Linux 2.6.18.8
[linux-2.6/suspend2-2.6.18.git] / drivers / rtc / rtc-sa1100.c
blobee4b61ee67b03de09faa6296137dd0c3f925d495
1 /*
2 * Real Time Clock interface for StrongARM SA1x00 and XScale PXA2xx
4 * Copyright (c) 2000 Nils Faerber
6 * Based on rtc.c by Paul Gortmaker
8 * Original Driver by Nils Faerber <nils@kernelconcepts.de>
10 * Modifications from:
11 * CIH <cih@coventive.com>
12 * Nicolas Pitre <nico@cam.org>
13 * Andrew Christian <andrew.christian@hp.com>
15 * Converted to the RTC subsystem and Driver Model
16 * by Richard Purdie <rpurdie@rpsys.net>
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
24 #include <linux/platform_device.h>
25 #include <linux/module.h>
26 #include <linux/rtc.h>
27 #include <linux/init.h>
28 #include <linux/fs.h>
29 #include <linux/interrupt.h>
30 #include <linux/string.h>
31 #include <linux/pm.h>
33 #include <asm/bitops.h>
34 #include <asm/hardware.h>
35 #include <asm/irq.h>
36 #include <asm/rtc.h>
38 #ifdef CONFIG_ARCH_PXA
39 #include <asm/arch/pxa-regs.h>
40 #endif
42 #define TIMER_FREQ CLOCK_TICK_RATE
43 #define RTC_DEF_DIVIDER 32768 - 1
44 #define RTC_DEF_TRIM 0
46 static unsigned long rtc_freq = 1024;
47 static struct rtc_time rtc_alarm;
48 static DEFINE_SPINLOCK(sa1100_rtc_lock);
50 static int rtc_update_alarm(struct rtc_time *alrm)
52 struct rtc_time alarm_tm, now_tm;
53 unsigned long now, time;
54 int ret;
56 do {
57 now = RCNR;
58 rtc_time_to_tm(now, &now_tm);
59 rtc_next_alarm_time(&alarm_tm, &now_tm, alrm);
60 ret = rtc_tm_to_time(&alarm_tm, &time);
61 if (ret != 0)
62 break;
64 RTSR = RTSR & (RTSR_HZE|RTSR_ALE|RTSR_AL);
65 RTAR = time;
66 } while (now != RCNR);
68 return ret;
71 static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id,
72 struct pt_regs *regs)
74 struct platform_device *pdev = to_platform_device(dev_id);
75 struct rtc_device *rtc = platform_get_drvdata(pdev);
76 unsigned int rtsr;
77 unsigned long events = 0;
79 spin_lock(&sa1100_rtc_lock);
81 rtsr = RTSR;
82 /* clear interrupt sources */
83 RTSR = 0;
84 RTSR = (RTSR_AL | RTSR_HZ) & (rtsr >> 2);
86 /* clear alarm interrupt if it has occurred */
87 if (rtsr & RTSR_AL)
88 rtsr &= ~RTSR_ALE;
89 RTSR = rtsr & (RTSR_ALE | RTSR_HZE);
91 /* update irq data & counter */
92 if (rtsr & RTSR_AL)
93 events |= RTC_AF | RTC_IRQF;
94 if (rtsr & RTSR_HZ)
95 events |= RTC_UF | RTC_IRQF;
97 rtc_update_irq(&rtc->class_dev, 1, events);
99 if (rtsr & RTSR_AL && rtc_periodic_alarm(&rtc_alarm))
100 rtc_update_alarm(&rtc_alarm);
102 spin_unlock(&sa1100_rtc_lock);
104 return IRQ_HANDLED;
107 static int rtc_timer1_count;
109 static irqreturn_t timer1_interrupt(int irq, void *dev_id,
110 struct pt_regs *regs)
112 struct platform_device *pdev = to_platform_device(dev_id);
113 struct rtc_device *rtc = platform_get_drvdata(pdev);
116 * If we match for the first time, rtc_timer1_count will be 1.
117 * Otherwise, we wrapped around (very unlikely but
118 * still possible) so compute the amount of missed periods.
119 * The match reg is updated only when the data is actually retrieved
120 * to avoid unnecessary interrupts.
122 OSSR = OSSR_M1; /* clear match on timer1 */
124 rtc_update_irq(&rtc->class_dev, rtc_timer1_count, RTC_PF | RTC_IRQF);
126 if (rtc_timer1_count == 1)
127 rtc_timer1_count = (rtc_freq * ((1<<30)/(TIMER_FREQ>>2)));
129 return IRQ_HANDLED;
132 static int sa1100_rtc_read_callback(struct device *dev, int data)
134 if (data & RTC_PF) {
135 /* interpolate missed periods and set match for the next */
136 unsigned long period = TIMER_FREQ/rtc_freq;
137 unsigned long oscr = OSCR;
138 unsigned long osmr1 = OSMR1;
139 unsigned long missed = (oscr - osmr1)/period;
140 data += missed << 8;
141 OSSR = OSSR_M1; /* clear match on timer 1 */
142 OSMR1 = osmr1 + (missed + 1)*period;
143 /* Ensure we didn't miss another match in the mean time.
144 * Here we compare (match - OSCR) 8 instead of 0 --
145 * see comment in pxa_timer_interrupt() for explanation.
147 while( (signed long)((osmr1 = OSMR1) - OSCR) <= 8 ) {
148 data += 0x100;
149 OSSR = OSSR_M1; /* clear match on timer 1 */
150 OSMR1 = osmr1 + period;
153 return data;
156 static int sa1100_rtc_open(struct device *dev)
158 int ret;
160 ret = request_irq(IRQ_RTC1Hz, sa1100_rtc_interrupt, IRQF_DISABLED,
161 "rtc 1Hz", dev);
162 if (ret) {
163 dev_err(dev, "IRQ %d already in use.\n", IRQ_RTC1Hz);
164 goto fail_ui;
166 ret = request_irq(IRQ_RTCAlrm, sa1100_rtc_interrupt, IRQF_DISABLED,
167 "rtc Alrm", dev);
168 if (ret) {
169 dev_err(dev, "IRQ %d already in use.\n", IRQ_RTCAlrm);
170 goto fail_ai;
172 ret = request_irq(IRQ_OST1, timer1_interrupt, IRQF_DISABLED,
173 "rtc timer", dev);
174 if (ret) {
175 dev_err(dev, "IRQ %d already in use.\n", IRQ_OST1);
176 goto fail_pi;
178 return 0;
180 fail_pi:
181 free_irq(IRQ_RTCAlrm, dev);
182 fail_ai:
183 free_irq(IRQ_RTC1Hz, dev);
184 fail_ui:
185 return ret;
188 static void sa1100_rtc_release(struct device *dev)
190 spin_lock_irq(&sa1100_rtc_lock);
191 RTSR = 0;
192 OIER &= ~OIER_E1;
193 OSSR = OSSR_M1;
194 spin_unlock_irq(&sa1100_rtc_lock);
196 free_irq(IRQ_OST1, dev);
197 free_irq(IRQ_RTCAlrm, dev);
198 free_irq(IRQ_RTC1Hz, dev);
202 static int sa1100_rtc_ioctl(struct device *dev, unsigned int cmd,
203 unsigned long arg)
205 switch(cmd) {
206 case RTC_AIE_OFF:
207 spin_lock_irq(&sa1100_rtc_lock);
208 RTSR &= ~RTSR_ALE;
209 spin_unlock_irq(&sa1100_rtc_lock);
210 return 0;
211 case RTC_AIE_ON:
212 spin_lock_irq(&sa1100_rtc_lock);
213 RTSR |= RTSR_ALE;
214 spin_unlock_irq(&sa1100_rtc_lock);
215 return 0;
216 case RTC_UIE_OFF:
217 spin_lock_irq(&sa1100_rtc_lock);
218 RTSR &= ~RTSR_HZE;
219 spin_unlock_irq(&sa1100_rtc_lock);
220 return 0;
221 case RTC_UIE_ON:
222 spin_lock_irq(&sa1100_rtc_lock);
223 RTSR |= RTSR_HZE;
224 spin_unlock_irq(&sa1100_rtc_lock);
225 return 0;
226 case RTC_PIE_OFF:
227 spin_lock_irq(&sa1100_rtc_lock);
228 OIER &= ~OIER_E1;
229 spin_unlock_irq(&sa1100_rtc_lock);
230 return 0;
231 case RTC_PIE_ON:
232 spin_lock_irq(&sa1100_rtc_lock);
233 OSMR1 = TIMER_FREQ/rtc_freq + OSCR;
234 OIER |= OIER_E1;
235 rtc_timer1_count = 1;
236 spin_unlock_irq(&sa1100_rtc_lock);
237 return 0;
238 case RTC_IRQP_READ:
239 return put_user(rtc_freq, (unsigned long *)arg);
240 case RTC_IRQP_SET:
241 if (arg < 1 || arg > TIMER_FREQ)
242 return -EINVAL;
243 rtc_freq = arg;
244 return 0;
246 return -ENOIOCTLCMD;
249 static int sa1100_rtc_read_time(struct device *dev, struct rtc_time *tm)
251 rtc_time_to_tm(RCNR, tm);
252 return 0;
255 static int sa1100_rtc_set_time(struct device *dev, struct rtc_time *tm)
257 unsigned long time;
258 int ret;
260 ret = rtc_tm_to_time(tm, &time);
261 if (ret == 0)
262 RCNR = time;
263 return ret;
266 static int sa1100_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
268 memcpy(&alrm->time, &rtc_alarm, sizeof(struct rtc_time));
269 alrm->pending = RTSR & RTSR_AL ? 1 : 0;
270 return 0;
273 static int sa1100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
275 int ret;
277 spin_lock_irq(&sa1100_rtc_lock);
278 ret = rtc_update_alarm(&alrm->time);
279 if (ret == 0) {
280 memcpy(&rtc_alarm, &alrm->time, sizeof(struct rtc_time));
282 if (alrm->enabled)
283 enable_irq_wake(IRQ_RTCAlrm);
284 else
285 disable_irq_wake(IRQ_RTCAlrm);
287 spin_unlock_irq(&sa1100_rtc_lock);
289 return ret;
292 static int sa1100_rtc_proc(struct device *dev, struct seq_file *seq)
294 seq_printf(seq, "trim/divider\t: 0x%08lx\n", RTTR);
295 seq_printf(seq, "alarm_IRQ\t: %s\n",
296 (RTSR & RTSR_ALE) ? "yes" : "no" );
297 seq_printf(seq, "update_IRQ\t: %s\n",
298 (RTSR & RTSR_HZE) ? "yes" : "no");
299 seq_printf(seq, "periodic_IRQ\t: %s\n",
300 (OIER & OIER_E1) ? "yes" : "no");
301 seq_printf(seq, "periodic_freq\t: %ld\n", rtc_freq);
303 return 0;
306 static struct rtc_class_ops sa1100_rtc_ops = {
307 .open = sa1100_rtc_open,
308 .read_callback = sa1100_rtc_read_callback,
309 .release = sa1100_rtc_release,
310 .ioctl = sa1100_rtc_ioctl,
311 .read_time = sa1100_rtc_read_time,
312 .set_time = sa1100_rtc_set_time,
313 .read_alarm = sa1100_rtc_read_alarm,
314 .set_alarm = sa1100_rtc_set_alarm,
315 .proc = sa1100_rtc_proc,
318 static int sa1100_rtc_probe(struct platform_device *pdev)
320 struct rtc_device *rtc;
323 * According to the manual we should be able to let RTTR be zero
324 * and then a default diviser for a 32.768KHz clock is used.
325 * Apparently this doesn't work, at least for my SA1110 rev 5.
326 * If the clock divider is uninitialized then reset it to the
327 * default value to get the 1Hz clock.
329 if (RTTR == 0) {
330 RTTR = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16);
331 dev_warn(&pdev->dev, "warning: initializing default clock divider/trim value\n");
332 /* The current RTC value probably doesn't make sense either */
333 RCNR = 0;
336 rtc = rtc_device_register(pdev->name, &pdev->dev, &sa1100_rtc_ops,
337 THIS_MODULE);
339 if (IS_ERR(rtc))
340 return PTR_ERR(rtc);
342 platform_set_drvdata(pdev, rtc);
344 return 0;
347 static int sa1100_rtc_remove(struct platform_device *pdev)
349 struct rtc_device *rtc = platform_get_drvdata(pdev);
351 if (rtc)
352 rtc_device_unregister(rtc);
354 return 0;
357 static struct platform_driver sa1100_rtc_driver = {
358 .probe = sa1100_rtc_probe,
359 .remove = sa1100_rtc_remove,
360 .driver = {
361 .name = "sa1100-rtc",
365 static int __init sa1100_rtc_init(void)
367 return platform_driver_register(&sa1100_rtc_driver);
370 static void __exit sa1100_rtc_exit(void)
372 platform_driver_unregister(&sa1100_rtc_driver);
375 module_init(sa1100_rtc_init);
376 module_exit(sa1100_rtc_exit);
378 MODULE_AUTHOR("Richard Purdie <rpurdie@rpsys.net>");
379 MODULE_DESCRIPTION("SA11x0/PXA2xx Realtime Clock Driver (RTC)");
380 MODULE_LICENSE("GPL");