2 * Linux INET6 implementation
3 * Forwarding Information Database
6 * Pedro Roque <roque@di.fc.ul.pt>
8 * $Id: ip6_fib.c,v 1.25 2001/10/31 21:55:55 davem Exp $
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
18 * Yuji SEKIYA @USAGI: Support default route on router node;
19 * remove ip6_null_entry from the top of
22 #include <linux/config.h>
23 #include <linux/errno.h>
24 #include <linux/types.h>
25 #include <linux/net.h>
26 #include <linux/route.h>
27 #include <linux/netdevice.h>
28 #include <linux/in6.h>
29 #include <linux/init.h>
32 #include <linux/proc_fs.h>
36 #include <net/ndisc.h>
37 #include <net/addrconf.h>
39 #include <net/ip6_fib.h>
40 #include <net/ip6_route.h>
45 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
47 #define RT6_TRACE(x...) do { ; } while (0)
50 struct rt6_statistics rt6_stats
;
52 static kmem_cache_t
* fib6_node_kmem __read_mostly
;
56 #ifdef CONFIG_IPV6_SUBTREES
67 struct fib6_walker_t w
;
68 int (*func
)(struct rt6_info
*, void *arg
);
72 DEFINE_RWLOCK(fib6_walker_lock
);
75 #ifdef CONFIG_IPV6_SUBTREES
76 #define FWS_INIT FWS_S
77 #define SUBTREE(fn) ((fn)->subtree)
79 #define FWS_INIT FWS_L
80 #define SUBTREE(fn) NULL
83 static void fib6_prune_clones(struct fib6_node
*fn
, struct rt6_info
*rt
);
84 static struct fib6_node
* fib6_repair_tree(struct fib6_node
*fn
);
87 * A routing update causes an increase of the serial number on the
88 * affected subtree. This allows for cached routes to be asynchronously
89 * tested when modifications are made to the destination cache as a
90 * result of redirects, path MTU changes, etc.
93 static __u32 rt_sernum
;
95 static DEFINE_TIMER(ip6_fib_timer
, fib6_run_gc
, 0, 0);
97 struct fib6_walker_t fib6_walker_list
= {
98 .prev
= &fib6_walker_list
,
99 .next
= &fib6_walker_list
,
102 #define FOR_WALKERS(w) for ((w)=fib6_walker_list.next; (w) != &fib6_walker_list; (w)=(w)->next)
104 static __inline__ u32
fib6_new_sernum(void)
113 * Auxiliary address test functions for the radix tree.
115 * These assume a 32bit processor (although it will work on
123 static __inline__
int addr_bit_set(void *token
, int fn_bit
)
127 return htonl(1 << ((~fn_bit
)&0x1F)) & addr
[fn_bit
>>5];
130 static __inline__
struct fib6_node
* node_alloc(void)
132 struct fib6_node
*fn
;
134 if ((fn
= kmem_cache_alloc(fib6_node_kmem
, SLAB_ATOMIC
)) != NULL
)
135 memset(fn
, 0, sizeof(struct fib6_node
));
140 static __inline__
void node_free(struct fib6_node
* fn
)
142 kmem_cache_free(fib6_node_kmem
, fn
);
145 static __inline__
void rt6_release(struct rt6_info
*rt
)
147 if (atomic_dec_and_test(&rt
->rt6i_ref
))
148 dst_free(&rt
->u
.dst
);
155 * return the appropriate node for a routing tree "add" operation
156 * by either creating and inserting or by returning an existing
160 static struct fib6_node
* fib6_add_1(struct fib6_node
*root
, void *addr
,
161 int addrlen
, int plen
,
164 struct fib6_node
*fn
, *in
, *ln
;
165 struct fib6_node
*pn
= NULL
;
169 __u32 sernum
= fib6_new_sernum();
171 RT6_TRACE("fib6_add_1\n");
173 /* insert node in tree */
178 key
= (struct rt6key
*)((u8
*)fn
->leaf
+ offset
);
183 if (plen
< fn
->fn_bit
||
184 !ipv6_prefix_equal(&key
->addr
, addr
, fn
->fn_bit
))
191 if (plen
== fn
->fn_bit
) {
192 /* clean up an intermediate node */
193 if ((fn
->fn_flags
& RTN_RTINFO
) == 0) {
194 rt6_release(fn
->leaf
);
198 fn
->fn_sernum
= sernum
;
204 * We have more bits to go
207 /* Try to walk down on tree. */
208 fn
->fn_sernum
= sernum
;
209 dir
= addr_bit_set(addr
, fn
->fn_bit
);
211 fn
= dir
? fn
->right
: fn
->left
;
215 * We walked to the bottom of tree.
216 * Create new leaf node without children.
226 ln
->fn_sernum
= sernum
;
238 * split since we don't have a common prefix anymore or
239 * we have a less significant route.
240 * we've to insert an intermediate node on the list
241 * this new node will point to the one we need to create
247 /* find 1st bit in difference between the 2 addrs.
249 See comment in __ipv6_addr_diff: bit may be an invalid value,
250 but if it is >= plen, the value is ignored in any case.
253 bit
= __ipv6_addr_diff(addr
, &key
->addr
, addrlen
);
258 * (new leaf node)[ln] (old node)[fn]
264 if (in
== NULL
|| ln
== NULL
) {
273 * new intermediate node.
275 * be off since that an address that chooses one of
276 * the branches would not match less specific routes
277 * in the other branch
284 atomic_inc(&in
->leaf
->rt6i_ref
);
286 in
->fn_sernum
= sernum
;
288 /* update parent pointer */
299 ln
->fn_sernum
= sernum
;
301 if (addr_bit_set(addr
, bit
)) {
308 } else { /* plen <= bit */
311 * (new leaf node)[ln]
313 * (old node)[fn] NULL
325 ln
->fn_sernum
= sernum
;
332 if (addr_bit_set(&key
->addr
, plen
))
343 * Insert routing information in a node.
346 static int fib6_add_rt2node(struct fib6_node
*fn
, struct rt6_info
*rt
,
347 struct nlmsghdr
*nlh
, struct netlink_skb_parms
*req
)
349 struct rt6_info
*iter
= NULL
;
350 struct rt6_info
**ins
;
354 if (fn
->fn_flags
&RTN_TL_ROOT
&&
355 fn
->leaf
== &ip6_null_entry
&&
356 !(rt
->rt6i_flags
& (RTF_DEFAULT
| RTF_ADDRCONF
)) ){
362 for (iter
= fn
->leaf
; iter
; iter
=iter
->u
.next
) {
364 * Search for duplicates
367 if (iter
->rt6i_metric
== rt
->rt6i_metric
) {
369 * Same priority level
372 if (iter
->rt6i_dev
== rt
->rt6i_dev
&&
373 iter
->rt6i_idev
== rt
->rt6i_idev
&&
374 ipv6_addr_equal(&iter
->rt6i_gateway
,
375 &rt
->rt6i_gateway
)) {
376 if (!(iter
->rt6i_flags
&RTF_EXPIRES
))
378 iter
->rt6i_expires
= rt
->rt6i_expires
;
379 if (!(rt
->rt6i_flags
&RTF_EXPIRES
)) {
380 iter
->rt6i_flags
&= ~RTF_EXPIRES
;
381 iter
->rt6i_expires
= 0;
387 if (iter
->rt6i_metric
> rt
->rt6i_metric
)
401 atomic_inc(&rt
->rt6i_ref
);
402 inet6_rt_notify(RTM_NEWROUTE
, rt
, nlh
, req
);
403 rt6_stats
.fib_rt_entries
++;
405 if ((fn
->fn_flags
& RTN_RTINFO
) == 0) {
406 rt6_stats
.fib_route_nodes
++;
407 fn
->fn_flags
|= RTN_RTINFO
;
413 static __inline__
void fib6_start_gc(struct rt6_info
*rt
)
415 if (ip6_fib_timer
.expires
== 0 &&
416 (rt
->rt6i_flags
& (RTF_EXPIRES
|RTF_CACHE
)))
417 mod_timer(&ip6_fib_timer
, jiffies
+ ip6_rt_gc_interval
);
420 void fib6_force_start_gc(void)
422 if (ip6_fib_timer
.expires
== 0)
423 mod_timer(&ip6_fib_timer
, jiffies
+ ip6_rt_gc_interval
);
427 * Add routing information to the routing tree.
428 * <destination addr>/<source addr>
429 * with source addr info in sub-trees
432 int fib6_add(struct fib6_node
*root
, struct rt6_info
*rt
,
433 struct nlmsghdr
*nlh
, void *_rtattr
, struct netlink_skb_parms
*req
)
435 struct fib6_node
*fn
;
438 fn
= fib6_add_1(root
, &rt
->rt6i_dst
.addr
, sizeof(struct in6_addr
),
439 rt
->rt6i_dst
.plen
, offsetof(struct rt6_info
, rt6i_dst
));
444 #ifdef CONFIG_IPV6_SUBTREES
445 if (rt
->rt6i_src
.plen
) {
446 struct fib6_node
*sn
;
448 if (fn
->subtree
== NULL
) {
449 struct fib6_node
*sfn
;
461 /* Create subtree root node */
466 sfn
->leaf
= &ip6_null_entry
;
467 atomic_inc(&ip6_null_entry
.rt6i_ref
);
468 sfn
->fn_flags
= RTN_ROOT
;
469 sfn
->fn_sernum
= fib6_new_sernum();
471 /* Now add the first leaf node to new subtree */
473 sn
= fib6_add_1(sfn
, &rt
->rt6i_src
.addr
,
474 sizeof(struct in6_addr
), rt
->rt6i_src
.plen
,
475 offsetof(struct rt6_info
, rt6i_src
));
478 /* If it is failed, discard just allocated
479 root, and then (in st_failure) stale node
486 /* Now link new subtree to main tree */
489 if (fn
->leaf
== NULL
) {
491 atomic_inc(&rt
->rt6i_ref
);
494 sn
= fib6_add_1(fn
->subtree
, &rt
->rt6i_src
.addr
,
495 sizeof(struct in6_addr
), rt
->rt6i_src
.plen
,
496 offsetof(struct rt6_info
, rt6i_src
));
506 err
= fib6_add_rt2node(fn
, rt
, nlh
, req
);
510 if (!(rt
->rt6i_flags
&RTF_CACHE
))
511 fib6_prune_clones(fn
, rt
);
516 dst_free(&rt
->u
.dst
);
519 #ifdef CONFIG_IPV6_SUBTREES
520 /* Subtree creation failed, probably main tree node
521 is orphan. If it is, shoot it.
524 if (fn
&& !(fn
->fn_flags
& (RTN_RTINFO
|RTN_ROOT
)))
525 fib6_repair_tree(fn
);
526 dst_free(&rt
->u
.dst
);
532 * Routing tree lookup
537 int offset
; /* key offset on rt6_info */
538 struct in6_addr
*addr
; /* search key */
541 static struct fib6_node
* fib6_lookup_1(struct fib6_node
*root
,
542 struct lookup_args
*args
)
544 struct fib6_node
*fn
;
554 struct fib6_node
*next
;
556 dir
= addr_bit_set(args
->addr
, fn
->fn_bit
);
558 next
= dir
? fn
->right
: fn
->left
;
568 while ((fn
->fn_flags
& RTN_ROOT
) == 0) {
569 #ifdef CONFIG_IPV6_SUBTREES
571 struct fib6_node
*st
;
572 struct lookup_args
*narg
;
577 st
= fib6_lookup_1(fn
->subtree
, narg
);
579 if (st
&& !(st
->fn_flags
& RTN_ROOT
))
585 if (fn
->fn_flags
& RTN_RTINFO
) {
588 key
= (struct rt6key
*) ((u8
*) fn
->leaf
+
591 if (ipv6_prefix_equal(&key
->addr
, args
->addr
, key
->plen
))
601 struct fib6_node
* fib6_lookup(struct fib6_node
*root
, struct in6_addr
*daddr
,
602 struct in6_addr
*saddr
)
604 struct lookup_args args
[2];
605 struct fib6_node
*fn
;
607 args
[0].offset
= offsetof(struct rt6_info
, rt6i_dst
);
608 args
[0].addr
= daddr
;
610 #ifdef CONFIG_IPV6_SUBTREES
611 args
[1].offset
= offsetof(struct rt6_info
, rt6i_src
);
612 args
[1].addr
= saddr
;
615 fn
= fib6_lookup_1(root
, args
);
617 if (fn
== NULL
|| fn
->fn_flags
& RTN_TL_ROOT
)
624 * Get node with specified destination prefix (and source prefix,
625 * if subtrees are used)
629 static struct fib6_node
* fib6_locate_1(struct fib6_node
*root
,
630 struct in6_addr
*addr
,
631 int plen
, int offset
)
633 struct fib6_node
*fn
;
635 for (fn
= root
; fn
; ) {
636 struct rt6key
*key
= (struct rt6key
*)((u8
*)fn
->leaf
+ offset
);
641 if (plen
< fn
->fn_bit
||
642 !ipv6_prefix_equal(&key
->addr
, addr
, fn
->fn_bit
))
645 if (plen
== fn
->fn_bit
)
649 * We have more bits to go
651 if (addr_bit_set(addr
, fn
->fn_bit
))
659 struct fib6_node
* fib6_locate(struct fib6_node
*root
,
660 struct in6_addr
*daddr
, int dst_len
,
661 struct in6_addr
*saddr
, int src_len
)
663 struct fib6_node
*fn
;
665 fn
= fib6_locate_1(root
, daddr
, dst_len
,
666 offsetof(struct rt6_info
, rt6i_dst
));
668 #ifdef CONFIG_IPV6_SUBTREES
670 BUG_TRAP(saddr
!=NULL
);
674 fn
= fib6_locate_1(fn
, saddr
, src_len
,
675 offsetof(struct rt6_info
, rt6i_src
));
679 if (fn
&& fn
->fn_flags
&RTN_RTINFO
)
691 static struct rt6_info
* fib6_find_prefix(struct fib6_node
*fn
)
693 if (fn
->fn_flags
&RTN_ROOT
)
694 return &ip6_null_entry
;
698 return fn
->left
->leaf
;
701 return fn
->right
->leaf
;
709 * Called to trim the tree of intermediate nodes when possible. "fn"
710 * is the node we want to try and remove.
713 static struct fib6_node
* fib6_repair_tree(struct fib6_node
*fn
)
717 struct fib6_node
*child
, *pn
;
718 struct fib6_walker_t
*w
;
722 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn
->fn_bit
, iter
);
725 BUG_TRAP(!(fn
->fn_flags
&RTN_RTINFO
));
726 BUG_TRAP(!(fn
->fn_flags
&RTN_TL_ROOT
));
727 BUG_TRAP(fn
->leaf
==NULL
);
731 if (fn
->right
) child
= fn
->right
, children
|= 1;
732 if (fn
->left
) child
= fn
->left
, children
|= 2;
734 if (children
== 3 || SUBTREE(fn
)
735 #ifdef CONFIG_IPV6_SUBTREES
736 /* Subtree root (i.e. fn) may have one child */
737 || (children
&& fn
->fn_flags
&RTN_ROOT
)
740 fn
->leaf
= fib6_find_prefix(fn
);
742 if (fn
->leaf
==NULL
) {
744 fn
->leaf
= &ip6_null_entry
;
747 atomic_inc(&fn
->leaf
->rt6i_ref
);
752 #ifdef CONFIG_IPV6_SUBTREES
753 if (SUBTREE(pn
) == fn
) {
754 BUG_TRAP(fn
->fn_flags
&RTN_ROOT
);
758 BUG_TRAP(!(fn
->fn_flags
&RTN_ROOT
));
760 if (pn
->right
== fn
) pn
->right
= child
;
761 else if (pn
->left
== fn
) pn
->left
= child
;
768 #ifdef CONFIG_IPV6_SUBTREES
772 read_lock(&fib6_walker_lock
);
776 w
->root
= w
->node
= NULL
;
777 RT6_TRACE("W %p adjusted by delroot 1\n", w
);
778 } else if (w
->node
== fn
) {
779 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w
, w
->state
, nstate
);
786 RT6_TRACE("W %p adjusted by delroot 2\n", w
);
791 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w
, w
->state
);
792 w
->state
= w
->state
>=FWS_R
? FWS_U
: FWS_INIT
;
794 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w
, w
->state
);
795 w
->state
= w
->state
>=FWS_C
? FWS_U
: FWS_INIT
;
800 read_unlock(&fib6_walker_lock
);
803 if (pn
->fn_flags
&RTN_RTINFO
|| SUBTREE(pn
))
806 rt6_release(pn
->leaf
);
812 static void fib6_del_route(struct fib6_node
*fn
, struct rt6_info
**rtp
,
813 struct nlmsghdr
*nlh
, void *_rtattr
, struct netlink_skb_parms
*req
)
815 struct fib6_walker_t
*w
;
816 struct rt6_info
*rt
= *rtp
;
818 RT6_TRACE("fib6_del_route\n");
822 rt
->rt6i_node
= NULL
;
823 rt6_stats
.fib_rt_entries
--;
824 rt6_stats
.fib_discarded_routes
++;
827 read_lock(&fib6_walker_lock
);
829 if (w
->state
== FWS_C
&& w
->leaf
== rt
) {
830 RT6_TRACE("walker %p adjusted by delroute\n", w
);
831 w
->leaf
= rt
->u
.next
;
836 read_unlock(&fib6_walker_lock
);
840 if (fn
->leaf
== NULL
&& fn
->fn_flags
&RTN_TL_ROOT
)
841 fn
->leaf
= &ip6_null_entry
;
843 /* If it was last route, expunge its radix tree node */
844 if (fn
->leaf
== NULL
) {
845 fn
->fn_flags
&= ~RTN_RTINFO
;
846 rt6_stats
.fib_route_nodes
--;
847 fn
= fib6_repair_tree(fn
);
850 if (atomic_read(&rt
->rt6i_ref
) != 1) {
851 /* This route is used as dummy address holder in some split
852 * nodes. It is not leaked, but it still holds other resources,
853 * which must be released in time. So, scan ascendant nodes
854 * and replace dummy references to this route with references
855 * to still alive ones.
858 if (!(fn
->fn_flags
&RTN_RTINFO
) && fn
->leaf
== rt
) {
859 fn
->leaf
= fib6_find_prefix(fn
);
860 atomic_inc(&fn
->leaf
->rt6i_ref
);
865 /* No more references are possible at this point. */
866 if (atomic_read(&rt
->rt6i_ref
) != 1) BUG();
869 inet6_rt_notify(RTM_DELROUTE
, rt
, nlh
, req
);
873 int fib6_del(struct rt6_info
*rt
, struct nlmsghdr
*nlh
, void *_rtattr
, struct netlink_skb_parms
*req
)
875 struct fib6_node
*fn
= rt
->rt6i_node
;
876 struct rt6_info
**rtp
;
879 if (rt
->u
.dst
.obsolete
>0) {
884 if (fn
== NULL
|| rt
== &ip6_null_entry
)
887 BUG_TRAP(fn
->fn_flags
&RTN_RTINFO
);
889 if (!(rt
->rt6i_flags
&RTF_CACHE
))
890 fib6_prune_clones(fn
, rt
);
893 * Walk the leaf entries looking for ourself
896 for (rtp
= &fn
->leaf
; *rtp
; rtp
= &(*rtp
)->u
.next
) {
898 fib6_del_route(fn
, rtp
, nlh
, _rtattr
, req
);
906 * Tree traversal function.
908 * Certainly, it is not interrupt safe.
909 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
910 * It means, that we can modify tree during walking
911 * and use this function for garbage collection, clone pruning,
912 * cleaning tree when a device goes down etc. etc.
914 * It guarantees that every node will be traversed,
915 * and that it will be traversed only once.
917 * Callback function w->func may return:
918 * 0 -> continue walking.
919 * positive value -> walking is suspended (used by tree dumps,
920 * and probably by gc, if it will be split to several slices)
921 * negative value -> terminate walking.
923 * The function itself returns:
924 * 0 -> walk is complete.
925 * >0 -> walk is incomplete (i.e. suspended)
926 * <0 -> walk is terminated by an error.
929 int fib6_walk_continue(struct fib6_walker_t
*w
)
931 struct fib6_node
*fn
, *pn
;
938 if (w
->prune
&& fn
!= w
->root
&&
939 fn
->fn_flags
&RTN_RTINFO
&& w
->state
< FWS_C
) {
944 #ifdef CONFIG_IPV6_SUBTREES
947 w
->node
= SUBTREE(fn
);
968 if (w
->leaf
&& fn
->fn_flags
&RTN_RTINFO
) {
969 int err
= w
->func(w
);
980 #ifdef CONFIG_IPV6_SUBTREES
981 if (SUBTREE(pn
) == fn
) {
982 BUG_TRAP(fn
->fn_flags
&RTN_ROOT
);
987 if (pn
->left
== fn
) {
991 if (pn
->right
== fn
) {
993 w
->leaf
= w
->node
->leaf
;
1003 int fib6_walk(struct fib6_walker_t
*w
)
1007 w
->state
= FWS_INIT
;
1010 fib6_walker_link(w
);
1011 res
= fib6_walk_continue(w
);
1013 fib6_walker_unlink(w
);
1017 static int fib6_clean_node(struct fib6_walker_t
*w
)
1020 struct rt6_info
*rt
;
1021 struct fib6_cleaner_t
*c
= (struct fib6_cleaner_t
*)w
;
1023 for (rt
= w
->leaf
; rt
; rt
= rt
->u
.next
) {
1024 res
= c
->func(rt
, c
->arg
);
1027 res
= fib6_del(rt
, NULL
, NULL
, NULL
);
1030 printk(KERN_DEBUG
"fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt
, rt
->rt6i_node
, res
);
1043 * Convenient frontend to tree walker.
1045 * func is called on each route.
1046 * It may return -1 -> delete this route.
1047 * 0 -> continue walking
1049 * prune==1 -> only immediate children of node (certainly,
1050 * ignoring pure split nodes) will be scanned.
1053 void fib6_clean_tree(struct fib6_node
*root
,
1054 int (*func
)(struct rt6_info
*, void *arg
),
1055 int prune
, void *arg
)
1057 struct fib6_cleaner_t c
;
1060 c
.w
.func
= fib6_clean_node
;
1068 static int fib6_prune_clone(struct rt6_info
*rt
, void *arg
)
1070 if (rt
->rt6i_flags
& RTF_CACHE
) {
1071 RT6_TRACE("pruning clone %p\n", rt
);
1078 static void fib6_prune_clones(struct fib6_node
*fn
, struct rt6_info
*rt
)
1080 fib6_clean_tree(fn
, fib6_prune_clone
, 1, rt
);
1084 * Garbage collection
1087 static struct fib6_gc_args
1093 static int fib6_age(struct rt6_info
*rt
, void *arg
)
1095 unsigned long now
= jiffies
;
1098 * check addrconf expiration here.
1099 * Routes are expired even if they are in use.
1101 * Also age clones. Note, that clones are aged out
1102 * only if they are not in use now.
1105 if (rt
->rt6i_flags
&RTF_EXPIRES
&& rt
->rt6i_expires
) {
1106 if (time_after(now
, rt
->rt6i_expires
)) {
1107 RT6_TRACE("expiring %p\n", rt
);
1108 rt6_reset_dflt_pointer(rt
);
1112 } else if (rt
->rt6i_flags
& RTF_CACHE
) {
1113 if (atomic_read(&rt
->u
.dst
.__refcnt
) == 0 &&
1114 time_after_eq(now
, rt
->u
.dst
.lastuse
+ gc_args
.timeout
)) {
1115 RT6_TRACE("aging clone %p\n", rt
);
1117 } else if ((rt
->rt6i_flags
& RTF_GATEWAY
) &&
1118 (!(rt
->rt6i_nexthop
->flags
& NTF_ROUTER
))) {
1119 RT6_TRACE("purging route %p via non-router but gateway\n",
1129 static DEFINE_SPINLOCK(fib6_gc_lock
);
1131 void fib6_run_gc(unsigned long dummy
)
1133 if (dummy
!= ~0UL) {
1134 spin_lock_bh(&fib6_gc_lock
);
1135 gc_args
.timeout
= dummy
? (int)dummy
: ip6_rt_gc_interval
;
1138 if (!spin_trylock(&fib6_gc_lock
)) {
1139 mod_timer(&ip6_fib_timer
, jiffies
+ HZ
);
1143 gc_args
.timeout
= ip6_rt_gc_interval
;
1148 write_lock_bh(&rt6_lock
);
1149 ndisc_dst_gc(&gc_args
.more
);
1150 fib6_clean_tree(&ip6_routing_table
, fib6_age
, 0, NULL
);
1151 write_unlock_bh(&rt6_lock
);
1154 mod_timer(&ip6_fib_timer
, jiffies
+ ip6_rt_gc_interval
);
1156 del_timer(&ip6_fib_timer
);
1157 ip6_fib_timer
.expires
= 0;
1159 spin_unlock_bh(&fib6_gc_lock
);
1162 void __init
fib6_init(void)
1164 fib6_node_kmem
= kmem_cache_create("fib6_nodes",
1165 sizeof(struct fib6_node
),
1166 0, SLAB_HWCACHE_ALIGN
,
1168 if (!fib6_node_kmem
)
1169 panic("cannot create fib6_nodes cache");
1172 void fib6_gc_cleanup(void)
1174 del_timer(&ip6_fib_timer
);
1175 kmem_cache_destroy(fib6_node_kmem
);