #ifdef VOYAGER_DEBUG
1503 if((vic_read_isr() & (1<<(cpi &7))) != 0) {
1504 printk("VOYAGER SMP: CPU%d still asserting CPI%d\n", cpu, cpi);
1506 local_irq_restore(flags);
1507 #endif
1510 /* cribbed with thanks from irq.c */
1511 #define __byte(x,y) (((unsigned char *)&(y))[x])
1512 #define cached_21(cpu) (__byte(0,vic_irq_mask[cpu]))
1513 #define cached_A1(cpu) (__byte(1,vic_irq_mask[cpu]))
1515 static unsigned int
1516 startup_vic_irq(unsigned int irq)
1518 enable_vic_irq(irq);
1520 return 0;
1523 /* The enable and disable routines. This is where we run into
1524 * conflicting architectural philosophy. Fundamentally, the voyager
1525 * architecture does not expect to have to disable interrupts globally
1526 * (the IRQ controllers belong to each CPU). The processor masquerade
1527 * which is used to start the system shouldn't be used in a running OS
1528 * since it will cause great confusion if two separate CPUs drive to
1529 * the same IRQ controller (I know, I've tried it).
1531 * The solution is a variant on the NCR lazy SPL design:
1533 * 1) To disable an interrupt, do nothing (other than set the
1534 * IRQ_DISABLED flag). This dares the interrupt actually to arrive.
1536 * 2) If the interrupt dares to come in, raise the local mask against
1537 * it (this will result in all the CPU masks being raised
1538 * eventually).
1540 * 3) To enable the interrupt, lower the mask on the local CPU and
1541 * broadcast an Interrupt enable CPI which causes all other CPUs to
1542 * adjust their masks accordingly. */
1544 static void
1545 enable_vic_irq(unsigned int irq)
1547 /* linux doesn't to processor-irq affinity, so enable on
1548 * all CPUs we know about */
1549 int cpu = smp_processor_id(), real_cpu;
1550 __u16 mask = (1<<irq);
1551 __u32 processorList = 0;
1552 unsigned long flags;
1554 VDEBUG(("VOYAGER: enable_vic_irq(%d) CPU%d affinity 0x%lx\n",
1555 irq, cpu, cpu_irq_affinity[cpu]));
1556 spin_lock_irqsave(&vic_irq_lock, flags);
1557 for_each_online_cpu(real_cpu) {
1558 if(!(voyager_extended_vic_processors & (1<<real_cpu)))
1559 continue;
1560 if(!(cpu_irq_affinity[real_cpu] & mask)) {
1561 /* irq has no affinity for this CPU, ignore */
1562 continue;
1564 if(real_cpu == cpu) {
1565 enable_local_vic_irq(irq);
1567 else if(vic_irq_mask[real_cpu] & mask) {
1568 vic_irq_enable_mask[real_cpu] |= mask;
1569 processorList |= (1<<real_cpu);
1572 spin_unlock_irqrestore(&vic_irq_lock, flags);
1573 if(processorList)
1574 send_CPI(processorList, VIC_ENABLE_IRQ_CPI);
1577 static void
1578 disable_vic_irq(unsigned int irq)
1580 /* lazy disable, do nothing */
1583 static void
1584 enable_local_vic_irq(unsigned int irq)
1586 __u8 cpu = smp_processor_id();
1587 __u16 mask = ~(1 << irq);
1588 __u16 old_mask = vic_irq_mask[cpu];
1590 vic_irq_mask[cpu] &= mask;
1591 if(vic_irq_mask[cpu] == old_mask)
1592 return;
1594 VDEBUG(("VOYAGER DEBUG: Enabling irq %d in hardware on CPU %d\n",
1595 irq, cpu));
1597 if (irq & 8) {
1598 outb_p(cached_A1(cpu),0xA1);
1599 (void)inb_p(0xA1);
1601 else {
1602 outb_p(cached_21(cpu),0x21);
1603 (void)inb_p(0x21);
1607 static void
1608 disable_local_vic_irq(unsigned int irq)
1610 __u8 cpu = smp_processor_id();
1611 __u16 mask = (1 << irq);
1612 __u16 old_mask = vic_irq_mask[cpu];
1614 if(irq == 7)
1615 return;
1617 vic_irq_mask[cpu] |= mask;
1618 if(old_mask == vic_irq_mask[cpu])
1619 return;
1621 VDEBUG(("VOYAGER DEBUG: Disabling irq %d in hardware on CPU %d\n",
1622 irq, cpu));
1624 if (irq & 8) {
1625 outb_p(cached_A1(cpu),0xA1);
1626 (void)inb_p(0xA1);
1628 else {
1629 outb_p(cached_21(cpu),0x21);
1630 (void)inb_p(0x21);
1634 /* The VIC is level triggered, so the ack can only be issued after the
1635 * interrupt completes. However, we do Voyager lazy interrupt
1636 * handling here: It is an extremely expensive operation to mask an
1637 * interrupt in the vic, so we merely set a flag (IRQ_DISABLED). If
1638 * this interrupt actually comes in, then we mask and ack here to push
1639 * the interrupt off to another CPU */
1640 static void
1641 before_handle_vic_irq(unsigned int irq)
1643 irq_desc_t *desc = irq_desc + irq;
1644 __u8 cpu = smp_processor_id();
1646 _raw_spin_lock(&vic_irq_lock);
1647 vic_intr_total++;
1648 vic_intr_count[cpu]++;
1650 if(!(cpu_irq_affinity[cpu] & (1<<irq))) {
1651 /* The irq is not in our affinity mask, push it off
1652 * onto another CPU */
1653 VDEBUG(("VOYAGER DEBUG: affinity triggered disable of irq %d on cpu %d\n",
1654 irq, cpu));
1655 disable_local_vic_irq(irq);
1656 /* set IRQ_INPROGRESS to prevent the handler in irq.c from
1657 * actually calling the interrupt routine */
1658 desc->status |= IRQ_REPLAY | IRQ_INPROGRESS;
1659 } else if(desc->status & IRQ_DISABLED) {
1660 /* Damn, the interrupt actually arrived, do the lazy
1661 * disable thing. The interrupt routine in irq.c will
1662 * not handle a IRQ_DISABLED interrupt, so nothing more
1663 * need be done here */
1664 VDEBUG(("VOYAGER DEBUG: lazy disable of irq %d on CPU %d\n",
1665 irq, cpu));
1666 disable_local_vic_irq(irq);
1667 desc->status |= IRQ_REPLAY;
1668 } else {
1669 desc->status &= ~IRQ_REPLAY;
1672 _raw_spin_unlock(&vic_irq_lock);
1675 /* Finish the VIC interrupt: basically mask */
1676 static void
1677 after_handle_vic_irq(unsigned int irq)
1679 irq_desc_t *desc = irq_desc + irq;
1681 _raw_spin_lock(&vic_irq_lock);
1683 unsigned int status = desc->status & ~IRQ_INPROGRESS;
1684 #ifdef VOYAGER_DEBUG
1685 __u16 isr;
1686 #endif
1688 desc->status = status;
1689 if ((status & IRQ_DISABLED))
1690 disable_local_vic_irq(irq);
1691 #ifdef VOYAGER_DEBUG
1692 /* DEBUG: before we ack, check what's in progress */
1693 isr = vic_read_isr();
1694 if((isr & (1<<irq) && !(status & IRQ_REPLAY)) == 0) {
1695 int i;
1696 __u8 cpu = smp_processor_id();
1697 __u8 real_cpu;
1698 int mask; /* Um... initialize me??? --RR */
1700 printk("VOYAGER SMP: CPU%d lost interrupt %d\n",
1701 cpu, irq);
1702 for_each_cpu(real_cpu, mask) {
1704 outb(VIC_CPU_MASQUERADE_ENABLE | real_cpu,
1705 VIC_PROCESSOR_ID);
1706 isr = vic_read_isr();
1707 if(isr & (1<<irq)) {
1708 printk("VOYAGER SMP: CPU%d ack irq %d\n",
1709 real_cpu, irq);
1710 ack_vic_irq(irq);
1712 outb(cpu, VIC_PROCESSOR_ID);
1715 #endif /* VOYAGER_DEBUG */
1716 /* as soon as we ack, the interrupt is eligible for
1717 * receipt by another CPU so everything must be in
1718 * order here */
1719 ack_vic_irq(irq);
1720 if(status & IRQ_REPLAY) {
1721 /* replay is set if we disable the interrupt
1722 * in the before_handle_vic_irq() routine, so
1723 * clear the in progress bit here to allow the
1724 * next CPU to handle this correctly */
1725 desc->status &= ~(IRQ_REPLAY | IRQ_INPROGRESS);
1727 #ifdef VOYAGER_DEBUG
1728 isr = vic_read_isr();
1729 if((isr & (1<<irq)) != 0)
1730 printk("VOYAGER SMP: after_handle_vic_irq() after ack irq=%d, isr=0x%x\n",
1731 irq, isr);
1732 #endif /* VOYAGER_DEBUG */
1734 _raw_spin_unlock(&vic_irq_lock);
1736 /* All code after this point is out of the main path - the IRQ
1737 * may be intercepted by another CPU if reasserted */
1741 /* Linux processor - interrupt affinity manipulations.
1743 * For each processor, we maintain a 32 bit irq affinity mask.
1744 * Initially it is set to all 1's so every processor accepts every
1745 * interrupt. In this call, we change the processor's affinity mask:
1747 * Change from enable to disable:
1749 * If the interrupt ever comes in to the processor, we will disable it
1750 * and ack it to push it off to another CPU, so just accept the mask here.
1752 * Change from disable to enable:
1754 * change the mask and then do an interrupt enable CPI to re-enable on
1755 * the selected processors */
1757 void
1758 set_vic_irq_affinity(unsigned int irq, cpumask_t mask)
1760 /* Only extended processors handle interrupts */
1761 unsigned long real_mask;
1762 unsigned long irq_mask = 1 << irq;
1763 int cpu;
1765 real_mask = cpus_addr(mask)[0] & voyager_extended_vic_processors;
1767 if(cpus_addr(mask)[0] == 0)
1768 /* can't have no cpu's to accept the interrupt -- extremely
1769 * bad things will happen */
1770 return;
1772 if(irq == 0)
1773 /* can't change the affinity of the timer IRQ. This
1774 * is due to the constraint in the voyager
1775 * architecture that the CPI also comes in on and IRQ
1776 * line and we have chosen IRQ0 for this. If you
1777 * raise the mask on this interrupt, the processor
1778 * will no-longer be able to accept VIC CPIs */
1779 return;
1781 if(irq >= 32)
1782 /* You can only have 32 interrupts in a voyager system
1783 * (and 32 only if you have a secondary microchannel
1784 * bus) */
1785 return;
1787 for_each_online_cpu(cpu) {
1788 unsigned long cpu_mask = 1 << cpu;
1790 if(cpu_mask & real_mask) {
1791 /* enable the interrupt for this cpu */
1792 cpu_irq_affinity[cpu] |= irq_mask;
1793 } else {
1794 /* disable the interrupt for this cpu */
1795 cpu_irq_affinity[cpu] &= ~irq_mask;
1798 /* this is magic, we now have the correct affinity maps, so
1799 * enable the interrupt. This will send an enable CPI to
1800 * those cpu's who need to enable it in their local masks,
1801 * causing them to correct for the new affinity . If the
1802 * interrupt is currently globally disabled, it will simply be
1803 * disabled again as it comes in (voyager lazy disable). If
1804 * the affinity map is tightened to disable the interrupt on a
1805 * cpu, it will be pushed off when it comes in */
1806 enable_vic_irq(irq);
1809 static void
1810 ack_vic_irq(unsigned int irq)
1812 if (irq & 8) {
1813 outb(0x62,0x20); /* Specific EOI to cascade */
1814 outb(0x60|(irq & 7),0xA0);
1815 } else {
1816 outb(0x60 | (irq & 7),0x20);
1820 /* enable the CPIs. In the VIC, the CPIs are delivered by the 8259
1821 * but are not vectored by it. This means that the 8259 mask must be
1822 * lowered to receive them */
1823 static __init void
1824 vic_enable_cpi(void)
1826 __u8 cpu = smp_processor_id();
1828 /* just take a copy of the current mask (nop for boot cpu) */
1829 vic_irq_mask[cpu] = vic_irq_mask[boot_cpu_id];
1831 enable_local_vic_irq(VIC_CPI_LEVEL0);
1832 enable_local_vic_irq(VIC_CPI_LEVEL1);
1833 /* for sys int and cmn int */
1834 enable_local_vic_irq(7);
1836 if(is_cpu_quad()) {
1837 outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
1838 outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
1839 VDEBUG(("VOYAGER SMP: QIC ENABLE CPI: CPU%d: MASK 0x%x\n",
1840 cpu, QIC_CPI_ENABLE));
1843 VDEBUG(("VOYAGER SMP: ENABLE CPI: CPU%d: MASK 0x%x\n",
1844 cpu, vic_irq_mask[cpu]));
1847 void
1848 voyager_smp_dump()
1850 int old_cpu = smp_processor_id(), cpu;
1852 /* dump the interrupt masks of each processor */
1853 for_each_online_cpu(cpu) {
1854 __u16 imr, isr, irr;
1855 unsigned long flags;
1857 local_irq_save(flags);
1858 outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
1859 imr = (inb(0xa1) << 8) | inb(0x21);
1860 outb(0x0a, 0xa0);
1861 irr = inb(0xa0) << 8;
1862 outb(0x0a, 0x20);
1863 irr |= inb(0x20);
1864 outb(0x0b, 0xa0);
1865 isr = inb(0xa0) << 8;
1866 outb(0x0b, 0x20);
1867 isr |= inb(0x20);
1868 outb(old_cpu, VIC_PROCESSOR_ID);
1869 local_irq_restore(flags);
1870 printk("\tCPU%d: mask=0x%x, IMR=0x%x, IRR=0x%x, ISR=0x%x\n",
1871 cpu, vic_irq_mask[cpu], imr, irr, isr);
1872 #if 0
1873 /* These lines are put in to try to unstick an un ack'd irq */
1874 if(isr != 0) {
1875 int irq;
1876 for(irq=0; irq<16; irq++) {
1877 if(isr & (1<<irq)) {
1878 printk("\tCPU%d: ack irq %d\n",
1879 cpu, irq);
1880 local_irq_save(flags);
1881 outb(VIC_CPU_MASQUERADE_ENABLE | cpu,
1882 VIC_PROCESSOR_ID);
1883 ack_vic_irq(irq);
1884 outb(old_cpu, VIC_PROCESSOR_ID);
1885 local_irq_restore(flags);
1889 #endif
1893 void
1894 smp_voyager_power_off(void *dummy)
1896 if(smp_processor_id() == boot_cpu_id)
1897 voyager_power_off();
1898 else
1899 smp_stop_cpu_function(NULL);
1902 void __init
1903 smp_prepare_cpus(unsigned int max_cpus)
1905 /* FIXME: ignore max_cpus for now */
1906 smp_boot_cpus();
1909 void __devinit smp_prepare_boot_cpu(void)
1911 cpu_set(smp_processor_id(), cpu_online_map);
1912 cpu_set(smp_processor_id(), cpu_callout_map);
1913 cpu_set(smp_processor_id(), cpu_possible_map);
1916 int __devinit
1917 __cpu_up(unsigned int cpu)
1919 /* This only works at boot for x86. See "rewrite" above. */
1920 if (cpu_isset(cpu, smp_commenced_mask))
1921 return -ENOSYS;
1923 /* In case one didn't come up */
1924 if (!cpu_isset(cpu, cpu_callin_map))
1925 return -EIO;
1926 /* Unleash the CPU! */
1927 cpu_set(cpu, smp_commenced_mask);
1928 while (!cpu_isset(cpu, cpu_online_map))
1929 mb();
1930 return 0;
1933 void __init
1934 smp_cpus_done(unsigned int max_cpus)
1936 zap_low_mappings();