[PATCH] drivers/video/: possible cleanups
[linux-2.6/suspend2-2.6.18.git] / arch / sh / kernel / time.c
blob671b876416bf184a1b66554547802bfc219aa52f
1 /*
2 * arch/sh/kernel/time.c
4 * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
5 * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org>
6 * Copyright (C) 2002, 2003, 2004 Paul Mundt
7 * Copyright (C) 2002 M. R. Brown <mrbrown@linux-sh.org>
9 * Some code taken from i386 version.
10 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
13 #include <linux/config.h>
14 #include <linux/errno.h>
15 #include <linux/module.h>
16 #include <linux/sched.h>
17 #include <linux/kernel.h>
18 #include <linux/param.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/interrupt.h>
22 #include <linux/time.h>
23 #include <linux/delay.h>
24 #include <linux/init.h>
25 #include <linux/smp.h>
26 #include <linux/profile.h>
28 #include <asm/processor.h>
29 #include <asm/uaccess.h>
30 #include <asm/io.h>
31 #include <asm/irq.h>
32 #include <asm/delay.h>
33 #include <asm/machvec.h>
34 #include <asm/rtc.h>
35 #include <asm/freq.h>
36 #include <asm/cpu/timer.h>
37 #ifdef CONFIG_SH_KGDB
38 #include <asm/kgdb.h>
39 #endif
41 #include <linux/timex.h>
42 #include <linux/irq.h>
44 #define TMU_TOCR_INIT 0x00
45 #define TMU0_TCR_INIT 0x0020
46 #define TMU_TSTR_INIT 1
48 #define TMU0_TCR_CALIB 0x0000
50 #ifdef CONFIG_CPU_SUBTYPE_ST40STB1
51 #define CLOCKGEN_MEMCLKCR 0xbb040038
52 #define MEMCLKCR_RATIO_MASK 0x7
53 #endif /* CONFIG_CPU_SUBTYPE_ST40STB1 */
55 extern unsigned long wall_jiffies;
56 #define TICK_SIZE (tick_nsec / 1000)
57 DEFINE_SPINLOCK(tmu0_lock);
59 /* XXX: Can we initialize this in a routine somewhere? Dreamcast doesn't want
60 * these routines anywhere... */
61 #ifdef CONFIG_SH_RTC
62 void (*rtc_get_time)(struct timespec *) = sh_rtc_gettimeofday;
63 int (*rtc_set_time)(const time_t) = sh_rtc_settimeofday;
64 #else
65 void (*rtc_get_time)(struct timespec *);
66 int (*rtc_set_time)(const time_t);
67 #endif
69 #if defined(CONFIG_CPU_SUBTYPE_SH7300)
70 static int md_table[] = { 1, 2, 3, 4, 6, 8, 12 };
71 #endif
72 #if defined(CONFIG_CPU_SH3)
73 static int stc_multipliers[] = { 1, 2, 3, 4, 6, 1, 1, 1 };
74 static int stc_values[] = { 0, 1, 4, 2, 5, 0, 0, 0 };
75 #define bfc_divisors stc_multipliers
76 #define bfc_values stc_values
77 static int ifc_divisors[] = { 1, 2, 3, 4, 1, 1, 1, 1 };
78 static int ifc_values[] = { 0, 1, 4, 2, 0, 0, 0, 0 };
79 static int pfc_divisors[] = { 1, 2, 3, 4, 6, 1, 1, 1 };
80 static int pfc_values[] = { 0, 1, 4, 2, 5, 0, 0, 0 };
81 #elif defined(CONFIG_CPU_SH4)
82 #if defined(CONFIG_CPU_SUBTYPE_SH73180)
83 static int ifc_divisors[] = { 1, 2, 3, 4, 6, 8, 12, 16 };
84 static int ifc_values[] = { 0, 1, 2, 3, 4, 5, 6, 7 };
85 #define bfc_divisors ifc_divisors /* Same */
86 #define bfc_values ifc_values
87 #define pfc_divisors ifc_divisors /* Same */
88 #define pfc_values ifc_values
89 #else
90 static int ifc_divisors[] = { 1, 2, 3, 4, 6, 8, 1, 1 };
91 static int ifc_values[] = { 0, 1, 2, 3, 0, 4, 0, 5 };
92 #define bfc_divisors ifc_divisors /* Same */
93 #define bfc_values ifc_values
94 static int pfc_divisors[] = { 2, 3, 4, 6, 8, 2, 2, 2 };
95 static int pfc_values[] = { 0, 0, 1, 2, 0, 3, 0, 4 };
96 #endif
97 #else
98 #error "Unknown ifc/bfc/pfc/stc values for this processor"
99 #endif
102 * Scheduler clock - returns current time in nanosec units.
104 unsigned long long sched_clock(void)
106 return (unsigned long long)jiffies * (1000000000 / HZ);
109 static unsigned long do_gettimeoffset(void)
111 int count;
112 unsigned long flags;
114 static int count_p = 0x7fffffff; /* for the first call after boot */
115 static unsigned long jiffies_p = 0;
118 * cache volatile jiffies temporarily; we have IRQs turned off.
120 unsigned long jiffies_t;
122 spin_lock_irqsave(&tmu0_lock, flags);
123 /* timer count may underflow right here */
124 count = ctrl_inl(TMU0_TCNT); /* read the latched count */
126 jiffies_t = jiffies;
129 * avoiding timer inconsistencies (they are rare, but they happen)...
130 * there is one kind of problem that must be avoided here:
131 * 1. the timer counter underflows
134 if( jiffies_t == jiffies_p ) {
135 if( count > count_p ) {
136 /* the nutcase */
138 if(ctrl_inw(TMU0_TCR) & 0x100) { /* Check UNF bit */
140 * We cannot detect lost timer interrupts ...
141 * well, that's why we call them lost, don't we? :)
142 * [hmm, on the Pentium and Alpha we can ... sort of]
144 count -= LATCH;
145 } else {
146 printk("do_slow_gettimeoffset(): hardware timer problem?\n");
149 } else
150 jiffies_p = jiffies_t;
152 count_p = count;
153 spin_unlock_irqrestore(&tmu0_lock, flags);
155 count = ((LATCH-1) - count) * TICK_SIZE;
156 count = (count + LATCH/2) / LATCH;
158 return count;
161 void do_gettimeofday(struct timeval *tv)
163 unsigned long seq;
164 unsigned long usec, sec;
165 unsigned long lost;
167 do {
168 seq = read_seqbegin(&xtime_lock);
169 usec = do_gettimeoffset();
171 lost = jiffies - wall_jiffies;
172 if (lost)
173 usec += lost * (1000000 / HZ);
175 sec = xtime.tv_sec;
176 usec += xtime.tv_nsec / 1000;
177 } while (read_seqretry(&xtime_lock, seq));
179 while (usec >= 1000000) {
180 usec -= 1000000;
181 sec++;
184 tv->tv_sec = sec;
185 tv->tv_usec = usec;
188 EXPORT_SYMBOL(do_gettimeofday);
190 int do_settimeofday(struct timespec *tv)
192 time_t wtm_sec, sec = tv->tv_sec;
193 long wtm_nsec, nsec = tv->tv_nsec;
195 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
196 return -EINVAL;
198 write_seqlock_irq(&xtime_lock);
200 * This is revolting. We need to set "xtime" correctly. However, the
201 * value in this location is the value at the most recent update of
202 * wall time. Discover what correction gettimeofday() would have
203 * made, and then undo it!
205 nsec -= 1000 * (do_gettimeoffset() +
206 (jiffies - wall_jiffies) * (1000000 / HZ));
208 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
209 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
211 set_normalized_timespec(&xtime, sec, nsec);
212 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
214 ntp_clear();
215 write_sequnlock_irq(&xtime_lock);
216 clock_was_set();
218 return 0;
221 EXPORT_SYMBOL(do_settimeofday);
223 /* last time the RTC clock got updated */
224 static long last_rtc_update;
227 * timer_interrupt() needs to keep up the real-time clock,
228 * as well as call the "do_timer()" routine every clocktick
230 static inline void do_timer_interrupt(int irq, struct pt_regs *regs)
232 do_timer(regs);
233 #ifndef CONFIG_SMP
234 update_process_times(user_mode(regs));
235 #endif
236 profile_tick(CPU_PROFILING, regs);
238 #ifdef CONFIG_HEARTBEAT
239 if (sh_mv.mv_heartbeat != NULL)
240 sh_mv.mv_heartbeat();
241 #endif
244 * If we have an externally synchronized Linux clock, then update
245 * RTC clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
246 * called as close as possible to 500 ms before the new second starts.
248 if (ntp_synced() &&
249 xtime.tv_sec > last_rtc_update + 660 &&
250 (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
251 (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
252 if (rtc_set_time(xtime.tv_sec) == 0)
253 last_rtc_update = xtime.tv_sec;
254 else
255 last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
260 * This is the same as the above, except we _also_ save the current
261 * Time Stamp Counter value at the time of the timer interrupt, so that
262 * we later on can estimate the time of day more exactly.
264 static irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
266 unsigned long timer_status;
268 /* Clear UNF bit */
269 timer_status = ctrl_inw(TMU0_TCR);
270 timer_status &= ~0x100;
271 ctrl_outw(timer_status, TMU0_TCR);
274 * Here we are in the timer irq handler. We just have irqs locally
275 * disabled but we don't know if the timer_bh is running on the other
276 * CPU. We need to avoid to SMP race with it. NOTE: we don' t need
277 * the irq version of write_lock because as just said we have irq
278 * locally disabled. -arca
280 write_seqlock(&xtime_lock);
281 do_timer_interrupt(irq, regs);
282 write_sequnlock(&xtime_lock);
284 return IRQ_HANDLED;
288 * Hah! We'll see if this works (switching from usecs to nsecs).
290 static unsigned int __init get_timer_frequency(void)
292 u32 freq;
293 struct timespec ts1, ts2;
294 unsigned long diff_nsec;
295 unsigned long factor;
297 /* Setup the timer: We don't want to generate interrupts, just
298 * have it count down at its natural rate.
300 ctrl_outb(0, TMU_TSTR);
301 #if !defined(CONFIG_CPU_SUBTYPE_SH7300)
302 ctrl_outb(TMU_TOCR_INIT, TMU_TOCR);
303 #endif
304 ctrl_outw(TMU0_TCR_CALIB, TMU0_TCR);
305 ctrl_outl(0xffffffff, TMU0_TCOR);
306 ctrl_outl(0xffffffff, TMU0_TCNT);
308 rtc_get_time(&ts2);
310 do {
311 rtc_get_time(&ts1);
312 } while (ts1.tv_nsec == ts2.tv_nsec && ts1.tv_sec == ts2.tv_sec);
314 /* actually start the timer */
315 ctrl_outb(TMU_TSTR_INIT, TMU_TSTR);
317 do {
318 rtc_get_time(&ts2);
319 } while (ts1.tv_nsec == ts2.tv_nsec && ts1.tv_sec == ts2.tv_sec);
321 freq = 0xffffffff - ctrl_inl(TMU0_TCNT);
322 if (ts2.tv_nsec < ts1.tv_nsec) {
323 ts2.tv_nsec += 1000000000;
324 ts2.tv_sec--;
327 diff_nsec = (ts2.tv_sec - ts1.tv_sec) * 1000000000 + (ts2.tv_nsec - ts1.tv_nsec);
329 /* this should work well if the RTC has a precision of n Hz, where
330 * n is an integer. I don't think we have to worry about the other
331 * cases. */
332 factor = (1000000000 + diff_nsec/2) / diff_nsec;
334 if (factor * diff_nsec > 1100000000 ||
335 factor * diff_nsec < 900000000)
336 panic("weird RTC (diff_nsec %ld)", diff_nsec);
338 return freq * factor;
341 void (*board_time_init)(void);
342 void (*board_timer_setup)(struct irqaction *irq);
344 static unsigned int sh_pclk_freq __initdata = CONFIG_SH_PCLK_FREQ;
346 static int __init sh_pclk_setup(char *str)
348 unsigned int freq;
350 if (get_option(&str, &freq))
351 sh_pclk_freq = freq;
353 return 1;
355 __setup("sh_pclk=", sh_pclk_setup);
357 static struct irqaction irq0 = { timer_interrupt, SA_INTERRUPT, CPU_MASK_NONE, "timer", NULL, NULL};
359 void get_current_frequency_divisors(unsigned int *ifc, unsigned int *bfc, unsigned int *pfc)
361 unsigned int frqcr = ctrl_inw(FRQCR);
363 #if defined(CONFIG_CPU_SH3)
364 #if defined(CONFIG_CPU_SUBTYPE_SH7300)
365 *ifc = md_table[((frqcr & 0x0070) >> 4)];
366 *bfc = md_table[((frqcr & 0x0700) >> 8)];
367 *pfc = md_table[frqcr & 0x0007];
368 #elif defined(CONFIG_CPU_SUBTYPE_SH7705)
369 *bfc = stc_multipliers[(frqcr & 0x0300) >> 8];
370 *ifc = ifc_divisors[(frqcr & 0x0030) >> 4];
371 *pfc = pfc_divisors[frqcr & 0x0003];
372 #else
373 unsigned int tmp;
375 tmp = (frqcr & 0x8000) >> 13;
376 tmp |= (frqcr & 0x0030) >> 4;
377 *bfc = stc_multipliers[tmp];
378 tmp = (frqcr & 0x4000) >> 12;
379 tmp |= (frqcr & 0x000c) >> 2;
380 *ifc = ifc_divisors[tmp];
381 tmp = (frqcr & 0x2000) >> 11;
382 tmp |= frqcr & 0x0003;
383 *pfc = pfc_divisors[tmp];
384 #endif
385 #elif defined(CONFIG_CPU_SH4)
386 #if defined(CONFIG_CPU_SUBTYPE_SH73180)
387 *ifc = ifc_divisors[(frqcr>> 20) & 0x0007];
388 *bfc = bfc_divisors[(frqcr>> 12) & 0x0007];
389 *pfc = pfc_divisors[frqcr & 0x0007];
390 #else
391 *ifc = ifc_divisors[(frqcr >> 6) & 0x0007];
392 *bfc = bfc_divisors[(frqcr >> 3) & 0x0007];
393 *pfc = pfc_divisors[frqcr & 0x0007];
394 #endif
395 #endif
399 * This bit of ugliness builds up accessor routines to get at both
400 * the divisors and the physical values.
402 #define _FREQ_TABLE(x) \
403 unsigned int get_##x##_divisor(unsigned int value) \
404 { return x##_divisors[value]; } \
406 unsigned int get_##x##_value(unsigned int divisor) \
407 { return x##_values[(divisor - 1)]; }
409 _FREQ_TABLE(ifc);
410 _FREQ_TABLE(bfc);
411 _FREQ_TABLE(pfc);
413 #ifdef CONFIG_CPU_SUBTYPE_ST40STB1
416 * The ST40 divisors are totally different so we set the cpu data
417 * clocks using a different algorithm
419 * I've just plugged this from the 2.4 code
420 * - Alex Bennee <kernel-hacker@bennee.com>
422 #define CCN_PVR_CHIP_SHIFT 24
423 #define CCN_PVR_CHIP_MASK 0xff
424 #define CCN_PVR_CHIP_ST40STB1 0x4
427 struct frqcr_data {
428 unsigned short frqcr;
430 struct {
431 unsigned char multiplier;
432 unsigned char divisor;
433 } factor[3];
436 static struct frqcr_data st40_frqcr_table[] = {
437 { 0x000, {{1,1}, {1,1}, {1,2}}},
438 { 0x002, {{1,1}, {1,1}, {1,4}}},
439 { 0x004, {{1,1}, {1,1}, {1,8}}},
440 { 0x008, {{1,1}, {1,2}, {1,2}}},
441 { 0x00A, {{1,1}, {1,2}, {1,4}}},
442 { 0x00C, {{1,1}, {1,2}, {1,8}}},
443 { 0x011, {{1,1}, {2,3}, {1,6}}},
444 { 0x013, {{1,1}, {2,3}, {1,3}}},
445 { 0x01A, {{1,1}, {1,2}, {1,4}}},
446 { 0x01C, {{1,1}, {1,2}, {1,8}}},
447 { 0x023, {{1,1}, {2,3}, {1,3}}},
448 { 0x02C, {{1,1}, {1,2}, {1,8}}},
449 { 0x048, {{1,2}, {1,2}, {1,4}}},
450 { 0x04A, {{1,2}, {1,2}, {1,6}}},
451 { 0x04C, {{1,2}, {1,2}, {1,8}}},
452 { 0x05A, {{1,2}, {1,3}, {1,6}}},
453 { 0x05C, {{1,2}, {1,3}, {1,6}}},
454 { 0x063, {{1,2}, {1,4}, {1,4}}},
455 { 0x06C, {{1,2}, {1,4}, {1,8}}},
456 { 0x091, {{1,3}, {1,3}, {1,6}}},
457 { 0x093, {{1,3}, {1,3}, {1,6}}},
458 { 0x0A3, {{1,3}, {1,6}, {1,6}}},
459 { 0x0DA, {{1,4}, {1,4}, {1,8}}},
460 { 0x0DC, {{1,4}, {1,4}, {1,8}}},
461 { 0x0EC, {{1,4}, {1,8}, {1,8}}},
462 { 0x123, {{1,4}, {1,4}, {1,8}}},
463 { 0x16C, {{1,4}, {1,8}, {1,8}}},
466 struct memclk_data {
467 unsigned char multiplier;
468 unsigned char divisor;
471 static struct memclk_data st40_memclk_table[8] = {
472 {1,1}, // 000
473 {1,2}, // 001
474 {1,3}, // 010
475 {2,3}, // 011
476 {1,4}, // 100
477 {1,6}, // 101
478 {1,8}, // 110
479 {1,8} // 111
482 static void st40_specific_time_init(unsigned int module_clock, unsigned short frqcr)
484 unsigned int cpu_clock, master_clock, bus_clock, memory_clock;
485 struct frqcr_data *d;
486 int a;
487 unsigned long memclkcr;
488 struct memclk_data *e;
490 for (a = 0; a < ARRAY_SIZE(st40_frqcr_table); a++) {
491 d = &st40_frqcr_table[a];
493 if (d->frqcr == (frqcr & 0x1ff))
494 break;
497 if (a == ARRAY_SIZE(st40_frqcr_table)) {
498 d = st40_frqcr_table;
500 printk("ERROR: Unrecognised FRQCR value (0x%x), "
501 "using default multipliers\n", frqcr);
504 memclkcr = ctrl_inl(CLOCKGEN_MEMCLKCR);
505 e = &st40_memclk_table[memclkcr & MEMCLKCR_RATIO_MASK];
507 printk(KERN_INFO "Clock multipliers: CPU: %d/%d Bus: %d/%d "
508 "Mem: %d/%d Periph: %d/%d\n",
509 d->factor[0].multiplier, d->factor[0].divisor,
510 d->factor[1].multiplier, d->factor[1].divisor,
511 e->multiplier, e->divisor,
512 d->factor[2].multiplier, d->factor[2].divisor);
514 master_clock = module_clock * d->factor[2].divisor
515 / d->factor[2].multiplier;
516 bus_clock = master_clock * d->factor[1].multiplier
517 / d->factor[1].divisor;
518 memory_clock = master_clock * e->multiplier
519 / e->divisor;
520 cpu_clock = master_clock * d->factor[0].multiplier
521 / d->factor[0].divisor;
523 current_cpu_data.cpu_clock = cpu_clock;
524 current_cpu_data.master_clock = master_clock;
525 current_cpu_data.bus_clock = bus_clock;
526 current_cpu_data.memory_clock = memory_clock;
527 current_cpu_data.module_clock = module_clock;
529 #endif
531 void __init time_init(void)
533 unsigned int timer_freq = 0;
534 unsigned int ifc, pfc, bfc;
535 unsigned long interval;
536 #ifdef CONFIG_CPU_SUBTYPE_ST40STB1
537 unsigned long pvr;
538 unsigned short frqcr;
539 #endif
541 if (board_time_init)
542 board_time_init();
545 * If we don't have an RTC (such as with the SH7300), don't attempt to
546 * probe the timer frequency. Rely on an either hardcoded peripheral
547 * clock value, or on the sh_pclk command line option. Note that we
548 * still need to have CONFIG_SH_PCLK_FREQ set in order for things like
549 * CLOCK_TICK_RATE to be sane.
551 current_cpu_data.module_clock = sh_pclk_freq;
553 #ifdef CONFIG_SH_PCLK_CALC
554 /* XXX: Switch this over to a more generic test. */
556 unsigned int freq;
559 * If we've specified a peripheral clock frequency, and we have
560 * an RTC, compare it against the autodetected value. Complain
561 * if there's a mismatch.
563 timer_freq = get_timer_frequency();
564 freq = timer_freq * 4;
566 if (sh_pclk_freq && (sh_pclk_freq/100*99 > freq || sh_pclk_freq/100*101 < freq)) {
567 printk(KERN_NOTICE "Calculated peripheral clock value "
568 "%d differs from sh_pclk value %d, fixing..\n",
569 freq, sh_pclk_freq);
570 current_cpu_data.module_clock = freq;
573 #endif
575 #ifdef CONFIG_CPU_SUBTYPE_ST40STB1
576 /* XXX: Update ST40 code to use board_time_init() */
577 pvr = ctrl_inl(CCN_PVR);
578 frqcr = ctrl_inw(FRQCR);
579 printk("time.c ST40 Probe: PVR %08lx, FRQCR %04hx\n", pvr, frqcr);
581 if (((pvr >> CCN_PVR_CHIP_SHIFT) & CCN_PVR_CHIP_MASK) == CCN_PVR_CHIP_ST40STB1)
582 st40_specific_time_init(current_cpu_data.module_clock, frqcr);
583 else
584 #endif
585 get_current_frequency_divisors(&ifc, &bfc, &pfc);
587 if (rtc_get_time) {
588 rtc_get_time(&xtime);
589 } else {
590 xtime.tv_sec = mktime(2000, 1, 1, 0, 0, 0);
591 xtime.tv_nsec = 0;
594 set_normalized_timespec(&wall_to_monotonic,
595 -xtime.tv_sec, -xtime.tv_nsec);
597 if (board_timer_setup) {
598 board_timer_setup(&irq0);
599 } else {
600 setup_irq(TIMER_IRQ, &irq0);
604 * for ST40 chips the current_cpu_data should already be set
605 * so not having valid pfc/bfc/ifc shouldn't be a problem
607 if (!current_cpu_data.master_clock)
608 current_cpu_data.master_clock = current_cpu_data.module_clock * pfc;
609 if (!current_cpu_data.bus_clock)
610 current_cpu_data.bus_clock = current_cpu_data.master_clock / bfc;
611 if (!current_cpu_data.cpu_clock)
612 current_cpu_data.cpu_clock = current_cpu_data.master_clock / ifc;
614 printk("CPU clock: %d.%02dMHz\n",
615 (current_cpu_data.cpu_clock / 1000000),
616 (current_cpu_data.cpu_clock % 1000000)/10000);
617 printk("Bus clock: %d.%02dMHz\n",
618 (current_cpu_data.bus_clock / 1000000),
619 (current_cpu_data.bus_clock % 1000000)/10000);
620 #ifdef CONFIG_CPU_SUBTYPE_ST40STB1
621 printk("Memory clock: %d.%02dMHz\n",
622 (current_cpu_data.memory_clock / 1000000),
623 (current_cpu_data.memory_clock % 1000000)/10000);
624 #endif
625 printk("Module clock: %d.%02dMHz\n",
626 (current_cpu_data.module_clock / 1000000),
627 (current_cpu_data.module_clock % 1000000)/10000);
629 interval = (current_cpu_data.module_clock/4 + HZ/2) / HZ;
631 printk("Interval = %ld\n", interval);
633 /* Start TMU0 */
634 ctrl_outb(0, TMU_TSTR);
635 #if !defined(CONFIG_CPU_SUBTYPE_SH7300)
636 ctrl_outb(TMU_TOCR_INIT, TMU_TOCR);
637 #endif
638 ctrl_outw(TMU0_TCR_INIT, TMU0_TCR);
639 ctrl_outl(interval, TMU0_TCOR);
640 ctrl_outl(interval, TMU0_TCNT);
641 ctrl_outb(TMU_TSTR_INIT, TMU_TSTR);
643 #if defined(CONFIG_SH_KGDB)
645 * Set up kgdb as requested. We do it here because the serial
646 * init uses the timer vars we just set up for figuring baud.
648 kgdb_init();
649 #endif