[PATCH] deprecate the kernel_thread export
[linux-2.6/suspend2-2.6.18.git] / kernel / timer.c
blob4427e725ccddb39605364eb497c29607d4cfbc17
1 /*
2 * linux/kernel/timer.c
4 * Kernel internal timers, kernel timekeeping, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/delay.h>
38 #include <asm/uaccess.h>
39 #include <asm/unistd.h>
40 #include <asm/div64.h>
41 #include <asm/timex.h>
42 #include <asm/io.h>
44 #ifdef CONFIG_TIME_INTERPOLATION
45 static void time_interpolator_update(long delta_nsec);
46 #else
47 #define time_interpolator_update(x)
48 #endif
50 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
52 EXPORT_SYMBOL(jiffies_64);
55 * per-CPU timer vector definitions:
58 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
59 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
60 #define TVN_SIZE (1 << TVN_BITS)
61 #define TVR_SIZE (1 << TVR_BITS)
62 #define TVN_MASK (TVN_SIZE - 1)
63 #define TVR_MASK (TVR_SIZE - 1)
65 struct timer_base_s {
66 spinlock_t lock;
67 struct timer_list *running_timer;
70 typedef struct tvec_s {
71 struct list_head vec[TVN_SIZE];
72 } tvec_t;
74 typedef struct tvec_root_s {
75 struct list_head vec[TVR_SIZE];
76 } tvec_root_t;
78 struct tvec_t_base_s {
79 struct timer_base_s t_base;
80 unsigned long timer_jiffies;
81 tvec_root_t tv1;
82 tvec_t tv2;
83 tvec_t tv3;
84 tvec_t tv4;
85 tvec_t tv5;
86 } ____cacheline_aligned_in_smp;
88 typedef struct tvec_t_base_s tvec_base_t;
89 static DEFINE_PER_CPU(tvec_base_t *, tvec_bases);
90 static tvec_base_t boot_tvec_bases;
92 static inline void set_running_timer(tvec_base_t *base,
93 struct timer_list *timer)
95 #ifdef CONFIG_SMP
96 base->t_base.running_timer = timer;
97 #endif
100 static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
102 unsigned long expires = timer->expires;
103 unsigned long idx = expires - base->timer_jiffies;
104 struct list_head *vec;
106 if (idx < TVR_SIZE) {
107 int i = expires & TVR_MASK;
108 vec = base->tv1.vec + i;
109 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
110 int i = (expires >> TVR_BITS) & TVN_MASK;
111 vec = base->tv2.vec + i;
112 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
113 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
114 vec = base->tv3.vec + i;
115 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
116 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
117 vec = base->tv4.vec + i;
118 } else if ((signed long) idx < 0) {
120 * Can happen if you add a timer with expires == jiffies,
121 * or you set a timer to go off in the past
123 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
124 } else {
125 int i;
126 /* If the timeout is larger than 0xffffffff on 64-bit
127 * architectures then we use the maximum timeout:
129 if (idx > 0xffffffffUL) {
130 idx = 0xffffffffUL;
131 expires = idx + base->timer_jiffies;
133 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
134 vec = base->tv5.vec + i;
137 * Timers are FIFO:
139 list_add_tail(&timer->entry, vec);
142 typedef struct timer_base_s timer_base_t;
144 * Used by TIMER_INITIALIZER, we can't use per_cpu(tvec_bases)
145 * at compile time, and we need timer->base to lock the timer.
147 timer_base_t __init_timer_base
148 ____cacheline_aligned_in_smp = { .lock = SPIN_LOCK_UNLOCKED };
149 EXPORT_SYMBOL(__init_timer_base);
151 /***
152 * init_timer - initialize a timer.
153 * @timer: the timer to be initialized
155 * init_timer() must be done to a timer prior calling *any* of the
156 * other timer functions.
158 void fastcall init_timer(struct timer_list *timer)
160 timer->entry.next = NULL;
161 timer->base = &per_cpu(tvec_bases, raw_smp_processor_id())->t_base;
163 EXPORT_SYMBOL(init_timer);
165 static inline void detach_timer(struct timer_list *timer,
166 int clear_pending)
168 struct list_head *entry = &timer->entry;
170 __list_del(entry->prev, entry->next);
171 if (clear_pending)
172 entry->next = NULL;
173 entry->prev = LIST_POISON2;
177 * We are using hashed locking: holding per_cpu(tvec_bases).t_base.lock
178 * means that all timers which are tied to this base via timer->base are
179 * locked, and the base itself is locked too.
181 * So __run_timers/migrate_timers can safely modify all timers which could
182 * be found on ->tvX lists.
184 * When the timer's base is locked, and the timer removed from list, it is
185 * possible to set timer->base = NULL and drop the lock: the timer remains
186 * locked.
188 static timer_base_t *lock_timer_base(struct timer_list *timer,
189 unsigned long *flags)
191 timer_base_t *base;
193 for (;;) {
194 base = timer->base;
195 if (likely(base != NULL)) {
196 spin_lock_irqsave(&base->lock, *flags);
197 if (likely(base == timer->base))
198 return base;
199 /* The timer has migrated to another CPU */
200 spin_unlock_irqrestore(&base->lock, *flags);
202 cpu_relax();
206 int __mod_timer(struct timer_list *timer, unsigned long expires)
208 timer_base_t *base;
209 tvec_base_t *new_base;
210 unsigned long flags;
211 int ret = 0;
213 BUG_ON(!timer->function);
215 base = lock_timer_base(timer, &flags);
217 if (timer_pending(timer)) {
218 detach_timer(timer, 0);
219 ret = 1;
222 new_base = __get_cpu_var(tvec_bases);
224 if (base != &new_base->t_base) {
226 * We are trying to schedule the timer on the local CPU.
227 * However we can't change timer's base while it is running,
228 * otherwise del_timer_sync() can't detect that the timer's
229 * handler yet has not finished. This also guarantees that
230 * the timer is serialized wrt itself.
232 if (unlikely(base->running_timer == timer)) {
233 /* The timer remains on a former base */
234 new_base = container_of(base, tvec_base_t, t_base);
235 } else {
236 /* See the comment in lock_timer_base() */
237 timer->base = NULL;
238 spin_unlock(&base->lock);
239 spin_lock(&new_base->t_base.lock);
240 timer->base = &new_base->t_base;
244 timer->expires = expires;
245 internal_add_timer(new_base, timer);
246 spin_unlock_irqrestore(&new_base->t_base.lock, flags);
248 return ret;
251 EXPORT_SYMBOL(__mod_timer);
253 /***
254 * add_timer_on - start a timer on a particular CPU
255 * @timer: the timer to be added
256 * @cpu: the CPU to start it on
258 * This is not very scalable on SMP. Double adds are not possible.
260 void add_timer_on(struct timer_list *timer, int cpu)
262 tvec_base_t *base = per_cpu(tvec_bases, cpu);
263 unsigned long flags;
265 BUG_ON(timer_pending(timer) || !timer->function);
266 spin_lock_irqsave(&base->t_base.lock, flags);
267 timer->base = &base->t_base;
268 internal_add_timer(base, timer);
269 spin_unlock_irqrestore(&base->t_base.lock, flags);
273 /***
274 * mod_timer - modify a timer's timeout
275 * @timer: the timer to be modified
277 * mod_timer is a more efficient way to update the expire field of an
278 * active timer (if the timer is inactive it will be activated)
280 * mod_timer(timer, expires) is equivalent to:
282 * del_timer(timer); timer->expires = expires; add_timer(timer);
284 * Note that if there are multiple unserialized concurrent users of the
285 * same timer, then mod_timer() is the only safe way to modify the timeout,
286 * since add_timer() cannot modify an already running timer.
288 * The function returns whether it has modified a pending timer or not.
289 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
290 * active timer returns 1.)
292 int mod_timer(struct timer_list *timer, unsigned long expires)
294 BUG_ON(!timer->function);
297 * This is a common optimization triggered by the
298 * networking code - if the timer is re-modified
299 * to be the same thing then just return:
301 if (timer->expires == expires && timer_pending(timer))
302 return 1;
304 return __mod_timer(timer, expires);
307 EXPORT_SYMBOL(mod_timer);
309 /***
310 * del_timer - deactive a timer.
311 * @timer: the timer to be deactivated
313 * del_timer() deactivates a timer - this works on both active and inactive
314 * timers.
316 * The function returns whether it has deactivated a pending timer or not.
317 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
318 * active timer returns 1.)
320 int del_timer(struct timer_list *timer)
322 timer_base_t *base;
323 unsigned long flags;
324 int ret = 0;
326 if (timer_pending(timer)) {
327 base = lock_timer_base(timer, &flags);
328 if (timer_pending(timer)) {
329 detach_timer(timer, 1);
330 ret = 1;
332 spin_unlock_irqrestore(&base->lock, flags);
335 return ret;
338 EXPORT_SYMBOL(del_timer);
340 #ifdef CONFIG_SMP
342 * This function tries to deactivate a timer. Upon successful (ret >= 0)
343 * exit the timer is not queued and the handler is not running on any CPU.
345 * It must not be called from interrupt contexts.
347 int try_to_del_timer_sync(struct timer_list *timer)
349 timer_base_t *base;
350 unsigned long flags;
351 int ret = -1;
353 base = lock_timer_base(timer, &flags);
355 if (base->running_timer == timer)
356 goto out;
358 ret = 0;
359 if (timer_pending(timer)) {
360 detach_timer(timer, 1);
361 ret = 1;
363 out:
364 spin_unlock_irqrestore(&base->lock, flags);
366 return ret;
369 /***
370 * del_timer_sync - deactivate a timer and wait for the handler to finish.
371 * @timer: the timer to be deactivated
373 * This function only differs from del_timer() on SMP: besides deactivating
374 * the timer it also makes sure the handler has finished executing on other
375 * CPUs.
377 * Synchronization rules: callers must prevent restarting of the timer,
378 * otherwise this function is meaningless. It must not be called from
379 * interrupt contexts. The caller must not hold locks which would prevent
380 * completion of the timer's handler. The timer's handler must not call
381 * add_timer_on(). Upon exit the timer is not queued and the handler is
382 * not running on any CPU.
384 * The function returns whether it has deactivated a pending timer or not.
386 int del_timer_sync(struct timer_list *timer)
388 for (;;) {
389 int ret = try_to_del_timer_sync(timer);
390 if (ret >= 0)
391 return ret;
395 EXPORT_SYMBOL(del_timer_sync);
396 #endif
398 static int cascade(tvec_base_t *base, tvec_t *tv, int index)
400 /* cascade all the timers from tv up one level */
401 struct list_head *head, *curr;
403 head = tv->vec + index;
404 curr = head->next;
406 * We are removing _all_ timers from the list, so we don't have to
407 * detach them individually, just clear the list afterwards.
409 while (curr != head) {
410 struct timer_list *tmp;
412 tmp = list_entry(curr, struct timer_list, entry);
413 BUG_ON(tmp->base != &base->t_base);
414 curr = curr->next;
415 internal_add_timer(base, tmp);
417 INIT_LIST_HEAD(head);
419 return index;
422 /***
423 * __run_timers - run all expired timers (if any) on this CPU.
424 * @base: the timer vector to be processed.
426 * This function cascades all vectors and executes all expired timer
427 * vectors.
429 #define INDEX(N) (base->timer_jiffies >> (TVR_BITS + N * TVN_BITS)) & TVN_MASK
431 static inline void __run_timers(tvec_base_t *base)
433 struct timer_list *timer;
435 spin_lock_irq(&base->t_base.lock);
436 while (time_after_eq(jiffies, base->timer_jiffies)) {
437 struct list_head work_list = LIST_HEAD_INIT(work_list);
438 struct list_head *head = &work_list;
439 int index = base->timer_jiffies & TVR_MASK;
442 * Cascade timers:
444 if (!index &&
445 (!cascade(base, &base->tv2, INDEX(0))) &&
446 (!cascade(base, &base->tv3, INDEX(1))) &&
447 !cascade(base, &base->tv4, INDEX(2)))
448 cascade(base, &base->tv5, INDEX(3));
449 ++base->timer_jiffies;
450 list_splice_init(base->tv1.vec + index, &work_list);
451 while (!list_empty(head)) {
452 void (*fn)(unsigned long);
453 unsigned long data;
455 timer = list_entry(head->next,struct timer_list,entry);
456 fn = timer->function;
457 data = timer->data;
459 set_running_timer(base, timer);
460 detach_timer(timer, 1);
461 spin_unlock_irq(&base->t_base.lock);
463 int preempt_count = preempt_count();
464 fn(data);
465 if (preempt_count != preempt_count()) {
466 printk(KERN_WARNING "huh, entered %p "
467 "with preempt_count %08x, exited"
468 " with %08x?\n",
469 fn, preempt_count,
470 preempt_count());
471 BUG();
474 spin_lock_irq(&base->t_base.lock);
477 set_running_timer(base, NULL);
478 spin_unlock_irq(&base->t_base.lock);
481 #ifdef CONFIG_NO_IDLE_HZ
483 * Find out when the next timer event is due to happen. This
484 * is used on S/390 to stop all activity when a cpus is idle.
485 * This functions needs to be called disabled.
487 unsigned long next_timer_interrupt(void)
489 tvec_base_t *base;
490 struct list_head *list;
491 struct timer_list *nte;
492 unsigned long expires;
493 unsigned long hr_expires = MAX_JIFFY_OFFSET;
494 ktime_t hr_delta;
495 tvec_t *varray[4];
496 int i, j;
498 hr_delta = hrtimer_get_next_event();
499 if (hr_delta.tv64 != KTIME_MAX) {
500 struct timespec tsdelta;
501 tsdelta = ktime_to_timespec(hr_delta);
502 hr_expires = timespec_to_jiffies(&tsdelta);
503 if (hr_expires < 3)
504 return hr_expires + jiffies;
506 hr_expires += jiffies;
508 base = __get_cpu_var(tvec_bases);
509 spin_lock(&base->t_base.lock);
510 expires = base->timer_jiffies + (LONG_MAX >> 1);
511 list = NULL;
513 /* Look for timer events in tv1. */
514 j = base->timer_jiffies & TVR_MASK;
515 do {
516 list_for_each_entry(nte, base->tv1.vec + j, entry) {
517 expires = nte->expires;
518 if (j < (base->timer_jiffies & TVR_MASK))
519 list = base->tv2.vec + (INDEX(0));
520 goto found;
522 j = (j + 1) & TVR_MASK;
523 } while (j != (base->timer_jiffies & TVR_MASK));
525 /* Check tv2-tv5. */
526 varray[0] = &base->tv2;
527 varray[1] = &base->tv3;
528 varray[2] = &base->tv4;
529 varray[3] = &base->tv5;
530 for (i = 0; i < 4; i++) {
531 j = INDEX(i);
532 do {
533 if (list_empty(varray[i]->vec + j)) {
534 j = (j + 1) & TVN_MASK;
535 continue;
537 list_for_each_entry(nte, varray[i]->vec + j, entry)
538 if (time_before(nte->expires, expires))
539 expires = nte->expires;
540 if (j < (INDEX(i)) && i < 3)
541 list = varray[i + 1]->vec + (INDEX(i + 1));
542 goto found;
543 } while (j != (INDEX(i)));
545 found:
546 if (list) {
548 * The search wrapped. We need to look at the next list
549 * from next tv element that would cascade into tv element
550 * where we found the timer element.
552 list_for_each_entry(nte, list, entry) {
553 if (time_before(nte->expires, expires))
554 expires = nte->expires;
557 spin_unlock(&base->t_base.lock);
559 if (time_before(hr_expires, expires))
560 return hr_expires;
562 return expires;
564 #endif
566 /******************************************************************/
569 * Timekeeping variables
571 unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */
572 unsigned long tick_nsec = TICK_NSEC; /* ACTHZ period (nsec) */
575 * The current time
576 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
577 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
578 * at zero at system boot time, so wall_to_monotonic will be negative,
579 * however, we will ALWAYS keep the tv_nsec part positive so we can use
580 * the usual normalization.
582 struct timespec xtime __attribute__ ((aligned (16)));
583 struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
585 EXPORT_SYMBOL(xtime);
587 /* Don't completely fail for HZ > 500. */
588 int tickadj = 500/HZ ? : 1; /* microsecs */
592 * phase-lock loop variables
594 /* TIME_ERROR prevents overwriting the CMOS clock */
595 int time_state = TIME_OK; /* clock synchronization status */
596 int time_status = STA_UNSYNC; /* clock status bits */
597 long time_offset; /* time adjustment (us) */
598 long time_constant = 2; /* pll time constant */
599 long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */
600 long time_precision = 1; /* clock precision (us) */
601 long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
602 long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
603 static long time_phase; /* phase offset (scaled us) */
604 long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC;
605 /* frequency offset (scaled ppm)*/
606 static long time_adj; /* tick adjust (scaled 1 / HZ) */
607 long time_reftime; /* time at last adjustment (s) */
608 long time_adjust;
609 long time_next_adjust;
612 * this routine handles the overflow of the microsecond field
614 * The tricky bits of code to handle the accurate clock support
615 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
616 * They were originally developed for SUN and DEC kernels.
617 * All the kudos should go to Dave for this stuff.
620 static void second_overflow(void)
622 long ltemp;
624 /* Bump the maxerror field */
625 time_maxerror += time_tolerance >> SHIFT_USEC;
626 if (time_maxerror > NTP_PHASE_LIMIT) {
627 time_maxerror = NTP_PHASE_LIMIT;
628 time_status |= STA_UNSYNC;
632 * Leap second processing. If in leap-insert state at the end of the
633 * day, the system clock is set back one second; if in leap-delete
634 * state, the system clock is set ahead one second. The microtime()
635 * routine or external clock driver will insure that reported time is
636 * always monotonic. The ugly divides should be replaced.
638 switch (time_state) {
639 case TIME_OK:
640 if (time_status & STA_INS)
641 time_state = TIME_INS;
642 else if (time_status & STA_DEL)
643 time_state = TIME_DEL;
644 break;
645 case TIME_INS:
646 if (xtime.tv_sec % 86400 == 0) {
647 xtime.tv_sec--;
648 wall_to_monotonic.tv_sec++;
650 * The timer interpolator will make time change
651 * gradually instead of an immediate jump by one second
653 time_interpolator_update(-NSEC_PER_SEC);
654 time_state = TIME_OOP;
655 clock_was_set();
656 printk(KERN_NOTICE "Clock: inserting leap second "
657 "23:59:60 UTC\n");
659 break;
660 case TIME_DEL:
661 if ((xtime.tv_sec + 1) % 86400 == 0) {
662 xtime.tv_sec++;
663 wall_to_monotonic.tv_sec--;
665 * Use of time interpolator for a gradual change of
666 * time
668 time_interpolator_update(NSEC_PER_SEC);
669 time_state = TIME_WAIT;
670 clock_was_set();
671 printk(KERN_NOTICE "Clock: deleting leap second "
672 "23:59:59 UTC\n");
674 break;
675 case TIME_OOP:
676 time_state = TIME_WAIT;
677 break;
678 case TIME_WAIT:
679 if (!(time_status & (STA_INS | STA_DEL)))
680 time_state = TIME_OK;
684 * Compute the phase adjustment for the next second. In PLL mode, the
685 * offset is reduced by a fixed factor times the time constant. In FLL
686 * mode the offset is used directly. In either mode, the maximum phase
687 * adjustment for each second is clamped so as to spread the adjustment
688 * over not more than the number of seconds between updates.
690 ltemp = time_offset;
691 if (!(time_status & STA_FLL))
692 ltemp = shift_right(ltemp, SHIFT_KG + time_constant);
693 ltemp = min(ltemp, (MAXPHASE / MINSEC) << SHIFT_UPDATE);
694 ltemp = max(ltemp, -(MAXPHASE / MINSEC) << SHIFT_UPDATE);
695 time_offset -= ltemp;
696 time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
699 * Compute the frequency estimate and additional phase adjustment due
700 * to frequency error for the next second. When the PPS signal is
701 * engaged, gnaw on the watchdog counter and update the frequency
702 * computed by the pll and the PPS signal.
704 pps_valid++;
705 if (pps_valid == PPS_VALID) { /* PPS signal lost */
706 pps_jitter = MAXTIME;
707 pps_stabil = MAXFREQ;
708 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
709 STA_PPSWANDER | STA_PPSERROR);
711 ltemp = time_freq + pps_freq;
712 time_adj += shift_right(ltemp,(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE));
714 #if HZ == 100
716 * Compensate for (HZ==100) != (1 << SHIFT_HZ). Add 25% and 3.125% to
717 * get 128.125; => only 0.125% error (p. 14)
719 time_adj += shift_right(time_adj, 2) + shift_right(time_adj, 5);
720 #endif
721 #if HZ == 250
723 * Compensate for (HZ==250) != (1 << SHIFT_HZ). Add 1.5625% and
724 * 0.78125% to get 255.85938; => only 0.05% error (p. 14)
726 time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
727 #endif
728 #if HZ == 1000
730 * Compensate for (HZ==1000) != (1 << SHIFT_HZ). Add 1.5625% and
731 * 0.78125% to get 1023.4375; => only 0.05% error (p. 14)
733 time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
734 #endif
738 * Returns how many microseconds we need to add to xtime this tick
739 * in doing an adjustment requested with adjtime.
741 static long adjtime_adjustment(void)
743 long time_adjust_step;
745 time_adjust_step = time_adjust;
746 if (time_adjust_step) {
748 * We are doing an adjtime thing. Prepare time_adjust_step to
749 * be within bounds. Note that a positive time_adjust means we
750 * want the clock to run faster.
752 * Limit the amount of the step to be in the range
753 * -tickadj .. +tickadj
755 time_adjust_step = min(time_adjust_step, (long)tickadj);
756 time_adjust_step = max(time_adjust_step, (long)-tickadj);
758 return time_adjust_step;
761 /* in the NTP reference this is called "hardclock()" */
762 static void update_wall_time_one_tick(void)
764 long time_adjust_step, delta_nsec;
766 time_adjust_step = adjtime_adjustment();
767 if (time_adjust_step)
768 /* Reduce by this step the amount of time left */
769 time_adjust -= time_adjust_step;
770 delta_nsec = tick_nsec + time_adjust_step * 1000;
772 * Advance the phase, once it gets to one microsecond, then
773 * advance the tick more.
775 time_phase += time_adj;
776 if ((time_phase >= FINENSEC) || (time_phase <= -FINENSEC)) {
777 long ltemp = shift_right(time_phase, (SHIFT_SCALE - 10));
778 time_phase -= ltemp << (SHIFT_SCALE - 10);
779 delta_nsec += ltemp;
781 xtime.tv_nsec += delta_nsec;
782 time_interpolator_update(delta_nsec);
784 /* Changes by adjtime() do not take effect till next tick. */
785 if (time_next_adjust != 0) {
786 time_adjust = time_next_adjust;
787 time_next_adjust = 0;
792 * Return how long ticks are at the moment, that is, how much time
793 * update_wall_time_one_tick will add to xtime next time we call it
794 * (assuming no calls to do_adjtimex in the meantime).
795 * The return value is in fixed-point nanoseconds with SHIFT_SCALE-10
796 * bits to the right of the binary point.
797 * This function has no side-effects.
799 u64 current_tick_length(void)
801 long delta_nsec;
803 delta_nsec = tick_nsec + adjtime_adjustment() * 1000;
804 return ((u64) delta_nsec << (SHIFT_SCALE - 10)) + time_adj;
808 * Using a loop looks inefficient, but "ticks" is
809 * usually just one (we shouldn't be losing ticks,
810 * we're doing this this way mainly for interrupt
811 * latency reasons, not because we think we'll
812 * have lots of lost timer ticks
814 static void update_wall_time(unsigned long ticks)
816 do {
817 ticks--;
818 update_wall_time_one_tick();
819 if (xtime.tv_nsec >= 1000000000) {
820 xtime.tv_nsec -= 1000000000;
821 xtime.tv_sec++;
822 second_overflow();
824 } while (ticks);
828 * Called from the timer interrupt handler to charge one tick to the current
829 * process. user_tick is 1 if the tick is user time, 0 for system.
831 void update_process_times(int user_tick)
833 struct task_struct *p = current;
834 int cpu = smp_processor_id();
836 /* Note: this timer irq context must be accounted for as well. */
837 if (user_tick)
838 account_user_time(p, jiffies_to_cputime(1));
839 else
840 account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
841 run_local_timers();
842 if (rcu_pending(cpu))
843 rcu_check_callbacks(cpu, user_tick);
844 scheduler_tick();
845 run_posix_cpu_timers(p);
849 * Nr of active tasks - counted in fixed-point numbers
851 static unsigned long count_active_tasks(void)
853 return (nr_running() + nr_uninterruptible()) * FIXED_1;
857 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
858 * imply that avenrun[] is the standard name for this kind of thing.
859 * Nothing else seems to be standardized: the fractional size etc
860 * all seem to differ on different machines.
862 * Requires xtime_lock to access.
864 unsigned long avenrun[3];
866 EXPORT_SYMBOL(avenrun);
869 * calc_load - given tick count, update the avenrun load estimates.
870 * This is called while holding a write_lock on xtime_lock.
872 static inline void calc_load(unsigned long ticks)
874 unsigned long active_tasks; /* fixed-point */
875 static int count = LOAD_FREQ;
877 count -= ticks;
878 if (count < 0) {
879 count += LOAD_FREQ;
880 active_tasks = count_active_tasks();
881 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
882 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
883 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
887 /* jiffies at the most recent update of wall time */
888 unsigned long wall_jiffies = INITIAL_JIFFIES;
891 * This read-write spinlock protects us from races in SMP while
892 * playing with xtime and avenrun.
894 #ifndef ARCH_HAVE_XTIME_LOCK
895 seqlock_t xtime_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED;
897 EXPORT_SYMBOL(xtime_lock);
898 #endif
901 * This function runs timers and the timer-tq in bottom half context.
903 static void run_timer_softirq(struct softirq_action *h)
905 tvec_base_t *base = __get_cpu_var(tvec_bases);
907 hrtimer_run_queues();
908 if (time_after_eq(jiffies, base->timer_jiffies))
909 __run_timers(base);
913 * Called by the local, per-CPU timer interrupt on SMP.
915 void run_local_timers(void)
917 raise_softirq(TIMER_SOFTIRQ);
921 * Called by the timer interrupt. xtime_lock must already be taken
922 * by the timer IRQ!
924 static inline void update_times(void)
926 unsigned long ticks;
928 ticks = jiffies - wall_jiffies;
929 if (ticks) {
930 wall_jiffies += ticks;
931 update_wall_time(ticks);
933 calc_load(ticks);
937 * The 64-bit jiffies value is not atomic - you MUST NOT read it
938 * without sampling the sequence number in xtime_lock.
939 * jiffies is defined in the linker script...
942 void do_timer(struct pt_regs *regs)
944 jiffies_64++;
945 /* prevent loading jiffies before storing new jiffies_64 value. */
946 barrier();
947 update_times();
948 softlockup_tick(regs);
951 #ifdef __ARCH_WANT_SYS_ALARM
954 * For backwards compatibility? This can be done in libc so Alpha
955 * and all newer ports shouldn't need it.
957 asmlinkage unsigned long sys_alarm(unsigned int seconds)
959 struct itimerval it_new, it_old;
960 unsigned int oldalarm;
962 it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0;
963 it_new.it_value.tv_sec = seconds;
964 it_new.it_value.tv_usec = 0;
965 do_setitimer(ITIMER_REAL, &it_new, &it_old);
966 oldalarm = it_old.it_value.tv_sec;
967 /* ehhh.. We can't return 0 if we have an alarm pending.. */
968 /* And we'd better return too much than too little anyway */
969 if ((!oldalarm && it_old.it_value.tv_usec) || it_old.it_value.tv_usec >= 500000)
970 oldalarm++;
971 return oldalarm;
974 #endif
976 #ifndef __alpha__
979 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
980 * should be moved into arch/i386 instead?
984 * sys_getpid - return the thread group id of the current process
986 * Note, despite the name, this returns the tgid not the pid. The tgid and
987 * the pid are identical unless CLONE_THREAD was specified on clone() in
988 * which case the tgid is the same in all threads of the same group.
990 * This is SMP safe as current->tgid does not change.
992 asmlinkage long sys_getpid(void)
994 return current->tgid;
998 * Accessing ->group_leader->real_parent is not SMP-safe, it could
999 * change from under us. However, rather than getting any lock
1000 * we can use an optimistic algorithm: get the parent
1001 * pid, and go back and check that the parent is still
1002 * the same. If it has changed (which is extremely unlikely
1003 * indeed), we just try again..
1005 * NOTE! This depends on the fact that even if we _do_
1006 * get an old value of "parent", we can happily dereference
1007 * the pointer (it was and remains a dereferencable kernel pointer
1008 * no matter what): we just can't necessarily trust the result
1009 * until we know that the parent pointer is valid.
1011 * NOTE2: ->group_leader never changes from under us.
1013 asmlinkage long sys_getppid(void)
1015 int pid;
1016 struct task_struct *me = current;
1017 struct task_struct *parent;
1019 parent = me->group_leader->real_parent;
1020 for (;;) {
1021 pid = parent->tgid;
1022 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1024 struct task_struct *old = parent;
1027 * Make sure we read the pid before re-reading the
1028 * parent pointer:
1030 smp_rmb();
1031 parent = me->group_leader->real_parent;
1032 if (old != parent)
1033 continue;
1035 #endif
1036 break;
1038 return pid;
1041 asmlinkage long sys_getuid(void)
1043 /* Only we change this so SMP safe */
1044 return current->uid;
1047 asmlinkage long sys_geteuid(void)
1049 /* Only we change this so SMP safe */
1050 return current->euid;
1053 asmlinkage long sys_getgid(void)
1055 /* Only we change this so SMP safe */
1056 return current->gid;
1059 asmlinkage long sys_getegid(void)
1061 /* Only we change this so SMP safe */
1062 return current->egid;
1065 #endif
1067 static void process_timeout(unsigned long __data)
1069 wake_up_process((task_t *)__data);
1073 * schedule_timeout - sleep until timeout
1074 * @timeout: timeout value in jiffies
1076 * Make the current task sleep until @timeout jiffies have
1077 * elapsed. The routine will return immediately unless
1078 * the current task state has been set (see set_current_state()).
1080 * You can set the task state as follows -
1082 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1083 * pass before the routine returns. The routine will return 0
1085 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1086 * delivered to the current task. In this case the remaining time
1087 * in jiffies will be returned, or 0 if the timer expired in time
1089 * The current task state is guaranteed to be TASK_RUNNING when this
1090 * routine returns.
1092 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1093 * the CPU away without a bound on the timeout. In this case the return
1094 * value will be %MAX_SCHEDULE_TIMEOUT.
1096 * In all cases the return value is guaranteed to be non-negative.
1098 fastcall signed long __sched schedule_timeout(signed long timeout)
1100 struct timer_list timer;
1101 unsigned long expire;
1103 switch (timeout)
1105 case MAX_SCHEDULE_TIMEOUT:
1107 * These two special cases are useful to be comfortable
1108 * in the caller. Nothing more. We could take
1109 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1110 * but I' d like to return a valid offset (>=0) to allow
1111 * the caller to do everything it want with the retval.
1113 schedule();
1114 goto out;
1115 default:
1117 * Another bit of PARANOID. Note that the retval will be
1118 * 0 since no piece of kernel is supposed to do a check
1119 * for a negative retval of schedule_timeout() (since it
1120 * should never happens anyway). You just have the printk()
1121 * that will tell you if something is gone wrong and where.
1123 if (timeout < 0)
1125 printk(KERN_ERR "schedule_timeout: wrong timeout "
1126 "value %lx from %p\n", timeout,
1127 __builtin_return_address(0));
1128 current->state = TASK_RUNNING;
1129 goto out;
1133 expire = timeout + jiffies;
1135 setup_timer(&timer, process_timeout, (unsigned long)current);
1136 __mod_timer(&timer, expire);
1137 schedule();
1138 del_singleshot_timer_sync(&timer);
1140 timeout = expire - jiffies;
1142 out:
1143 return timeout < 0 ? 0 : timeout;
1145 EXPORT_SYMBOL(schedule_timeout);
1148 * We can use __set_current_state() here because schedule_timeout() calls
1149 * schedule() unconditionally.
1151 signed long __sched schedule_timeout_interruptible(signed long timeout)
1153 __set_current_state(TASK_INTERRUPTIBLE);
1154 return schedule_timeout(timeout);
1156 EXPORT_SYMBOL(schedule_timeout_interruptible);
1158 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1160 __set_current_state(TASK_UNINTERRUPTIBLE);
1161 return schedule_timeout(timeout);
1163 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1165 /* Thread ID - the internal kernel "pid" */
1166 asmlinkage long sys_gettid(void)
1168 return current->pid;
1172 * sys_sysinfo - fill in sysinfo struct
1174 asmlinkage long sys_sysinfo(struct sysinfo __user *info)
1176 struct sysinfo val;
1177 unsigned long mem_total, sav_total;
1178 unsigned int mem_unit, bitcount;
1179 unsigned long seq;
1181 memset((char *)&val, 0, sizeof(struct sysinfo));
1183 do {
1184 struct timespec tp;
1185 seq = read_seqbegin(&xtime_lock);
1188 * This is annoying. The below is the same thing
1189 * posix_get_clock_monotonic() does, but it wants to
1190 * take the lock which we want to cover the loads stuff
1191 * too.
1194 getnstimeofday(&tp);
1195 tp.tv_sec += wall_to_monotonic.tv_sec;
1196 tp.tv_nsec += wall_to_monotonic.tv_nsec;
1197 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1198 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1199 tp.tv_sec++;
1201 val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1203 val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1204 val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1205 val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1207 val.procs = nr_threads;
1208 } while (read_seqretry(&xtime_lock, seq));
1210 si_meminfo(&val);
1211 si_swapinfo(&val);
1214 * If the sum of all the available memory (i.e. ram + swap)
1215 * is less than can be stored in a 32 bit unsigned long then
1216 * we can be binary compatible with 2.2.x kernels. If not,
1217 * well, in that case 2.2.x was broken anyways...
1219 * -Erik Andersen <andersee@debian.org>
1222 mem_total = val.totalram + val.totalswap;
1223 if (mem_total < val.totalram || mem_total < val.totalswap)
1224 goto out;
1225 bitcount = 0;
1226 mem_unit = val.mem_unit;
1227 while (mem_unit > 1) {
1228 bitcount++;
1229 mem_unit >>= 1;
1230 sav_total = mem_total;
1231 mem_total <<= 1;
1232 if (mem_total < sav_total)
1233 goto out;
1237 * If mem_total did not overflow, multiply all memory values by
1238 * val.mem_unit and set it to 1. This leaves things compatible
1239 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1240 * kernels...
1243 val.mem_unit = 1;
1244 val.totalram <<= bitcount;
1245 val.freeram <<= bitcount;
1246 val.sharedram <<= bitcount;
1247 val.bufferram <<= bitcount;
1248 val.totalswap <<= bitcount;
1249 val.freeswap <<= bitcount;
1250 val.totalhigh <<= bitcount;
1251 val.freehigh <<= bitcount;
1253 out:
1254 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1255 return -EFAULT;
1257 return 0;
1260 static int __devinit init_timers_cpu(int cpu)
1262 int j;
1263 tvec_base_t *base;
1265 base = per_cpu(tvec_bases, cpu);
1266 if (!base) {
1267 static char boot_done;
1270 * Cannot do allocation in init_timers as that runs before the
1271 * allocator initializes (and would waste memory if there are
1272 * more possible CPUs than will ever be installed/brought up).
1274 if (boot_done) {
1275 base = kmalloc_node(sizeof(*base), GFP_KERNEL,
1276 cpu_to_node(cpu));
1277 if (!base)
1278 return -ENOMEM;
1279 memset(base, 0, sizeof(*base));
1280 } else {
1281 base = &boot_tvec_bases;
1282 boot_done = 1;
1284 per_cpu(tvec_bases, cpu) = base;
1286 spin_lock_init(&base->t_base.lock);
1287 for (j = 0; j < TVN_SIZE; j++) {
1288 INIT_LIST_HEAD(base->tv5.vec + j);
1289 INIT_LIST_HEAD(base->tv4.vec + j);
1290 INIT_LIST_HEAD(base->tv3.vec + j);
1291 INIT_LIST_HEAD(base->tv2.vec + j);
1293 for (j = 0; j < TVR_SIZE; j++)
1294 INIT_LIST_HEAD(base->tv1.vec + j);
1296 base->timer_jiffies = jiffies;
1297 return 0;
1300 #ifdef CONFIG_HOTPLUG_CPU
1301 static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
1303 struct timer_list *timer;
1305 while (!list_empty(head)) {
1306 timer = list_entry(head->next, struct timer_list, entry);
1307 detach_timer(timer, 0);
1308 timer->base = &new_base->t_base;
1309 internal_add_timer(new_base, timer);
1313 static void __devinit migrate_timers(int cpu)
1315 tvec_base_t *old_base;
1316 tvec_base_t *new_base;
1317 int i;
1319 BUG_ON(cpu_online(cpu));
1320 old_base = per_cpu(tvec_bases, cpu);
1321 new_base = get_cpu_var(tvec_bases);
1323 local_irq_disable();
1324 spin_lock(&new_base->t_base.lock);
1325 spin_lock(&old_base->t_base.lock);
1327 if (old_base->t_base.running_timer)
1328 BUG();
1329 for (i = 0; i < TVR_SIZE; i++)
1330 migrate_timer_list(new_base, old_base->tv1.vec + i);
1331 for (i = 0; i < TVN_SIZE; i++) {
1332 migrate_timer_list(new_base, old_base->tv2.vec + i);
1333 migrate_timer_list(new_base, old_base->tv3.vec + i);
1334 migrate_timer_list(new_base, old_base->tv4.vec + i);
1335 migrate_timer_list(new_base, old_base->tv5.vec + i);
1338 spin_unlock(&old_base->t_base.lock);
1339 spin_unlock(&new_base->t_base.lock);
1340 local_irq_enable();
1341 put_cpu_var(tvec_bases);
1343 #endif /* CONFIG_HOTPLUG_CPU */
1345 static int __devinit timer_cpu_notify(struct notifier_block *self,
1346 unsigned long action, void *hcpu)
1348 long cpu = (long)hcpu;
1349 switch(action) {
1350 case CPU_UP_PREPARE:
1351 if (init_timers_cpu(cpu) < 0)
1352 return NOTIFY_BAD;
1353 break;
1354 #ifdef CONFIG_HOTPLUG_CPU
1355 case CPU_DEAD:
1356 migrate_timers(cpu);
1357 break;
1358 #endif
1359 default:
1360 break;
1362 return NOTIFY_OK;
1365 static struct notifier_block __devinitdata timers_nb = {
1366 .notifier_call = timer_cpu_notify,
1370 void __init init_timers(void)
1372 timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1373 (void *)(long)smp_processor_id());
1374 register_cpu_notifier(&timers_nb);
1375 open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
1378 #ifdef CONFIG_TIME_INTERPOLATION
1380 struct time_interpolator *time_interpolator __read_mostly;
1381 static struct time_interpolator *time_interpolator_list __read_mostly;
1382 static DEFINE_SPINLOCK(time_interpolator_lock);
1384 static inline u64 time_interpolator_get_cycles(unsigned int src)
1386 unsigned long (*x)(void);
1388 switch (src)
1390 case TIME_SOURCE_FUNCTION:
1391 x = time_interpolator->addr;
1392 return x();
1394 case TIME_SOURCE_MMIO64 :
1395 return readq_relaxed((void __iomem *)time_interpolator->addr);
1397 case TIME_SOURCE_MMIO32 :
1398 return readl_relaxed((void __iomem *)time_interpolator->addr);
1400 default: return get_cycles();
1404 static inline u64 time_interpolator_get_counter(int writelock)
1406 unsigned int src = time_interpolator->source;
1408 if (time_interpolator->jitter)
1410 u64 lcycle;
1411 u64 now;
1413 do {
1414 lcycle = time_interpolator->last_cycle;
1415 now = time_interpolator_get_cycles(src);
1416 if (lcycle && time_after(lcycle, now))
1417 return lcycle;
1419 /* When holding the xtime write lock, there's no need
1420 * to add the overhead of the cmpxchg. Readers are
1421 * force to retry until the write lock is released.
1423 if (writelock) {
1424 time_interpolator->last_cycle = now;
1425 return now;
1427 /* Keep track of the last timer value returned. The use of cmpxchg here
1428 * will cause contention in an SMP environment.
1430 } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
1431 return now;
1433 else
1434 return time_interpolator_get_cycles(src);
1437 void time_interpolator_reset(void)
1439 time_interpolator->offset = 0;
1440 time_interpolator->last_counter = time_interpolator_get_counter(1);
1443 #define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)
1445 unsigned long time_interpolator_get_offset(void)
1447 /* If we do not have a time interpolator set up then just return zero */
1448 if (!time_interpolator)
1449 return 0;
1451 return time_interpolator->offset +
1452 GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator);
1455 #define INTERPOLATOR_ADJUST 65536
1456 #define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
1458 static void time_interpolator_update(long delta_nsec)
1460 u64 counter;
1461 unsigned long offset;
1463 /* If there is no time interpolator set up then do nothing */
1464 if (!time_interpolator)
1465 return;
1468 * The interpolator compensates for late ticks by accumulating the late
1469 * time in time_interpolator->offset. A tick earlier than expected will
1470 * lead to a reset of the offset and a corresponding jump of the clock
1471 * forward. Again this only works if the interpolator clock is running
1472 * slightly slower than the regular clock and the tuning logic insures
1473 * that.
1476 counter = time_interpolator_get_counter(1);
1477 offset = time_interpolator->offset +
1478 GET_TI_NSECS(counter, time_interpolator);
1480 if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
1481 time_interpolator->offset = offset - delta_nsec;
1482 else {
1483 time_interpolator->skips++;
1484 time_interpolator->ns_skipped += delta_nsec - offset;
1485 time_interpolator->offset = 0;
1487 time_interpolator->last_counter = counter;
1489 /* Tuning logic for time interpolator invoked every minute or so.
1490 * Decrease interpolator clock speed if no skips occurred and an offset is carried.
1491 * Increase interpolator clock speed if we skip too much time.
1493 if (jiffies % INTERPOLATOR_ADJUST == 0)
1495 if (time_interpolator->skips == 0 && time_interpolator->offset > TICK_NSEC)
1496 time_interpolator->nsec_per_cyc--;
1497 if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
1498 time_interpolator->nsec_per_cyc++;
1499 time_interpolator->skips = 0;
1500 time_interpolator->ns_skipped = 0;
1504 static inline int
1505 is_better_time_interpolator(struct time_interpolator *new)
1507 if (!time_interpolator)
1508 return 1;
1509 return new->frequency > 2*time_interpolator->frequency ||
1510 (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
1513 void
1514 register_time_interpolator(struct time_interpolator *ti)
1516 unsigned long flags;
1518 /* Sanity check */
1519 if (ti->frequency == 0 || ti->mask == 0)
1520 BUG();
1522 ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
1523 spin_lock(&time_interpolator_lock);
1524 write_seqlock_irqsave(&xtime_lock, flags);
1525 if (is_better_time_interpolator(ti)) {
1526 time_interpolator = ti;
1527 time_interpolator_reset();
1529 write_sequnlock_irqrestore(&xtime_lock, flags);
1531 ti->next = time_interpolator_list;
1532 time_interpolator_list = ti;
1533 spin_unlock(&time_interpolator_lock);
1536 void
1537 unregister_time_interpolator(struct time_interpolator *ti)
1539 struct time_interpolator *curr, **prev;
1540 unsigned long flags;
1542 spin_lock(&time_interpolator_lock);
1543 prev = &time_interpolator_list;
1544 for (curr = *prev; curr; curr = curr->next) {
1545 if (curr == ti) {
1546 *prev = curr->next;
1547 break;
1549 prev = &curr->next;
1552 write_seqlock_irqsave(&xtime_lock, flags);
1553 if (ti == time_interpolator) {
1554 /* we lost the best time-interpolator: */
1555 time_interpolator = NULL;
1556 /* find the next-best interpolator */
1557 for (curr = time_interpolator_list; curr; curr = curr->next)
1558 if (is_better_time_interpolator(curr))
1559 time_interpolator = curr;
1560 time_interpolator_reset();
1562 write_sequnlock_irqrestore(&xtime_lock, flags);
1563 spin_unlock(&time_interpolator_lock);
1565 #endif /* CONFIG_TIME_INTERPOLATION */
1568 * msleep - sleep safely even with waitqueue interruptions
1569 * @msecs: Time in milliseconds to sleep for
1571 void msleep(unsigned int msecs)
1573 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1575 while (timeout)
1576 timeout = schedule_timeout_uninterruptible(timeout);
1579 EXPORT_SYMBOL(msleep);
1582 * msleep_interruptible - sleep waiting for signals
1583 * @msecs: Time in milliseconds to sleep for
1585 unsigned long msleep_interruptible(unsigned int msecs)
1587 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1589 while (timeout && !signal_pending(current))
1590 timeout = schedule_timeout_interruptible(timeout);
1591 return jiffies_to_msecs(timeout);
1594 EXPORT_SYMBOL(msleep_interruptible);