[SCSI] fix oops in scsi_release_buffers()
[linux-2.6/suspend2-2.6.18.git] / drivers / scsi / libata-core.c
blob5cc53cd9323e5a9416fc7baf2ff22d8f233af653
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <scsi/scsi.h>
52 #include "scsi.h"
53 #include "scsi_priv.h"
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
60 #include "libata.h"
62 static unsigned int ata_busy_sleep (struct ata_port *ap,
63 unsigned long tmout_pat,
64 unsigned long tmout);
65 static void ata_set_mode(struct ata_port *ap);
66 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
67 static unsigned int ata_get_mode_mask(struct ata_port *ap, int shift);
68 static int fgb(u32 bitmap);
69 static int ata_choose_xfer_mode(struct ata_port *ap,
70 u8 *xfer_mode_out,
71 unsigned int *xfer_shift_out);
72 static int ata_qc_complete_noop(struct ata_queued_cmd *qc, u8 drv_stat);
73 static void __ata_qc_complete(struct ata_queued_cmd *qc);
75 static unsigned int ata_unique_id = 1;
76 static struct workqueue_struct *ata_wq;
78 int atapi_enabled = 0;
79 module_param(atapi_enabled, int, 0444);
80 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
82 MODULE_AUTHOR("Jeff Garzik");
83 MODULE_DESCRIPTION("Library module for ATA devices");
84 MODULE_LICENSE("GPL");
85 MODULE_VERSION(DRV_VERSION);
87 /**
88 * ata_tf_load - send taskfile registers to host controller
89 * @ap: Port to which output is sent
90 * @tf: ATA taskfile register set
92 * Outputs ATA taskfile to standard ATA host controller.
94 * LOCKING:
95 * Inherited from caller.
98 static void ata_tf_load_pio(struct ata_port *ap, struct ata_taskfile *tf)
100 struct ata_ioports *ioaddr = &ap->ioaddr;
101 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
103 if (tf->ctl != ap->last_ctl) {
104 outb(tf->ctl, ioaddr->ctl_addr);
105 ap->last_ctl = tf->ctl;
106 ata_wait_idle(ap);
109 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
110 outb(tf->hob_feature, ioaddr->feature_addr);
111 outb(tf->hob_nsect, ioaddr->nsect_addr);
112 outb(tf->hob_lbal, ioaddr->lbal_addr);
113 outb(tf->hob_lbam, ioaddr->lbam_addr);
114 outb(tf->hob_lbah, ioaddr->lbah_addr);
115 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
116 tf->hob_feature,
117 tf->hob_nsect,
118 tf->hob_lbal,
119 tf->hob_lbam,
120 tf->hob_lbah);
123 if (is_addr) {
124 outb(tf->feature, ioaddr->feature_addr);
125 outb(tf->nsect, ioaddr->nsect_addr);
126 outb(tf->lbal, ioaddr->lbal_addr);
127 outb(tf->lbam, ioaddr->lbam_addr);
128 outb(tf->lbah, ioaddr->lbah_addr);
129 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
130 tf->feature,
131 tf->nsect,
132 tf->lbal,
133 tf->lbam,
134 tf->lbah);
137 if (tf->flags & ATA_TFLAG_DEVICE) {
138 outb(tf->device, ioaddr->device_addr);
139 VPRINTK("device 0x%X\n", tf->device);
142 ata_wait_idle(ap);
146 * ata_tf_load_mmio - send taskfile registers to host controller
147 * @ap: Port to which output is sent
148 * @tf: ATA taskfile register set
150 * Outputs ATA taskfile to standard ATA host controller using MMIO.
152 * LOCKING:
153 * Inherited from caller.
156 static void ata_tf_load_mmio(struct ata_port *ap, struct ata_taskfile *tf)
158 struct ata_ioports *ioaddr = &ap->ioaddr;
159 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
161 if (tf->ctl != ap->last_ctl) {
162 writeb(tf->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
163 ap->last_ctl = tf->ctl;
164 ata_wait_idle(ap);
167 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
168 writeb(tf->hob_feature, (void __iomem *) ioaddr->feature_addr);
169 writeb(tf->hob_nsect, (void __iomem *) ioaddr->nsect_addr);
170 writeb(tf->hob_lbal, (void __iomem *) ioaddr->lbal_addr);
171 writeb(tf->hob_lbam, (void __iomem *) ioaddr->lbam_addr);
172 writeb(tf->hob_lbah, (void __iomem *) ioaddr->lbah_addr);
173 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
174 tf->hob_feature,
175 tf->hob_nsect,
176 tf->hob_lbal,
177 tf->hob_lbam,
178 tf->hob_lbah);
181 if (is_addr) {
182 writeb(tf->feature, (void __iomem *) ioaddr->feature_addr);
183 writeb(tf->nsect, (void __iomem *) ioaddr->nsect_addr);
184 writeb(tf->lbal, (void __iomem *) ioaddr->lbal_addr);
185 writeb(tf->lbam, (void __iomem *) ioaddr->lbam_addr);
186 writeb(tf->lbah, (void __iomem *) ioaddr->lbah_addr);
187 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
188 tf->feature,
189 tf->nsect,
190 tf->lbal,
191 tf->lbam,
192 tf->lbah);
195 if (tf->flags & ATA_TFLAG_DEVICE) {
196 writeb(tf->device, (void __iomem *) ioaddr->device_addr);
197 VPRINTK("device 0x%X\n", tf->device);
200 ata_wait_idle(ap);
205 * ata_tf_load - send taskfile registers to host controller
206 * @ap: Port to which output is sent
207 * @tf: ATA taskfile register set
209 * Outputs ATA taskfile to standard ATA host controller using MMIO
210 * or PIO as indicated by the ATA_FLAG_MMIO flag.
211 * Writes the control, feature, nsect, lbal, lbam, and lbah registers.
212 * Optionally (ATA_TFLAG_LBA48) writes hob_feature, hob_nsect,
213 * hob_lbal, hob_lbam, and hob_lbah.
215 * This function waits for idle (!BUSY and !DRQ) after writing
216 * registers. If the control register has a new value, this
217 * function also waits for idle after writing control and before
218 * writing the remaining registers.
220 * May be used as the tf_load() entry in ata_port_operations.
222 * LOCKING:
223 * Inherited from caller.
225 void ata_tf_load(struct ata_port *ap, struct ata_taskfile *tf)
227 if (ap->flags & ATA_FLAG_MMIO)
228 ata_tf_load_mmio(ap, tf);
229 else
230 ata_tf_load_pio(ap, tf);
234 * ata_exec_command_pio - issue ATA command to host controller
235 * @ap: port to which command is being issued
236 * @tf: ATA taskfile register set
238 * Issues PIO write to ATA command register, with proper
239 * synchronization with interrupt handler / other threads.
241 * LOCKING:
242 * spin_lock_irqsave(host_set lock)
245 static void ata_exec_command_pio(struct ata_port *ap, struct ata_taskfile *tf)
247 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
249 outb(tf->command, ap->ioaddr.command_addr);
250 ata_pause(ap);
255 * ata_exec_command_mmio - issue ATA command to host controller
256 * @ap: port to which command is being issued
257 * @tf: ATA taskfile register set
259 * Issues MMIO write to ATA command register, with proper
260 * synchronization with interrupt handler / other threads.
262 * LOCKING:
263 * spin_lock_irqsave(host_set lock)
266 static void ata_exec_command_mmio(struct ata_port *ap, struct ata_taskfile *tf)
268 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
270 writeb(tf->command, (void __iomem *) ap->ioaddr.command_addr);
271 ata_pause(ap);
276 * ata_exec_command - issue ATA command to host controller
277 * @ap: port to which command is being issued
278 * @tf: ATA taskfile register set
280 * Issues PIO/MMIO write to ATA command register, with proper
281 * synchronization with interrupt handler / other threads.
283 * LOCKING:
284 * spin_lock_irqsave(host_set lock)
286 void ata_exec_command(struct ata_port *ap, struct ata_taskfile *tf)
288 if (ap->flags & ATA_FLAG_MMIO)
289 ata_exec_command_mmio(ap, tf);
290 else
291 ata_exec_command_pio(ap, tf);
295 * ata_exec - issue ATA command to host controller
296 * @ap: port to which command is being issued
297 * @tf: ATA taskfile register set
299 * Issues PIO/MMIO write to ATA command register, with proper
300 * synchronization with interrupt handler / other threads.
302 * LOCKING:
303 * Obtains host_set lock.
306 static inline void ata_exec(struct ata_port *ap, struct ata_taskfile *tf)
308 unsigned long flags;
310 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
311 spin_lock_irqsave(&ap->host_set->lock, flags);
312 ap->ops->exec_command(ap, tf);
313 spin_unlock_irqrestore(&ap->host_set->lock, flags);
317 * ata_tf_to_host - issue ATA taskfile to host controller
318 * @ap: port to which command is being issued
319 * @tf: ATA taskfile register set
321 * Issues ATA taskfile register set to ATA host controller,
322 * with proper synchronization with interrupt handler and
323 * other threads.
325 * LOCKING:
326 * Obtains host_set lock.
329 static void ata_tf_to_host(struct ata_port *ap, struct ata_taskfile *tf)
331 ap->ops->tf_load(ap, tf);
333 ata_exec(ap, tf);
337 * ata_tf_to_host_nolock - issue ATA taskfile to host controller
338 * @ap: port to which command is being issued
339 * @tf: ATA taskfile register set
341 * Issues ATA taskfile register set to ATA host controller,
342 * with proper synchronization with interrupt handler and
343 * other threads.
345 * LOCKING:
346 * spin_lock_irqsave(host_set lock)
349 void ata_tf_to_host_nolock(struct ata_port *ap, struct ata_taskfile *tf)
351 ap->ops->tf_load(ap, tf);
352 ap->ops->exec_command(ap, tf);
356 * ata_tf_read_pio - input device's ATA taskfile shadow registers
357 * @ap: Port from which input is read
358 * @tf: ATA taskfile register set for storing input
360 * Reads ATA taskfile registers for currently-selected device
361 * into @tf.
363 * LOCKING:
364 * Inherited from caller.
367 static void ata_tf_read_pio(struct ata_port *ap, struct ata_taskfile *tf)
369 struct ata_ioports *ioaddr = &ap->ioaddr;
371 tf->nsect = inb(ioaddr->nsect_addr);
372 tf->lbal = inb(ioaddr->lbal_addr);
373 tf->lbam = inb(ioaddr->lbam_addr);
374 tf->lbah = inb(ioaddr->lbah_addr);
375 tf->device = inb(ioaddr->device_addr);
377 if (tf->flags & ATA_TFLAG_LBA48) {
378 outb(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
379 tf->hob_feature = inb(ioaddr->error_addr);
380 tf->hob_nsect = inb(ioaddr->nsect_addr);
381 tf->hob_lbal = inb(ioaddr->lbal_addr);
382 tf->hob_lbam = inb(ioaddr->lbam_addr);
383 tf->hob_lbah = inb(ioaddr->lbah_addr);
388 * ata_tf_read_mmio - input device's ATA taskfile shadow registers
389 * @ap: Port from which input is read
390 * @tf: ATA taskfile register set for storing input
392 * Reads ATA taskfile registers for currently-selected device
393 * into @tf via MMIO.
395 * LOCKING:
396 * Inherited from caller.
399 static void ata_tf_read_mmio(struct ata_port *ap, struct ata_taskfile *tf)
401 struct ata_ioports *ioaddr = &ap->ioaddr;
403 tf->nsect = readb((void __iomem *)ioaddr->nsect_addr);
404 tf->lbal = readb((void __iomem *)ioaddr->lbal_addr);
405 tf->lbam = readb((void __iomem *)ioaddr->lbam_addr);
406 tf->lbah = readb((void __iomem *)ioaddr->lbah_addr);
407 tf->device = readb((void __iomem *)ioaddr->device_addr);
409 if (tf->flags & ATA_TFLAG_LBA48) {
410 writeb(tf->ctl | ATA_HOB, (void __iomem *) ap->ioaddr.ctl_addr);
411 tf->hob_feature = readb((void __iomem *)ioaddr->error_addr);
412 tf->hob_nsect = readb((void __iomem *)ioaddr->nsect_addr);
413 tf->hob_lbal = readb((void __iomem *)ioaddr->lbal_addr);
414 tf->hob_lbam = readb((void __iomem *)ioaddr->lbam_addr);
415 tf->hob_lbah = readb((void __iomem *)ioaddr->lbah_addr);
421 * ata_tf_read - input device's ATA taskfile shadow registers
422 * @ap: Port from which input is read
423 * @tf: ATA taskfile register set for storing input
425 * Reads ATA taskfile registers for currently-selected device
426 * into @tf.
428 * Reads nsect, lbal, lbam, lbah, and device. If ATA_TFLAG_LBA48
429 * is set, also reads the hob registers.
431 * May be used as the tf_read() entry in ata_port_operations.
433 * LOCKING:
434 * Inherited from caller.
436 void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
438 if (ap->flags & ATA_FLAG_MMIO)
439 ata_tf_read_mmio(ap, tf);
440 else
441 ata_tf_read_pio(ap, tf);
445 * ata_check_status_pio - Read device status reg & clear interrupt
446 * @ap: port where the device is
448 * Reads ATA taskfile status register for currently-selected device
449 * and return its value. This also clears pending interrupts
450 * from this device
452 * LOCKING:
453 * Inherited from caller.
455 static u8 ata_check_status_pio(struct ata_port *ap)
457 return inb(ap->ioaddr.status_addr);
461 * ata_check_status_mmio - Read device status reg & clear interrupt
462 * @ap: port where the device is
464 * Reads ATA taskfile status register for currently-selected device
465 * via MMIO and return its value. This also clears pending interrupts
466 * from this device
468 * LOCKING:
469 * Inherited from caller.
471 static u8 ata_check_status_mmio(struct ata_port *ap)
473 return readb((void __iomem *) ap->ioaddr.status_addr);
478 * ata_check_status - Read device status reg & clear interrupt
479 * @ap: port where the device is
481 * Reads ATA taskfile status register for currently-selected device
482 * and return its value. This also clears pending interrupts
483 * from this device
485 * May be used as the check_status() entry in ata_port_operations.
487 * LOCKING:
488 * Inherited from caller.
490 u8 ata_check_status(struct ata_port *ap)
492 if (ap->flags & ATA_FLAG_MMIO)
493 return ata_check_status_mmio(ap);
494 return ata_check_status_pio(ap);
499 * ata_altstatus - Read device alternate status reg
500 * @ap: port where the device is
502 * Reads ATA taskfile alternate status register for
503 * currently-selected device and return its value.
505 * Note: may NOT be used as the check_altstatus() entry in
506 * ata_port_operations.
508 * LOCKING:
509 * Inherited from caller.
511 u8 ata_altstatus(struct ata_port *ap)
513 if (ap->ops->check_altstatus)
514 return ap->ops->check_altstatus(ap);
516 if (ap->flags & ATA_FLAG_MMIO)
517 return readb((void __iomem *)ap->ioaddr.altstatus_addr);
518 return inb(ap->ioaddr.altstatus_addr);
523 * ata_chk_err - Read device error reg
524 * @ap: port where the device is
526 * Reads ATA taskfile error register for
527 * currently-selected device and return its value.
529 * Note: may NOT be used as the check_err() entry in
530 * ata_port_operations.
532 * LOCKING:
533 * Inherited from caller.
535 u8 ata_chk_err(struct ata_port *ap)
537 if (ap->ops->check_err)
538 return ap->ops->check_err(ap);
540 if (ap->flags & ATA_FLAG_MMIO) {
541 return readb((void __iomem *) ap->ioaddr.error_addr);
543 return inb(ap->ioaddr.error_addr);
547 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
548 * @tf: Taskfile to convert
549 * @fis: Buffer into which data will output
550 * @pmp: Port multiplier port
552 * Converts a standard ATA taskfile to a Serial ATA
553 * FIS structure (Register - Host to Device).
555 * LOCKING:
556 * Inherited from caller.
559 void ata_tf_to_fis(struct ata_taskfile *tf, u8 *fis, u8 pmp)
561 fis[0] = 0x27; /* Register - Host to Device FIS */
562 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
563 bit 7 indicates Command FIS */
564 fis[2] = tf->command;
565 fis[3] = tf->feature;
567 fis[4] = tf->lbal;
568 fis[5] = tf->lbam;
569 fis[6] = tf->lbah;
570 fis[7] = tf->device;
572 fis[8] = tf->hob_lbal;
573 fis[9] = tf->hob_lbam;
574 fis[10] = tf->hob_lbah;
575 fis[11] = tf->hob_feature;
577 fis[12] = tf->nsect;
578 fis[13] = tf->hob_nsect;
579 fis[14] = 0;
580 fis[15] = tf->ctl;
582 fis[16] = 0;
583 fis[17] = 0;
584 fis[18] = 0;
585 fis[19] = 0;
589 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
590 * @fis: Buffer from which data will be input
591 * @tf: Taskfile to output
593 * Converts a standard ATA taskfile to a Serial ATA
594 * FIS structure (Register - Host to Device).
596 * LOCKING:
597 * Inherited from caller.
600 void ata_tf_from_fis(u8 *fis, struct ata_taskfile *tf)
602 tf->command = fis[2]; /* status */
603 tf->feature = fis[3]; /* error */
605 tf->lbal = fis[4];
606 tf->lbam = fis[5];
607 tf->lbah = fis[6];
608 tf->device = fis[7];
610 tf->hob_lbal = fis[8];
611 tf->hob_lbam = fis[9];
612 tf->hob_lbah = fis[10];
614 tf->nsect = fis[12];
615 tf->hob_nsect = fis[13];
619 * ata_prot_to_cmd - determine which read/write opcodes to use
620 * @protocol: ATA_PROT_xxx taskfile protocol
621 * @lba48: true is lba48 is present
623 * Given necessary input, determine which read/write commands
624 * to use to transfer data.
626 * LOCKING:
627 * None.
629 static int ata_prot_to_cmd(int protocol, int lba48)
631 int rcmd = 0, wcmd = 0;
633 switch (protocol) {
634 case ATA_PROT_PIO:
635 if (lba48) {
636 rcmd = ATA_CMD_PIO_READ_EXT;
637 wcmd = ATA_CMD_PIO_WRITE_EXT;
638 } else {
639 rcmd = ATA_CMD_PIO_READ;
640 wcmd = ATA_CMD_PIO_WRITE;
642 break;
644 case ATA_PROT_DMA:
645 if (lba48) {
646 rcmd = ATA_CMD_READ_EXT;
647 wcmd = ATA_CMD_WRITE_EXT;
648 } else {
649 rcmd = ATA_CMD_READ;
650 wcmd = ATA_CMD_WRITE;
652 break;
654 default:
655 return -1;
658 return rcmd | (wcmd << 8);
662 * ata_dev_set_protocol - set taskfile protocol and r/w commands
663 * @dev: device to examine and configure
665 * Examine the device configuration, after we have
666 * read the identify-device page and configured the
667 * data transfer mode. Set internal state related to
668 * the ATA taskfile protocol (pio, pio mult, dma, etc.)
669 * and calculate the proper read/write commands to use.
671 * LOCKING:
672 * caller.
674 static void ata_dev_set_protocol(struct ata_device *dev)
676 int pio = (dev->flags & ATA_DFLAG_PIO);
677 int lba48 = (dev->flags & ATA_DFLAG_LBA48);
678 int proto, cmd;
680 if (pio)
681 proto = dev->xfer_protocol = ATA_PROT_PIO;
682 else
683 proto = dev->xfer_protocol = ATA_PROT_DMA;
685 cmd = ata_prot_to_cmd(proto, lba48);
686 if (cmd < 0)
687 BUG();
689 dev->read_cmd = cmd & 0xff;
690 dev->write_cmd = (cmd >> 8) & 0xff;
693 static const char * xfer_mode_str[] = {
694 "UDMA/16",
695 "UDMA/25",
696 "UDMA/33",
697 "UDMA/44",
698 "UDMA/66",
699 "UDMA/100",
700 "UDMA/133",
701 "UDMA7",
702 "MWDMA0",
703 "MWDMA1",
704 "MWDMA2",
705 "PIO0",
706 "PIO1",
707 "PIO2",
708 "PIO3",
709 "PIO4",
713 * ata_udma_string - convert UDMA bit offset to string
714 * @mask: mask of bits supported; only highest bit counts.
716 * Determine string which represents the highest speed
717 * (highest bit in @udma_mask).
719 * LOCKING:
720 * None.
722 * RETURNS:
723 * Constant C string representing highest speed listed in
724 * @udma_mask, or the constant C string "<n/a>".
727 static const char *ata_mode_string(unsigned int mask)
729 int i;
731 for (i = 7; i >= 0; i--)
732 if (mask & (1 << i))
733 goto out;
734 for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--)
735 if (mask & (1 << i))
736 goto out;
737 for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--)
738 if (mask & (1 << i))
739 goto out;
741 return "<n/a>";
743 out:
744 return xfer_mode_str[i];
748 * ata_pio_devchk - PATA device presence detection
749 * @ap: ATA channel to examine
750 * @device: Device to examine (starting at zero)
752 * This technique was originally described in
753 * Hale Landis's ATADRVR (www.ata-atapi.com), and
754 * later found its way into the ATA/ATAPI spec.
756 * Write a pattern to the ATA shadow registers,
757 * and if a device is present, it will respond by
758 * correctly storing and echoing back the
759 * ATA shadow register contents.
761 * LOCKING:
762 * caller.
765 static unsigned int ata_pio_devchk(struct ata_port *ap,
766 unsigned int device)
768 struct ata_ioports *ioaddr = &ap->ioaddr;
769 u8 nsect, lbal;
771 ap->ops->dev_select(ap, device);
773 outb(0x55, ioaddr->nsect_addr);
774 outb(0xaa, ioaddr->lbal_addr);
776 outb(0xaa, ioaddr->nsect_addr);
777 outb(0x55, ioaddr->lbal_addr);
779 outb(0x55, ioaddr->nsect_addr);
780 outb(0xaa, ioaddr->lbal_addr);
782 nsect = inb(ioaddr->nsect_addr);
783 lbal = inb(ioaddr->lbal_addr);
785 if ((nsect == 0x55) && (lbal == 0xaa))
786 return 1; /* we found a device */
788 return 0; /* nothing found */
792 * ata_mmio_devchk - PATA device presence detection
793 * @ap: ATA channel to examine
794 * @device: Device to examine (starting at zero)
796 * This technique was originally described in
797 * Hale Landis's ATADRVR (www.ata-atapi.com), and
798 * later found its way into the ATA/ATAPI spec.
800 * Write a pattern to the ATA shadow registers,
801 * and if a device is present, it will respond by
802 * correctly storing and echoing back the
803 * ATA shadow register contents.
805 * LOCKING:
806 * caller.
809 static unsigned int ata_mmio_devchk(struct ata_port *ap,
810 unsigned int device)
812 struct ata_ioports *ioaddr = &ap->ioaddr;
813 u8 nsect, lbal;
815 ap->ops->dev_select(ap, device);
817 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
818 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
820 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
821 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
823 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
824 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
826 nsect = readb((void __iomem *) ioaddr->nsect_addr);
827 lbal = readb((void __iomem *) ioaddr->lbal_addr);
829 if ((nsect == 0x55) && (lbal == 0xaa))
830 return 1; /* we found a device */
832 return 0; /* nothing found */
836 * ata_devchk - PATA device presence detection
837 * @ap: ATA channel to examine
838 * @device: Device to examine (starting at zero)
840 * Dispatch ATA device presence detection, depending
841 * on whether we are using PIO or MMIO to talk to the
842 * ATA shadow registers.
844 * LOCKING:
845 * caller.
848 static unsigned int ata_devchk(struct ata_port *ap,
849 unsigned int device)
851 if (ap->flags & ATA_FLAG_MMIO)
852 return ata_mmio_devchk(ap, device);
853 return ata_pio_devchk(ap, device);
857 * ata_dev_classify - determine device type based on ATA-spec signature
858 * @tf: ATA taskfile register set for device to be identified
860 * Determine from taskfile register contents whether a device is
861 * ATA or ATAPI, as per "Signature and persistence" section
862 * of ATA/PI spec (volume 1, sect 5.14).
864 * LOCKING:
865 * None.
867 * RETURNS:
868 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
869 * the event of failure.
872 unsigned int ata_dev_classify(struct ata_taskfile *tf)
874 /* Apple's open source Darwin code hints that some devices only
875 * put a proper signature into the LBA mid/high registers,
876 * So, we only check those. It's sufficient for uniqueness.
879 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
880 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
881 DPRINTK("found ATA device by sig\n");
882 return ATA_DEV_ATA;
885 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
886 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
887 DPRINTK("found ATAPI device by sig\n");
888 return ATA_DEV_ATAPI;
891 DPRINTK("unknown device\n");
892 return ATA_DEV_UNKNOWN;
896 * ata_dev_try_classify - Parse returned ATA device signature
897 * @ap: ATA channel to examine
898 * @device: Device to examine (starting at zero)
900 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
901 * an ATA/ATAPI-defined set of values is placed in the ATA
902 * shadow registers, indicating the results of device detection
903 * and diagnostics.
905 * Select the ATA device, and read the values from the ATA shadow
906 * registers. Then parse according to the Error register value,
907 * and the spec-defined values examined by ata_dev_classify().
909 * LOCKING:
910 * caller.
913 static u8 ata_dev_try_classify(struct ata_port *ap, unsigned int device)
915 struct ata_device *dev = &ap->device[device];
916 struct ata_taskfile tf;
917 unsigned int class;
918 u8 err;
920 ap->ops->dev_select(ap, device);
922 memset(&tf, 0, sizeof(tf));
924 err = ata_chk_err(ap);
925 ap->ops->tf_read(ap, &tf);
927 dev->class = ATA_DEV_NONE;
929 /* see if device passed diags */
930 if (err == 1)
931 /* do nothing */ ;
932 else if ((device == 0) && (err == 0x81))
933 /* do nothing */ ;
934 else
935 return err;
937 /* determine if device if ATA or ATAPI */
938 class = ata_dev_classify(&tf);
939 if (class == ATA_DEV_UNKNOWN)
940 return err;
941 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
942 return err;
944 dev->class = class;
946 return err;
950 * ata_dev_id_string - Convert IDENTIFY DEVICE page into string
951 * @id: IDENTIFY DEVICE results we will examine
952 * @s: string into which data is output
953 * @ofs: offset into identify device page
954 * @len: length of string to return. must be an even number.
956 * The strings in the IDENTIFY DEVICE page are broken up into
957 * 16-bit chunks. Run through the string, and output each
958 * 8-bit chunk linearly, regardless of platform.
960 * LOCKING:
961 * caller.
964 void ata_dev_id_string(u16 *id, unsigned char *s,
965 unsigned int ofs, unsigned int len)
967 unsigned int c;
969 while (len > 0) {
970 c = id[ofs] >> 8;
971 *s = c;
972 s++;
974 c = id[ofs] & 0xff;
975 *s = c;
976 s++;
978 ofs++;
979 len -= 2;
985 * ata_noop_dev_select - Select device 0/1 on ATA bus
986 * @ap: ATA channel to manipulate
987 * @device: ATA device (numbered from zero) to select
989 * This function performs no actual function.
991 * May be used as the dev_select() entry in ata_port_operations.
993 * LOCKING:
994 * caller.
996 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1002 * ata_std_dev_select - Select device 0/1 on ATA bus
1003 * @ap: ATA channel to manipulate
1004 * @device: ATA device (numbered from zero) to select
1006 * Use the method defined in the ATA specification to
1007 * make either device 0, or device 1, active on the
1008 * ATA channel. Works with both PIO and MMIO.
1010 * May be used as the dev_select() entry in ata_port_operations.
1012 * LOCKING:
1013 * caller.
1016 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1018 u8 tmp;
1020 if (device == 0)
1021 tmp = ATA_DEVICE_OBS;
1022 else
1023 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1025 if (ap->flags & ATA_FLAG_MMIO) {
1026 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
1027 } else {
1028 outb(tmp, ap->ioaddr.device_addr);
1030 ata_pause(ap); /* needed; also flushes, for mmio */
1034 * ata_dev_select - Select device 0/1 on ATA bus
1035 * @ap: ATA channel to manipulate
1036 * @device: ATA device (numbered from zero) to select
1037 * @wait: non-zero to wait for Status register BSY bit to clear
1038 * @can_sleep: non-zero if context allows sleeping
1040 * Use the method defined in the ATA specification to
1041 * make either device 0, or device 1, active on the
1042 * ATA channel.
1044 * This is a high-level version of ata_std_dev_select(),
1045 * which additionally provides the services of inserting
1046 * the proper pauses and status polling, where needed.
1048 * LOCKING:
1049 * caller.
1052 void ata_dev_select(struct ata_port *ap, unsigned int device,
1053 unsigned int wait, unsigned int can_sleep)
1055 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
1056 ap->id, device, wait);
1058 if (wait)
1059 ata_wait_idle(ap);
1061 ap->ops->dev_select(ap, device);
1063 if (wait) {
1064 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1065 msleep(150);
1066 ata_wait_idle(ap);
1071 * ata_dump_id - IDENTIFY DEVICE info debugging output
1072 * @dev: Device whose IDENTIFY DEVICE page we will dump
1074 * Dump selected 16-bit words from a detected device's
1075 * IDENTIFY PAGE page.
1077 * LOCKING:
1078 * caller.
1081 static inline void ata_dump_id(struct ata_device *dev)
1083 DPRINTK("49==0x%04x "
1084 "53==0x%04x "
1085 "63==0x%04x "
1086 "64==0x%04x "
1087 "75==0x%04x \n",
1088 dev->id[49],
1089 dev->id[53],
1090 dev->id[63],
1091 dev->id[64],
1092 dev->id[75]);
1093 DPRINTK("80==0x%04x "
1094 "81==0x%04x "
1095 "82==0x%04x "
1096 "83==0x%04x "
1097 "84==0x%04x \n",
1098 dev->id[80],
1099 dev->id[81],
1100 dev->id[82],
1101 dev->id[83],
1102 dev->id[84]);
1103 DPRINTK("88==0x%04x "
1104 "93==0x%04x\n",
1105 dev->id[88],
1106 dev->id[93]);
1110 * ata_dev_identify - obtain IDENTIFY x DEVICE page
1111 * @ap: port on which device we wish to probe resides
1112 * @device: device bus address, starting at zero
1114 * Following bus reset, we issue the IDENTIFY [PACKET] DEVICE
1115 * command, and read back the 512-byte device information page.
1116 * The device information page is fed to us via the standard
1117 * PIO-IN protocol, but we hand-code it here. (TODO: investigate
1118 * using standard PIO-IN paths)
1120 * After reading the device information page, we use several
1121 * bits of information from it to initialize data structures
1122 * that will be used during the lifetime of the ata_device.
1123 * Other data from the info page is used to disqualify certain
1124 * older ATA devices we do not wish to support.
1126 * LOCKING:
1127 * Inherited from caller. Some functions called by this function
1128 * obtain the host_set lock.
1131 static void ata_dev_identify(struct ata_port *ap, unsigned int device)
1133 struct ata_device *dev = &ap->device[device];
1134 unsigned int i;
1135 u16 tmp;
1136 unsigned long xfer_modes;
1137 u8 status;
1138 unsigned int using_edd;
1139 DECLARE_COMPLETION(wait);
1140 struct ata_queued_cmd *qc;
1141 unsigned long flags;
1142 int rc;
1144 if (!ata_dev_present(dev)) {
1145 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1146 ap->id, device);
1147 return;
1150 if (ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
1151 using_edd = 0;
1152 else
1153 using_edd = 1;
1155 DPRINTK("ENTER, host %u, dev %u\n", ap->id, device);
1157 assert (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ATAPI ||
1158 dev->class == ATA_DEV_NONE);
1160 ata_dev_select(ap, device, 1, 1); /* select device 0/1 */
1162 qc = ata_qc_new_init(ap, dev);
1163 BUG_ON(qc == NULL);
1165 ata_sg_init_one(qc, dev->id, sizeof(dev->id));
1166 qc->dma_dir = DMA_FROM_DEVICE;
1167 qc->tf.protocol = ATA_PROT_PIO;
1168 qc->nsect = 1;
1170 retry:
1171 if (dev->class == ATA_DEV_ATA) {
1172 qc->tf.command = ATA_CMD_ID_ATA;
1173 DPRINTK("do ATA identify\n");
1174 } else {
1175 qc->tf.command = ATA_CMD_ID_ATAPI;
1176 DPRINTK("do ATAPI identify\n");
1179 qc->waiting = &wait;
1180 qc->complete_fn = ata_qc_complete_noop;
1182 spin_lock_irqsave(&ap->host_set->lock, flags);
1183 rc = ata_qc_issue(qc);
1184 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1186 if (rc)
1187 goto err_out;
1188 else
1189 wait_for_completion(&wait);
1191 status = ata_chk_status(ap);
1192 if (status & ATA_ERR) {
1194 * arg! EDD works for all test cases, but seems to return
1195 * the ATA signature for some ATAPI devices. Until the
1196 * reason for this is found and fixed, we fix up the mess
1197 * here. If IDENTIFY DEVICE returns command aborted
1198 * (as ATAPI devices do), then we issue an
1199 * IDENTIFY PACKET DEVICE.
1201 * ATA software reset (SRST, the default) does not appear
1202 * to have this problem.
1204 if ((using_edd) && (qc->tf.command == ATA_CMD_ID_ATA)) {
1205 u8 err = ata_chk_err(ap);
1206 if (err & ATA_ABORTED) {
1207 dev->class = ATA_DEV_ATAPI;
1208 qc->cursg = 0;
1209 qc->cursg_ofs = 0;
1210 qc->cursect = 0;
1211 qc->nsect = 1;
1212 goto retry;
1215 goto err_out;
1218 swap_buf_le16(dev->id, ATA_ID_WORDS);
1220 /* print device capabilities */
1221 printk(KERN_DEBUG "ata%u: dev %u cfg "
1222 "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1223 ap->id, device, dev->id[49],
1224 dev->id[82], dev->id[83], dev->id[84],
1225 dev->id[85], dev->id[86], dev->id[87],
1226 dev->id[88]);
1229 * common ATA, ATAPI feature tests
1232 /* we require LBA and DMA support (bits 8 & 9 of word 49) */
1233 if (!ata_id_has_dma(dev->id) || !ata_id_has_lba(dev->id)) {
1234 printk(KERN_DEBUG "ata%u: no dma/lba\n", ap->id);
1235 goto err_out_nosup;
1238 /* quick-n-dirty find max transfer mode; for printk only */
1239 xfer_modes = dev->id[ATA_ID_UDMA_MODES];
1240 if (!xfer_modes)
1241 xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA;
1242 if (!xfer_modes) {
1243 xfer_modes = (dev->id[ATA_ID_PIO_MODES]) << (ATA_SHIFT_PIO + 3);
1244 xfer_modes |= (0x7 << ATA_SHIFT_PIO);
1247 ata_dump_id(dev);
1249 /* ATA-specific feature tests */
1250 if (dev->class == ATA_DEV_ATA) {
1251 if (!ata_id_is_ata(dev->id)) /* sanity check */
1252 goto err_out_nosup;
1254 tmp = dev->id[ATA_ID_MAJOR_VER];
1255 for (i = 14; i >= 1; i--)
1256 if (tmp & (1 << i))
1257 break;
1259 /* we require at least ATA-3 */
1260 if (i < 3) {
1261 printk(KERN_DEBUG "ata%u: no ATA-3\n", ap->id);
1262 goto err_out_nosup;
1265 if (ata_id_has_lba48(dev->id)) {
1266 dev->flags |= ATA_DFLAG_LBA48;
1267 dev->n_sectors = ata_id_u64(dev->id, 100);
1268 } else {
1269 dev->n_sectors = ata_id_u32(dev->id, 60);
1272 ap->host->max_cmd_len = 16;
1274 /* print device info to dmesg */
1275 printk(KERN_INFO "ata%u: dev %u ATA, max %s, %Lu sectors:%s\n",
1276 ap->id, device,
1277 ata_mode_string(xfer_modes),
1278 (unsigned long long)dev->n_sectors,
1279 dev->flags & ATA_DFLAG_LBA48 ? " lba48" : "");
1282 /* ATAPI-specific feature tests */
1283 else {
1284 if (ata_id_is_ata(dev->id)) /* sanity check */
1285 goto err_out_nosup;
1287 rc = atapi_cdb_len(dev->id);
1288 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1289 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1290 goto err_out_nosup;
1292 ap->cdb_len = (unsigned int) rc;
1293 ap->host->max_cmd_len = (unsigned char) ap->cdb_len;
1295 /* print device info to dmesg */
1296 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1297 ap->id, device,
1298 ata_mode_string(xfer_modes));
1301 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1302 return;
1304 err_out_nosup:
1305 printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
1306 ap->id, device);
1307 err_out:
1308 dev->class++; /* converts ATA_DEV_xxx into ATA_DEV_xxx_UNSUP */
1309 DPRINTK("EXIT, err\n");
1313 static inline u8 ata_dev_knobble(struct ata_port *ap)
1315 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(ap->device->id)));
1319 * ata_dev_config - Run device specific handlers and check for
1320 * SATA->PATA bridges
1321 * @ap: Bus
1322 * @i: Device
1324 * LOCKING:
1327 void ata_dev_config(struct ata_port *ap, unsigned int i)
1329 /* limit bridge transfers to udma5, 200 sectors */
1330 if (ata_dev_knobble(ap)) {
1331 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1332 ap->id, ap->device->devno);
1333 ap->udma_mask &= ATA_UDMA5;
1334 ap->host->max_sectors = ATA_MAX_SECTORS;
1335 ap->host->hostt->max_sectors = ATA_MAX_SECTORS;
1336 ap->device->flags |= ATA_DFLAG_LOCK_SECTORS;
1339 if (ap->ops->dev_config)
1340 ap->ops->dev_config(ap, &ap->device[i]);
1344 * ata_bus_probe - Reset and probe ATA bus
1345 * @ap: Bus to probe
1347 * Master ATA bus probing function. Initiates a hardware-dependent
1348 * bus reset, then attempts to identify any devices found on
1349 * the bus.
1351 * LOCKING:
1352 * PCI/etc. bus probe sem.
1354 * RETURNS:
1355 * Zero on success, non-zero on error.
1358 static int ata_bus_probe(struct ata_port *ap)
1360 unsigned int i, found = 0;
1362 ap->ops->phy_reset(ap);
1363 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1364 goto err_out;
1366 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1367 ata_dev_identify(ap, i);
1368 if (ata_dev_present(&ap->device[i])) {
1369 found = 1;
1370 ata_dev_config(ap,i);
1374 if ((!found) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1375 goto err_out_disable;
1377 ata_set_mode(ap);
1378 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1379 goto err_out_disable;
1381 return 0;
1383 err_out_disable:
1384 ap->ops->port_disable(ap);
1385 err_out:
1386 return -1;
1390 * ata_port_probe - Mark port as enabled
1391 * @ap: Port for which we indicate enablement
1393 * Modify @ap data structure such that the system
1394 * thinks that the entire port is enabled.
1396 * LOCKING: host_set lock, or some other form of
1397 * serialization.
1400 void ata_port_probe(struct ata_port *ap)
1402 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1406 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1407 * @ap: SATA port associated with target SATA PHY.
1409 * This function issues commands to standard SATA Sxxx
1410 * PHY registers, to wake up the phy (and device), and
1411 * clear any reset condition.
1413 * LOCKING:
1414 * PCI/etc. bus probe sem.
1417 void __sata_phy_reset(struct ata_port *ap)
1419 u32 sstatus;
1420 unsigned long timeout = jiffies + (HZ * 5);
1422 if (ap->flags & ATA_FLAG_SATA_RESET) {
1423 /* issue phy wake/reset */
1424 scr_write_flush(ap, SCR_CONTROL, 0x301);
1425 /* Couldn't find anything in SATA I/II specs, but
1426 * AHCI-1.1 10.4.2 says at least 1 ms. */
1427 mdelay(1);
1429 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1431 /* wait for phy to become ready, if necessary */
1432 do {
1433 msleep(200);
1434 sstatus = scr_read(ap, SCR_STATUS);
1435 if ((sstatus & 0xf) != 1)
1436 break;
1437 } while (time_before(jiffies, timeout));
1439 /* TODO: phy layer with polling, timeouts, etc. */
1440 if (sata_dev_present(ap))
1441 ata_port_probe(ap);
1442 else {
1443 sstatus = scr_read(ap, SCR_STATUS);
1444 printk(KERN_INFO "ata%u: no device found (phy stat %08x)\n",
1445 ap->id, sstatus);
1446 ata_port_disable(ap);
1449 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1450 return;
1452 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1453 ata_port_disable(ap);
1454 return;
1457 ap->cbl = ATA_CBL_SATA;
1461 * sata_phy_reset - Reset SATA bus.
1462 * @ap: SATA port associated with target SATA PHY.
1464 * This function resets the SATA bus, and then probes
1465 * the bus for devices.
1467 * LOCKING:
1468 * PCI/etc. bus probe sem.
1471 void sata_phy_reset(struct ata_port *ap)
1473 __sata_phy_reset(ap);
1474 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1475 return;
1476 ata_bus_reset(ap);
1480 * ata_port_disable - Disable port.
1481 * @ap: Port to be disabled.
1483 * Modify @ap data structure such that the system
1484 * thinks that the entire port is disabled, and should
1485 * never attempt to probe or communicate with devices
1486 * on this port.
1488 * LOCKING: host_set lock, or some other form of
1489 * serialization.
1492 void ata_port_disable(struct ata_port *ap)
1494 ap->device[0].class = ATA_DEV_NONE;
1495 ap->device[1].class = ATA_DEV_NONE;
1496 ap->flags |= ATA_FLAG_PORT_DISABLED;
1499 static struct {
1500 unsigned int shift;
1501 u8 base;
1502 } xfer_mode_classes[] = {
1503 { ATA_SHIFT_UDMA, XFER_UDMA_0 },
1504 { ATA_SHIFT_MWDMA, XFER_MW_DMA_0 },
1505 { ATA_SHIFT_PIO, XFER_PIO_0 },
1508 static inline u8 base_from_shift(unsigned int shift)
1510 int i;
1512 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++)
1513 if (xfer_mode_classes[i].shift == shift)
1514 return xfer_mode_classes[i].base;
1516 return 0xff;
1519 static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1521 int ofs, idx;
1522 u8 base;
1524 if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1525 return;
1527 if (dev->xfer_shift == ATA_SHIFT_PIO)
1528 dev->flags |= ATA_DFLAG_PIO;
1530 ata_dev_set_xfermode(ap, dev);
1532 base = base_from_shift(dev->xfer_shift);
1533 ofs = dev->xfer_mode - base;
1534 idx = ofs + dev->xfer_shift;
1535 WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str));
1537 DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
1538 idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs);
1540 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1541 ap->id, dev->devno, xfer_mode_str[idx]);
1544 static int ata_host_set_pio(struct ata_port *ap)
1546 unsigned int mask;
1547 int x, i;
1548 u8 base, xfer_mode;
1550 mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO);
1551 x = fgb(mask);
1552 if (x < 0) {
1553 printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
1554 return -1;
1557 base = base_from_shift(ATA_SHIFT_PIO);
1558 xfer_mode = base + x;
1560 DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
1561 (int)base, (int)xfer_mode, mask, x);
1563 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1564 struct ata_device *dev = &ap->device[i];
1565 if (ata_dev_present(dev)) {
1566 dev->pio_mode = xfer_mode;
1567 dev->xfer_mode = xfer_mode;
1568 dev->xfer_shift = ATA_SHIFT_PIO;
1569 if (ap->ops->set_piomode)
1570 ap->ops->set_piomode(ap, dev);
1574 return 0;
1577 static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode,
1578 unsigned int xfer_shift)
1580 int i;
1582 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1583 struct ata_device *dev = &ap->device[i];
1584 if (ata_dev_present(dev)) {
1585 dev->dma_mode = xfer_mode;
1586 dev->xfer_mode = xfer_mode;
1587 dev->xfer_shift = xfer_shift;
1588 if (ap->ops->set_dmamode)
1589 ap->ops->set_dmamode(ap, dev);
1595 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1596 * @ap: port on which timings will be programmed
1598 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1600 * LOCKING:
1601 * PCI/etc. bus probe sem.
1604 static void ata_set_mode(struct ata_port *ap)
1606 unsigned int i, xfer_shift;
1607 u8 xfer_mode;
1608 int rc;
1610 /* step 1: always set host PIO timings */
1611 rc = ata_host_set_pio(ap);
1612 if (rc)
1613 goto err_out;
1615 /* step 2: choose the best data xfer mode */
1616 xfer_mode = xfer_shift = 0;
1617 rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift);
1618 if (rc)
1619 goto err_out;
1621 /* step 3: if that xfer mode isn't PIO, set host DMA timings */
1622 if (xfer_shift != ATA_SHIFT_PIO)
1623 ata_host_set_dma(ap, xfer_mode, xfer_shift);
1625 /* step 4: update devices' xfer mode */
1626 ata_dev_set_mode(ap, &ap->device[0]);
1627 ata_dev_set_mode(ap, &ap->device[1]);
1629 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1630 return;
1632 if (ap->ops->post_set_mode)
1633 ap->ops->post_set_mode(ap);
1635 for (i = 0; i < 2; i++) {
1636 struct ata_device *dev = &ap->device[i];
1637 ata_dev_set_protocol(dev);
1640 return;
1642 err_out:
1643 ata_port_disable(ap);
1647 * ata_busy_sleep - sleep until BSY clears, or timeout
1648 * @ap: port containing status register to be polled
1649 * @tmout_pat: impatience timeout
1650 * @tmout: overall timeout
1652 * Sleep until ATA Status register bit BSY clears,
1653 * or a timeout occurs.
1655 * LOCKING: None.
1659 static unsigned int ata_busy_sleep (struct ata_port *ap,
1660 unsigned long tmout_pat,
1661 unsigned long tmout)
1663 unsigned long timer_start, timeout;
1664 u8 status;
1666 status = ata_busy_wait(ap, ATA_BUSY, 300);
1667 timer_start = jiffies;
1668 timeout = timer_start + tmout_pat;
1669 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1670 msleep(50);
1671 status = ata_busy_wait(ap, ATA_BUSY, 3);
1674 if (status & ATA_BUSY)
1675 printk(KERN_WARNING "ata%u is slow to respond, "
1676 "please be patient\n", ap->id);
1678 timeout = timer_start + tmout;
1679 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1680 msleep(50);
1681 status = ata_chk_status(ap);
1684 if (status & ATA_BUSY) {
1685 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1686 ap->id, tmout / HZ);
1687 return 1;
1690 return 0;
1693 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1695 struct ata_ioports *ioaddr = &ap->ioaddr;
1696 unsigned int dev0 = devmask & (1 << 0);
1697 unsigned int dev1 = devmask & (1 << 1);
1698 unsigned long timeout;
1700 /* if device 0 was found in ata_devchk, wait for its
1701 * BSY bit to clear
1703 if (dev0)
1704 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1706 /* if device 1 was found in ata_devchk, wait for
1707 * register access, then wait for BSY to clear
1709 timeout = jiffies + ATA_TMOUT_BOOT;
1710 while (dev1) {
1711 u8 nsect, lbal;
1713 ap->ops->dev_select(ap, 1);
1714 if (ap->flags & ATA_FLAG_MMIO) {
1715 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1716 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1717 } else {
1718 nsect = inb(ioaddr->nsect_addr);
1719 lbal = inb(ioaddr->lbal_addr);
1721 if ((nsect == 1) && (lbal == 1))
1722 break;
1723 if (time_after(jiffies, timeout)) {
1724 dev1 = 0;
1725 break;
1727 msleep(50); /* give drive a breather */
1729 if (dev1)
1730 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1732 /* is all this really necessary? */
1733 ap->ops->dev_select(ap, 0);
1734 if (dev1)
1735 ap->ops->dev_select(ap, 1);
1736 if (dev0)
1737 ap->ops->dev_select(ap, 0);
1741 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
1742 * @ap: Port to reset and probe
1744 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
1745 * probe the bus. Not often used these days.
1747 * LOCKING:
1748 * PCI/etc. bus probe sem.
1752 static unsigned int ata_bus_edd(struct ata_port *ap)
1754 struct ata_taskfile tf;
1756 /* set up execute-device-diag (bus reset) taskfile */
1757 /* also, take interrupts to a known state (disabled) */
1758 DPRINTK("execute-device-diag\n");
1759 ata_tf_init(ap, &tf, 0);
1760 tf.ctl |= ATA_NIEN;
1761 tf.command = ATA_CMD_EDD;
1762 tf.protocol = ATA_PROT_NODATA;
1764 /* do bus reset */
1765 ata_tf_to_host(ap, &tf);
1767 /* spec says at least 2ms. but who knows with those
1768 * crazy ATAPI devices...
1770 msleep(150);
1772 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1775 static unsigned int ata_bus_softreset(struct ata_port *ap,
1776 unsigned int devmask)
1778 struct ata_ioports *ioaddr = &ap->ioaddr;
1780 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
1782 /* software reset. causes dev0 to be selected */
1783 if (ap->flags & ATA_FLAG_MMIO) {
1784 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1785 udelay(20); /* FIXME: flush */
1786 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
1787 udelay(20); /* FIXME: flush */
1788 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1789 } else {
1790 outb(ap->ctl, ioaddr->ctl_addr);
1791 udelay(10);
1792 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1793 udelay(10);
1794 outb(ap->ctl, ioaddr->ctl_addr);
1797 /* spec mandates ">= 2ms" before checking status.
1798 * We wait 150ms, because that was the magic delay used for
1799 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
1800 * between when the ATA command register is written, and then
1801 * status is checked. Because waiting for "a while" before
1802 * checking status is fine, post SRST, we perform this magic
1803 * delay here as well.
1805 msleep(150);
1807 ata_bus_post_reset(ap, devmask);
1809 return 0;
1813 * ata_bus_reset - reset host port and associated ATA channel
1814 * @ap: port to reset
1816 * This is typically the first time we actually start issuing
1817 * commands to the ATA channel. We wait for BSY to clear, then
1818 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
1819 * result. Determine what devices, if any, are on the channel
1820 * by looking at the device 0/1 error register. Look at the signature
1821 * stored in each device's taskfile registers, to determine if
1822 * the device is ATA or ATAPI.
1824 * LOCKING:
1825 * PCI/etc. bus probe sem.
1826 * Obtains host_set lock.
1828 * SIDE EFFECTS:
1829 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
1832 void ata_bus_reset(struct ata_port *ap)
1834 struct ata_ioports *ioaddr = &ap->ioaddr;
1835 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1836 u8 err;
1837 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
1839 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
1841 /* determine if device 0/1 are present */
1842 if (ap->flags & ATA_FLAG_SATA_RESET)
1843 dev0 = 1;
1844 else {
1845 dev0 = ata_devchk(ap, 0);
1846 if (slave_possible)
1847 dev1 = ata_devchk(ap, 1);
1850 if (dev0)
1851 devmask |= (1 << 0);
1852 if (dev1)
1853 devmask |= (1 << 1);
1855 /* select device 0 again */
1856 ap->ops->dev_select(ap, 0);
1858 /* issue bus reset */
1859 if (ap->flags & ATA_FLAG_SRST)
1860 rc = ata_bus_softreset(ap, devmask);
1861 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
1862 /* set up device control */
1863 if (ap->flags & ATA_FLAG_MMIO)
1864 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1865 else
1866 outb(ap->ctl, ioaddr->ctl_addr);
1867 rc = ata_bus_edd(ap);
1870 if (rc)
1871 goto err_out;
1874 * determine by signature whether we have ATA or ATAPI devices
1876 err = ata_dev_try_classify(ap, 0);
1877 if ((slave_possible) && (err != 0x81))
1878 ata_dev_try_classify(ap, 1);
1880 /* re-enable interrupts */
1881 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
1882 ata_irq_on(ap);
1884 /* is double-select really necessary? */
1885 if (ap->device[1].class != ATA_DEV_NONE)
1886 ap->ops->dev_select(ap, 1);
1887 if (ap->device[0].class != ATA_DEV_NONE)
1888 ap->ops->dev_select(ap, 0);
1890 /* if no devices were detected, disable this port */
1891 if ((ap->device[0].class == ATA_DEV_NONE) &&
1892 (ap->device[1].class == ATA_DEV_NONE))
1893 goto err_out;
1895 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
1896 /* set up device control for ATA_FLAG_SATA_RESET */
1897 if (ap->flags & ATA_FLAG_MMIO)
1898 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1899 else
1900 outb(ap->ctl, ioaddr->ctl_addr);
1903 DPRINTK("EXIT\n");
1904 return;
1906 err_out:
1907 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
1908 ap->ops->port_disable(ap);
1910 DPRINTK("EXIT\n");
1913 static void ata_pr_blacklisted(struct ata_port *ap, struct ata_device *dev)
1915 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n",
1916 ap->id, dev->devno);
1919 static const char * ata_dma_blacklist [] = {
1920 "WDC AC11000H",
1921 "WDC AC22100H",
1922 "WDC AC32500H",
1923 "WDC AC33100H",
1924 "WDC AC31600H",
1925 "WDC AC32100H",
1926 "WDC AC23200L",
1927 "Compaq CRD-8241B",
1928 "CRD-8400B",
1929 "CRD-8480B",
1930 "CRD-8482B",
1931 "CRD-84",
1932 "SanDisk SDP3B",
1933 "SanDisk SDP3B-64",
1934 "SANYO CD-ROM CRD",
1935 "HITACHI CDR-8",
1936 "HITACHI CDR-8335",
1937 "HITACHI CDR-8435",
1938 "Toshiba CD-ROM XM-6202B",
1939 "TOSHIBA CD-ROM XM-1702BC",
1940 "CD-532E-A",
1941 "E-IDE CD-ROM CR-840",
1942 "CD-ROM Drive/F5A",
1943 "WPI CDD-820",
1944 "SAMSUNG CD-ROM SC-148C",
1945 "SAMSUNG CD-ROM SC",
1946 "SanDisk SDP3B-64",
1947 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
1948 "_NEC DV5800A",
1951 static int ata_dma_blacklisted(struct ata_port *ap, struct ata_device *dev)
1953 unsigned char model_num[40];
1954 char *s;
1955 unsigned int len;
1956 int i;
1958 ata_dev_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
1959 sizeof(model_num));
1960 s = &model_num[0];
1961 len = strnlen(s, sizeof(model_num));
1963 /* ATAPI specifies that empty space is blank-filled; remove blanks */
1964 while ((len > 0) && (s[len - 1] == ' ')) {
1965 len--;
1966 s[len] = 0;
1969 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
1970 if (!strncmp(ata_dma_blacklist[i], s, len))
1971 return 1;
1973 return 0;
1976 static unsigned int ata_get_mode_mask(struct ata_port *ap, int shift)
1978 struct ata_device *master, *slave;
1979 unsigned int mask;
1981 master = &ap->device[0];
1982 slave = &ap->device[1];
1984 assert (ata_dev_present(master) || ata_dev_present(slave));
1986 if (shift == ATA_SHIFT_UDMA) {
1987 mask = ap->udma_mask;
1988 if (ata_dev_present(master)) {
1989 mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff);
1990 if (ata_dma_blacklisted(ap, master)) {
1991 mask = 0;
1992 ata_pr_blacklisted(ap, master);
1995 if (ata_dev_present(slave)) {
1996 mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff);
1997 if (ata_dma_blacklisted(ap, slave)) {
1998 mask = 0;
1999 ata_pr_blacklisted(ap, slave);
2003 else if (shift == ATA_SHIFT_MWDMA) {
2004 mask = ap->mwdma_mask;
2005 if (ata_dev_present(master)) {
2006 mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07);
2007 if (ata_dma_blacklisted(ap, master)) {
2008 mask = 0;
2009 ata_pr_blacklisted(ap, master);
2012 if (ata_dev_present(slave)) {
2013 mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07);
2014 if (ata_dma_blacklisted(ap, slave)) {
2015 mask = 0;
2016 ata_pr_blacklisted(ap, slave);
2020 else if (shift == ATA_SHIFT_PIO) {
2021 mask = ap->pio_mask;
2022 if (ata_dev_present(master)) {
2023 /* spec doesn't return explicit support for
2024 * PIO0-2, so we fake it
2026 u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03;
2027 tmp_mode <<= 3;
2028 tmp_mode |= 0x7;
2029 mask &= tmp_mode;
2031 if (ata_dev_present(slave)) {
2032 /* spec doesn't return explicit support for
2033 * PIO0-2, so we fake it
2035 u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03;
2036 tmp_mode <<= 3;
2037 tmp_mode |= 0x7;
2038 mask &= tmp_mode;
2041 else {
2042 mask = 0xffffffff; /* shut up compiler warning */
2043 BUG();
2046 return mask;
2049 /* find greatest bit */
2050 static int fgb(u32 bitmap)
2052 unsigned int i;
2053 int x = -1;
2055 for (i = 0; i < 32; i++)
2056 if (bitmap & (1 << i))
2057 x = i;
2059 return x;
2063 * ata_choose_xfer_mode - attempt to find best transfer mode
2064 * @ap: Port for which an xfer mode will be selected
2065 * @xfer_mode_out: (output) SET FEATURES - XFER MODE code
2066 * @xfer_shift_out: (output) bit shift that selects this mode
2068 * Based on host and device capabilities, determine the
2069 * maximum transfer mode that is amenable to all.
2071 * LOCKING:
2072 * PCI/etc. bus probe sem.
2074 * RETURNS:
2075 * Zero on success, negative on error.
2078 static int ata_choose_xfer_mode(struct ata_port *ap,
2079 u8 *xfer_mode_out,
2080 unsigned int *xfer_shift_out)
2082 unsigned int mask, shift;
2083 int x, i;
2085 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) {
2086 shift = xfer_mode_classes[i].shift;
2087 mask = ata_get_mode_mask(ap, shift);
2089 x = fgb(mask);
2090 if (x >= 0) {
2091 *xfer_mode_out = xfer_mode_classes[i].base + x;
2092 *xfer_shift_out = shift;
2093 return 0;
2097 return -1;
2101 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2102 * @ap: Port associated with device @dev
2103 * @dev: Device to which command will be sent
2105 * Issue SET FEATURES - XFER MODE command to device @dev
2106 * on port @ap.
2108 * LOCKING:
2109 * PCI/etc. bus probe sem.
2112 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
2114 DECLARE_COMPLETION(wait);
2115 struct ata_queued_cmd *qc;
2116 int rc;
2117 unsigned long flags;
2119 /* set up set-features taskfile */
2120 DPRINTK("set features - xfer mode\n");
2122 qc = ata_qc_new_init(ap, dev);
2123 BUG_ON(qc == NULL);
2125 qc->tf.command = ATA_CMD_SET_FEATURES;
2126 qc->tf.feature = SETFEATURES_XFER;
2127 qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2128 qc->tf.protocol = ATA_PROT_NODATA;
2129 qc->tf.nsect = dev->xfer_mode;
2131 qc->waiting = &wait;
2132 qc->complete_fn = ata_qc_complete_noop;
2134 spin_lock_irqsave(&ap->host_set->lock, flags);
2135 rc = ata_qc_issue(qc);
2136 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2138 if (rc)
2139 ata_port_disable(ap);
2140 else
2141 wait_for_completion(&wait);
2143 DPRINTK("EXIT\n");
2147 * ata_sg_clean - Unmap DMA memory associated with command
2148 * @qc: Command containing DMA memory to be released
2150 * Unmap all mapped DMA memory associated with this command.
2152 * LOCKING:
2153 * spin_lock_irqsave(host_set lock)
2156 static void ata_sg_clean(struct ata_queued_cmd *qc)
2158 struct ata_port *ap = qc->ap;
2159 struct scatterlist *sg = qc->sg;
2160 int dir = qc->dma_dir;
2162 assert(qc->flags & ATA_QCFLAG_DMAMAP);
2163 assert(sg != NULL);
2165 if (qc->flags & ATA_QCFLAG_SINGLE)
2166 assert(qc->n_elem == 1);
2168 DPRINTK("unmapping %u sg elements\n", qc->n_elem);
2170 if (qc->flags & ATA_QCFLAG_SG)
2171 dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
2172 else
2173 dma_unmap_single(ap->host_set->dev, sg_dma_address(&sg[0]),
2174 sg_dma_len(&sg[0]), dir);
2176 qc->flags &= ~ATA_QCFLAG_DMAMAP;
2177 qc->sg = NULL;
2181 * ata_fill_sg - Fill PCI IDE PRD table
2182 * @qc: Metadata associated with taskfile to be transferred
2184 * Fill PCI IDE PRD (scatter-gather) table with segments
2185 * associated with the current disk command.
2187 * LOCKING:
2188 * spin_lock_irqsave(host_set lock)
2191 static void ata_fill_sg(struct ata_queued_cmd *qc)
2193 struct scatterlist *sg = qc->sg;
2194 struct ata_port *ap = qc->ap;
2195 unsigned int idx, nelem;
2197 assert(sg != NULL);
2198 assert(qc->n_elem > 0);
2200 idx = 0;
2201 for (nelem = qc->n_elem; nelem; nelem--,sg++) {
2202 u32 addr, offset;
2203 u32 sg_len, len;
2205 /* determine if physical DMA addr spans 64K boundary.
2206 * Note h/w doesn't support 64-bit, so we unconditionally
2207 * truncate dma_addr_t to u32.
2209 addr = (u32) sg_dma_address(sg);
2210 sg_len = sg_dma_len(sg);
2212 while (sg_len) {
2213 offset = addr & 0xffff;
2214 len = sg_len;
2215 if ((offset + sg_len) > 0x10000)
2216 len = 0x10000 - offset;
2218 ap->prd[idx].addr = cpu_to_le32(addr);
2219 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2220 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2222 idx++;
2223 sg_len -= len;
2224 addr += len;
2228 if (idx)
2229 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2232 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2233 * @qc: Metadata associated with taskfile to check
2235 * Allow low-level driver to filter ATA PACKET commands, returning
2236 * a status indicating whether or not it is OK to use DMA for the
2237 * supplied PACKET command.
2239 * LOCKING:
2240 * spin_lock_irqsave(host_set lock)
2242 * RETURNS: 0 when ATAPI DMA can be used
2243 * nonzero otherwise
2245 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2247 struct ata_port *ap = qc->ap;
2248 int rc = 0; /* Assume ATAPI DMA is OK by default */
2250 if (ap->ops->check_atapi_dma)
2251 rc = ap->ops->check_atapi_dma(qc);
2253 return rc;
2256 * ata_qc_prep - Prepare taskfile for submission
2257 * @qc: Metadata associated with taskfile to be prepared
2259 * Prepare ATA taskfile for submission.
2261 * LOCKING:
2262 * spin_lock_irqsave(host_set lock)
2264 void ata_qc_prep(struct ata_queued_cmd *qc)
2266 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2267 return;
2269 ata_fill_sg(qc);
2273 * ata_sg_init_one - Associate command with memory buffer
2274 * @qc: Command to be associated
2275 * @buf: Memory buffer
2276 * @buflen: Length of memory buffer, in bytes.
2278 * Initialize the data-related elements of queued_cmd @qc
2279 * to point to a single memory buffer, @buf of byte length @buflen.
2281 * LOCKING:
2282 * spin_lock_irqsave(host_set lock)
2285 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2287 struct scatterlist *sg;
2289 qc->flags |= ATA_QCFLAG_SINGLE;
2291 memset(&qc->sgent, 0, sizeof(qc->sgent));
2292 qc->sg = &qc->sgent;
2293 qc->n_elem = 1;
2294 qc->buf_virt = buf;
2296 sg = qc->sg;
2297 sg->page = virt_to_page(buf);
2298 sg->offset = (unsigned long) buf & ~PAGE_MASK;
2299 sg->length = buflen;
2303 * ata_sg_init - Associate command with scatter-gather table.
2304 * @qc: Command to be associated
2305 * @sg: Scatter-gather table.
2306 * @n_elem: Number of elements in s/g table.
2308 * Initialize the data-related elements of queued_cmd @qc
2309 * to point to a scatter-gather table @sg, containing @n_elem
2310 * elements.
2312 * LOCKING:
2313 * spin_lock_irqsave(host_set lock)
2316 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2317 unsigned int n_elem)
2319 qc->flags |= ATA_QCFLAG_SG;
2320 qc->sg = sg;
2321 qc->n_elem = n_elem;
2325 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2326 * @qc: Command with memory buffer to be mapped.
2328 * DMA-map the memory buffer associated with queued_cmd @qc.
2330 * LOCKING:
2331 * spin_lock_irqsave(host_set lock)
2333 * RETURNS:
2334 * Zero on success, negative on error.
2337 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2339 struct ata_port *ap = qc->ap;
2340 int dir = qc->dma_dir;
2341 struct scatterlist *sg = qc->sg;
2342 dma_addr_t dma_address;
2344 dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
2345 sg->length, dir);
2346 if (dma_mapping_error(dma_address))
2347 return -1;
2349 sg_dma_address(sg) = dma_address;
2350 sg_dma_len(sg) = sg->length;
2352 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
2353 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2355 return 0;
2359 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
2360 * @qc: Command with scatter-gather table to be mapped.
2362 * DMA-map the scatter-gather table associated with queued_cmd @qc.
2364 * LOCKING:
2365 * spin_lock_irqsave(host_set lock)
2367 * RETURNS:
2368 * Zero on success, negative on error.
2372 static int ata_sg_setup(struct ata_queued_cmd *qc)
2374 struct ata_port *ap = qc->ap;
2375 struct scatterlist *sg = qc->sg;
2376 int n_elem, dir;
2378 VPRINTK("ENTER, ata%u\n", ap->id);
2379 assert(qc->flags & ATA_QCFLAG_SG);
2381 dir = qc->dma_dir;
2382 n_elem = dma_map_sg(ap->host_set->dev, sg, qc->n_elem, dir);
2383 if (n_elem < 1)
2384 return -1;
2386 DPRINTK("%d sg elements mapped\n", n_elem);
2388 qc->n_elem = n_elem;
2390 return 0;
2394 * ata_poll_qc_complete - turn irq back on and finish qc
2395 * @qc: Command to complete
2396 * @drv_stat: ATA status register content
2398 * LOCKING:
2399 * None. (grabs host lock)
2402 void ata_poll_qc_complete(struct ata_queued_cmd *qc, u8 drv_stat)
2404 struct ata_port *ap = qc->ap;
2405 unsigned long flags;
2407 spin_lock_irqsave(&ap->host_set->lock, flags);
2408 ap->flags &= ~ATA_FLAG_NOINTR;
2409 ata_irq_on(ap);
2410 ata_qc_complete(qc, drv_stat);
2411 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2415 * ata_pio_poll -
2416 * @ap:
2418 * LOCKING:
2419 * None. (executing in kernel thread context)
2421 * RETURNS:
2425 static unsigned long ata_pio_poll(struct ata_port *ap)
2427 u8 status;
2428 unsigned int poll_state = PIO_ST_UNKNOWN;
2429 unsigned int reg_state = PIO_ST_UNKNOWN;
2430 const unsigned int tmout_state = PIO_ST_TMOUT;
2432 switch (ap->pio_task_state) {
2433 case PIO_ST:
2434 case PIO_ST_POLL:
2435 poll_state = PIO_ST_POLL;
2436 reg_state = PIO_ST;
2437 break;
2438 case PIO_ST_LAST:
2439 case PIO_ST_LAST_POLL:
2440 poll_state = PIO_ST_LAST_POLL;
2441 reg_state = PIO_ST_LAST;
2442 break;
2443 default:
2444 BUG();
2445 break;
2448 status = ata_chk_status(ap);
2449 if (status & ATA_BUSY) {
2450 if (time_after(jiffies, ap->pio_task_timeout)) {
2451 ap->pio_task_state = tmout_state;
2452 return 0;
2454 ap->pio_task_state = poll_state;
2455 return ATA_SHORT_PAUSE;
2458 ap->pio_task_state = reg_state;
2459 return 0;
2463 * ata_pio_complete -
2464 * @ap:
2466 * LOCKING:
2467 * None. (executing in kernel thread context)
2470 static void ata_pio_complete (struct ata_port *ap)
2472 struct ata_queued_cmd *qc;
2473 u8 drv_stat;
2476 * This is purely heuristic. This is a fast path. Sometimes when
2477 * we enter, BSY will be cleared in a chk-status or two. If not,
2478 * the drive is probably seeking or something. Snooze for a couple
2479 * msecs, then chk-status again. If still busy, fall back to
2480 * PIO_ST_POLL state.
2482 drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10);
2483 if (drv_stat & (ATA_BUSY | ATA_DRQ)) {
2484 msleep(2);
2485 drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10);
2486 if (drv_stat & (ATA_BUSY | ATA_DRQ)) {
2487 ap->pio_task_state = PIO_ST_LAST_POLL;
2488 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
2489 return;
2493 drv_stat = ata_wait_idle(ap);
2494 if (!ata_ok(drv_stat)) {
2495 ap->pio_task_state = PIO_ST_ERR;
2496 return;
2499 qc = ata_qc_from_tag(ap, ap->active_tag);
2500 assert(qc != NULL);
2502 ap->pio_task_state = PIO_ST_IDLE;
2504 ata_poll_qc_complete(qc, drv_stat);
2509 * swap_buf_le16 -
2510 * @buf: Buffer to swap
2511 * @buf_words: Number of 16-bit words in buffer.
2513 * Swap halves of 16-bit words if needed to convert from
2514 * little-endian byte order to native cpu byte order, or
2515 * vice-versa.
2517 * LOCKING:
2519 void swap_buf_le16(u16 *buf, unsigned int buf_words)
2521 #ifdef __BIG_ENDIAN
2522 unsigned int i;
2524 for (i = 0; i < buf_words; i++)
2525 buf[i] = le16_to_cpu(buf[i]);
2526 #endif /* __BIG_ENDIAN */
2530 * ata_mmio_data_xfer - Transfer data by MMIO
2531 * @ap: port to read/write
2532 * @buf: data buffer
2533 * @buflen: buffer length
2534 * @write_data: read/write
2536 * Transfer data from/to the device data register by MMIO.
2538 * LOCKING:
2539 * Inherited from caller.
2543 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
2544 unsigned int buflen, int write_data)
2546 unsigned int i;
2547 unsigned int words = buflen >> 1;
2548 u16 *buf16 = (u16 *) buf;
2549 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
2551 /* Transfer multiple of 2 bytes */
2552 if (write_data) {
2553 for (i = 0; i < words; i++)
2554 writew(le16_to_cpu(buf16[i]), mmio);
2555 } else {
2556 for (i = 0; i < words; i++)
2557 buf16[i] = cpu_to_le16(readw(mmio));
2560 /* Transfer trailing 1 byte, if any. */
2561 if (unlikely(buflen & 0x01)) {
2562 u16 align_buf[1] = { 0 };
2563 unsigned char *trailing_buf = buf + buflen - 1;
2565 if (write_data) {
2566 memcpy(align_buf, trailing_buf, 1);
2567 writew(le16_to_cpu(align_buf[0]), mmio);
2568 } else {
2569 align_buf[0] = cpu_to_le16(readw(mmio));
2570 memcpy(trailing_buf, align_buf, 1);
2576 * ata_pio_data_xfer - Transfer data by PIO
2577 * @ap: port to read/write
2578 * @buf: data buffer
2579 * @buflen: buffer length
2580 * @write_data: read/write
2582 * Transfer data from/to the device data register by PIO.
2584 * LOCKING:
2585 * Inherited from caller.
2589 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
2590 unsigned int buflen, int write_data)
2592 unsigned int words = buflen >> 1;
2594 /* Transfer multiple of 2 bytes */
2595 if (write_data)
2596 outsw(ap->ioaddr.data_addr, buf, words);
2597 else
2598 insw(ap->ioaddr.data_addr, buf, words);
2600 /* Transfer trailing 1 byte, if any. */
2601 if (unlikely(buflen & 0x01)) {
2602 u16 align_buf[1] = { 0 };
2603 unsigned char *trailing_buf = buf + buflen - 1;
2605 if (write_data) {
2606 memcpy(align_buf, trailing_buf, 1);
2607 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
2608 } else {
2609 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
2610 memcpy(trailing_buf, align_buf, 1);
2616 * ata_data_xfer - Transfer data from/to the data register.
2617 * @ap: port to read/write
2618 * @buf: data buffer
2619 * @buflen: buffer length
2620 * @do_write: read/write
2622 * Transfer data from/to the device data register.
2624 * LOCKING:
2625 * Inherited from caller.
2629 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
2630 unsigned int buflen, int do_write)
2632 if (ap->flags & ATA_FLAG_MMIO)
2633 ata_mmio_data_xfer(ap, buf, buflen, do_write);
2634 else
2635 ata_pio_data_xfer(ap, buf, buflen, do_write);
2639 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
2640 * @qc: Command on going
2642 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
2644 * LOCKING:
2645 * Inherited from caller.
2648 static void ata_pio_sector(struct ata_queued_cmd *qc)
2650 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
2651 struct scatterlist *sg = qc->sg;
2652 struct ata_port *ap = qc->ap;
2653 struct page *page;
2654 unsigned int offset;
2655 unsigned char *buf;
2657 if (qc->cursect == (qc->nsect - 1))
2658 ap->pio_task_state = PIO_ST_LAST;
2660 page = sg[qc->cursg].page;
2661 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
2663 /* get the current page and offset */
2664 page = nth_page(page, (offset >> PAGE_SHIFT));
2665 offset %= PAGE_SIZE;
2667 buf = kmap(page) + offset;
2669 qc->cursect++;
2670 qc->cursg_ofs++;
2672 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
2673 qc->cursg++;
2674 qc->cursg_ofs = 0;
2677 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2679 /* do the actual data transfer */
2680 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
2681 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
2683 kunmap(page);
2687 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
2688 * @qc: Command on going
2689 * @bytes: number of bytes
2691 * Transfer Transfer data from/to the ATAPI device.
2693 * LOCKING:
2694 * Inherited from caller.
2698 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
2700 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
2701 struct scatterlist *sg = qc->sg;
2702 struct ata_port *ap = qc->ap;
2703 struct page *page;
2704 unsigned char *buf;
2705 unsigned int offset, count;
2707 if (qc->curbytes + bytes >= qc->nbytes)
2708 ap->pio_task_state = PIO_ST_LAST;
2710 next_sg:
2711 if (unlikely(qc->cursg >= qc->n_elem)) {
2713 * The end of qc->sg is reached and the device expects
2714 * more data to transfer. In order not to overrun qc->sg
2715 * and fulfill length specified in the byte count register,
2716 * - for read case, discard trailing data from the device
2717 * - for write case, padding zero data to the device
2719 u16 pad_buf[1] = { 0 };
2720 unsigned int words = bytes >> 1;
2721 unsigned int i;
2723 if (words) /* warning if bytes > 1 */
2724 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
2725 ap->id, bytes);
2727 for (i = 0; i < words; i++)
2728 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
2730 ap->pio_task_state = PIO_ST_LAST;
2731 return;
2734 sg = &qc->sg[qc->cursg];
2736 page = sg->page;
2737 offset = sg->offset + qc->cursg_ofs;
2739 /* get the current page and offset */
2740 page = nth_page(page, (offset >> PAGE_SHIFT));
2741 offset %= PAGE_SIZE;
2743 /* don't overrun current sg */
2744 count = min(sg->length - qc->cursg_ofs, bytes);
2746 /* don't cross page boundaries */
2747 count = min(count, (unsigned int)PAGE_SIZE - offset);
2749 buf = kmap(page) + offset;
2751 bytes -= count;
2752 qc->curbytes += count;
2753 qc->cursg_ofs += count;
2755 if (qc->cursg_ofs == sg->length) {
2756 qc->cursg++;
2757 qc->cursg_ofs = 0;
2760 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2762 /* do the actual data transfer */
2763 ata_data_xfer(ap, buf, count, do_write);
2765 kunmap(page);
2767 if (bytes)
2768 goto next_sg;
2772 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
2773 * @qc: Command on going
2775 * Transfer Transfer data from/to the ATAPI device.
2777 * LOCKING:
2778 * Inherited from caller.
2782 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
2784 struct ata_port *ap = qc->ap;
2785 struct ata_device *dev = qc->dev;
2786 unsigned int ireason, bc_lo, bc_hi, bytes;
2787 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
2789 ap->ops->tf_read(ap, &qc->tf);
2790 ireason = qc->tf.nsect;
2791 bc_lo = qc->tf.lbam;
2792 bc_hi = qc->tf.lbah;
2793 bytes = (bc_hi << 8) | bc_lo;
2795 /* shall be cleared to zero, indicating xfer of data */
2796 if (ireason & (1 << 0))
2797 goto err_out;
2799 /* make sure transfer direction matches expected */
2800 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
2801 if (do_write != i_write)
2802 goto err_out;
2804 __atapi_pio_bytes(qc, bytes);
2806 return;
2808 err_out:
2809 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
2810 ap->id, dev->devno);
2811 ap->pio_task_state = PIO_ST_ERR;
2815 * ata_pio_sector -
2816 * @ap:
2818 * LOCKING:
2819 * None. (executing in kernel thread context)
2822 static void ata_pio_block(struct ata_port *ap)
2824 struct ata_queued_cmd *qc;
2825 u8 status;
2828 * This is purely hueristic. This is a fast path.
2829 * Sometimes when we enter, BSY will be cleared in
2830 * a chk-status or two. If not, the drive is probably seeking
2831 * or something. Snooze for a couple msecs, then
2832 * chk-status again. If still busy, fall back to
2833 * PIO_ST_POLL state.
2835 status = ata_busy_wait(ap, ATA_BUSY, 5);
2836 if (status & ATA_BUSY) {
2837 msleep(2);
2838 status = ata_busy_wait(ap, ATA_BUSY, 10);
2839 if (status & ATA_BUSY) {
2840 ap->pio_task_state = PIO_ST_POLL;
2841 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
2842 return;
2846 qc = ata_qc_from_tag(ap, ap->active_tag);
2847 assert(qc != NULL);
2849 if (is_atapi_taskfile(&qc->tf)) {
2850 /* no more data to transfer or unsupported ATAPI command */
2851 if ((status & ATA_DRQ) == 0) {
2852 ap->pio_task_state = PIO_ST_IDLE;
2854 ata_poll_qc_complete(qc, status);
2855 return;
2858 atapi_pio_bytes(qc);
2859 } else {
2860 /* handle BSY=0, DRQ=0 as error */
2861 if ((status & ATA_DRQ) == 0) {
2862 ap->pio_task_state = PIO_ST_ERR;
2863 return;
2866 ata_pio_sector(qc);
2870 static void ata_pio_error(struct ata_port *ap)
2872 struct ata_queued_cmd *qc;
2873 u8 drv_stat;
2875 qc = ata_qc_from_tag(ap, ap->active_tag);
2876 assert(qc != NULL);
2878 drv_stat = ata_chk_status(ap);
2879 printk(KERN_WARNING "ata%u: PIO error, drv_stat 0x%x\n",
2880 ap->id, drv_stat);
2882 ap->pio_task_state = PIO_ST_IDLE;
2884 ata_poll_qc_complete(qc, drv_stat | ATA_ERR);
2887 static void ata_pio_task(void *_data)
2889 struct ata_port *ap = _data;
2890 unsigned long timeout = 0;
2892 switch (ap->pio_task_state) {
2893 case PIO_ST_IDLE:
2894 return;
2896 case PIO_ST:
2897 ata_pio_block(ap);
2898 break;
2900 case PIO_ST_LAST:
2901 ata_pio_complete(ap);
2902 break;
2904 case PIO_ST_POLL:
2905 case PIO_ST_LAST_POLL:
2906 timeout = ata_pio_poll(ap);
2907 break;
2909 case PIO_ST_TMOUT:
2910 case PIO_ST_ERR:
2911 ata_pio_error(ap);
2912 return;
2915 if (timeout)
2916 queue_delayed_work(ata_wq, &ap->pio_task,
2917 timeout);
2918 else
2919 queue_work(ata_wq, &ap->pio_task);
2922 static void atapi_request_sense(struct ata_port *ap, struct ata_device *dev,
2923 struct scsi_cmnd *cmd)
2925 DECLARE_COMPLETION(wait);
2926 struct ata_queued_cmd *qc;
2927 unsigned long flags;
2928 int rc;
2930 DPRINTK("ATAPI request sense\n");
2932 qc = ata_qc_new_init(ap, dev);
2933 BUG_ON(qc == NULL);
2935 /* FIXME: is this needed? */
2936 memset(cmd->sense_buffer, 0, sizeof(cmd->sense_buffer));
2938 ata_sg_init_one(qc, cmd->sense_buffer, sizeof(cmd->sense_buffer));
2939 qc->dma_dir = DMA_FROM_DEVICE;
2941 memset(&qc->cdb, 0, ap->cdb_len);
2942 qc->cdb[0] = REQUEST_SENSE;
2943 qc->cdb[4] = SCSI_SENSE_BUFFERSIZE;
2945 qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2946 qc->tf.command = ATA_CMD_PACKET;
2948 qc->tf.protocol = ATA_PROT_ATAPI;
2949 qc->tf.lbam = (8 * 1024) & 0xff;
2950 qc->tf.lbah = (8 * 1024) >> 8;
2951 qc->nbytes = SCSI_SENSE_BUFFERSIZE;
2953 qc->waiting = &wait;
2954 qc->complete_fn = ata_qc_complete_noop;
2956 spin_lock_irqsave(&ap->host_set->lock, flags);
2957 rc = ata_qc_issue(qc);
2958 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2960 if (rc)
2961 ata_port_disable(ap);
2962 else
2963 wait_for_completion(&wait);
2965 DPRINTK("EXIT\n");
2969 * ata_qc_timeout - Handle timeout of queued command
2970 * @qc: Command that timed out
2972 * Some part of the kernel (currently, only the SCSI layer)
2973 * has noticed that the active command on port @ap has not
2974 * completed after a specified length of time. Handle this
2975 * condition by disabling DMA (if necessary) and completing
2976 * transactions, with error if necessary.
2978 * This also handles the case of the "lost interrupt", where
2979 * for some reason (possibly hardware bug, possibly driver bug)
2980 * an interrupt was not delivered to the driver, even though the
2981 * transaction completed successfully.
2983 * LOCKING:
2984 * Inherited from SCSI layer (none, can sleep)
2987 static void ata_qc_timeout(struct ata_queued_cmd *qc)
2989 struct ata_port *ap = qc->ap;
2990 struct ata_host_set *host_set = ap->host_set;
2991 struct ata_device *dev = qc->dev;
2992 u8 host_stat = 0, drv_stat;
2993 unsigned long flags;
2995 DPRINTK("ENTER\n");
2997 /* FIXME: doesn't this conflict with timeout handling? */
2998 if (qc->dev->class == ATA_DEV_ATAPI && qc->scsicmd) {
2999 struct scsi_cmnd *cmd = qc->scsicmd;
3001 if (!(cmd->eh_eflags & SCSI_EH_CANCEL_CMD)) {
3003 /* finish completing original command */
3004 spin_lock_irqsave(&host_set->lock, flags);
3005 __ata_qc_complete(qc);
3006 spin_unlock_irqrestore(&host_set->lock, flags);
3008 atapi_request_sense(ap, dev, cmd);
3010 cmd->result = (CHECK_CONDITION << 1) | (DID_OK << 16);
3011 scsi_finish_command(cmd);
3013 goto out;
3017 spin_lock_irqsave(&host_set->lock, flags);
3019 /* hack alert! We cannot use the supplied completion
3020 * function from inside the ->eh_strategy_handler() thread.
3021 * libata is the only user of ->eh_strategy_handler() in
3022 * any kernel, so the default scsi_done() assumes it is
3023 * not being called from the SCSI EH.
3025 qc->scsidone = scsi_finish_command;
3027 switch (qc->tf.protocol) {
3029 case ATA_PROT_DMA:
3030 case ATA_PROT_ATAPI_DMA:
3031 host_stat = ap->ops->bmdma_status(ap);
3033 /* before we do anything else, clear DMA-Start bit */
3034 ap->ops->bmdma_stop(qc);
3036 /* fall through */
3038 default:
3039 ata_altstatus(ap);
3040 drv_stat = ata_chk_status(ap);
3042 /* ack bmdma irq events */
3043 ap->ops->irq_clear(ap);
3045 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3046 ap->id, qc->tf.command, drv_stat, host_stat);
3048 /* complete taskfile transaction */
3049 ata_qc_complete(qc, drv_stat);
3050 break;
3053 spin_unlock_irqrestore(&host_set->lock, flags);
3055 out:
3056 DPRINTK("EXIT\n");
3060 * ata_eng_timeout - Handle timeout of queued command
3061 * @ap: Port on which timed-out command is active
3063 * Some part of the kernel (currently, only the SCSI layer)
3064 * has noticed that the active command on port @ap has not
3065 * completed after a specified length of time. Handle this
3066 * condition by disabling DMA (if necessary) and completing
3067 * transactions, with error if necessary.
3069 * This also handles the case of the "lost interrupt", where
3070 * for some reason (possibly hardware bug, possibly driver bug)
3071 * an interrupt was not delivered to the driver, even though the
3072 * transaction completed successfully.
3074 * LOCKING:
3075 * Inherited from SCSI layer (none, can sleep)
3078 void ata_eng_timeout(struct ata_port *ap)
3080 struct ata_queued_cmd *qc;
3082 DPRINTK("ENTER\n");
3084 qc = ata_qc_from_tag(ap, ap->active_tag);
3085 if (!qc) {
3086 printk(KERN_ERR "ata%u: BUG: timeout without command\n",
3087 ap->id);
3088 goto out;
3091 ata_qc_timeout(qc);
3093 out:
3094 DPRINTK("EXIT\n");
3098 * ata_qc_new - Request an available ATA command, for queueing
3099 * @ap: Port associated with device @dev
3100 * @dev: Device from whom we request an available command structure
3102 * LOCKING:
3103 * None.
3106 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3108 struct ata_queued_cmd *qc = NULL;
3109 unsigned int i;
3111 for (i = 0; i < ATA_MAX_QUEUE; i++)
3112 if (!test_and_set_bit(i, &ap->qactive)) {
3113 qc = ata_qc_from_tag(ap, i);
3114 break;
3117 if (qc)
3118 qc->tag = i;
3120 return qc;
3124 * ata_qc_new_init - Request an available ATA command, and initialize it
3125 * @ap: Port associated with device @dev
3126 * @dev: Device from whom we request an available command structure
3128 * LOCKING:
3129 * None.
3132 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3133 struct ata_device *dev)
3135 struct ata_queued_cmd *qc;
3137 qc = ata_qc_new(ap);
3138 if (qc) {
3139 qc->sg = NULL;
3140 qc->flags = 0;
3141 qc->scsicmd = NULL;
3142 qc->ap = ap;
3143 qc->dev = dev;
3144 qc->cursect = qc->cursg = qc->cursg_ofs = 0;
3145 qc->nsect = 0;
3146 qc->nbytes = qc->curbytes = 0;
3148 ata_tf_init(ap, &qc->tf, dev->devno);
3150 if (dev->flags & ATA_DFLAG_LBA48)
3151 qc->tf.flags |= ATA_TFLAG_LBA48;
3154 return qc;
3157 static int ata_qc_complete_noop(struct ata_queued_cmd *qc, u8 drv_stat)
3159 return 0;
3162 static void __ata_qc_complete(struct ata_queued_cmd *qc)
3164 struct ata_port *ap = qc->ap;
3165 unsigned int tag, do_clear = 0;
3167 qc->flags = 0;
3168 tag = qc->tag;
3169 if (likely(ata_tag_valid(tag))) {
3170 if (tag == ap->active_tag)
3171 ap->active_tag = ATA_TAG_POISON;
3172 qc->tag = ATA_TAG_POISON;
3173 do_clear = 1;
3176 if (qc->waiting) {
3177 struct completion *waiting = qc->waiting;
3178 qc->waiting = NULL;
3179 complete(waiting);
3182 if (likely(do_clear))
3183 clear_bit(tag, &ap->qactive);
3187 * ata_qc_free - free unused ata_queued_cmd
3188 * @qc: Command to complete
3190 * Designed to free unused ata_queued_cmd object
3191 * in case something prevents using it.
3193 * LOCKING:
3194 * spin_lock_irqsave(host_set lock)
3197 void ata_qc_free(struct ata_queued_cmd *qc)
3199 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3200 assert(qc->waiting == NULL); /* nothing should be waiting */
3202 __ata_qc_complete(qc);
3206 * ata_qc_complete - Complete an active ATA command
3207 * @qc: Command to complete
3208 * @drv_stat: ATA Status register contents
3210 * Indicate to the mid and upper layers that an ATA
3211 * command has completed, with either an ok or not-ok status.
3213 * LOCKING:
3214 * spin_lock_irqsave(host_set lock)
3218 void ata_qc_complete(struct ata_queued_cmd *qc, u8 drv_stat)
3220 int rc;
3222 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3223 assert(qc->flags & ATA_QCFLAG_ACTIVE);
3225 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3226 ata_sg_clean(qc);
3228 /* atapi: mark qc as inactive to prevent the interrupt handler
3229 * from completing the command twice later, before the error handler
3230 * is called. (when rc != 0 and atapi request sense is needed)
3232 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3234 /* call completion callback */
3235 rc = qc->complete_fn(qc, drv_stat);
3237 /* if callback indicates not to complete command (non-zero),
3238 * return immediately
3240 if (rc != 0)
3241 return;
3243 __ata_qc_complete(qc);
3245 VPRINTK("EXIT\n");
3248 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3250 struct ata_port *ap = qc->ap;
3252 switch (qc->tf.protocol) {
3253 case ATA_PROT_DMA:
3254 case ATA_PROT_ATAPI_DMA:
3255 return 1;
3257 case ATA_PROT_ATAPI:
3258 case ATA_PROT_PIO:
3259 case ATA_PROT_PIO_MULT:
3260 if (ap->flags & ATA_FLAG_PIO_DMA)
3261 return 1;
3263 /* fall through */
3265 default:
3266 return 0;
3269 /* never reached */
3273 * ata_qc_issue - issue taskfile to device
3274 * @qc: command to issue to device
3276 * Prepare an ATA command to submission to device.
3277 * This includes mapping the data into a DMA-able
3278 * area, filling in the S/G table, and finally
3279 * writing the taskfile to hardware, starting the command.
3281 * LOCKING:
3282 * spin_lock_irqsave(host_set lock)
3284 * RETURNS:
3285 * Zero on success, negative on error.
3288 int ata_qc_issue(struct ata_queued_cmd *qc)
3290 struct ata_port *ap = qc->ap;
3292 if (ata_should_dma_map(qc)) {
3293 if (qc->flags & ATA_QCFLAG_SG) {
3294 if (ata_sg_setup(qc))
3295 goto err_out;
3296 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
3297 if (ata_sg_setup_one(qc))
3298 goto err_out;
3300 } else {
3301 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3304 ap->ops->qc_prep(qc);
3306 qc->ap->active_tag = qc->tag;
3307 qc->flags |= ATA_QCFLAG_ACTIVE;
3309 return ap->ops->qc_issue(qc);
3311 err_out:
3312 return -1;
3317 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
3318 * @qc: command to issue to device
3320 * Using various libata functions and hooks, this function
3321 * starts an ATA command. ATA commands are grouped into
3322 * classes called "protocols", and issuing each type of protocol
3323 * is slightly different.
3325 * May be used as the qc_issue() entry in ata_port_operations.
3327 * LOCKING:
3328 * spin_lock_irqsave(host_set lock)
3330 * RETURNS:
3331 * Zero on success, negative on error.
3334 int ata_qc_issue_prot(struct ata_queued_cmd *qc)
3336 struct ata_port *ap = qc->ap;
3338 ata_dev_select(ap, qc->dev->devno, 1, 0);
3340 switch (qc->tf.protocol) {
3341 case ATA_PROT_NODATA:
3342 ata_tf_to_host_nolock(ap, &qc->tf);
3343 break;
3345 case ATA_PROT_DMA:
3346 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3347 ap->ops->bmdma_setup(qc); /* set up bmdma */
3348 ap->ops->bmdma_start(qc); /* initiate bmdma */
3349 break;
3351 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
3352 ata_qc_set_polling(qc);
3353 ata_tf_to_host_nolock(ap, &qc->tf);
3354 ap->pio_task_state = PIO_ST;
3355 queue_work(ata_wq, &ap->pio_task);
3356 break;
3358 case ATA_PROT_ATAPI:
3359 ata_qc_set_polling(qc);
3360 ata_tf_to_host_nolock(ap, &qc->tf);
3361 queue_work(ata_wq, &ap->packet_task);
3362 break;
3364 case ATA_PROT_ATAPI_NODATA:
3365 ap->flags |= ATA_FLAG_NOINTR;
3366 ata_tf_to_host_nolock(ap, &qc->tf);
3367 queue_work(ata_wq, &ap->packet_task);
3368 break;
3370 case ATA_PROT_ATAPI_DMA:
3371 ap->flags |= ATA_FLAG_NOINTR;
3372 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3373 ap->ops->bmdma_setup(qc); /* set up bmdma */
3374 queue_work(ata_wq, &ap->packet_task);
3375 break;
3377 default:
3378 WARN_ON(1);
3379 return -1;
3382 return 0;
3386 * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
3387 * @qc: Info associated with this ATA transaction.
3389 * LOCKING:
3390 * spin_lock_irqsave(host_set lock)
3393 static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc)
3395 struct ata_port *ap = qc->ap;
3396 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3397 u8 dmactl;
3398 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3400 /* load PRD table addr. */
3401 mb(); /* make sure PRD table writes are visible to controller */
3402 writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
3404 /* specify data direction, triple-check start bit is clear */
3405 dmactl = readb(mmio + ATA_DMA_CMD);
3406 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3407 if (!rw)
3408 dmactl |= ATA_DMA_WR;
3409 writeb(dmactl, mmio + ATA_DMA_CMD);
3411 /* issue r/w command */
3412 ap->ops->exec_command(ap, &qc->tf);
3416 * ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction
3417 * @qc: Info associated with this ATA transaction.
3419 * LOCKING:
3420 * spin_lock_irqsave(host_set lock)
3423 static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc)
3425 struct ata_port *ap = qc->ap;
3426 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3427 u8 dmactl;
3429 /* start host DMA transaction */
3430 dmactl = readb(mmio + ATA_DMA_CMD);
3431 writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
3433 /* Strictly, one may wish to issue a readb() here, to
3434 * flush the mmio write. However, control also passes
3435 * to the hardware at this point, and it will interrupt
3436 * us when we are to resume control. So, in effect,
3437 * we don't care when the mmio write flushes.
3438 * Further, a read of the DMA status register _immediately_
3439 * following the write may not be what certain flaky hardware
3440 * is expected, so I think it is best to not add a readb()
3441 * without first all the MMIO ATA cards/mobos.
3442 * Or maybe I'm just being paranoid.
3447 * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
3448 * @qc: Info associated with this ATA transaction.
3450 * LOCKING:
3451 * spin_lock_irqsave(host_set lock)
3454 static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc)
3456 struct ata_port *ap = qc->ap;
3457 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3458 u8 dmactl;
3460 /* load PRD table addr. */
3461 outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3463 /* specify data direction, triple-check start bit is clear */
3464 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3465 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3466 if (!rw)
3467 dmactl |= ATA_DMA_WR;
3468 outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3470 /* issue r/w command */
3471 ap->ops->exec_command(ap, &qc->tf);
3475 * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
3476 * @qc: Info associated with this ATA transaction.
3478 * LOCKING:
3479 * spin_lock_irqsave(host_set lock)
3482 static void ata_bmdma_start_pio (struct ata_queued_cmd *qc)
3484 struct ata_port *ap = qc->ap;
3485 u8 dmactl;
3487 /* start host DMA transaction */
3488 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3489 outb(dmactl | ATA_DMA_START,
3490 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3495 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3496 * @qc: Info associated with this ATA transaction.
3498 * Writes the ATA_DMA_START flag to the DMA command register.
3500 * May be used as the bmdma_start() entry in ata_port_operations.
3502 * LOCKING:
3503 * spin_lock_irqsave(host_set lock)
3505 void ata_bmdma_start(struct ata_queued_cmd *qc)
3507 if (qc->ap->flags & ATA_FLAG_MMIO)
3508 ata_bmdma_start_mmio(qc);
3509 else
3510 ata_bmdma_start_pio(qc);
3515 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3516 * @qc: Info associated with this ATA transaction.
3518 * Writes address of PRD table to device's PRD Table Address
3519 * register, sets the DMA control register, and calls
3520 * ops->exec_command() to start the transfer.
3522 * May be used as the bmdma_setup() entry in ata_port_operations.
3524 * LOCKING:
3525 * spin_lock_irqsave(host_set lock)
3527 void ata_bmdma_setup(struct ata_queued_cmd *qc)
3529 if (qc->ap->flags & ATA_FLAG_MMIO)
3530 ata_bmdma_setup_mmio(qc);
3531 else
3532 ata_bmdma_setup_pio(qc);
3537 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
3538 * @ap: Port associated with this ATA transaction.
3540 * Clear interrupt and error flags in DMA status register.
3542 * May be used as the irq_clear() entry in ata_port_operations.
3544 * LOCKING:
3545 * spin_lock_irqsave(host_set lock)
3548 void ata_bmdma_irq_clear(struct ata_port *ap)
3550 if (ap->flags & ATA_FLAG_MMIO) {
3551 void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS;
3552 writeb(readb(mmio), mmio);
3553 } else {
3554 unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS;
3555 outb(inb(addr), addr);
3562 * ata_bmdma_status - Read PCI IDE BMDMA status
3563 * @ap: Port associated with this ATA transaction.
3565 * Read and return BMDMA status register.
3567 * May be used as the bmdma_status() entry in ata_port_operations.
3569 * LOCKING:
3570 * spin_lock_irqsave(host_set lock)
3573 u8 ata_bmdma_status(struct ata_port *ap)
3575 u8 host_stat;
3576 if (ap->flags & ATA_FLAG_MMIO) {
3577 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3578 host_stat = readb(mmio + ATA_DMA_STATUS);
3579 } else
3580 host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3581 return host_stat;
3586 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3587 * @qc: Command we are ending DMA for
3589 * Clears the ATA_DMA_START flag in the dma control register
3591 * May be used as the bmdma_stop() entry in ata_port_operations.
3593 * LOCKING:
3594 * spin_lock_irqsave(host_set lock)
3597 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3599 struct ata_port *ap = qc->ap;
3600 if (ap->flags & ATA_FLAG_MMIO) {
3601 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3603 /* clear start/stop bit */
3604 writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3605 mmio + ATA_DMA_CMD);
3606 } else {
3607 /* clear start/stop bit */
3608 outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START,
3609 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3612 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3613 ata_altstatus(ap); /* dummy read */
3617 * ata_host_intr - Handle host interrupt for given (port, task)
3618 * @ap: Port on which interrupt arrived (possibly...)
3619 * @qc: Taskfile currently active in engine
3621 * Handle host interrupt for given queued command. Currently,
3622 * only DMA interrupts are handled. All other commands are
3623 * handled via polling with interrupts disabled (nIEN bit).
3625 * LOCKING:
3626 * spin_lock_irqsave(host_set lock)
3628 * RETURNS:
3629 * One if interrupt was handled, zero if not (shared irq).
3632 inline unsigned int ata_host_intr (struct ata_port *ap,
3633 struct ata_queued_cmd *qc)
3635 u8 status, host_stat;
3637 switch (qc->tf.protocol) {
3639 case ATA_PROT_DMA:
3640 case ATA_PROT_ATAPI_DMA:
3641 case ATA_PROT_ATAPI:
3642 /* check status of DMA engine */
3643 host_stat = ap->ops->bmdma_status(ap);
3644 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
3646 /* if it's not our irq... */
3647 if (!(host_stat & ATA_DMA_INTR))
3648 goto idle_irq;
3650 /* before we do anything else, clear DMA-Start bit */
3651 ap->ops->bmdma_stop(qc);
3653 /* fall through */
3655 case ATA_PROT_ATAPI_NODATA:
3656 case ATA_PROT_NODATA:
3657 /* check altstatus */
3658 status = ata_altstatus(ap);
3659 if (status & ATA_BUSY)
3660 goto idle_irq;
3662 /* check main status, clearing INTRQ */
3663 status = ata_chk_status(ap);
3664 if (unlikely(status & ATA_BUSY))
3665 goto idle_irq;
3666 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
3667 ap->id, qc->tf.protocol, status);
3669 /* ack bmdma irq events */
3670 ap->ops->irq_clear(ap);
3672 /* complete taskfile transaction */
3673 ata_qc_complete(qc, status);
3674 break;
3676 default:
3677 goto idle_irq;
3680 return 1; /* irq handled */
3682 idle_irq:
3683 ap->stats.idle_irq++;
3685 #ifdef ATA_IRQ_TRAP
3686 if ((ap->stats.idle_irq % 1000) == 0) {
3687 handled = 1;
3688 ata_irq_ack(ap, 0); /* debug trap */
3689 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
3691 #endif
3692 return 0; /* irq not handled */
3696 * ata_interrupt - Default ATA host interrupt handler
3697 * @irq: irq line (unused)
3698 * @dev_instance: pointer to our ata_host_set information structure
3699 * @regs: unused
3701 * Default interrupt handler for PCI IDE devices. Calls
3702 * ata_host_intr() for each port that is not disabled.
3704 * LOCKING:
3705 * Obtains host_set lock during operation.
3707 * RETURNS:
3708 * IRQ_NONE or IRQ_HANDLED.
3712 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
3714 struct ata_host_set *host_set = dev_instance;
3715 unsigned int i;
3716 unsigned int handled = 0;
3717 unsigned long flags;
3719 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
3720 spin_lock_irqsave(&host_set->lock, flags);
3722 for (i = 0; i < host_set->n_ports; i++) {
3723 struct ata_port *ap;
3725 ap = host_set->ports[i];
3726 if (ap &&
3727 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
3728 struct ata_queued_cmd *qc;
3730 qc = ata_qc_from_tag(ap, ap->active_tag);
3731 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
3732 (qc->flags & ATA_QCFLAG_ACTIVE))
3733 handled |= ata_host_intr(ap, qc);
3737 spin_unlock_irqrestore(&host_set->lock, flags);
3739 return IRQ_RETVAL(handled);
3743 * atapi_packet_task - Write CDB bytes to hardware
3744 * @_data: Port to which ATAPI device is attached.
3746 * When device has indicated its readiness to accept
3747 * a CDB, this function is called. Send the CDB.
3748 * If DMA is to be performed, exit immediately.
3749 * Otherwise, we are in polling mode, so poll
3750 * status under operation succeeds or fails.
3752 * LOCKING:
3753 * Kernel thread context (may sleep)
3756 static void atapi_packet_task(void *_data)
3758 struct ata_port *ap = _data;
3759 struct ata_queued_cmd *qc;
3760 u8 status;
3762 qc = ata_qc_from_tag(ap, ap->active_tag);
3763 assert(qc != NULL);
3764 assert(qc->flags & ATA_QCFLAG_ACTIVE);
3766 /* sleep-wait for BSY to clear */
3767 DPRINTK("busy wait\n");
3768 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB))
3769 goto err_out;
3771 /* make sure DRQ is set */
3772 status = ata_chk_status(ap);
3773 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ)
3774 goto err_out;
3776 /* send SCSI cdb */
3777 DPRINTK("send cdb\n");
3778 assert(ap->cdb_len >= 12);
3780 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
3781 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
3782 unsigned long flags;
3784 /* Once we're done issuing command and kicking bmdma,
3785 * irq handler takes over. To not lose irq, we need
3786 * to clear NOINTR flag before sending cdb, but
3787 * interrupt handler shouldn't be invoked before we're
3788 * finished. Hence, the following locking.
3790 spin_lock_irqsave(&ap->host_set->lock, flags);
3791 ap->flags &= ~ATA_FLAG_NOINTR;
3792 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
3793 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
3794 ap->ops->bmdma_start(qc); /* initiate bmdma */
3795 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3796 } else {
3797 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
3799 /* PIO commands are handled by polling */
3800 ap->pio_task_state = PIO_ST;
3801 queue_work(ata_wq, &ap->pio_task);
3804 return;
3806 err_out:
3807 ata_poll_qc_complete(qc, ATA_ERR);
3812 * ata_port_start - Set port up for dma.
3813 * @ap: Port to initialize
3815 * Called just after data structures for each port are
3816 * initialized. Allocates space for PRD table.
3818 * May be used as the port_start() entry in ata_port_operations.
3820 * LOCKING:
3823 int ata_port_start (struct ata_port *ap)
3825 struct device *dev = ap->host_set->dev;
3827 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
3828 if (!ap->prd)
3829 return -ENOMEM;
3831 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
3833 return 0;
3838 * ata_port_stop - Undo ata_port_start()
3839 * @ap: Port to shut down
3841 * Frees the PRD table.
3843 * May be used as the port_stop() entry in ata_port_operations.
3845 * LOCKING:
3848 void ata_port_stop (struct ata_port *ap)
3850 struct device *dev = ap->host_set->dev;
3852 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
3855 void ata_host_stop (struct ata_host_set *host_set)
3857 if (host_set->mmio_base)
3858 iounmap(host_set->mmio_base);
3863 * ata_host_remove - Unregister SCSI host structure with upper layers
3864 * @ap: Port to unregister
3865 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
3867 * LOCKING:
3870 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
3872 struct Scsi_Host *sh = ap->host;
3874 DPRINTK("ENTER\n");
3876 if (do_unregister)
3877 scsi_remove_host(sh);
3879 ap->ops->port_stop(ap);
3883 * ata_host_init - Initialize an ata_port structure
3884 * @ap: Structure to initialize
3885 * @host: associated SCSI mid-layer structure
3886 * @host_set: Collection of hosts to which @ap belongs
3887 * @ent: Probe information provided by low-level driver
3888 * @port_no: Port number associated with this ata_port
3890 * Initialize a new ata_port structure, and its associated
3891 * scsi_host.
3893 * LOCKING:
3894 * Inherited from caller.
3898 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
3899 struct ata_host_set *host_set,
3900 struct ata_probe_ent *ent, unsigned int port_no)
3902 unsigned int i;
3904 host->max_id = 16;
3905 host->max_lun = 1;
3906 host->max_channel = 1;
3907 host->unique_id = ata_unique_id++;
3908 host->max_cmd_len = 12;
3910 scsi_assign_lock(host, &host_set->lock);
3912 ap->flags = ATA_FLAG_PORT_DISABLED;
3913 ap->id = host->unique_id;
3914 ap->host = host;
3915 ap->ctl = ATA_DEVCTL_OBS;
3916 ap->host_set = host_set;
3917 ap->port_no = port_no;
3918 ap->hard_port_no =
3919 ent->legacy_mode ? ent->hard_port_no : port_no;
3920 ap->pio_mask = ent->pio_mask;
3921 ap->mwdma_mask = ent->mwdma_mask;
3922 ap->udma_mask = ent->udma_mask;
3923 ap->flags |= ent->host_flags;
3924 ap->ops = ent->port_ops;
3925 ap->cbl = ATA_CBL_NONE;
3926 ap->active_tag = ATA_TAG_POISON;
3927 ap->last_ctl = 0xFF;
3929 INIT_WORK(&ap->packet_task, atapi_packet_task, ap);
3930 INIT_WORK(&ap->pio_task, ata_pio_task, ap);
3932 for (i = 0; i < ATA_MAX_DEVICES; i++)
3933 ap->device[i].devno = i;
3935 #ifdef ATA_IRQ_TRAP
3936 ap->stats.unhandled_irq = 1;
3937 ap->stats.idle_irq = 1;
3938 #endif
3940 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
3944 * ata_host_add - Attach low-level ATA driver to system
3945 * @ent: Information provided by low-level driver
3946 * @host_set: Collections of ports to which we add
3947 * @port_no: Port number associated with this host
3949 * Attach low-level ATA driver to system.
3951 * LOCKING:
3952 * PCI/etc. bus probe sem.
3954 * RETURNS:
3955 * New ata_port on success, for NULL on error.
3959 static struct ata_port * ata_host_add(struct ata_probe_ent *ent,
3960 struct ata_host_set *host_set,
3961 unsigned int port_no)
3963 struct Scsi_Host *host;
3964 struct ata_port *ap;
3965 int rc;
3967 DPRINTK("ENTER\n");
3968 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
3969 if (!host)
3970 return NULL;
3972 ap = (struct ata_port *) &host->hostdata[0];
3974 ata_host_init(ap, host, host_set, ent, port_no);
3976 rc = ap->ops->port_start(ap);
3977 if (rc)
3978 goto err_out;
3980 return ap;
3982 err_out:
3983 scsi_host_put(host);
3984 return NULL;
3988 * ata_device_add - Register hardware device with ATA and SCSI layers
3989 * @ent: Probe information describing hardware device to be registered
3991 * This function processes the information provided in the probe
3992 * information struct @ent, allocates the necessary ATA and SCSI
3993 * host information structures, initializes them, and registers
3994 * everything with requisite kernel subsystems.
3996 * This function requests irqs, probes the ATA bus, and probes
3997 * the SCSI bus.
3999 * LOCKING:
4000 * PCI/etc. bus probe sem.
4002 * RETURNS:
4003 * Number of ports registered. Zero on error (no ports registered).
4007 int ata_device_add(struct ata_probe_ent *ent)
4009 unsigned int count = 0, i;
4010 struct device *dev = ent->dev;
4011 struct ata_host_set *host_set;
4013 DPRINTK("ENTER\n");
4014 /* alloc a container for our list of ATA ports (buses) */
4015 host_set = kmalloc(sizeof(struct ata_host_set) +
4016 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4017 if (!host_set)
4018 return 0;
4019 memset(host_set, 0, sizeof(struct ata_host_set) + (ent->n_ports * sizeof(void *)));
4020 spin_lock_init(&host_set->lock);
4022 host_set->dev = dev;
4023 host_set->n_ports = ent->n_ports;
4024 host_set->irq = ent->irq;
4025 host_set->mmio_base = ent->mmio_base;
4026 host_set->private_data = ent->private_data;
4027 host_set->ops = ent->port_ops;
4029 /* register each port bound to this device */
4030 for (i = 0; i < ent->n_ports; i++) {
4031 struct ata_port *ap;
4032 unsigned long xfer_mode_mask;
4034 ap = ata_host_add(ent, host_set, i);
4035 if (!ap)
4036 goto err_out;
4038 host_set->ports[i] = ap;
4039 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4040 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4041 (ap->pio_mask << ATA_SHIFT_PIO);
4043 /* print per-port info to dmesg */
4044 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4045 "bmdma 0x%lX irq %lu\n",
4046 ap->id,
4047 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4048 ata_mode_string(xfer_mode_mask),
4049 ap->ioaddr.cmd_addr,
4050 ap->ioaddr.ctl_addr,
4051 ap->ioaddr.bmdma_addr,
4052 ent->irq);
4054 ata_chk_status(ap);
4055 host_set->ops->irq_clear(ap);
4056 count++;
4059 if (!count) {
4060 kfree(host_set);
4061 return 0;
4064 /* obtain irq, that is shared between channels */
4065 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4066 DRV_NAME, host_set))
4067 goto err_out;
4069 /* perform each probe synchronously */
4070 DPRINTK("probe begin\n");
4071 for (i = 0; i < count; i++) {
4072 struct ata_port *ap;
4073 int rc;
4075 ap = host_set->ports[i];
4077 DPRINTK("ata%u: probe begin\n", ap->id);
4078 rc = ata_bus_probe(ap);
4079 DPRINTK("ata%u: probe end\n", ap->id);
4081 if (rc) {
4082 /* FIXME: do something useful here?
4083 * Current libata behavior will
4084 * tear down everything when
4085 * the module is removed
4086 * or the h/w is unplugged.
4090 rc = scsi_add_host(ap->host, dev);
4091 if (rc) {
4092 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4093 ap->id);
4094 /* FIXME: do something useful here */
4095 /* FIXME: handle unconditional calls to
4096 * scsi_scan_host and ata_host_remove, below,
4097 * at the very least
4102 /* probes are done, now scan each port's disk(s) */
4103 DPRINTK("probe begin\n");
4104 for (i = 0; i < count; i++) {
4105 struct ata_port *ap = host_set->ports[i];
4107 scsi_scan_host(ap->host);
4110 dev_set_drvdata(dev, host_set);
4112 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4113 return ent->n_ports; /* success */
4115 err_out:
4116 for (i = 0; i < count; i++) {
4117 ata_host_remove(host_set->ports[i], 1);
4118 scsi_host_put(host_set->ports[i]->host);
4120 kfree(host_set);
4121 VPRINTK("EXIT, returning 0\n");
4122 return 0;
4126 * ata_scsi_release - SCSI layer callback hook for host unload
4127 * @host: libata host to be unloaded
4129 * Performs all duties necessary to shut down a libata port...
4130 * Kill port kthread, disable port, and release resources.
4132 * LOCKING:
4133 * Inherited from SCSI layer.
4135 * RETURNS:
4136 * One.
4139 int ata_scsi_release(struct Scsi_Host *host)
4141 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
4143 DPRINTK("ENTER\n");
4145 ap->ops->port_disable(ap);
4146 ata_host_remove(ap, 0);
4148 DPRINTK("EXIT\n");
4149 return 1;
4153 * ata_std_ports - initialize ioaddr with standard port offsets.
4154 * @ioaddr: IO address structure to be initialized
4156 * Utility function which initializes data_addr, error_addr,
4157 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4158 * device_addr, status_addr, and command_addr to standard offsets
4159 * relative to cmd_addr.
4161 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
4164 void ata_std_ports(struct ata_ioports *ioaddr)
4166 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4167 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4168 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4169 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4170 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4171 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4172 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4173 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4174 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4175 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4178 static struct ata_probe_ent *
4179 ata_probe_ent_alloc(struct device *dev, struct ata_port_info *port)
4181 struct ata_probe_ent *probe_ent;
4183 probe_ent = kmalloc(sizeof(*probe_ent), GFP_KERNEL);
4184 if (!probe_ent) {
4185 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
4186 kobject_name(&(dev->kobj)));
4187 return NULL;
4190 memset(probe_ent, 0, sizeof(*probe_ent));
4192 INIT_LIST_HEAD(&probe_ent->node);
4193 probe_ent->dev = dev;
4195 probe_ent->sht = port->sht;
4196 probe_ent->host_flags = port->host_flags;
4197 probe_ent->pio_mask = port->pio_mask;
4198 probe_ent->mwdma_mask = port->mwdma_mask;
4199 probe_ent->udma_mask = port->udma_mask;
4200 probe_ent->port_ops = port->port_ops;
4202 return probe_ent;
4207 #ifdef CONFIG_PCI
4209 void ata_pci_host_stop (struct ata_host_set *host_set)
4211 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4213 pci_iounmap(pdev, host_set->mmio_base);
4217 * ata_pci_init_native_mode - Initialize native-mode driver
4218 * @pdev: pci device to be initialized
4219 * @port: array[2] of pointers to port info structures.
4221 * Utility function which allocates and initializes an
4222 * ata_probe_ent structure for a standard dual-port
4223 * PIO-based IDE controller. The returned ata_probe_ent
4224 * structure can be passed to ata_device_add(). The returned
4225 * ata_probe_ent structure should then be freed with kfree().
4228 struct ata_probe_ent *
4229 ata_pci_init_native_mode(struct pci_dev *pdev, struct ata_port_info **port)
4231 struct ata_probe_ent *probe_ent =
4232 ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]);
4233 if (!probe_ent)
4234 return NULL;
4236 probe_ent->n_ports = 2;
4237 probe_ent->irq = pdev->irq;
4238 probe_ent->irq_flags = SA_SHIRQ;
4240 probe_ent->port[0].cmd_addr = pci_resource_start(pdev, 0);
4241 probe_ent->port[0].altstatus_addr =
4242 probe_ent->port[0].ctl_addr =
4243 pci_resource_start(pdev, 1) | ATA_PCI_CTL_OFS;
4244 probe_ent->port[0].bmdma_addr = pci_resource_start(pdev, 4);
4246 probe_ent->port[1].cmd_addr = pci_resource_start(pdev, 2);
4247 probe_ent->port[1].altstatus_addr =
4248 probe_ent->port[1].ctl_addr =
4249 pci_resource_start(pdev, 3) | ATA_PCI_CTL_OFS;
4250 probe_ent->port[1].bmdma_addr = pci_resource_start(pdev, 4) + 8;
4252 ata_std_ports(&probe_ent->port[0]);
4253 ata_std_ports(&probe_ent->port[1]);
4255 return probe_ent;
4258 static struct ata_probe_ent *
4259 ata_pci_init_legacy_mode(struct pci_dev *pdev, struct ata_port_info **port,
4260 struct ata_probe_ent **ppe2)
4262 struct ata_probe_ent *probe_ent, *probe_ent2;
4264 probe_ent = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]);
4265 if (!probe_ent)
4266 return NULL;
4267 probe_ent2 = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[1]);
4268 if (!probe_ent2) {
4269 kfree(probe_ent);
4270 return NULL;
4273 probe_ent->n_ports = 1;
4274 probe_ent->irq = 14;
4276 probe_ent->hard_port_no = 0;
4277 probe_ent->legacy_mode = 1;
4279 probe_ent2->n_ports = 1;
4280 probe_ent2->irq = 15;
4282 probe_ent2->hard_port_no = 1;
4283 probe_ent2->legacy_mode = 1;
4285 probe_ent->port[0].cmd_addr = 0x1f0;
4286 probe_ent->port[0].altstatus_addr =
4287 probe_ent->port[0].ctl_addr = 0x3f6;
4288 probe_ent->port[0].bmdma_addr = pci_resource_start(pdev, 4);
4290 probe_ent2->port[0].cmd_addr = 0x170;
4291 probe_ent2->port[0].altstatus_addr =
4292 probe_ent2->port[0].ctl_addr = 0x376;
4293 probe_ent2->port[0].bmdma_addr = pci_resource_start(pdev, 4)+8;
4295 ata_std_ports(&probe_ent->port[0]);
4296 ata_std_ports(&probe_ent2->port[0]);
4298 *ppe2 = probe_ent2;
4299 return probe_ent;
4303 * ata_pci_init_one - Initialize/register PCI IDE host controller
4304 * @pdev: Controller to be initialized
4305 * @port_info: Information from low-level host driver
4306 * @n_ports: Number of ports attached to host controller
4308 * This is a helper function which can be called from a driver's
4309 * xxx_init_one() probe function if the hardware uses traditional
4310 * IDE taskfile registers.
4312 * This function calls pci_enable_device(), reserves its register
4313 * regions, sets the dma mask, enables bus master mode, and calls
4314 * ata_device_add()
4316 * LOCKING:
4317 * Inherited from PCI layer (may sleep).
4319 * RETURNS:
4320 * Zero on success, negative on errno-based value on error.
4324 int ata_pci_init_one (struct pci_dev *pdev, struct ata_port_info **port_info,
4325 unsigned int n_ports)
4327 struct ata_probe_ent *probe_ent, *probe_ent2 = NULL;
4328 struct ata_port_info *port[2];
4329 u8 tmp8, mask;
4330 unsigned int legacy_mode = 0;
4331 int disable_dev_on_err = 1;
4332 int rc;
4334 DPRINTK("ENTER\n");
4336 port[0] = port_info[0];
4337 if (n_ports > 1)
4338 port[1] = port_info[1];
4339 else
4340 port[1] = port[0];
4342 if ((port[0]->host_flags & ATA_FLAG_NO_LEGACY) == 0
4343 && (pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
4344 /* TODO: support transitioning to native mode? */
4345 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
4346 mask = (1 << 2) | (1 << 0);
4347 if ((tmp8 & mask) != mask)
4348 legacy_mode = (1 << 3);
4351 /* FIXME... */
4352 if ((!legacy_mode) && (n_ports > 1)) {
4353 printk(KERN_ERR "ata: BUG: native mode, n_ports > 1\n");
4354 return -EINVAL;
4357 rc = pci_enable_device(pdev);
4358 if (rc)
4359 return rc;
4361 rc = pci_request_regions(pdev, DRV_NAME);
4362 if (rc) {
4363 disable_dev_on_err = 0;
4364 goto err_out;
4367 if (legacy_mode) {
4368 if (!request_region(0x1f0, 8, "libata")) {
4369 struct resource *conflict, res;
4370 res.start = 0x1f0;
4371 res.end = 0x1f0 + 8 - 1;
4372 conflict = ____request_resource(&ioport_resource, &res);
4373 if (!strcmp(conflict->name, "libata"))
4374 legacy_mode |= (1 << 0);
4375 else {
4376 disable_dev_on_err = 0;
4377 printk(KERN_WARNING "ata: 0x1f0 IDE port busy\n");
4379 } else
4380 legacy_mode |= (1 << 0);
4382 if (!request_region(0x170, 8, "libata")) {
4383 struct resource *conflict, res;
4384 res.start = 0x170;
4385 res.end = 0x170 + 8 - 1;
4386 conflict = ____request_resource(&ioport_resource, &res);
4387 if (!strcmp(conflict->name, "libata"))
4388 legacy_mode |= (1 << 1);
4389 else {
4390 disable_dev_on_err = 0;
4391 printk(KERN_WARNING "ata: 0x170 IDE port busy\n");
4393 } else
4394 legacy_mode |= (1 << 1);
4397 /* we have legacy mode, but all ports are unavailable */
4398 if (legacy_mode == (1 << 3)) {
4399 rc = -EBUSY;
4400 goto err_out_regions;
4403 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
4404 if (rc)
4405 goto err_out_regions;
4406 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
4407 if (rc)
4408 goto err_out_regions;
4410 if (legacy_mode) {
4411 probe_ent = ata_pci_init_legacy_mode(pdev, port, &probe_ent2);
4412 } else
4413 probe_ent = ata_pci_init_native_mode(pdev, port);
4414 if (!probe_ent) {
4415 rc = -ENOMEM;
4416 goto err_out_regions;
4419 pci_set_master(pdev);
4421 /* FIXME: check ata_device_add return */
4422 if (legacy_mode) {
4423 if (legacy_mode & (1 << 0))
4424 ata_device_add(probe_ent);
4425 if (legacy_mode & (1 << 1))
4426 ata_device_add(probe_ent2);
4427 } else
4428 ata_device_add(probe_ent);
4430 kfree(probe_ent);
4431 kfree(probe_ent2);
4433 return 0;
4435 err_out_regions:
4436 if (legacy_mode & (1 << 0))
4437 release_region(0x1f0, 8);
4438 if (legacy_mode & (1 << 1))
4439 release_region(0x170, 8);
4440 pci_release_regions(pdev);
4441 err_out:
4442 if (disable_dev_on_err)
4443 pci_disable_device(pdev);
4444 return rc;
4448 * ata_pci_remove_one - PCI layer callback for device removal
4449 * @pdev: PCI device that was removed
4451 * PCI layer indicates to libata via this hook that
4452 * hot-unplug or module unload event has occured.
4453 * Handle this by unregistering all objects associated
4454 * with this PCI device. Free those objects. Then finally
4455 * release PCI resources and disable device.
4457 * LOCKING:
4458 * Inherited from PCI layer (may sleep).
4461 void ata_pci_remove_one (struct pci_dev *pdev)
4463 struct device *dev = pci_dev_to_dev(pdev);
4464 struct ata_host_set *host_set = dev_get_drvdata(dev);
4465 struct ata_port *ap;
4466 unsigned int i;
4468 for (i = 0; i < host_set->n_ports; i++) {
4469 ap = host_set->ports[i];
4471 scsi_remove_host(ap->host);
4474 free_irq(host_set->irq, host_set);
4476 for (i = 0; i < host_set->n_ports; i++) {
4477 ap = host_set->ports[i];
4479 ata_scsi_release(ap->host);
4481 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4482 struct ata_ioports *ioaddr = &ap->ioaddr;
4484 if (ioaddr->cmd_addr == 0x1f0)
4485 release_region(0x1f0, 8);
4486 else if (ioaddr->cmd_addr == 0x170)
4487 release_region(0x170, 8);
4490 scsi_host_put(ap->host);
4493 if (host_set->ops->host_stop)
4494 host_set->ops->host_stop(host_set);
4496 kfree(host_set);
4498 pci_release_regions(pdev);
4499 pci_disable_device(pdev);
4500 dev_set_drvdata(dev, NULL);
4503 /* move to PCI subsystem */
4504 int pci_test_config_bits(struct pci_dev *pdev, struct pci_bits *bits)
4506 unsigned long tmp = 0;
4508 switch (bits->width) {
4509 case 1: {
4510 u8 tmp8 = 0;
4511 pci_read_config_byte(pdev, bits->reg, &tmp8);
4512 tmp = tmp8;
4513 break;
4515 case 2: {
4516 u16 tmp16 = 0;
4517 pci_read_config_word(pdev, bits->reg, &tmp16);
4518 tmp = tmp16;
4519 break;
4521 case 4: {
4522 u32 tmp32 = 0;
4523 pci_read_config_dword(pdev, bits->reg, &tmp32);
4524 tmp = tmp32;
4525 break;
4528 default:
4529 return -EINVAL;
4532 tmp &= bits->mask;
4534 return (tmp == bits->val) ? 1 : 0;
4536 #endif /* CONFIG_PCI */
4539 static int __init ata_init(void)
4541 ata_wq = create_workqueue("ata");
4542 if (!ata_wq)
4543 return -ENOMEM;
4545 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
4546 return 0;
4549 static void __exit ata_exit(void)
4551 destroy_workqueue(ata_wq);
4554 module_init(ata_init);
4555 module_exit(ata_exit);
4558 * libata is essentially a library of internal helper functions for
4559 * low-level ATA host controller drivers. As such, the API/ABI is
4560 * likely to change as new drivers are added and updated.
4561 * Do not depend on ABI/API stability.
4564 EXPORT_SYMBOL_GPL(ata_std_bios_param);
4565 EXPORT_SYMBOL_GPL(ata_std_ports);
4566 EXPORT_SYMBOL_GPL(ata_device_add);
4567 EXPORT_SYMBOL_GPL(ata_sg_init);
4568 EXPORT_SYMBOL_GPL(ata_sg_init_one);
4569 EXPORT_SYMBOL_GPL(ata_qc_complete);
4570 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
4571 EXPORT_SYMBOL_GPL(ata_eng_timeout);
4572 EXPORT_SYMBOL_GPL(ata_tf_load);
4573 EXPORT_SYMBOL_GPL(ata_tf_read);
4574 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
4575 EXPORT_SYMBOL_GPL(ata_std_dev_select);
4576 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
4577 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
4578 EXPORT_SYMBOL_GPL(ata_check_status);
4579 EXPORT_SYMBOL_GPL(ata_altstatus);
4580 EXPORT_SYMBOL_GPL(ata_chk_err);
4581 EXPORT_SYMBOL_GPL(ata_exec_command);
4582 EXPORT_SYMBOL_GPL(ata_port_start);
4583 EXPORT_SYMBOL_GPL(ata_port_stop);
4584 EXPORT_SYMBOL_GPL(ata_host_stop);
4585 EXPORT_SYMBOL_GPL(ata_interrupt);
4586 EXPORT_SYMBOL_GPL(ata_qc_prep);
4587 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
4588 EXPORT_SYMBOL_GPL(ata_bmdma_start);
4589 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
4590 EXPORT_SYMBOL_GPL(ata_bmdma_status);
4591 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
4592 EXPORT_SYMBOL_GPL(ata_port_probe);
4593 EXPORT_SYMBOL_GPL(sata_phy_reset);
4594 EXPORT_SYMBOL_GPL(__sata_phy_reset);
4595 EXPORT_SYMBOL_GPL(ata_bus_reset);
4596 EXPORT_SYMBOL_GPL(ata_port_disable);
4597 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
4598 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
4599 EXPORT_SYMBOL_GPL(ata_scsi_error);
4600 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
4601 EXPORT_SYMBOL_GPL(ata_scsi_release);
4602 EXPORT_SYMBOL_GPL(ata_host_intr);
4603 EXPORT_SYMBOL_GPL(ata_dev_classify);
4604 EXPORT_SYMBOL_GPL(ata_dev_id_string);
4605 EXPORT_SYMBOL_GPL(ata_dev_config);
4606 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
4608 #ifdef CONFIG_PCI
4609 EXPORT_SYMBOL_GPL(pci_test_config_bits);
4610 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
4611 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
4612 EXPORT_SYMBOL_GPL(ata_pci_init_one);
4613 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
4614 #endif /* CONFIG_PCI */