4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains functions related to writing back dirty pages at the
9 * 10Apr2002 akpm@zip.com.au
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/spinlock.h>
18 #include <linux/swap.h>
19 #include <linux/slab.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/init.h>
23 #include <linux/backing-dev.h>
24 #include <linux/blkdev.h>
25 #include <linux/mpage.h>
26 #include <linux/percpu.h>
27 #include <linux/notifier.h>
28 #include <linux/smp.h>
29 #include <linux/sysctl.h>
30 #include <linux/cpu.h>
31 #include <linux/syscalls.h>
34 * The maximum number of pages to writeout in a single bdflush/kupdate
35 * operation. We do this so we don't hold I_LOCK against an inode for
36 * enormous amounts of time, which would block a userspace task which has
37 * been forced to throttle against that inode. Also, the code reevaluates
38 * the dirty each time it has written this many pages.
40 #define MAX_WRITEBACK_PAGES 1024
43 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
44 * will look to see if it needs to force writeback or throttling.
46 static long ratelimit_pages
= 32;
48 static long total_pages
; /* The total number of pages in the machine. */
49 static int dirty_exceeded __cacheline_aligned_in_smp
; /* Dirty mem may be over limit */
52 * When balance_dirty_pages decides that the caller needs to perform some
53 * non-background writeback, this is how many pages it will attempt to write.
54 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
55 * large amounts of I/O are submitted.
57 static inline long sync_writeback_pages(void)
59 return ratelimit_pages
+ ratelimit_pages
/ 2;
62 /* The following parameters are exported via /proc/sys/vm */
65 * Start background writeback (via pdflush) at this percentage
67 int dirty_background_ratio
= 10;
70 * The generator of dirty data starts writeback at this percentage
72 int vm_dirty_ratio
= 40;
75 * The interval between `kupdate'-style writebacks, in jiffies
77 int dirty_writeback_interval
= 5 * HZ
;
80 * The longest number of jiffies for which data is allowed to remain dirty
82 int dirty_expire_interval
= 30 * HZ
;
85 * Flag that makes the machine dump writes/reads and block dirtyings.
90 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
91 * a full sync is triggered after this time elapses without any disk activity.
95 EXPORT_SYMBOL(laptop_mode
);
97 /* End of sysctl-exported parameters */
100 static void background_writeout(unsigned long _min_pages
);
103 * Work out the current dirty-memory clamping and background writeout
106 * The main aim here is to lower them aggressively if there is a lot of mapped
107 * memory around. To avoid stressing page reclaim with lots of unreclaimable
108 * pages. It is better to clamp down on writers than to start swapping, and
109 * performing lots of scanning.
111 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
113 * We don't permit the clamping level to fall below 5% - that is getting rather
116 * We make sure that the background writeout level is below the adjusted
120 get_dirty_limits(long *pbackground
, long *pdirty
,
121 struct address_space
*mapping
)
123 int background_ratio
; /* Percentages */
128 unsigned long available_memory
= total_pages
;
129 struct task_struct
*tsk
;
131 #ifdef CONFIG_HIGHMEM
133 * If this mapping can only allocate from low memory,
134 * we exclude high memory from our count.
136 if (mapping
&& !(mapping_gfp_mask(mapping
) & __GFP_HIGHMEM
))
137 available_memory
-= totalhigh_pages
;
141 unmapped_ratio
= 100 - ((global_page_state(NR_FILE_MAPPED
) +
142 global_page_state(NR_ANON_PAGES
)) * 100) /
145 dirty_ratio
= vm_dirty_ratio
;
146 if (dirty_ratio
> unmapped_ratio
/ 2)
147 dirty_ratio
= unmapped_ratio
/ 2;
152 background_ratio
= dirty_background_ratio
;
153 if (background_ratio
>= dirty_ratio
)
154 background_ratio
= dirty_ratio
/ 2;
156 background
= (background_ratio
* available_memory
) / 100;
157 dirty
= (dirty_ratio
* available_memory
) / 100;
159 if (tsk
->flags
& PF_LESS_THROTTLE
|| rt_task(tsk
)) {
160 background
+= background
/ 4;
163 *pbackground
= background
;
168 * balance_dirty_pages() must be called by processes which are generating dirty
169 * data. It looks at the number of dirty pages in the machine and will force
170 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
171 * If we're over `background_thresh' then pdflush is woken to perform some
174 static void balance_dirty_pages(struct address_space
*mapping
)
177 long background_thresh
;
179 unsigned long pages_written
= 0;
180 unsigned long write_chunk
= sync_writeback_pages();
182 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
185 struct writeback_control wbc
= {
187 .sync_mode
= WB_SYNC_NONE
,
188 .older_than_this
= NULL
,
189 .nr_to_write
= write_chunk
,
193 get_dirty_limits(&background_thresh
, &dirty_thresh
, mapping
);
194 nr_reclaimable
= global_page_state(NR_FILE_DIRTY
) +
195 global_page_state(NR_UNSTABLE_NFS
);
196 if (nr_reclaimable
+ global_page_state(NR_WRITEBACK
) <=
203 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
204 * Unstable writes are a feature of certain networked
205 * filesystems (i.e. NFS) in which data may have been
206 * written to the server's write cache, but has not yet
207 * been flushed to permanent storage.
209 if (nr_reclaimable
) {
210 writeback_inodes(&wbc
);
211 get_dirty_limits(&background_thresh
,
212 &dirty_thresh
, mapping
);
213 nr_reclaimable
= global_page_state(NR_FILE_DIRTY
) +
214 global_page_state(NR_UNSTABLE_NFS
);
216 global_page_state(NR_WRITEBACK
)
219 pages_written
+= write_chunk
- wbc
.nr_to_write
;
220 if (pages_written
>= write_chunk
)
221 break; /* We've done our duty */
223 blk_congestion_wait(WRITE
, HZ
/10);
226 if (nr_reclaimable
+ global_page_state(NR_WRITEBACK
)
227 <= dirty_thresh
&& dirty_exceeded
)
230 if (writeback_in_progress(bdi
))
231 return; /* pdflush is already working this queue */
234 * In laptop mode, we wait until hitting the higher threshold before
235 * starting background writeout, and then write out all the way down
236 * to the lower threshold. So slow writers cause minimal disk activity.
238 * In normal mode, we start background writeout at the lower
239 * background_thresh, to keep the amount of dirty memory low.
241 if ((laptop_mode
&& pages_written
) ||
242 (!laptop_mode
&& (nr_reclaimable
> background_thresh
)))
243 pdflush_operation(background_writeout
, 0);
247 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
248 * @mapping: address_space which was dirtied
249 * @nr_pages_dirtied: number of pages which the caller has just dirtied
251 * Processes which are dirtying memory should call in here once for each page
252 * which was newly dirtied. The function will periodically check the system's
253 * dirty state and will initiate writeback if needed.
255 * On really big machines, get_writeback_state is expensive, so try to avoid
256 * calling it too often (ratelimiting). But once we're over the dirty memory
257 * limit we decrease the ratelimiting by a lot, to prevent individual processes
258 * from overshooting the limit by (ratelimit_pages) each.
260 void balance_dirty_pages_ratelimited_nr(struct address_space
*mapping
,
261 unsigned long nr_pages_dirtied
)
263 static DEFINE_PER_CPU(unsigned long, ratelimits
) = 0;
264 unsigned long ratelimit
;
267 ratelimit
= ratelimit_pages
;
272 * Check the rate limiting. Also, we do not want to throttle real-time
273 * tasks in balance_dirty_pages(). Period.
276 p
= &__get_cpu_var(ratelimits
);
277 *p
+= nr_pages_dirtied
;
278 if (unlikely(*p
>= ratelimit
)) {
281 balance_dirty_pages(mapping
);
286 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr
);
288 void throttle_vm_writeout(void)
290 long background_thresh
;
294 get_dirty_limits(&background_thresh
, &dirty_thresh
, NULL
);
297 * Boost the allowable dirty threshold a bit for page
298 * allocators so they don't get DoS'ed by heavy writers
300 dirty_thresh
+= dirty_thresh
/ 10; /* wheeee... */
302 if (global_page_state(NR_UNSTABLE_NFS
) +
303 global_page_state(NR_WRITEBACK
) <= dirty_thresh
)
305 blk_congestion_wait(WRITE
, HZ
/10);
311 * writeback at least _min_pages, and keep writing until the amount of dirty
312 * memory is less than the background threshold, or until we're all clean.
314 static void background_writeout(unsigned long _min_pages
)
316 long min_pages
= _min_pages
;
317 struct writeback_control wbc
= {
319 .sync_mode
= WB_SYNC_NONE
,
320 .older_than_this
= NULL
,
327 long background_thresh
;
330 get_dirty_limits(&background_thresh
, &dirty_thresh
, NULL
);
331 if (global_page_state(NR_FILE_DIRTY
) +
332 global_page_state(NR_UNSTABLE_NFS
) < background_thresh
335 wbc
.encountered_congestion
= 0;
336 wbc
.nr_to_write
= MAX_WRITEBACK_PAGES
;
337 wbc
.pages_skipped
= 0;
338 writeback_inodes(&wbc
);
339 min_pages
-= MAX_WRITEBACK_PAGES
- wbc
.nr_to_write
;
340 if (wbc
.nr_to_write
> 0 || wbc
.pages_skipped
> 0) {
341 /* Wrote less than expected */
342 blk_congestion_wait(WRITE
, HZ
/10);
343 if (!wbc
.encountered_congestion
)
350 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
351 * the whole world. Returns 0 if a pdflush thread was dispatched. Returns
352 * -1 if all pdflush threads were busy.
354 int wakeup_pdflush(long nr_pages
)
357 nr_pages
= global_page_state(NR_FILE_DIRTY
) +
358 global_page_state(NR_UNSTABLE_NFS
);
359 return pdflush_operation(background_writeout
, nr_pages
);
362 static void wb_timer_fn(unsigned long unused
);
363 static void laptop_timer_fn(unsigned long unused
);
365 static DEFINE_TIMER(wb_timer
, wb_timer_fn
, 0, 0);
366 static DEFINE_TIMER(laptop_mode_wb_timer
, laptop_timer_fn
, 0, 0);
369 * Periodic writeback of "old" data.
371 * Define "old": the first time one of an inode's pages is dirtied, we mark the
372 * dirtying-time in the inode's address_space. So this periodic writeback code
373 * just walks the superblock inode list, writing back any inodes which are
374 * older than a specific point in time.
376 * Try to run once per dirty_writeback_interval. But if a writeback event
377 * takes longer than a dirty_writeback_interval interval, then leave a
380 * older_than_this takes precedence over nr_to_write. So we'll only write back
381 * all dirty pages if they are all attached to "old" mappings.
383 static void wb_kupdate(unsigned long arg
)
385 unsigned long oldest_jif
;
386 unsigned long start_jif
;
387 unsigned long next_jif
;
389 struct writeback_control wbc
= {
391 .sync_mode
= WB_SYNC_NONE
,
392 .older_than_this
= &oldest_jif
,
401 oldest_jif
= jiffies
- dirty_expire_interval
;
403 next_jif
= start_jif
+ dirty_writeback_interval
;
404 nr_to_write
= global_page_state(NR_FILE_DIRTY
) +
405 global_page_state(NR_UNSTABLE_NFS
) +
406 (inodes_stat
.nr_inodes
- inodes_stat
.nr_unused
);
407 while (nr_to_write
> 0) {
408 wbc
.encountered_congestion
= 0;
409 wbc
.nr_to_write
= MAX_WRITEBACK_PAGES
;
410 writeback_inodes(&wbc
);
411 if (wbc
.nr_to_write
> 0) {
412 if (wbc
.encountered_congestion
)
413 blk_congestion_wait(WRITE
, HZ
/10);
415 break; /* All the old data is written */
417 nr_to_write
-= MAX_WRITEBACK_PAGES
- wbc
.nr_to_write
;
419 if (time_before(next_jif
, jiffies
+ HZ
))
420 next_jif
= jiffies
+ HZ
;
421 if (dirty_writeback_interval
)
422 mod_timer(&wb_timer
, next_jif
);
426 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
428 int dirty_writeback_centisecs_handler(ctl_table
*table
, int write
,
429 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
431 proc_dointvec_userhz_jiffies(table
, write
, file
, buffer
, length
, ppos
);
432 if (dirty_writeback_interval
) {
434 jiffies
+ dirty_writeback_interval
);
436 del_timer(&wb_timer
);
441 static void wb_timer_fn(unsigned long unused
)
443 if (pdflush_operation(wb_kupdate
, 0) < 0)
444 mod_timer(&wb_timer
, jiffies
+ HZ
); /* delay 1 second */
447 static void laptop_flush(unsigned long unused
)
452 static void laptop_timer_fn(unsigned long unused
)
454 pdflush_operation(laptop_flush
, 0);
458 * We've spun up the disk and we're in laptop mode: schedule writeback
459 * of all dirty data a few seconds from now. If the flush is already scheduled
460 * then push it back - the user is still using the disk.
462 void laptop_io_completion(void)
464 mod_timer(&laptop_mode_wb_timer
, jiffies
+ laptop_mode
);
468 * We're in laptop mode and we've just synced. The sync's writes will have
469 * caused another writeback to be scheduled by laptop_io_completion.
470 * Nothing needs to be written back anymore, so we unschedule the writeback.
472 void laptop_sync_completion(void)
474 del_timer(&laptop_mode_wb_timer
);
478 * If ratelimit_pages is too high then we can get into dirty-data overload
479 * if a large number of processes all perform writes at the same time.
480 * If it is too low then SMP machines will call the (expensive)
481 * get_writeback_state too often.
483 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
484 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
485 * thresholds before writeback cuts in.
487 * But the limit should not be set too high. Because it also controls the
488 * amount of memory which the balance_dirty_pages() caller has to write back.
489 * If this is too large then the caller will block on the IO queue all the
490 * time. So limit it to four megabytes - the balance_dirty_pages() caller
491 * will write six megabyte chunks, max.
494 static void set_ratelimit(void)
496 ratelimit_pages
= total_pages
/ (num_online_cpus() * 32);
497 if (ratelimit_pages
< 16)
498 ratelimit_pages
= 16;
499 if (ratelimit_pages
* PAGE_CACHE_SIZE
> 4096 * 1024)
500 ratelimit_pages
= (4096 * 1024) / PAGE_CACHE_SIZE
;
504 ratelimit_handler(struct notifier_block
*self
, unsigned long u
, void *v
)
510 static struct notifier_block __cpuinitdata ratelimit_nb
= {
511 .notifier_call
= ratelimit_handler
,
516 * If the machine has a large highmem:lowmem ratio then scale back the default
517 * dirty memory thresholds: allowing too much dirty highmem pins an excessive
518 * number of buffer_heads.
520 void __init
page_writeback_init(void)
522 long buffer_pages
= nr_free_buffer_pages();
525 total_pages
= nr_free_pagecache_pages();
527 correction
= (100 * 4 * buffer_pages
) / total_pages
;
529 if (correction
< 100) {
530 dirty_background_ratio
*= correction
;
531 dirty_background_ratio
/= 100;
532 vm_dirty_ratio
*= correction
;
533 vm_dirty_ratio
/= 100;
535 if (dirty_background_ratio
<= 0)
536 dirty_background_ratio
= 1;
537 if (vm_dirty_ratio
<= 0)
540 mod_timer(&wb_timer
, jiffies
+ dirty_writeback_interval
);
542 register_cpu_notifier(&ratelimit_nb
);
545 int do_writepages(struct address_space
*mapping
, struct writeback_control
*wbc
)
549 if (wbc
->nr_to_write
<= 0)
551 wbc
->for_writepages
= 1;
552 if (mapping
->a_ops
->writepages
)
553 ret
= mapping
->a_ops
->writepages(mapping
, wbc
);
555 ret
= generic_writepages(mapping
, wbc
);
556 wbc
->for_writepages
= 0;
561 * write_one_page - write out a single page and optionally wait on I/O
563 * @page: the page to write
564 * @wait: if true, wait on writeout
566 * The page must be locked by the caller and will be unlocked upon return.
568 * write_one_page() returns a negative error code if I/O failed.
570 int write_one_page(struct page
*page
, int wait
)
572 struct address_space
*mapping
= page
->mapping
;
574 struct writeback_control wbc
= {
575 .sync_mode
= WB_SYNC_ALL
,
579 BUG_ON(!PageLocked(page
));
582 wait_on_page_writeback(page
);
584 if (clear_page_dirty_for_io(page
)) {
585 page_cache_get(page
);
586 ret
= mapping
->a_ops
->writepage(page
, &wbc
);
587 if (ret
== 0 && wait
) {
588 wait_on_page_writeback(page
);
592 page_cache_release(page
);
598 EXPORT_SYMBOL(write_one_page
);
601 * For address_spaces which do not use buffers. Just tag the page as dirty in
604 * This is also used when a single buffer is being dirtied: we want to set the
605 * page dirty in that case, but not all the buffers. This is a "bottom-up"
606 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
608 * Most callers have locked the page, which pins the address_space in memory.
609 * But zap_pte_range() does not lock the page, however in that case the
610 * mapping is pinned by the vma's ->vm_file reference.
612 * We take care to handle the case where the page was truncated from the
613 * mapping by re-checking page_mapping() insode tree_lock.
615 int __set_page_dirty_nobuffers(struct page
*page
)
617 if (!TestSetPageDirty(page
)) {
618 struct address_space
*mapping
= page_mapping(page
);
619 struct address_space
*mapping2
;
622 write_lock_irq(&mapping
->tree_lock
);
623 mapping2
= page_mapping(page
);
624 if (mapping2
) { /* Race with truncate? */
625 BUG_ON(mapping2
!= mapping
);
626 if (mapping_cap_account_dirty(mapping
))
627 __inc_zone_page_state(page
,
629 radix_tree_tag_set(&mapping
->page_tree
,
630 page_index(page
), PAGECACHE_TAG_DIRTY
);
632 write_unlock_irq(&mapping
->tree_lock
);
634 /* !PageAnon && !swapper_space */
635 __mark_inode_dirty(mapping
->host
,
643 EXPORT_SYMBOL(__set_page_dirty_nobuffers
);
646 * When a writepage implementation decides that it doesn't want to write this
647 * page for some reason, it should redirty the locked page via
648 * redirty_page_for_writepage() and it should then unlock the page and return 0
650 int redirty_page_for_writepage(struct writeback_control
*wbc
, struct page
*page
)
652 wbc
->pages_skipped
++;
653 return __set_page_dirty_nobuffers(page
);
655 EXPORT_SYMBOL(redirty_page_for_writepage
);
658 * If the mapping doesn't provide a set_page_dirty a_op, then
659 * just fall through and assume that it wants buffer_heads.
661 int fastcall
set_page_dirty(struct page
*page
)
663 struct address_space
*mapping
= page_mapping(page
);
665 if (likely(mapping
)) {
666 int (*spd
)(struct page
*) = mapping
->a_ops
->set_page_dirty
;
669 return __set_page_dirty_buffers(page
);
671 if (!PageDirty(page
)) {
672 if (!TestSetPageDirty(page
))
677 EXPORT_SYMBOL(set_page_dirty
);
680 * set_page_dirty() is racy if the caller has no reference against
681 * page->mapping->host, and if the page is unlocked. This is because another
682 * CPU could truncate the page off the mapping and then free the mapping.
684 * Usually, the page _is_ locked, or the caller is a user-space process which
685 * holds a reference on the inode by having an open file.
687 * In other cases, the page should be locked before running set_page_dirty().
689 int set_page_dirty_lock(struct page
*page
)
694 ret
= set_page_dirty(page
);
698 EXPORT_SYMBOL(set_page_dirty_lock
);
701 * Clear a page's dirty flag, while caring for dirty memory accounting.
702 * Returns true if the page was previously dirty.
704 int test_clear_page_dirty(struct page
*page
)
706 struct address_space
*mapping
= page_mapping(page
);
710 write_lock_irqsave(&mapping
->tree_lock
, flags
);
711 if (TestClearPageDirty(page
)) {
712 radix_tree_tag_clear(&mapping
->page_tree
,
714 PAGECACHE_TAG_DIRTY
);
715 if (mapping_cap_account_dirty(mapping
))
716 __dec_zone_page_state(page
, NR_FILE_DIRTY
);
717 write_unlock_irqrestore(&mapping
->tree_lock
, flags
);
720 write_unlock_irqrestore(&mapping
->tree_lock
, flags
);
723 return TestClearPageDirty(page
);
725 EXPORT_SYMBOL(test_clear_page_dirty
);
728 * Clear a page's dirty flag, while caring for dirty memory accounting.
729 * Returns true if the page was previously dirty.
731 * This is for preparing to put the page under writeout. We leave the page
732 * tagged as dirty in the radix tree so that a concurrent write-for-sync
733 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
734 * implementation will run either set_page_writeback() or set_page_dirty(),
735 * at which stage we bring the page's dirty flag and radix-tree dirty tag
738 * This incoherency between the page's dirty flag and radix-tree tag is
739 * unfortunate, but it only exists while the page is locked.
741 int clear_page_dirty_for_io(struct page
*page
)
743 struct address_space
*mapping
= page_mapping(page
);
746 if (TestClearPageDirty(page
)) {
747 if (mapping_cap_account_dirty(mapping
))
748 dec_zone_page_state(page
, NR_FILE_DIRTY
);
753 return TestClearPageDirty(page
);
755 EXPORT_SYMBOL(clear_page_dirty_for_io
);
757 int test_clear_page_writeback(struct page
*page
)
759 struct address_space
*mapping
= page_mapping(page
);
765 write_lock_irqsave(&mapping
->tree_lock
, flags
);
766 ret
= TestClearPageWriteback(page
);
768 radix_tree_tag_clear(&mapping
->page_tree
,
770 PAGECACHE_TAG_WRITEBACK
);
771 write_unlock_irqrestore(&mapping
->tree_lock
, flags
);
773 ret
= TestClearPageWriteback(page
);
778 int test_set_page_writeback(struct page
*page
)
780 struct address_space
*mapping
= page_mapping(page
);
786 write_lock_irqsave(&mapping
->tree_lock
, flags
);
787 ret
= TestSetPageWriteback(page
);
789 radix_tree_tag_set(&mapping
->page_tree
,
791 PAGECACHE_TAG_WRITEBACK
);
792 if (!PageDirty(page
))
793 radix_tree_tag_clear(&mapping
->page_tree
,
795 PAGECACHE_TAG_DIRTY
);
796 write_unlock_irqrestore(&mapping
->tree_lock
, flags
);
798 ret
= TestSetPageWriteback(page
);
803 EXPORT_SYMBOL(test_set_page_writeback
);
806 * Return true if any of the pages in the mapping are marged with the
809 int mapping_tagged(struct address_space
*mapping
, int tag
)
814 read_lock_irqsave(&mapping
->tree_lock
, flags
);
815 ret
= radix_tree_tagged(&mapping
->page_tree
, tag
);
816 read_unlock_irqrestore(&mapping
->tree_lock
, flags
);
819 EXPORT_SYMBOL(mapping_tagged
);