Linux 2.6.18.8
[linux-2.6/suspend2-2.6.18.git] / arch / sparc64 / mm / hugetlbpage.c
blob53b9b1f528e54ae75d9caeb90e3fa7bd90b67c8a
1 /*
2 * SPARC64 Huge TLB page support.
4 * Copyright (C) 2002, 2003, 2006 David S. Miller (davem@davemloft.net)
5 */
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/fs.h>
10 #include <linux/mm.h>
11 #include <linux/hugetlb.h>
12 #include <linux/pagemap.h>
13 #include <linux/smp_lock.h>
14 #include <linux/slab.h>
15 #include <linux/sysctl.h>
17 #include <asm/mman.h>
18 #include <asm/pgalloc.h>
19 #include <asm/tlb.h>
20 #include <asm/tlbflush.h>
21 #include <asm/cacheflush.h>
22 #include <asm/mmu_context.h>
24 /* Slightly simplified from the non-hugepage variant because by
25 * definition we don't have to worry about any page coloring stuff
27 #define VA_EXCLUDE_START (0x0000080000000000UL - (1UL << 32UL))
28 #define VA_EXCLUDE_END (0xfffff80000000000UL + (1UL << 32UL))
30 static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *filp,
31 unsigned long addr,
32 unsigned long len,
33 unsigned long pgoff,
34 unsigned long flags)
36 struct mm_struct *mm = current->mm;
37 struct vm_area_struct * vma;
38 unsigned long task_size = TASK_SIZE;
39 unsigned long start_addr;
41 if (test_thread_flag(TIF_32BIT))
42 task_size = STACK_TOP32;
43 if (unlikely(len >= VA_EXCLUDE_START))
44 return -ENOMEM;
46 if (len > mm->cached_hole_size) {
47 start_addr = addr = mm->free_area_cache;
48 } else {
49 start_addr = addr = TASK_UNMAPPED_BASE;
50 mm->cached_hole_size = 0;
53 task_size -= len;
55 full_search:
56 addr = ALIGN(addr, HPAGE_SIZE);
58 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
59 /* At this point: (!vma || addr < vma->vm_end). */
60 if (addr < VA_EXCLUDE_START &&
61 (addr + len) >= VA_EXCLUDE_START) {
62 addr = VA_EXCLUDE_END;
63 vma = find_vma(mm, VA_EXCLUDE_END);
65 if (unlikely(task_size < addr)) {
66 if (start_addr != TASK_UNMAPPED_BASE) {
67 start_addr = addr = TASK_UNMAPPED_BASE;
68 mm->cached_hole_size = 0;
69 goto full_search;
71 return -ENOMEM;
73 if (likely(!vma || addr + len <= vma->vm_start)) {
75 * Remember the place where we stopped the search:
77 mm->free_area_cache = addr + len;
78 return addr;
80 if (addr + mm->cached_hole_size < vma->vm_start)
81 mm->cached_hole_size = vma->vm_start - addr;
83 addr = ALIGN(vma->vm_end, HPAGE_SIZE);
87 static unsigned long
88 hugetlb_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
89 const unsigned long len,
90 const unsigned long pgoff,
91 const unsigned long flags)
93 struct vm_area_struct *vma;
94 struct mm_struct *mm = current->mm;
95 unsigned long addr = addr0;
97 /* This should only ever run for 32-bit processes. */
98 BUG_ON(!test_thread_flag(TIF_32BIT));
100 /* check if free_area_cache is useful for us */
101 if (len <= mm->cached_hole_size) {
102 mm->cached_hole_size = 0;
103 mm->free_area_cache = mm->mmap_base;
106 /* either no address requested or can't fit in requested address hole */
107 addr = mm->free_area_cache & HPAGE_MASK;
109 /* make sure it can fit in the remaining address space */
110 if (likely(addr > len)) {
111 vma = find_vma(mm, addr-len);
112 if (!vma || addr <= vma->vm_start) {
113 /* remember the address as a hint for next time */
114 return (mm->free_area_cache = addr-len);
118 if (unlikely(mm->mmap_base < len))
119 goto bottomup;
121 addr = (mm->mmap_base-len) & HPAGE_MASK;
123 do {
125 * Lookup failure means no vma is above this address,
126 * else if new region fits below vma->vm_start,
127 * return with success:
129 vma = find_vma(mm, addr);
130 if (likely(!vma || addr+len <= vma->vm_start)) {
131 /* remember the address as a hint for next time */
132 return (mm->free_area_cache = addr);
135 /* remember the largest hole we saw so far */
136 if (addr + mm->cached_hole_size < vma->vm_start)
137 mm->cached_hole_size = vma->vm_start - addr;
139 /* try just below the current vma->vm_start */
140 addr = (vma->vm_start-len) & HPAGE_MASK;
141 } while (likely(len < vma->vm_start));
143 bottomup:
145 * A failed mmap() very likely causes application failure,
146 * so fall back to the bottom-up function here. This scenario
147 * can happen with large stack limits and large mmap()
148 * allocations.
150 mm->cached_hole_size = ~0UL;
151 mm->free_area_cache = TASK_UNMAPPED_BASE;
152 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
154 * Restore the topdown base:
156 mm->free_area_cache = mm->mmap_base;
157 mm->cached_hole_size = ~0UL;
159 return addr;
162 unsigned long
163 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
164 unsigned long len, unsigned long pgoff, unsigned long flags)
166 struct mm_struct *mm = current->mm;
167 struct vm_area_struct *vma;
168 unsigned long task_size = TASK_SIZE;
170 if (test_thread_flag(TIF_32BIT))
171 task_size = STACK_TOP32;
173 if (len & ~HPAGE_MASK)
174 return -EINVAL;
175 if (len > task_size)
176 return -ENOMEM;
178 if (addr) {
179 addr = ALIGN(addr, HPAGE_SIZE);
180 vma = find_vma(mm, addr);
181 if (task_size - len >= addr &&
182 (!vma || addr + len <= vma->vm_start))
183 return addr;
185 if (mm->get_unmapped_area == arch_get_unmapped_area)
186 return hugetlb_get_unmapped_area_bottomup(file, addr, len,
187 pgoff, flags);
188 else
189 return hugetlb_get_unmapped_area_topdown(file, addr, len,
190 pgoff, flags);
193 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr)
195 pgd_t *pgd;
196 pud_t *pud;
197 pmd_t *pmd;
198 pte_t *pte = NULL;
200 /* We must align the address, because our caller will run
201 * set_huge_pte_at() on whatever we return, which writes out
202 * all of the sub-ptes for the hugepage range. So we have
203 * to give it the first such sub-pte.
205 addr &= HPAGE_MASK;
207 pgd = pgd_offset(mm, addr);
208 pud = pud_alloc(mm, pgd, addr);
209 if (pud) {
210 pmd = pmd_alloc(mm, pud, addr);
211 if (pmd)
212 pte = pte_alloc_map(mm, pmd, addr);
214 return pte;
217 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
219 pgd_t *pgd;
220 pud_t *pud;
221 pmd_t *pmd;
222 pte_t *pte = NULL;
224 addr &= HPAGE_MASK;
226 pgd = pgd_offset(mm, addr);
227 if (!pgd_none(*pgd)) {
228 pud = pud_offset(pgd, addr);
229 if (!pud_none(*pud)) {
230 pmd = pmd_offset(pud, addr);
231 if (!pmd_none(*pmd))
232 pte = pte_offset_map(pmd, addr);
235 return pte;
238 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
239 pte_t *ptep, pte_t entry)
241 int i;
243 if (!pte_present(*ptep) && pte_present(entry))
244 mm->context.huge_pte_count++;
246 for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
247 set_pte_at(mm, addr, ptep, entry);
248 ptep++;
249 addr += PAGE_SIZE;
250 pte_val(entry) += PAGE_SIZE;
254 pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
255 pte_t *ptep)
257 pte_t entry;
258 int i;
260 entry = *ptep;
261 if (pte_present(entry))
262 mm->context.huge_pte_count--;
264 for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
265 pte_clear(mm, addr, ptep);
266 addr += PAGE_SIZE;
267 ptep++;
270 return entry;
273 struct page *follow_huge_addr(struct mm_struct *mm,
274 unsigned long address, int write)
276 return ERR_PTR(-EINVAL);
279 int pmd_huge(pmd_t pmd)
281 return 0;
284 struct page *follow_huge_pmd(struct mm_struct *mm, unsigned long address,
285 pmd_t *pmd, int write)
287 return NULL;
290 static void context_reload(void *__data)
292 struct mm_struct *mm = __data;
294 if (mm == current->mm)
295 load_secondary_context(mm);
298 void hugetlb_prefault_arch_hook(struct mm_struct *mm)
300 struct tsb_config *tp = &mm->context.tsb_block[MM_TSB_HUGE];
302 if (likely(tp->tsb != NULL))
303 return;
305 tsb_grow(mm, MM_TSB_HUGE, 0);
306 tsb_context_switch(mm);
307 smp_tsb_sync(mm);
309 /* On UltraSPARC-III+ and later, configure the second half of
310 * the Data-TLB for huge pages.
312 if (tlb_type == cheetah_plus) {
313 unsigned long ctx;
315 spin_lock(&ctx_alloc_lock);
316 ctx = mm->context.sparc64_ctx_val;
317 ctx &= ~CTX_PGSZ_MASK;
318 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
319 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
321 if (ctx != mm->context.sparc64_ctx_val) {
322 /* When changing the page size fields, we
323 * must perform a context flush so that no
324 * stale entries match. This flush must
325 * occur with the original context register
326 * settings.
328 do_flush_tlb_mm(mm);
330 /* Reload the context register of all processors
331 * also executing in this address space.
333 mm->context.sparc64_ctx_val = ctx;
334 on_each_cpu(context_reload, mm, 0, 0);
336 spin_unlock(&ctx_alloc_lock);