Linux 2.6.18.8
[linux-2.6/suspend2-2.6.18.git] / arch / i386 / kernel / srat.c
blobb1809c9a0899fcade490c50ed6733a2946623d25
1 /*
2 * Some of the code in this file has been gleaned from the 64 bit
3 * discontigmem support code base.
5 * Copyright (C) 2002, IBM Corp.
7 * All rights reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
17 * NON INFRINGEMENT. See the GNU General Public License for more
18 * details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * Send feedback to Pat Gaughen <gone@us.ibm.com>
26 #include <linux/mm.h>
27 #include <linux/bootmem.h>
28 #include <linux/mmzone.h>
29 #include <linux/acpi.h>
30 #include <linux/nodemask.h>
31 #include <asm/srat.h>
32 #include <asm/topology.h>
35 * proximity macros and definitions
37 #define NODE_ARRAY_INDEX(x) ((x) / 8) /* 8 bits/char */
38 #define NODE_ARRAY_OFFSET(x) ((x) % 8) /* 8 bits/char */
39 #define BMAP_SET(bmap, bit) ((bmap)[NODE_ARRAY_INDEX(bit)] |= 1 << NODE_ARRAY_OFFSET(bit))
40 #define BMAP_TEST(bmap, bit) ((bmap)[NODE_ARRAY_INDEX(bit)] & (1 << NODE_ARRAY_OFFSET(bit)))
41 /* bitmap length; _PXM is at most 255 */
42 #define PXM_BITMAP_LEN (MAX_PXM_DOMAINS / 8)
43 static u8 pxm_bitmap[PXM_BITMAP_LEN]; /* bitmap of proximity domains */
45 #define MAX_CHUNKS_PER_NODE 4
46 #define MAXCHUNKS (MAX_CHUNKS_PER_NODE * MAX_NUMNODES)
47 struct node_memory_chunk_s {
48 unsigned long start_pfn;
49 unsigned long end_pfn;
50 u8 pxm; // proximity domain of node
51 u8 nid; // which cnode contains this chunk?
52 u8 bank; // which mem bank on this node
54 static struct node_memory_chunk_s node_memory_chunk[MAXCHUNKS];
56 static int num_memory_chunks; /* total number of memory chunks */
57 static int zholes_size_init;
58 static unsigned long zholes_size[MAX_NUMNODES * MAX_NR_ZONES];
60 extern void * boot_ioremap(unsigned long, unsigned long);
62 /* Identify CPU proximity domains */
63 static void __init parse_cpu_affinity_structure(char *p)
65 struct acpi_table_processor_affinity *cpu_affinity =
66 (struct acpi_table_processor_affinity *) p;
68 if (!cpu_affinity->flags.enabled)
69 return; /* empty entry */
71 /* mark this node as "seen" in node bitmap */
72 BMAP_SET(pxm_bitmap, cpu_affinity->proximity_domain);
74 printk("CPU 0x%02X in proximity domain 0x%02X\n",
75 cpu_affinity->apic_id, cpu_affinity->proximity_domain);
79 * Identify memory proximity domains and hot-remove capabilities.
80 * Fill node memory chunk list structure.
82 static void __init parse_memory_affinity_structure (char *sratp)
84 unsigned long long paddr, size;
85 unsigned long start_pfn, end_pfn;
86 u8 pxm;
87 struct node_memory_chunk_s *p, *q, *pend;
88 struct acpi_table_memory_affinity *memory_affinity =
89 (struct acpi_table_memory_affinity *) sratp;
91 if (!memory_affinity->flags.enabled)
92 return; /* empty entry */
94 /* mark this node as "seen" in node bitmap */
95 BMAP_SET(pxm_bitmap, memory_affinity->proximity_domain);
97 /* calculate info for memory chunk structure */
98 paddr = memory_affinity->base_addr_hi;
99 paddr = (paddr << 32) | memory_affinity->base_addr_lo;
100 size = memory_affinity->length_hi;
101 size = (size << 32) | memory_affinity->length_lo;
103 start_pfn = paddr >> PAGE_SHIFT;
104 end_pfn = (paddr + size) >> PAGE_SHIFT;
106 pxm = memory_affinity->proximity_domain;
108 if (num_memory_chunks >= MAXCHUNKS) {
109 printk("Too many mem chunks in SRAT. Ignoring %lld MBytes at %llx\n",
110 size/(1024*1024), paddr);
111 return;
114 /* Insertion sort based on base address */
115 pend = &node_memory_chunk[num_memory_chunks];
116 for (p = &node_memory_chunk[0]; p < pend; p++) {
117 if (start_pfn < p->start_pfn)
118 break;
120 if (p < pend) {
121 for (q = pend; q >= p; q--)
122 *(q + 1) = *q;
124 p->start_pfn = start_pfn;
125 p->end_pfn = end_pfn;
126 p->pxm = pxm;
128 num_memory_chunks++;
130 printk("Memory range 0x%lX to 0x%lX (type 0x%X) in proximity domain 0x%02X %s\n",
131 start_pfn, end_pfn,
132 memory_affinity->memory_type,
133 memory_affinity->proximity_domain,
134 (memory_affinity->flags.hot_pluggable ?
135 "enabled and removable" : "enabled" ) );
138 #if MAX_NR_ZONES != 4
139 #error "MAX_NR_ZONES != 4, chunk_to_zone requires review"
140 #endif
141 /* Take a chunk of pages from page frame cstart to cend and count the number
142 * of pages in each zone, returned via zones[].
144 static __init void chunk_to_zones(unsigned long cstart, unsigned long cend,
145 unsigned long *zones)
147 unsigned long max_dma;
148 extern unsigned long max_low_pfn;
150 int z;
151 unsigned long rend;
153 /* FIXME: MAX_DMA_ADDRESS and max_low_pfn are trying to provide
154 * similarly scoped information and should be handled in a consistant
155 * manner.
157 max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
159 /* Split the hole into the zones in which it falls. Repeatedly
160 * take the segment in which the remaining hole starts, round it
161 * to the end of that zone.
163 memset(zones, 0, MAX_NR_ZONES * sizeof(long));
164 while (cstart < cend) {
165 if (cstart < max_dma) {
166 z = ZONE_DMA;
167 rend = (cend < max_dma)? cend : max_dma;
169 } else if (cstart < max_low_pfn) {
170 z = ZONE_NORMAL;
171 rend = (cend < max_low_pfn)? cend : max_low_pfn;
173 } else {
174 z = ZONE_HIGHMEM;
175 rend = cend;
177 zones[z] += rend - cstart;
178 cstart = rend;
183 * The SRAT table always lists ascending addresses, so can always
184 * assume that the first "start" address that you see is the real
185 * start of the node, and that the current "end" address is after
186 * the previous one.
188 static __init void node_read_chunk(int nid, struct node_memory_chunk_s *memory_chunk)
191 * Only add present memory as told by the e820.
192 * There is no guarantee from the SRAT that the memory it
193 * enumerates is present at boot time because it represents
194 * *possible* memory hotplug areas the same as normal RAM.
196 if (memory_chunk->start_pfn >= max_pfn) {
197 printk (KERN_INFO "Ignoring SRAT pfns: 0x%08lx -> %08lx\n",
198 memory_chunk->start_pfn, memory_chunk->end_pfn);
199 return;
201 if (memory_chunk->nid != nid)
202 return;
204 if (!node_has_online_mem(nid))
205 node_start_pfn[nid] = memory_chunk->start_pfn;
207 if (node_start_pfn[nid] > memory_chunk->start_pfn)
208 node_start_pfn[nid] = memory_chunk->start_pfn;
210 if (node_end_pfn[nid] < memory_chunk->end_pfn)
211 node_end_pfn[nid] = memory_chunk->end_pfn;
214 /* Parse the ACPI Static Resource Affinity Table */
215 static int __init acpi20_parse_srat(struct acpi_table_srat *sratp)
217 u8 *start, *end, *p;
218 int i, j, nid;
220 start = (u8 *)(&(sratp->reserved) + 1); /* skip header */
221 p = start;
222 end = (u8 *)sratp + sratp->header.length;
224 memset(pxm_bitmap, 0, sizeof(pxm_bitmap)); /* init proximity domain bitmap */
225 memset(node_memory_chunk, 0, sizeof(node_memory_chunk));
226 memset(zholes_size, 0, sizeof(zholes_size));
228 num_memory_chunks = 0;
229 while (p < end) {
230 switch (*p) {
231 case ACPI_SRAT_PROCESSOR_AFFINITY:
232 parse_cpu_affinity_structure(p);
233 break;
234 case ACPI_SRAT_MEMORY_AFFINITY:
235 parse_memory_affinity_structure(p);
236 break;
237 default:
238 printk("ACPI 2.0 SRAT: unknown entry skipped: type=0x%02X, len=%d\n", p[0], p[1]);
239 break;
241 p += p[1];
242 if (p[1] == 0) {
243 printk("acpi20_parse_srat: Entry length value is zero;"
244 " can't parse any further!\n");
245 break;
249 if (num_memory_chunks == 0) {
250 printk("could not finy any ACPI SRAT memory areas.\n");
251 goto out_fail;
254 /* Calculate total number of nodes in system from PXM bitmap and create
255 * a set of sequential node IDs starting at zero. (ACPI doesn't seem
256 * to specify the range of _PXM values.)
259 * MCD - we no longer HAVE to number nodes sequentially. PXM domain
260 * numbers could go as high as 256, and MAX_NUMNODES for i386 is typically
261 * 32, so we will continue numbering them in this manner until MAX_NUMNODES
262 * approaches MAX_PXM_DOMAINS for i386.
264 nodes_clear(node_online_map);
265 for (i = 0; i < MAX_PXM_DOMAINS; i++) {
266 if (BMAP_TEST(pxm_bitmap, i)) {
267 int nid = acpi_map_pxm_to_node(i);
268 node_set_online(nid);
271 BUG_ON(num_online_nodes() == 0);
273 /* set cnode id in memory chunk structure */
274 for (i = 0; i < num_memory_chunks; i++)
275 node_memory_chunk[i].nid = pxm_to_node(node_memory_chunk[i].pxm);
277 printk("pxm bitmap: ");
278 for (i = 0; i < sizeof(pxm_bitmap); i++) {
279 printk("%02X ", pxm_bitmap[i]);
281 printk("\n");
282 printk("Number of logical nodes in system = %d\n", num_online_nodes());
283 printk("Number of memory chunks in system = %d\n", num_memory_chunks);
285 for (j = 0; j < num_memory_chunks; j++){
286 struct node_memory_chunk_s * chunk = &node_memory_chunk[j];
287 printk("chunk %d nid %d start_pfn %08lx end_pfn %08lx\n",
288 j, chunk->nid, chunk->start_pfn, chunk->end_pfn);
289 node_read_chunk(chunk->nid, chunk);
292 for_each_online_node(nid) {
293 unsigned long start = node_start_pfn[nid];
294 unsigned long end = node_end_pfn[nid];
296 memory_present(nid, start, end);
297 node_remap_size[nid] = node_memmap_size_bytes(nid, start, end);
299 return 1;
300 out_fail:
301 return 0;
304 int __init get_memcfg_from_srat(void)
306 struct acpi_table_header *header = NULL;
307 struct acpi_table_rsdp *rsdp = NULL;
308 struct acpi_table_rsdt *rsdt = NULL;
309 struct acpi_pointer *rsdp_address = NULL;
310 struct acpi_table_rsdt saved_rsdt;
311 int tables = 0;
312 int i = 0;
314 if (ACPI_FAILURE(acpi_find_root_pointer(ACPI_PHYSICAL_ADDRESSING,
315 rsdp_address))) {
316 printk("%s: System description tables not found\n",
317 __FUNCTION__);
318 goto out_err;
321 if (rsdp_address->pointer_type == ACPI_PHYSICAL_POINTER) {
322 printk("%s: assigning address to rsdp\n", __FUNCTION__);
323 rsdp = (struct acpi_table_rsdp *)
324 (u32)rsdp_address->pointer.physical;
325 } else {
326 printk("%s: rsdp_address is not a physical pointer\n", __FUNCTION__);
327 goto out_err;
329 if (!rsdp) {
330 printk("%s: Didn't find ACPI root!\n", __FUNCTION__);
331 goto out_err;
334 printk(KERN_INFO "%.8s v%d [%.6s]\n", rsdp->signature, rsdp->revision,
335 rsdp->oem_id);
337 if (strncmp(rsdp->signature, RSDP_SIG,strlen(RSDP_SIG))) {
338 printk(KERN_WARNING "%s: RSDP table signature incorrect\n", __FUNCTION__);
339 goto out_err;
342 rsdt = (struct acpi_table_rsdt *)
343 boot_ioremap(rsdp->rsdt_address, sizeof(struct acpi_table_rsdt));
345 if (!rsdt) {
346 printk(KERN_WARNING
347 "%s: ACPI: Invalid root system description tables (RSDT)\n",
348 __FUNCTION__);
349 goto out_err;
352 header = & rsdt->header;
354 if (strncmp(header->signature, RSDT_SIG, strlen(RSDT_SIG))) {
355 printk(KERN_WARNING "ACPI: RSDT signature incorrect\n");
356 goto out_err;
360 * The number of tables is computed by taking the
361 * size of all entries (header size minus total
362 * size of RSDT) divided by the size of each entry
363 * (4-byte table pointers).
365 tables = (header->length - sizeof(struct acpi_table_header)) / 4;
367 if (!tables)
368 goto out_err;
370 memcpy(&saved_rsdt, rsdt, sizeof(saved_rsdt));
372 if (saved_rsdt.header.length > sizeof(saved_rsdt)) {
373 printk(KERN_WARNING "ACPI: Too big length in RSDT: %d\n",
374 saved_rsdt.header.length);
375 goto out_err;
378 printk("Begin SRAT table scan....\n");
380 for (i = 0; i < tables; i++) {
381 /* Map in header, then map in full table length. */
382 header = (struct acpi_table_header *)
383 boot_ioremap(saved_rsdt.entry[i], sizeof(struct acpi_table_header));
384 if (!header)
385 break;
386 header = (struct acpi_table_header *)
387 boot_ioremap(saved_rsdt.entry[i], header->length);
388 if (!header)
389 break;
391 if (strncmp((char *) &header->signature, "SRAT", 4))
392 continue;
394 /* we've found the srat table. don't need to look at any more tables */
395 return acpi20_parse_srat((struct acpi_table_srat *)header);
397 out_err:
398 printk("failed to get NUMA memory information from SRAT table\n");
399 return 0;
402 /* For each node run the memory list to determine whether there are
403 * any memory holes. For each hole determine which ZONE they fall
404 * into.
406 * NOTE#1: this requires knowledge of the zone boundries and so
407 * _cannot_ be performed before those are calculated in setup_memory.
409 * NOTE#2: we rely on the fact that the memory chunks are ordered by
410 * start pfn number during setup.
412 static void __init get_zholes_init(void)
414 int nid;
415 int c;
416 int first;
417 unsigned long end = 0;
419 for_each_online_node(nid) {
420 first = 1;
421 for (c = 0; c < num_memory_chunks; c++){
422 if (node_memory_chunk[c].nid == nid) {
423 if (first) {
424 end = node_memory_chunk[c].end_pfn;
425 first = 0;
427 } else {
428 /* Record any gap between this chunk
429 * and the previous chunk on this node
430 * against the zones it spans.
432 chunk_to_zones(end,
433 node_memory_chunk[c].start_pfn,
434 &zholes_size[nid * MAX_NR_ZONES]);
441 unsigned long * __init get_zholes_size(int nid)
443 if (!zholes_size_init) {
444 zholes_size_init++;
445 get_zholes_init();
447 if (nid >= MAX_NUMNODES || !node_online(nid))
448 printk("%s: nid = %d is invalid/offline. num_online_nodes = %d",
449 __FUNCTION__, nid, num_online_nodes());
450 return &zholes_size[nid * MAX_NR_ZONES];