[PATCH] zfcp: fix incorrect usage of erp_lock
[linux-2.6/suspend2-2.6.18.git] / drivers / scsi / libata-core.c
blob1c960ac1617f00665eea8ea8d87f2e0b18af64b5
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include "scsi_priv.h"
54 #include <scsi/scsi_cmnd.h>
55 #include <scsi/scsi_host.h>
56 #include <linux/libata.h>
57 #include <asm/io.h>
58 #include <asm/semaphore.h>
59 #include <asm/byteorder.h>
61 #include "libata.h"
63 /* debounce timing parameters in msecs { interval, duration, timeout } */
64 const unsigned long sata_deb_timing_boot[] = { 5, 100, 2000 };
65 const unsigned long sata_deb_timing_eh[] = { 25, 500, 2000 };
66 const unsigned long sata_deb_timing_before_fsrst[] = { 100, 2000, 5000 };
68 static unsigned int ata_dev_init_params(struct ata_device *dev,
69 u16 heads, u16 sectors);
70 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
71 static void ata_dev_xfermask(struct ata_device *dev);
73 static unsigned int ata_unique_id = 1;
74 static struct workqueue_struct *ata_wq;
76 struct workqueue_struct *ata_aux_wq;
78 int atapi_enabled = 1;
79 module_param(atapi_enabled, int, 0444);
80 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
82 int atapi_dmadir = 0;
83 module_param(atapi_dmadir, int, 0444);
84 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
86 int libata_fua = 0;
87 module_param_named(fua, libata_fua, int, 0444);
88 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
90 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
91 module_param(ata_probe_timeout, int, 0444);
92 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
94 MODULE_AUTHOR("Jeff Garzik");
95 MODULE_DESCRIPTION("Library module for ATA devices");
96 MODULE_LICENSE("GPL");
97 MODULE_VERSION(DRV_VERSION);
101 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
102 * @tf: Taskfile to convert
103 * @fis: Buffer into which data will output
104 * @pmp: Port multiplier port
106 * Converts a standard ATA taskfile to a Serial ATA
107 * FIS structure (Register - Host to Device).
109 * LOCKING:
110 * Inherited from caller.
113 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
115 fis[0] = 0x27; /* Register - Host to Device FIS */
116 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
117 bit 7 indicates Command FIS */
118 fis[2] = tf->command;
119 fis[3] = tf->feature;
121 fis[4] = tf->lbal;
122 fis[5] = tf->lbam;
123 fis[6] = tf->lbah;
124 fis[7] = tf->device;
126 fis[8] = tf->hob_lbal;
127 fis[9] = tf->hob_lbam;
128 fis[10] = tf->hob_lbah;
129 fis[11] = tf->hob_feature;
131 fis[12] = tf->nsect;
132 fis[13] = tf->hob_nsect;
133 fis[14] = 0;
134 fis[15] = tf->ctl;
136 fis[16] = 0;
137 fis[17] = 0;
138 fis[18] = 0;
139 fis[19] = 0;
143 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
144 * @fis: Buffer from which data will be input
145 * @tf: Taskfile to output
147 * Converts a serial ATA FIS structure to a standard ATA taskfile.
149 * LOCKING:
150 * Inherited from caller.
153 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
155 tf->command = fis[2]; /* status */
156 tf->feature = fis[3]; /* error */
158 tf->lbal = fis[4];
159 tf->lbam = fis[5];
160 tf->lbah = fis[6];
161 tf->device = fis[7];
163 tf->hob_lbal = fis[8];
164 tf->hob_lbam = fis[9];
165 tf->hob_lbah = fis[10];
167 tf->nsect = fis[12];
168 tf->hob_nsect = fis[13];
171 static const u8 ata_rw_cmds[] = {
172 /* pio multi */
173 ATA_CMD_READ_MULTI,
174 ATA_CMD_WRITE_MULTI,
175 ATA_CMD_READ_MULTI_EXT,
176 ATA_CMD_WRITE_MULTI_EXT,
180 ATA_CMD_WRITE_MULTI_FUA_EXT,
181 /* pio */
182 ATA_CMD_PIO_READ,
183 ATA_CMD_PIO_WRITE,
184 ATA_CMD_PIO_READ_EXT,
185 ATA_CMD_PIO_WRITE_EXT,
190 /* dma */
191 ATA_CMD_READ,
192 ATA_CMD_WRITE,
193 ATA_CMD_READ_EXT,
194 ATA_CMD_WRITE_EXT,
198 ATA_CMD_WRITE_FUA_EXT
202 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
203 * @qc: command to examine and configure
205 * Examine the device configuration and tf->flags to calculate
206 * the proper read/write commands and protocol to use.
208 * LOCKING:
209 * caller.
211 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
213 struct ata_taskfile *tf = &qc->tf;
214 struct ata_device *dev = qc->dev;
215 u8 cmd;
217 int index, fua, lba48, write;
219 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
220 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
221 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
223 if (dev->flags & ATA_DFLAG_PIO) {
224 tf->protocol = ATA_PROT_PIO;
225 index = dev->multi_count ? 0 : 8;
226 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
227 /* Unable to use DMA due to host limitation */
228 tf->protocol = ATA_PROT_PIO;
229 index = dev->multi_count ? 0 : 8;
230 } else {
231 tf->protocol = ATA_PROT_DMA;
232 index = 16;
235 cmd = ata_rw_cmds[index + fua + lba48 + write];
236 if (cmd) {
237 tf->command = cmd;
238 return 0;
240 return -1;
244 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
245 * @pio_mask: pio_mask
246 * @mwdma_mask: mwdma_mask
247 * @udma_mask: udma_mask
249 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
250 * unsigned int xfer_mask.
252 * LOCKING:
253 * None.
255 * RETURNS:
256 * Packed xfer_mask.
258 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
259 unsigned int mwdma_mask,
260 unsigned int udma_mask)
262 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
263 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
264 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
268 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
269 * @xfer_mask: xfer_mask to unpack
270 * @pio_mask: resulting pio_mask
271 * @mwdma_mask: resulting mwdma_mask
272 * @udma_mask: resulting udma_mask
274 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
275 * Any NULL distination masks will be ignored.
277 static void ata_unpack_xfermask(unsigned int xfer_mask,
278 unsigned int *pio_mask,
279 unsigned int *mwdma_mask,
280 unsigned int *udma_mask)
282 if (pio_mask)
283 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
284 if (mwdma_mask)
285 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
286 if (udma_mask)
287 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
290 static const struct ata_xfer_ent {
291 int shift, bits;
292 u8 base;
293 } ata_xfer_tbl[] = {
294 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
295 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
296 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
297 { -1, },
301 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
302 * @xfer_mask: xfer_mask of interest
304 * Return matching XFER_* value for @xfer_mask. Only the highest
305 * bit of @xfer_mask is considered.
307 * LOCKING:
308 * None.
310 * RETURNS:
311 * Matching XFER_* value, 0 if no match found.
313 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
315 int highbit = fls(xfer_mask) - 1;
316 const struct ata_xfer_ent *ent;
318 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
319 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
320 return ent->base + highbit - ent->shift;
321 return 0;
325 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
326 * @xfer_mode: XFER_* of interest
328 * Return matching xfer_mask for @xfer_mode.
330 * LOCKING:
331 * None.
333 * RETURNS:
334 * Matching xfer_mask, 0 if no match found.
336 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
338 const struct ata_xfer_ent *ent;
340 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
341 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
342 return 1 << (ent->shift + xfer_mode - ent->base);
343 return 0;
347 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
348 * @xfer_mode: XFER_* of interest
350 * Return matching xfer_shift for @xfer_mode.
352 * LOCKING:
353 * None.
355 * RETURNS:
356 * Matching xfer_shift, -1 if no match found.
358 static int ata_xfer_mode2shift(unsigned int xfer_mode)
360 const struct ata_xfer_ent *ent;
362 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
363 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
364 return ent->shift;
365 return -1;
369 * ata_mode_string - convert xfer_mask to string
370 * @xfer_mask: mask of bits supported; only highest bit counts.
372 * Determine string which represents the highest speed
373 * (highest bit in @modemask).
375 * LOCKING:
376 * None.
378 * RETURNS:
379 * Constant C string representing highest speed listed in
380 * @mode_mask, or the constant C string "<n/a>".
382 static const char *ata_mode_string(unsigned int xfer_mask)
384 static const char * const xfer_mode_str[] = {
385 "PIO0",
386 "PIO1",
387 "PIO2",
388 "PIO3",
389 "PIO4",
390 "MWDMA0",
391 "MWDMA1",
392 "MWDMA2",
393 "UDMA/16",
394 "UDMA/25",
395 "UDMA/33",
396 "UDMA/44",
397 "UDMA/66",
398 "UDMA/100",
399 "UDMA/133",
400 "UDMA7",
402 int highbit;
404 highbit = fls(xfer_mask) - 1;
405 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
406 return xfer_mode_str[highbit];
407 return "<n/a>";
410 static const char *sata_spd_string(unsigned int spd)
412 static const char * const spd_str[] = {
413 "1.5 Gbps",
414 "3.0 Gbps",
417 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
418 return "<unknown>";
419 return spd_str[spd - 1];
422 void ata_dev_disable(struct ata_device *dev)
424 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
425 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
426 dev->class++;
431 * ata_pio_devchk - PATA device presence detection
432 * @ap: ATA channel to examine
433 * @device: Device to examine (starting at zero)
435 * This technique was originally described in
436 * Hale Landis's ATADRVR (www.ata-atapi.com), and
437 * later found its way into the ATA/ATAPI spec.
439 * Write a pattern to the ATA shadow registers,
440 * and if a device is present, it will respond by
441 * correctly storing and echoing back the
442 * ATA shadow register contents.
444 * LOCKING:
445 * caller.
448 static unsigned int ata_pio_devchk(struct ata_port *ap,
449 unsigned int device)
451 struct ata_ioports *ioaddr = &ap->ioaddr;
452 u8 nsect, lbal;
454 ap->ops->dev_select(ap, device);
456 outb(0x55, ioaddr->nsect_addr);
457 outb(0xaa, ioaddr->lbal_addr);
459 outb(0xaa, ioaddr->nsect_addr);
460 outb(0x55, ioaddr->lbal_addr);
462 outb(0x55, ioaddr->nsect_addr);
463 outb(0xaa, ioaddr->lbal_addr);
465 nsect = inb(ioaddr->nsect_addr);
466 lbal = inb(ioaddr->lbal_addr);
468 if ((nsect == 0x55) && (lbal == 0xaa))
469 return 1; /* we found a device */
471 return 0; /* nothing found */
475 * ata_mmio_devchk - PATA device presence detection
476 * @ap: ATA channel to examine
477 * @device: Device to examine (starting at zero)
479 * This technique was originally described in
480 * Hale Landis's ATADRVR (www.ata-atapi.com), and
481 * later found its way into the ATA/ATAPI spec.
483 * Write a pattern to the ATA shadow registers,
484 * and if a device is present, it will respond by
485 * correctly storing and echoing back the
486 * ATA shadow register contents.
488 * LOCKING:
489 * caller.
492 static unsigned int ata_mmio_devchk(struct ata_port *ap,
493 unsigned int device)
495 struct ata_ioports *ioaddr = &ap->ioaddr;
496 u8 nsect, lbal;
498 ap->ops->dev_select(ap, device);
500 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
501 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
503 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
504 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
506 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
507 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
509 nsect = readb((void __iomem *) ioaddr->nsect_addr);
510 lbal = readb((void __iomem *) ioaddr->lbal_addr);
512 if ((nsect == 0x55) && (lbal == 0xaa))
513 return 1; /* we found a device */
515 return 0; /* nothing found */
519 * ata_devchk - PATA device presence detection
520 * @ap: ATA channel to examine
521 * @device: Device to examine (starting at zero)
523 * Dispatch ATA device presence detection, depending
524 * on whether we are using PIO or MMIO to talk to the
525 * ATA shadow registers.
527 * LOCKING:
528 * caller.
531 static unsigned int ata_devchk(struct ata_port *ap,
532 unsigned int device)
534 if (ap->flags & ATA_FLAG_MMIO)
535 return ata_mmio_devchk(ap, device);
536 return ata_pio_devchk(ap, device);
540 * ata_dev_classify - determine device type based on ATA-spec signature
541 * @tf: ATA taskfile register set for device to be identified
543 * Determine from taskfile register contents whether a device is
544 * ATA or ATAPI, as per "Signature and persistence" section
545 * of ATA/PI spec (volume 1, sect 5.14).
547 * LOCKING:
548 * None.
550 * RETURNS:
551 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
552 * the event of failure.
555 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
557 /* Apple's open source Darwin code hints that some devices only
558 * put a proper signature into the LBA mid/high registers,
559 * So, we only check those. It's sufficient for uniqueness.
562 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
563 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
564 DPRINTK("found ATA device by sig\n");
565 return ATA_DEV_ATA;
568 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
569 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
570 DPRINTK("found ATAPI device by sig\n");
571 return ATA_DEV_ATAPI;
574 DPRINTK("unknown device\n");
575 return ATA_DEV_UNKNOWN;
579 * ata_dev_try_classify - Parse returned ATA device signature
580 * @ap: ATA channel to examine
581 * @device: Device to examine (starting at zero)
582 * @r_err: Value of error register on completion
584 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
585 * an ATA/ATAPI-defined set of values is placed in the ATA
586 * shadow registers, indicating the results of device detection
587 * and diagnostics.
589 * Select the ATA device, and read the values from the ATA shadow
590 * registers. Then parse according to the Error register value,
591 * and the spec-defined values examined by ata_dev_classify().
593 * LOCKING:
594 * caller.
596 * RETURNS:
597 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
600 static unsigned int
601 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
603 struct ata_taskfile tf;
604 unsigned int class;
605 u8 err;
607 ap->ops->dev_select(ap, device);
609 memset(&tf, 0, sizeof(tf));
611 ap->ops->tf_read(ap, &tf);
612 err = tf.feature;
613 if (r_err)
614 *r_err = err;
616 /* see if device passed diags */
617 if (err == 1)
618 /* do nothing */ ;
619 else if ((device == 0) && (err == 0x81))
620 /* do nothing */ ;
621 else
622 return ATA_DEV_NONE;
624 /* determine if device is ATA or ATAPI */
625 class = ata_dev_classify(&tf);
627 if (class == ATA_DEV_UNKNOWN)
628 return ATA_DEV_NONE;
629 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
630 return ATA_DEV_NONE;
631 return class;
635 * ata_id_string - Convert IDENTIFY DEVICE page into string
636 * @id: IDENTIFY DEVICE results we will examine
637 * @s: string into which data is output
638 * @ofs: offset into identify device page
639 * @len: length of string to return. must be an even number.
641 * The strings in the IDENTIFY DEVICE page are broken up into
642 * 16-bit chunks. Run through the string, and output each
643 * 8-bit chunk linearly, regardless of platform.
645 * LOCKING:
646 * caller.
649 void ata_id_string(const u16 *id, unsigned char *s,
650 unsigned int ofs, unsigned int len)
652 unsigned int c;
654 while (len > 0) {
655 c = id[ofs] >> 8;
656 *s = c;
657 s++;
659 c = id[ofs] & 0xff;
660 *s = c;
661 s++;
663 ofs++;
664 len -= 2;
669 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
670 * @id: IDENTIFY DEVICE results we will examine
671 * @s: string into which data is output
672 * @ofs: offset into identify device page
673 * @len: length of string to return. must be an odd number.
675 * This function is identical to ata_id_string except that it
676 * trims trailing spaces and terminates the resulting string with
677 * null. @len must be actual maximum length (even number) + 1.
679 * LOCKING:
680 * caller.
682 void ata_id_c_string(const u16 *id, unsigned char *s,
683 unsigned int ofs, unsigned int len)
685 unsigned char *p;
687 WARN_ON(!(len & 1));
689 ata_id_string(id, s, ofs, len - 1);
691 p = s + strnlen(s, len - 1);
692 while (p > s && p[-1] == ' ')
693 p--;
694 *p = '\0';
697 static u64 ata_id_n_sectors(const u16 *id)
699 if (ata_id_has_lba(id)) {
700 if (ata_id_has_lba48(id))
701 return ata_id_u64(id, 100);
702 else
703 return ata_id_u32(id, 60);
704 } else {
705 if (ata_id_current_chs_valid(id))
706 return ata_id_u32(id, 57);
707 else
708 return id[1] * id[3] * id[6];
713 * ata_noop_dev_select - Select device 0/1 on ATA bus
714 * @ap: ATA channel to manipulate
715 * @device: ATA device (numbered from zero) to select
717 * This function performs no actual function.
719 * May be used as the dev_select() entry in ata_port_operations.
721 * LOCKING:
722 * caller.
724 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
730 * ata_std_dev_select - Select device 0/1 on ATA bus
731 * @ap: ATA channel to manipulate
732 * @device: ATA device (numbered from zero) to select
734 * Use the method defined in the ATA specification to
735 * make either device 0, or device 1, active on the
736 * ATA channel. Works with both PIO and MMIO.
738 * May be used as the dev_select() entry in ata_port_operations.
740 * LOCKING:
741 * caller.
744 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
746 u8 tmp;
748 if (device == 0)
749 tmp = ATA_DEVICE_OBS;
750 else
751 tmp = ATA_DEVICE_OBS | ATA_DEV1;
753 if (ap->flags & ATA_FLAG_MMIO) {
754 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
755 } else {
756 outb(tmp, ap->ioaddr.device_addr);
758 ata_pause(ap); /* needed; also flushes, for mmio */
762 * ata_dev_select - Select device 0/1 on ATA bus
763 * @ap: ATA channel to manipulate
764 * @device: ATA device (numbered from zero) to select
765 * @wait: non-zero to wait for Status register BSY bit to clear
766 * @can_sleep: non-zero if context allows sleeping
768 * Use the method defined in the ATA specification to
769 * make either device 0, or device 1, active on the
770 * ATA channel.
772 * This is a high-level version of ata_std_dev_select(),
773 * which additionally provides the services of inserting
774 * the proper pauses and status polling, where needed.
776 * LOCKING:
777 * caller.
780 void ata_dev_select(struct ata_port *ap, unsigned int device,
781 unsigned int wait, unsigned int can_sleep)
783 if (ata_msg_probe(ap))
784 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
785 "device %u, wait %u\n", ap->id, device, wait);
787 if (wait)
788 ata_wait_idle(ap);
790 ap->ops->dev_select(ap, device);
792 if (wait) {
793 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
794 msleep(150);
795 ata_wait_idle(ap);
800 * ata_dump_id - IDENTIFY DEVICE info debugging output
801 * @id: IDENTIFY DEVICE page to dump
803 * Dump selected 16-bit words from the given IDENTIFY DEVICE
804 * page.
806 * LOCKING:
807 * caller.
810 static inline void ata_dump_id(const u16 *id)
812 DPRINTK("49==0x%04x "
813 "53==0x%04x "
814 "63==0x%04x "
815 "64==0x%04x "
816 "75==0x%04x \n",
817 id[49],
818 id[53],
819 id[63],
820 id[64],
821 id[75]);
822 DPRINTK("80==0x%04x "
823 "81==0x%04x "
824 "82==0x%04x "
825 "83==0x%04x "
826 "84==0x%04x \n",
827 id[80],
828 id[81],
829 id[82],
830 id[83],
831 id[84]);
832 DPRINTK("88==0x%04x "
833 "93==0x%04x\n",
834 id[88],
835 id[93]);
839 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
840 * @id: IDENTIFY data to compute xfer mask from
842 * Compute the xfermask for this device. This is not as trivial
843 * as it seems if we must consider early devices correctly.
845 * FIXME: pre IDE drive timing (do we care ?).
847 * LOCKING:
848 * None.
850 * RETURNS:
851 * Computed xfermask
853 static unsigned int ata_id_xfermask(const u16 *id)
855 unsigned int pio_mask, mwdma_mask, udma_mask;
857 /* Usual case. Word 53 indicates word 64 is valid */
858 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
859 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
860 pio_mask <<= 3;
861 pio_mask |= 0x7;
862 } else {
863 /* If word 64 isn't valid then Word 51 high byte holds
864 * the PIO timing number for the maximum. Turn it into
865 * a mask.
867 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
869 /* But wait.. there's more. Design your standards by
870 * committee and you too can get a free iordy field to
871 * process. However its the speeds not the modes that
872 * are supported... Note drivers using the timing API
873 * will get this right anyway
877 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
879 udma_mask = 0;
880 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
881 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
883 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
887 * ata_port_queue_task - Queue port_task
888 * @ap: The ata_port to queue port_task for
889 * @fn: workqueue function to be scheduled
890 * @data: data value to pass to workqueue function
891 * @delay: delay time for workqueue function
893 * Schedule @fn(@data) for execution after @delay jiffies using
894 * port_task. There is one port_task per port and it's the
895 * user(low level driver)'s responsibility to make sure that only
896 * one task is active at any given time.
898 * libata core layer takes care of synchronization between
899 * port_task and EH. ata_port_queue_task() may be ignored for EH
900 * synchronization.
902 * LOCKING:
903 * Inherited from caller.
905 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
906 unsigned long delay)
908 int rc;
910 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
911 return;
913 PREPARE_WORK(&ap->port_task, fn, data);
915 if (!delay)
916 rc = queue_work(ata_wq, &ap->port_task);
917 else
918 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
920 /* rc == 0 means that another user is using port task */
921 WARN_ON(rc == 0);
925 * ata_port_flush_task - Flush port_task
926 * @ap: The ata_port to flush port_task for
928 * After this function completes, port_task is guranteed not to
929 * be running or scheduled.
931 * LOCKING:
932 * Kernel thread context (may sleep)
934 void ata_port_flush_task(struct ata_port *ap)
936 unsigned long flags;
938 DPRINTK("ENTER\n");
940 spin_lock_irqsave(ap->lock, flags);
941 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
942 spin_unlock_irqrestore(ap->lock, flags);
944 DPRINTK("flush #1\n");
945 flush_workqueue(ata_wq);
948 * At this point, if a task is running, it's guaranteed to see
949 * the FLUSH flag; thus, it will never queue pio tasks again.
950 * Cancel and flush.
952 if (!cancel_delayed_work(&ap->port_task)) {
953 if (ata_msg_ctl(ap))
954 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
955 __FUNCTION__);
956 flush_workqueue(ata_wq);
959 spin_lock_irqsave(ap->lock, flags);
960 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
961 spin_unlock_irqrestore(ap->lock, flags);
963 if (ata_msg_ctl(ap))
964 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
967 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
969 struct completion *waiting = qc->private_data;
971 complete(waiting);
975 * ata_exec_internal - execute libata internal command
976 * @dev: Device to which the command is sent
977 * @tf: Taskfile registers for the command and the result
978 * @cdb: CDB for packet command
979 * @dma_dir: Data tranfer direction of the command
980 * @buf: Data buffer of the command
981 * @buflen: Length of data buffer
983 * Executes libata internal command with timeout. @tf contains
984 * command on entry and result on return. Timeout and error
985 * conditions are reported via return value. No recovery action
986 * is taken after a command times out. It's caller's duty to
987 * clean up after timeout.
989 * LOCKING:
990 * None. Should be called with kernel context, might sleep.
992 * RETURNS:
993 * Zero on success, AC_ERR_* mask on failure
995 unsigned ata_exec_internal(struct ata_device *dev,
996 struct ata_taskfile *tf, const u8 *cdb,
997 int dma_dir, void *buf, unsigned int buflen)
999 struct ata_port *ap = dev->ap;
1000 u8 command = tf->command;
1001 struct ata_queued_cmd *qc;
1002 unsigned int tag, preempted_tag;
1003 u32 preempted_sactive, preempted_qc_active;
1004 DECLARE_COMPLETION_ONSTACK(wait);
1005 unsigned long flags;
1006 unsigned int err_mask;
1007 int rc;
1009 spin_lock_irqsave(ap->lock, flags);
1011 /* no internal command while frozen */
1012 if (ap->flags & ATA_FLAG_FROZEN) {
1013 spin_unlock_irqrestore(ap->lock, flags);
1014 return AC_ERR_SYSTEM;
1017 /* initialize internal qc */
1019 /* XXX: Tag 0 is used for drivers with legacy EH as some
1020 * drivers choke if any other tag is given. This breaks
1021 * ata_tag_internal() test for those drivers. Don't use new
1022 * EH stuff without converting to it.
1024 if (ap->ops->error_handler)
1025 tag = ATA_TAG_INTERNAL;
1026 else
1027 tag = 0;
1029 if (test_and_set_bit(tag, &ap->qc_allocated))
1030 BUG();
1031 qc = __ata_qc_from_tag(ap, tag);
1033 qc->tag = tag;
1034 qc->scsicmd = NULL;
1035 qc->ap = ap;
1036 qc->dev = dev;
1037 ata_qc_reinit(qc);
1039 preempted_tag = ap->active_tag;
1040 preempted_sactive = ap->sactive;
1041 preempted_qc_active = ap->qc_active;
1042 ap->active_tag = ATA_TAG_POISON;
1043 ap->sactive = 0;
1044 ap->qc_active = 0;
1046 /* prepare & issue qc */
1047 qc->tf = *tf;
1048 if (cdb)
1049 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1050 qc->flags |= ATA_QCFLAG_RESULT_TF;
1051 qc->dma_dir = dma_dir;
1052 if (dma_dir != DMA_NONE) {
1053 ata_sg_init_one(qc, buf, buflen);
1054 qc->nsect = buflen / ATA_SECT_SIZE;
1057 qc->private_data = &wait;
1058 qc->complete_fn = ata_qc_complete_internal;
1060 ata_qc_issue(qc);
1062 spin_unlock_irqrestore(ap->lock, flags);
1064 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1066 ata_port_flush_task(ap);
1068 if (!rc) {
1069 spin_lock_irqsave(ap->lock, flags);
1071 /* We're racing with irq here. If we lose, the
1072 * following test prevents us from completing the qc
1073 * twice. If we win, the port is frozen and will be
1074 * cleaned up by ->post_internal_cmd().
1076 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1077 qc->err_mask |= AC_ERR_TIMEOUT;
1079 if (ap->ops->error_handler)
1080 ata_port_freeze(ap);
1081 else
1082 ata_qc_complete(qc);
1084 if (ata_msg_warn(ap))
1085 ata_dev_printk(dev, KERN_WARNING,
1086 "qc timeout (cmd 0x%x)\n", command);
1089 spin_unlock_irqrestore(ap->lock, flags);
1092 /* do post_internal_cmd */
1093 if (ap->ops->post_internal_cmd)
1094 ap->ops->post_internal_cmd(qc);
1096 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1097 if (ata_msg_warn(ap))
1098 ata_dev_printk(dev, KERN_WARNING,
1099 "zero err_mask for failed "
1100 "internal command, assuming AC_ERR_OTHER\n");
1101 qc->err_mask |= AC_ERR_OTHER;
1104 /* finish up */
1105 spin_lock_irqsave(ap->lock, flags);
1107 *tf = qc->result_tf;
1108 err_mask = qc->err_mask;
1110 ata_qc_free(qc);
1111 ap->active_tag = preempted_tag;
1112 ap->sactive = preempted_sactive;
1113 ap->qc_active = preempted_qc_active;
1115 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1116 * Until those drivers are fixed, we detect the condition
1117 * here, fail the command with AC_ERR_SYSTEM and reenable the
1118 * port.
1120 * Note that this doesn't change any behavior as internal
1121 * command failure results in disabling the device in the
1122 * higher layer for LLDDs without new reset/EH callbacks.
1124 * Kill the following code as soon as those drivers are fixed.
1126 if (ap->flags & ATA_FLAG_DISABLED) {
1127 err_mask |= AC_ERR_SYSTEM;
1128 ata_port_probe(ap);
1131 spin_unlock_irqrestore(ap->lock, flags);
1133 return err_mask;
1137 * ata_do_simple_cmd - execute simple internal command
1138 * @dev: Device to which the command is sent
1139 * @cmd: Opcode to execute
1141 * Execute a 'simple' command, that only consists of the opcode
1142 * 'cmd' itself, without filling any other registers
1144 * LOCKING:
1145 * Kernel thread context (may sleep).
1147 * RETURNS:
1148 * Zero on success, AC_ERR_* mask on failure
1150 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1152 struct ata_taskfile tf;
1154 ata_tf_init(dev, &tf);
1156 tf.command = cmd;
1157 tf.flags |= ATA_TFLAG_DEVICE;
1158 tf.protocol = ATA_PROT_NODATA;
1160 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1164 * ata_pio_need_iordy - check if iordy needed
1165 * @adev: ATA device
1167 * Check if the current speed of the device requires IORDY. Used
1168 * by various controllers for chip configuration.
1171 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1173 int pio;
1174 int speed = adev->pio_mode - XFER_PIO_0;
1176 if (speed < 2)
1177 return 0;
1178 if (speed > 2)
1179 return 1;
1181 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1183 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1184 pio = adev->id[ATA_ID_EIDE_PIO];
1185 /* Is the speed faster than the drive allows non IORDY ? */
1186 if (pio) {
1187 /* This is cycle times not frequency - watch the logic! */
1188 if (pio > 240) /* PIO2 is 240nS per cycle */
1189 return 1;
1190 return 0;
1193 return 0;
1197 * ata_dev_read_id - Read ID data from the specified device
1198 * @dev: target device
1199 * @p_class: pointer to class of the target device (may be changed)
1200 * @post_reset: is this read ID post-reset?
1201 * @id: buffer to read IDENTIFY data into
1203 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1204 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1205 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1206 * for pre-ATA4 drives.
1208 * LOCKING:
1209 * Kernel thread context (may sleep)
1211 * RETURNS:
1212 * 0 on success, -errno otherwise.
1214 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1215 int post_reset, u16 *id)
1217 struct ata_port *ap = dev->ap;
1218 unsigned int class = *p_class;
1219 struct ata_taskfile tf;
1220 unsigned int err_mask = 0;
1221 const char *reason;
1222 int rc;
1224 if (ata_msg_ctl(ap))
1225 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1226 __FUNCTION__, ap->id, dev->devno);
1228 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1230 retry:
1231 ata_tf_init(dev, &tf);
1233 switch (class) {
1234 case ATA_DEV_ATA:
1235 tf.command = ATA_CMD_ID_ATA;
1236 break;
1237 case ATA_DEV_ATAPI:
1238 tf.command = ATA_CMD_ID_ATAPI;
1239 break;
1240 default:
1241 rc = -ENODEV;
1242 reason = "unsupported class";
1243 goto err_out;
1246 tf.protocol = ATA_PROT_PIO;
1248 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1249 id, sizeof(id[0]) * ATA_ID_WORDS);
1250 if (err_mask) {
1251 rc = -EIO;
1252 reason = "I/O error";
1253 goto err_out;
1256 swap_buf_le16(id, ATA_ID_WORDS);
1258 /* sanity check */
1259 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
1260 rc = -EINVAL;
1261 reason = "device reports illegal type";
1262 goto err_out;
1265 if (post_reset && class == ATA_DEV_ATA) {
1267 * The exact sequence expected by certain pre-ATA4 drives is:
1268 * SRST RESET
1269 * IDENTIFY
1270 * INITIALIZE DEVICE PARAMETERS
1271 * anything else..
1272 * Some drives were very specific about that exact sequence.
1274 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1275 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1276 if (err_mask) {
1277 rc = -EIO;
1278 reason = "INIT_DEV_PARAMS failed";
1279 goto err_out;
1282 /* current CHS translation info (id[53-58]) might be
1283 * changed. reread the identify device info.
1285 post_reset = 0;
1286 goto retry;
1290 *p_class = class;
1292 return 0;
1294 err_out:
1295 if (ata_msg_warn(ap))
1296 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1297 "(%s, err_mask=0x%x)\n", reason, err_mask);
1298 return rc;
1301 static inline u8 ata_dev_knobble(struct ata_device *dev)
1303 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1306 static void ata_dev_config_ncq(struct ata_device *dev,
1307 char *desc, size_t desc_sz)
1309 struct ata_port *ap = dev->ap;
1310 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1312 if (!ata_id_has_ncq(dev->id)) {
1313 desc[0] = '\0';
1314 return;
1317 if (ap->flags & ATA_FLAG_NCQ) {
1318 hdepth = min(ap->host->can_queue, ATA_MAX_QUEUE - 1);
1319 dev->flags |= ATA_DFLAG_NCQ;
1322 if (hdepth >= ddepth)
1323 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1324 else
1325 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1329 * ata_dev_configure - Configure the specified ATA/ATAPI device
1330 * @dev: Target device to configure
1331 * @print_info: Enable device info printout
1333 * Configure @dev according to @dev->id. Generic and low-level
1334 * driver specific fixups are also applied.
1336 * LOCKING:
1337 * Kernel thread context (may sleep)
1339 * RETURNS:
1340 * 0 on success, -errno otherwise
1342 int ata_dev_configure(struct ata_device *dev, int print_info)
1344 struct ata_port *ap = dev->ap;
1345 const u16 *id = dev->id;
1346 unsigned int xfer_mask;
1347 int i, rc;
1349 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1350 ata_dev_printk(dev, KERN_INFO,
1351 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1352 __FUNCTION__, ap->id, dev->devno);
1353 return 0;
1356 if (ata_msg_probe(ap))
1357 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1358 __FUNCTION__, ap->id, dev->devno);
1360 /* print device capabilities */
1361 if (ata_msg_probe(ap))
1362 ata_dev_printk(dev, KERN_DEBUG,
1363 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1364 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1365 __FUNCTION__,
1366 id[49], id[82], id[83], id[84],
1367 id[85], id[86], id[87], id[88]);
1369 /* initialize to-be-configured parameters */
1370 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1371 dev->max_sectors = 0;
1372 dev->cdb_len = 0;
1373 dev->n_sectors = 0;
1374 dev->cylinders = 0;
1375 dev->heads = 0;
1376 dev->sectors = 0;
1379 * common ATA, ATAPI feature tests
1382 /* find max transfer mode; for printk only */
1383 xfer_mask = ata_id_xfermask(id);
1385 if (ata_msg_probe(ap))
1386 ata_dump_id(id);
1388 /* ATA-specific feature tests */
1389 if (dev->class == ATA_DEV_ATA) {
1390 dev->n_sectors = ata_id_n_sectors(id);
1392 if (ata_id_has_lba(id)) {
1393 const char *lba_desc;
1394 char ncq_desc[20];
1396 lba_desc = "LBA";
1397 dev->flags |= ATA_DFLAG_LBA;
1398 if (ata_id_has_lba48(id)) {
1399 dev->flags |= ATA_DFLAG_LBA48;
1400 lba_desc = "LBA48";
1403 /* config NCQ */
1404 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1406 /* print device info to dmesg */
1407 if (ata_msg_info(ap))
1408 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1409 "max %s, %Lu sectors: %s %s\n",
1410 ata_id_major_version(id),
1411 ata_mode_string(xfer_mask),
1412 (unsigned long long)dev->n_sectors,
1413 lba_desc, ncq_desc);
1414 } else {
1415 /* CHS */
1417 /* Default translation */
1418 dev->cylinders = id[1];
1419 dev->heads = id[3];
1420 dev->sectors = id[6];
1422 if (ata_id_current_chs_valid(id)) {
1423 /* Current CHS translation is valid. */
1424 dev->cylinders = id[54];
1425 dev->heads = id[55];
1426 dev->sectors = id[56];
1429 /* print device info to dmesg */
1430 if (ata_msg_info(ap))
1431 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1432 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1433 ata_id_major_version(id),
1434 ata_mode_string(xfer_mask),
1435 (unsigned long long)dev->n_sectors,
1436 dev->cylinders, dev->heads,
1437 dev->sectors);
1440 if (dev->id[59] & 0x100) {
1441 dev->multi_count = dev->id[59] & 0xff;
1442 if (ata_msg_info(ap))
1443 ata_dev_printk(dev, KERN_INFO,
1444 "ata%u: dev %u multi count %u\n",
1445 ap->id, dev->devno, dev->multi_count);
1448 dev->cdb_len = 16;
1451 /* ATAPI-specific feature tests */
1452 else if (dev->class == ATA_DEV_ATAPI) {
1453 char *cdb_intr_string = "";
1455 rc = atapi_cdb_len(id);
1456 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1457 if (ata_msg_warn(ap))
1458 ata_dev_printk(dev, KERN_WARNING,
1459 "unsupported CDB len\n");
1460 rc = -EINVAL;
1461 goto err_out_nosup;
1463 dev->cdb_len = (unsigned int) rc;
1465 if (ata_id_cdb_intr(dev->id)) {
1466 dev->flags |= ATA_DFLAG_CDB_INTR;
1467 cdb_intr_string = ", CDB intr";
1470 /* print device info to dmesg */
1471 if (ata_msg_info(ap))
1472 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1473 ata_mode_string(xfer_mask),
1474 cdb_intr_string);
1477 ap->host->max_cmd_len = 0;
1478 for (i = 0; i < ATA_MAX_DEVICES; i++)
1479 ap->host->max_cmd_len = max_t(unsigned int,
1480 ap->host->max_cmd_len,
1481 ap->device[i].cdb_len);
1483 /* limit bridge transfers to udma5, 200 sectors */
1484 if (ata_dev_knobble(dev)) {
1485 if (ata_msg_info(ap))
1486 ata_dev_printk(dev, KERN_INFO,
1487 "applying bridge limits\n");
1488 dev->udma_mask &= ATA_UDMA5;
1489 dev->max_sectors = ATA_MAX_SECTORS;
1492 if (ap->ops->dev_config)
1493 ap->ops->dev_config(ap, dev);
1495 if (ata_msg_probe(ap))
1496 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1497 __FUNCTION__, ata_chk_status(ap));
1498 return 0;
1500 err_out_nosup:
1501 if (ata_msg_probe(ap))
1502 ata_dev_printk(dev, KERN_DEBUG,
1503 "%s: EXIT, err\n", __FUNCTION__);
1504 return rc;
1508 * ata_bus_probe - Reset and probe ATA bus
1509 * @ap: Bus to probe
1511 * Master ATA bus probing function. Initiates a hardware-dependent
1512 * bus reset, then attempts to identify any devices found on
1513 * the bus.
1515 * LOCKING:
1516 * PCI/etc. bus probe sem.
1518 * RETURNS:
1519 * Zero on success, negative errno otherwise.
1522 static int ata_bus_probe(struct ata_port *ap)
1524 unsigned int classes[ATA_MAX_DEVICES];
1525 int tries[ATA_MAX_DEVICES];
1526 int i, rc, down_xfermask;
1527 struct ata_device *dev;
1529 ata_port_probe(ap);
1531 for (i = 0; i < ATA_MAX_DEVICES; i++)
1532 tries[i] = ATA_PROBE_MAX_TRIES;
1534 retry:
1535 down_xfermask = 0;
1537 /* reset and determine device classes */
1538 ap->ops->phy_reset(ap);
1540 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1541 dev = &ap->device[i];
1543 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1544 dev->class != ATA_DEV_UNKNOWN)
1545 classes[dev->devno] = dev->class;
1546 else
1547 classes[dev->devno] = ATA_DEV_NONE;
1549 dev->class = ATA_DEV_UNKNOWN;
1552 ata_port_probe(ap);
1554 /* after the reset the device state is PIO 0 and the controller
1555 state is undefined. Record the mode */
1557 for (i = 0; i < ATA_MAX_DEVICES; i++)
1558 ap->device[i].pio_mode = XFER_PIO_0;
1560 /* read IDENTIFY page and configure devices */
1561 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1562 dev = &ap->device[i];
1564 if (tries[i])
1565 dev->class = classes[i];
1567 if (!ata_dev_enabled(dev))
1568 continue;
1570 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
1571 if (rc)
1572 goto fail;
1574 rc = ata_dev_configure(dev, 1);
1575 if (rc)
1576 goto fail;
1579 /* configure transfer mode */
1580 rc = ata_set_mode(ap, &dev);
1581 if (rc) {
1582 down_xfermask = 1;
1583 goto fail;
1586 for (i = 0; i < ATA_MAX_DEVICES; i++)
1587 if (ata_dev_enabled(&ap->device[i]))
1588 return 0;
1590 /* no device present, disable port */
1591 ata_port_disable(ap);
1592 ap->ops->port_disable(ap);
1593 return -ENODEV;
1595 fail:
1596 switch (rc) {
1597 case -EINVAL:
1598 case -ENODEV:
1599 tries[dev->devno] = 0;
1600 break;
1601 case -EIO:
1602 sata_down_spd_limit(ap);
1603 /* fall through */
1604 default:
1605 tries[dev->devno]--;
1606 if (down_xfermask &&
1607 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1608 tries[dev->devno] = 0;
1611 if (!tries[dev->devno]) {
1612 ata_down_xfermask_limit(dev, 1);
1613 ata_dev_disable(dev);
1616 goto retry;
1620 * ata_port_probe - Mark port as enabled
1621 * @ap: Port for which we indicate enablement
1623 * Modify @ap data structure such that the system
1624 * thinks that the entire port is enabled.
1626 * LOCKING: host_set lock, or some other form of
1627 * serialization.
1630 void ata_port_probe(struct ata_port *ap)
1632 ap->flags &= ~ATA_FLAG_DISABLED;
1636 * sata_print_link_status - Print SATA link status
1637 * @ap: SATA port to printk link status about
1639 * This function prints link speed and status of a SATA link.
1641 * LOCKING:
1642 * None.
1644 static void sata_print_link_status(struct ata_port *ap)
1646 u32 sstatus, scontrol, tmp;
1648 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1649 return;
1650 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1652 if (ata_port_online(ap)) {
1653 tmp = (sstatus >> 4) & 0xf;
1654 ata_port_printk(ap, KERN_INFO,
1655 "SATA link up %s (SStatus %X SControl %X)\n",
1656 sata_spd_string(tmp), sstatus, scontrol);
1657 } else {
1658 ata_port_printk(ap, KERN_INFO,
1659 "SATA link down (SStatus %X SControl %X)\n",
1660 sstatus, scontrol);
1665 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1666 * @ap: SATA port associated with target SATA PHY.
1668 * This function issues commands to standard SATA Sxxx
1669 * PHY registers, to wake up the phy (and device), and
1670 * clear any reset condition.
1672 * LOCKING:
1673 * PCI/etc. bus probe sem.
1676 void __sata_phy_reset(struct ata_port *ap)
1678 u32 sstatus;
1679 unsigned long timeout = jiffies + (HZ * 5);
1681 if (ap->flags & ATA_FLAG_SATA_RESET) {
1682 /* issue phy wake/reset */
1683 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1684 /* Couldn't find anything in SATA I/II specs, but
1685 * AHCI-1.1 10.4.2 says at least 1 ms. */
1686 mdelay(1);
1688 /* phy wake/clear reset */
1689 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1691 /* wait for phy to become ready, if necessary */
1692 do {
1693 msleep(200);
1694 sata_scr_read(ap, SCR_STATUS, &sstatus);
1695 if ((sstatus & 0xf) != 1)
1696 break;
1697 } while (time_before(jiffies, timeout));
1699 /* print link status */
1700 sata_print_link_status(ap);
1702 /* TODO: phy layer with polling, timeouts, etc. */
1703 if (!ata_port_offline(ap))
1704 ata_port_probe(ap);
1705 else
1706 ata_port_disable(ap);
1708 if (ap->flags & ATA_FLAG_DISABLED)
1709 return;
1711 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1712 ata_port_disable(ap);
1713 return;
1716 ap->cbl = ATA_CBL_SATA;
1720 * sata_phy_reset - Reset SATA bus.
1721 * @ap: SATA port associated with target SATA PHY.
1723 * This function resets the SATA bus, and then probes
1724 * the bus for devices.
1726 * LOCKING:
1727 * PCI/etc. bus probe sem.
1730 void sata_phy_reset(struct ata_port *ap)
1732 __sata_phy_reset(ap);
1733 if (ap->flags & ATA_FLAG_DISABLED)
1734 return;
1735 ata_bus_reset(ap);
1739 * ata_dev_pair - return other device on cable
1740 * @adev: device
1742 * Obtain the other device on the same cable, or if none is
1743 * present NULL is returned
1746 struct ata_device *ata_dev_pair(struct ata_device *adev)
1748 struct ata_port *ap = adev->ap;
1749 struct ata_device *pair = &ap->device[1 - adev->devno];
1750 if (!ata_dev_enabled(pair))
1751 return NULL;
1752 return pair;
1756 * ata_port_disable - Disable port.
1757 * @ap: Port to be disabled.
1759 * Modify @ap data structure such that the system
1760 * thinks that the entire port is disabled, and should
1761 * never attempt to probe or communicate with devices
1762 * on this port.
1764 * LOCKING: host_set lock, or some other form of
1765 * serialization.
1768 void ata_port_disable(struct ata_port *ap)
1770 ap->device[0].class = ATA_DEV_NONE;
1771 ap->device[1].class = ATA_DEV_NONE;
1772 ap->flags |= ATA_FLAG_DISABLED;
1776 * sata_down_spd_limit - adjust SATA spd limit downward
1777 * @ap: Port to adjust SATA spd limit for
1779 * Adjust SATA spd limit of @ap downward. Note that this
1780 * function only adjusts the limit. The change must be applied
1781 * using sata_set_spd().
1783 * LOCKING:
1784 * Inherited from caller.
1786 * RETURNS:
1787 * 0 on success, negative errno on failure
1789 int sata_down_spd_limit(struct ata_port *ap)
1791 u32 sstatus, spd, mask;
1792 int rc, highbit;
1794 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1795 if (rc)
1796 return rc;
1798 mask = ap->sata_spd_limit;
1799 if (mask <= 1)
1800 return -EINVAL;
1801 highbit = fls(mask) - 1;
1802 mask &= ~(1 << highbit);
1804 spd = (sstatus >> 4) & 0xf;
1805 if (spd <= 1)
1806 return -EINVAL;
1807 spd--;
1808 mask &= (1 << spd) - 1;
1809 if (!mask)
1810 return -EINVAL;
1812 ap->sata_spd_limit = mask;
1814 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1815 sata_spd_string(fls(mask)));
1817 return 0;
1820 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1822 u32 spd, limit;
1824 if (ap->sata_spd_limit == UINT_MAX)
1825 limit = 0;
1826 else
1827 limit = fls(ap->sata_spd_limit);
1829 spd = (*scontrol >> 4) & 0xf;
1830 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1832 return spd != limit;
1836 * sata_set_spd_needed - is SATA spd configuration needed
1837 * @ap: Port in question
1839 * Test whether the spd limit in SControl matches
1840 * @ap->sata_spd_limit. This function is used to determine
1841 * whether hardreset is necessary to apply SATA spd
1842 * configuration.
1844 * LOCKING:
1845 * Inherited from caller.
1847 * RETURNS:
1848 * 1 if SATA spd configuration is needed, 0 otherwise.
1850 int sata_set_spd_needed(struct ata_port *ap)
1852 u32 scontrol;
1854 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1855 return 0;
1857 return __sata_set_spd_needed(ap, &scontrol);
1861 * sata_set_spd - set SATA spd according to spd limit
1862 * @ap: Port to set SATA spd for
1864 * Set SATA spd of @ap according to sata_spd_limit.
1866 * LOCKING:
1867 * Inherited from caller.
1869 * RETURNS:
1870 * 0 if spd doesn't need to be changed, 1 if spd has been
1871 * changed. Negative errno if SCR registers are inaccessible.
1873 int sata_set_spd(struct ata_port *ap)
1875 u32 scontrol;
1876 int rc;
1878 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1879 return rc;
1881 if (!__sata_set_spd_needed(ap, &scontrol))
1882 return 0;
1884 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1885 return rc;
1887 return 1;
1891 * This mode timing computation functionality is ported over from
1892 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1895 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1896 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1897 * for PIO 5, which is a nonstandard extension and UDMA6, which
1898 * is currently supported only by Maxtor drives.
1901 static const struct ata_timing ata_timing[] = {
1903 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1904 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1905 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1906 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1908 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1909 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1910 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1912 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1914 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1915 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1916 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1918 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1919 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1920 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1922 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1923 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1924 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1926 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1927 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1928 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1930 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1932 { 0xFF }
1935 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1936 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1938 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1940 q->setup = EZ(t->setup * 1000, T);
1941 q->act8b = EZ(t->act8b * 1000, T);
1942 q->rec8b = EZ(t->rec8b * 1000, T);
1943 q->cyc8b = EZ(t->cyc8b * 1000, T);
1944 q->active = EZ(t->active * 1000, T);
1945 q->recover = EZ(t->recover * 1000, T);
1946 q->cycle = EZ(t->cycle * 1000, T);
1947 q->udma = EZ(t->udma * 1000, UT);
1950 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1951 struct ata_timing *m, unsigned int what)
1953 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1954 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1955 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1956 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1957 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1958 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1959 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1960 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1963 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1965 const struct ata_timing *t;
1967 for (t = ata_timing; t->mode != speed; t++)
1968 if (t->mode == 0xFF)
1969 return NULL;
1970 return t;
1973 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1974 struct ata_timing *t, int T, int UT)
1976 const struct ata_timing *s;
1977 struct ata_timing p;
1980 * Find the mode.
1983 if (!(s = ata_timing_find_mode(speed)))
1984 return -EINVAL;
1986 memcpy(t, s, sizeof(*s));
1989 * If the drive is an EIDE drive, it can tell us it needs extended
1990 * PIO/MW_DMA cycle timing.
1993 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1994 memset(&p, 0, sizeof(p));
1995 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1996 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1997 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1998 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1999 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2001 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2005 * Convert the timing to bus clock counts.
2008 ata_timing_quantize(t, t, T, UT);
2011 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2012 * S.M.A.R.T * and some other commands. We have to ensure that the
2013 * DMA cycle timing is slower/equal than the fastest PIO timing.
2016 if (speed > XFER_PIO_4) {
2017 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2018 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2022 * Lengthen active & recovery time so that cycle time is correct.
2025 if (t->act8b + t->rec8b < t->cyc8b) {
2026 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2027 t->rec8b = t->cyc8b - t->act8b;
2030 if (t->active + t->recover < t->cycle) {
2031 t->active += (t->cycle - (t->active + t->recover)) / 2;
2032 t->recover = t->cycle - t->active;
2035 return 0;
2039 * ata_down_xfermask_limit - adjust dev xfer masks downward
2040 * @dev: Device to adjust xfer masks
2041 * @force_pio0: Force PIO0
2043 * Adjust xfer masks of @dev downward. Note that this function
2044 * does not apply the change. Invoking ata_set_mode() afterwards
2045 * will apply the limit.
2047 * LOCKING:
2048 * Inherited from caller.
2050 * RETURNS:
2051 * 0 on success, negative errno on failure
2053 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
2055 unsigned long xfer_mask;
2056 int highbit;
2058 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2059 dev->udma_mask);
2061 if (!xfer_mask)
2062 goto fail;
2063 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2064 if (xfer_mask & ATA_MASK_UDMA)
2065 xfer_mask &= ~ATA_MASK_MWDMA;
2067 highbit = fls(xfer_mask) - 1;
2068 xfer_mask &= ~(1 << highbit);
2069 if (force_pio0)
2070 xfer_mask &= 1 << ATA_SHIFT_PIO;
2071 if (!xfer_mask)
2072 goto fail;
2074 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2075 &dev->udma_mask);
2077 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2078 ata_mode_string(xfer_mask));
2080 return 0;
2082 fail:
2083 return -EINVAL;
2086 static int ata_dev_set_mode(struct ata_device *dev)
2088 unsigned int err_mask;
2089 int rc;
2091 dev->flags &= ~ATA_DFLAG_PIO;
2092 if (dev->xfer_shift == ATA_SHIFT_PIO)
2093 dev->flags |= ATA_DFLAG_PIO;
2095 err_mask = ata_dev_set_xfermode(dev);
2096 if (err_mask) {
2097 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2098 "(err_mask=0x%x)\n", err_mask);
2099 return -EIO;
2102 rc = ata_dev_revalidate(dev, 0);
2103 if (rc)
2104 return rc;
2106 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2107 dev->xfer_shift, (int)dev->xfer_mode);
2109 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2110 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2111 return 0;
2115 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2116 * @ap: port on which timings will be programmed
2117 * @r_failed_dev: out paramter for failed device
2119 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2120 * ata_set_mode() fails, pointer to the failing device is
2121 * returned in @r_failed_dev.
2123 * LOCKING:
2124 * PCI/etc. bus probe sem.
2126 * RETURNS:
2127 * 0 on success, negative errno otherwise
2129 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2131 struct ata_device *dev;
2132 int i, rc = 0, used_dma = 0, found = 0;
2134 /* has private set_mode? */
2135 if (ap->ops->set_mode) {
2136 /* FIXME: make ->set_mode handle no device case and
2137 * return error code and failing device on failure.
2139 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2140 if (ata_dev_enabled(&ap->device[i])) {
2141 ap->ops->set_mode(ap);
2142 break;
2145 return 0;
2148 /* step 1: calculate xfer_mask */
2149 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2150 unsigned int pio_mask, dma_mask;
2152 dev = &ap->device[i];
2154 if (!ata_dev_enabled(dev))
2155 continue;
2157 ata_dev_xfermask(dev);
2159 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2160 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2161 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2162 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2164 found = 1;
2165 if (dev->dma_mode)
2166 used_dma = 1;
2168 if (!found)
2169 goto out;
2171 /* step 2: always set host PIO timings */
2172 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2173 dev = &ap->device[i];
2174 if (!ata_dev_enabled(dev))
2175 continue;
2177 if (!dev->pio_mode) {
2178 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2179 rc = -EINVAL;
2180 goto out;
2183 dev->xfer_mode = dev->pio_mode;
2184 dev->xfer_shift = ATA_SHIFT_PIO;
2185 if (ap->ops->set_piomode)
2186 ap->ops->set_piomode(ap, dev);
2189 /* step 3: set host DMA timings */
2190 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2191 dev = &ap->device[i];
2193 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2194 continue;
2196 dev->xfer_mode = dev->dma_mode;
2197 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2198 if (ap->ops->set_dmamode)
2199 ap->ops->set_dmamode(ap, dev);
2202 /* step 4: update devices' xfer mode */
2203 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2204 dev = &ap->device[i];
2206 if (!ata_dev_enabled(dev))
2207 continue;
2209 rc = ata_dev_set_mode(dev);
2210 if (rc)
2211 goto out;
2214 /* Record simplex status. If we selected DMA then the other
2215 * host channels are not permitted to do so.
2217 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2218 ap->host_set->simplex_claimed = 1;
2220 /* step5: chip specific finalisation */
2221 if (ap->ops->post_set_mode)
2222 ap->ops->post_set_mode(ap);
2224 out:
2225 if (rc)
2226 *r_failed_dev = dev;
2227 return rc;
2231 * ata_tf_to_host - issue ATA taskfile to host controller
2232 * @ap: port to which command is being issued
2233 * @tf: ATA taskfile register set
2235 * Issues ATA taskfile register set to ATA host controller,
2236 * with proper synchronization with interrupt handler and
2237 * other threads.
2239 * LOCKING:
2240 * spin_lock_irqsave(host_set lock)
2243 static inline void ata_tf_to_host(struct ata_port *ap,
2244 const struct ata_taskfile *tf)
2246 ap->ops->tf_load(ap, tf);
2247 ap->ops->exec_command(ap, tf);
2251 * ata_busy_sleep - sleep until BSY clears, or timeout
2252 * @ap: port containing status register to be polled
2253 * @tmout_pat: impatience timeout
2254 * @tmout: overall timeout
2256 * Sleep until ATA Status register bit BSY clears,
2257 * or a timeout occurs.
2259 * LOCKING: None.
2262 unsigned int ata_busy_sleep (struct ata_port *ap,
2263 unsigned long tmout_pat, unsigned long tmout)
2265 unsigned long timer_start, timeout;
2266 u8 status;
2268 status = ata_busy_wait(ap, ATA_BUSY, 300);
2269 timer_start = jiffies;
2270 timeout = timer_start + tmout_pat;
2271 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2272 msleep(50);
2273 status = ata_busy_wait(ap, ATA_BUSY, 3);
2276 if (status & ATA_BUSY)
2277 ata_port_printk(ap, KERN_WARNING,
2278 "port is slow to respond, please be patient\n");
2280 timeout = timer_start + tmout;
2281 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2282 msleep(50);
2283 status = ata_chk_status(ap);
2286 if (status & ATA_BUSY) {
2287 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2288 "(%lu secs)\n", tmout / HZ);
2289 return 1;
2292 return 0;
2295 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2297 struct ata_ioports *ioaddr = &ap->ioaddr;
2298 unsigned int dev0 = devmask & (1 << 0);
2299 unsigned int dev1 = devmask & (1 << 1);
2300 unsigned long timeout;
2302 /* if device 0 was found in ata_devchk, wait for its
2303 * BSY bit to clear
2305 if (dev0)
2306 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2308 /* if device 1 was found in ata_devchk, wait for
2309 * register access, then wait for BSY to clear
2311 timeout = jiffies + ATA_TMOUT_BOOT;
2312 while (dev1) {
2313 u8 nsect, lbal;
2315 ap->ops->dev_select(ap, 1);
2316 if (ap->flags & ATA_FLAG_MMIO) {
2317 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2318 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2319 } else {
2320 nsect = inb(ioaddr->nsect_addr);
2321 lbal = inb(ioaddr->lbal_addr);
2323 if ((nsect == 1) && (lbal == 1))
2324 break;
2325 if (time_after(jiffies, timeout)) {
2326 dev1 = 0;
2327 break;
2329 msleep(50); /* give drive a breather */
2331 if (dev1)
2332 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2334 /* is all this really necessary? */
2335 ap->ops->dev_select(ap, 0);
2336 if (dev1)
2337 ap->ops->dev_select(ap, 1);
2338 if (dev0)
2339 ap->ops->dev_select(ap, 0);
2342 static unsigned int ata_bus_softreset(struct ata_port *ap,
2343 unsigned int devmask)
2345 struct ata_ioports *ioaddr = &ap->ioaddr;
2347 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2349 /* software reset. causes dev0 to be selected */
2350 if (ap->flags & ATA_FLAG_MMIO) {
2351 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2352 udelay(20); /* FIXME: flush */
2353 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2354 udelay(20); /* FIXME: flush */
2355 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2356 } else {
2357 outb(ap->ctl, ioaddr->ctl_addr);
2358 udelay(10);
2359 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2360 udelay(10);
2361 outb(ap->ctl, ioaddr->ctl_addr);
2364 /* spec mandates ">= 2ms" before checking status.
2365 * We wait 150ms, because that was the magic delay used for
2366 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2367 * between when the ATA command register is written, and then
2368 * status is checked. Because waiting for "a while" before
2369 * checking status is fine, post SRST, we perform this magic
2370 * delay here as well.
2372 * Old drivers/ide uses the 2mS rule and then waits for ready
2374 msleep(150);
2376 /* Before we perform post reset processing we want to see if
2377 * the bus shows 0xFF because the odd clown forgets the D7
2378 * pulldown resistor.
2380 if (ata_check_status(ap) == 0xFF) {
2381 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
2382 return AC_ERR_OTHER;
2385 ata_bus_post_reset(ap, devmask);
2387 return 0;
2391 * ata_bus_reset - reset host port and associated ATA channel
2392 * @ap: port to reset
2394 * This is typically the first time we actually start issuing
2395 * commands to the ATA channel. We wait for BSY to clear, then
2396 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2397 * result. Determine what devices, if any, are on the channel
2398 * by looking at the device 0/1 error register. Look at the signature
2399 * stored in each device's taskfile registers, to determine if
2400 * the device is ATA or ATAPI.
2402 * LOCKING:
2403 * PCI/etc. bus probe sem.
2404 * Obtains host_set lock.
2406 * SIDE EFFECTS:
2407 * Sets ATA_FLAG_DISABLED if bus reset fails.
2410 void ata_bus_reset(struct ata_port *ap)
2412 struct ata_ioports *ioaddr = &ap->ioaddr;
2413 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2414 u8 err;
2415 unsigned int dev0, dev1 = 0, devmask = 0;
2417 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2419 /* determine if device 0/1 are present */
2420 if (ap->flags & ATA_FLAG_SATA_RESET)
2421 dev0 = 1;
2422 else {
2423 dev0 = ata_devchk(ap, 0);
2424 if (slave_possible)
2425 dev1 = ata_devchk(ap, 1);
2428 if (dev0)
2429 devmask |= (1 << 0);
2430 if (dev1)
2431 devmask |= (1 << 1);
2433 /* select device 0 again */
2434 ap->ops->dev_select(ap, 0);
2436 /* issue bus reset */
2437 if (ap->flags & ATA_FLAG_SRST)
2438 if (ata_bus_softreset(ap, devmask))
2439 goto err_out;
2442 * determine by signature whether we have ATA or ATAPI devices
2444 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2445 if ((slave_possible) && (err != 0x81))
2446 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2448 /* re-enable interrupts */
2449 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2450 ata_irq_on(ap);
2452 /* is double-select really necessary? */
2453 if (ap->device[1].class != ATA_DEV_NONE)
2454 ap->ops->dev_select(ap, 1);
2455 if (ap->device[0].class != ATA_DEV_NONE)
2456 ap->ops->dev_select(ap, 0);
2458 /* if no devices were detected, disable this port */
2459 if ((ap->device[0].class == ATA_DEV_NONE) &&
2460 (ap->device[1].class == ATA_DEV_NONE))
2461 goto err_out;
2463 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2464 /* set up device control for ATA_FLAG_SATA_RESET */
2465 if (ap->flags & ATA_FLAG_MMIO)
2466 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2467 else
2468 outb(ap->ctl, ioaddr->ctl_addr);
2471 DPRINTK("EXIT\n");
2472 return;
2474 err_out:
2475 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2476 ap->ops->port_disable(ap);
2478 DPRINTK("EXIT\n");
2482 * sata_phy_debounce - debounce SATA phy status
2483 * @ap: ATA port to debounce SATA phy status for
2484 * @params: timing parameters { interval, duratinon, timeout } in msec
2486 * Make sure SStatus of @ap reaches stable state, determined by
2487 * holding the same value where DET is not 1 for @duration polled
2488 * every @interval, before @timeout. Timeout constraints the
2489 * beginning of the stable state. Because, after hot unplugging,
2490 * DET gets stuck at 1 on some controllers, this functions waits
2491 * until timeout then returns 0 if DET is stable at 1.
2493 * LOCKING:
2494 * Kernel thread context (may sleep)
2496 * RETURNS:
2497 * 0 on success, -errno on failure.
2499 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2501 unsigned long interval_msec = params[0];
2502 unsigned long duration = params[1] * HZ / 1000;
2503 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2504 unsigned long last_jiffies;
2505 u32 last, cur;
2506 int rc;
2508 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2509 return rc;
2510 cur &= 0xf;
2512 last = cur;
2513 last_jiffies = jiffies;
2515 while (1) {
2516 msleep(interval_msec);
2517 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2518 return rc;
2519 cur &= 0xf;
2521 /* DET stable? */
2522 if (cur == last) {
2523 if (cur == 1 && time_before(jiffies, timeout))
2524 continue;
2525 if (time_after(jiffies, last_jiffies + duration))
2526 return 0;
2527 continue;
2530 /* unstable, start over */
2531 last = cur;
2532 last_jiffies = jiffies;
2534 /* check timeout */
2535 if (time_after(jiffies, timeout))
2536 return -EBUSY;
2541 * sata_phy_resume - resume SATA phy
2542 * @ap: ATA port to resume SATA phy for
2543 * @params: timing parameters { interval, duratinon, timeout } in msec
2545 * Resume SATA phy of @ap and debounce it.
2547 * LOCKING:
2548 * Kernel thread context (may sleep)
2550 * RETURNS:
2551 * 0 on success, -errno on failure.
2553 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2555 u32 scontrol;
2556 int rc;
2558 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2559 return rc;
2561 scontrol = (scontrol & 0x0f0) | 0x300;
2563 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2564 return rc;
2566 /* Some PHYs react badly if SStatus is pounded immediately
2567 * after resuming. Delay 200ms before debouncing.
2569 msleep(200);
2571 return sata_phy_debounce(ap, params);
2574 static void ata_wait_spinup(struct ata_port *ap)
2576 struct ata_eh_context *ehc = &ap->eh_context;
2577 unsigned long end, secs;
2578 int rc;
2580 /* first, debounce phy if SATA */
2581 if (ap->cbl == ATA_CBL_SATA) {
2582 rc = sata_phy_debounce(ap, sata_deb_timing_eh);
2584 /* if debounced successfully and offline, no need to wait */
2585 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2586 return;
2589 /* okay, let's give the drive time to spin up */
2590 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2591 secs = ((end - jiffies) + HZ - 1) / HZ;
2593 if (time_after(jiffies, end))
2594 return;
2596 if (secs > 5)
2597 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2598 "(%lu secs)\n", secs);
2600 schedule_timeout_uninterruptible(end - jiffies);
2604 * ata_std_prereset - prepare for reset
2605 * @ap: ATA port to be reset
2607 * @ap is about to be reset. Initialize it.
2609 * LOCKING:
2610 * Kernel thread context (may sleep)
2612 * RETURNS:
2613 * 0 on success, -errno otherwise.
2615 int ata_std_prereset(struct ata_port *ap)
2617 struct ata_eh_context *ehc = &ap->eh_context;
2618 const unsigned long *timing;
2619 int rc;
2621 /* hotplug? */
2622 if (ehc->i.flags & ATA_EHI_HOTPLUGGED) {
2623 if (ap->flags & ATA_FLAG_HRST_TO_RESUME)
2624 ehc->i.action |= ATA_EH_HARDRESET;
2625 if (ap->flags & ATA_FLAG_SKIP_D2H_BSY)
2626 ata_wait_spinup(ap);
2629 /* if we're about to do hardreset, nothing more to do */
2630 if (ehc->i.action & ATA_EH_HARDRESET)
2631 return 0;
2633 /* if SATA, resume phy */
2634 if (ap->cbl == ATA_CBL_SATA) {
2635 if (ap->flags & ATA_FLAG_LOADING)
2636 timing = sata_deb_timing_boot;
2637 else
2638 timing = sata_deb_timing_eh;
2640 rc = sata_phy_resume(ap, timing);
2641 if (rc && rc != -EOPNOTSUPP) {
2642 /* phy resume failed */
2643 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2644 "link for reset (errno=%d)\n", rc);
2645 return rc;
2649 /* Wait for !BSY if the controller can wait for the first D2H
2650 * Reg FIS and we don't know that no device is attached.
2652 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2653 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2655 return 0;
2659 * ata_std_softreset - reset host port via ATA SRST
2660 * @ap: port to reset
2661 * @classes: resulting classes of attached devices
2663 * Reset host port using ATA SRST.
2665 * LOCKING:
2666 * Kernel thread context (may sleep)
2668 * RETURNS:
2669 * 0 on success, -errno otherwise.
2671 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2673 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2674 unsigned int devmask = 0, err_mask;
2675 u8 err;
2677 DPRINTK("ENTER\n");
2679 if (ata_port_offline(ap)) {
2680 classes[0] = ATA_DEV_NONE;
2681 goto out;
2684 /* determine if device 0/1 are present */
2685 if (ata_devchk(ap, 0))
2686 devmask |= (1 << 0);
2687 if (slave_possible && ata_devchk(ap, 1))
2688 devmask |= (1 << 1);
2690 /* select device 0 again */
2691 ap->ops->dev_select(ap, 0);
2693 /* issue bus reset */
2694 DPRINTK("about to softreset, devmask=%x\n", devmask);
2695 err_mask = ata_bus_softreset(ap, devmask);
2696 if (err_mask) {
2697 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2698 err_mask);
2699 return -EIO;
2702 /* determine by signature whether we have ATA or ATAPI devices */
2703 classes[0] = ata_dev_try_classify(ap, 0, &err);
2704 if (slave_possible && err != 0x81)
2705 classes[1] = ata_dev_try_classify(ap, 1, &err);
2707 out:
2708 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2709 return 0;
2713 * sata_std_hardreset - reset host port via SATA phy reset
2714 * @ap: port to reset
2715 * @class: resulting class of attached device
2717 * SATA phy-reset host port using DET bits of SControl register.
2719 * LOCKING:
2720 * Kernel thread context (may sleep)
2722 * RETURNS:
2723 * 0 on success, -errno otherwise.
2725 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2727 u32 scontrol;
2728 int rc;
2730 DPRINTK("ENTER\n");
2732 if (sata_set_spd_needed(ap)) {
2733 /* SATA spec says nothing about how to reconfigure
2734 * spd. To be on the safe side, turn off phy during
2735 * reconfiguration. This works for at least ICH7 AHCI
2736 * and Sil3124.
2738 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2739 return rc;
2741 scontrol = (scontrol & 0x0f0) | 0x302;
2743 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2744 return rc;
2746 sata_set_spd(ap);
2749 /* issue phy wake/reset */
2750 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2751 return rc;
2753 scontrol = (scontrol & 0x0f0) | 0x301;
2755 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2756 return rc;
2758 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2759 * 10.4.2 says at least 1 ms.
2761 msleep(1);
2763 /* bring phy back */
2764 sata_phy_resume(ap, sata_deb_timing_eh);
2766 /* TODO: phy layer with polling, timeouts, etc. */
2767 if (ata_port_offline(ap)) {
2768 *class = ATA_DEV_NONE;
2769 DPRINTK("EXIT, link offline\n");
2770 return 0;
2773 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2774 ata_port_printk(ap, KERN_ERR,
2775 "COMRESET failed (device not ready)\n");
2776 return -EIO;
2779 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2781 *class = ata_dev_try_classify(ap, 0, NULL);
2783 DPRINTK("EXIT, class=%u\n", *class);
2784 return 0;
2788 * ata_std_postreset - standard postreset callback
2789 * @ap: the target ata_port
2790 * @classes: classes of attached devices
2792 * This function is invoked after a successful reset. Note that
2793 * the device might have been reset more than once using
2794 * different reset methods before postreset is invoked.
2796 * LOCKING:
2797 * Kernel thread context (may sleep)
2799 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2801 u32 serror;
2803 DPRINTK("ENTER\n");
2805 /* print link status */
2806 sata_print_link_status(ap);
2808 /* clear SError */
2809 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2810 sata_scr_write(ap, SCR_ERROR, serror);
2812 /* re-enable interrupts */
2813 if (!ap->ops->error_handler) {
2814 /* FIXME: hack. create a hook instead */
2815 if (ap->ioaddr.ctl_addr)
2816 ata_irq_on(ap);
2819 /* is double-select really necessary? */
2820 if (classes[0] != ATA_DEV_NONE)
2821 ap->ops->dev_select(ap, 1);
2822 if (classes[1] != ATA_DEV_NONE)
2823 ap->ops->dev_select(ap, 0);
2825 /* bail out if no device is present */
2826 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2827 DPRINTK("EXIT, no device\n");
2828 return;
2831 /* set up device control */
2832 if (ap->ioaddr.ctl_addr) {
2833 if (ap->flags & ATA_FLAG_MMIO)
2834 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2835 else
2836 outb(ap->ctl, ap->ioaddr.ctl_addr);
2839 DPRINTK("EXIT\n");
2843 * ata_dev_same_device - Determine whether new ID matches configured device
2844 * @dev: device to compare against
2845 * @new_class: class of the new device
2846 * @new_id: IDENTIFY page of the new device
2848 * Compare @new_class and @new_id against @dev and determine
2849 * whether @dev is the device indicated by @new_class and
2850 * @new_id.
2852 * LOCKING:
2853 * None.
2855 * RETURNS:
2856 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2858 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2859 const u16 *new_id)
2861 const u16 *old_id = dev->id;
2862 unsigned char model[2][41], serial[2][21];
2863 u64 new_n_sectors;
2865 if (dev->class != new_class) {
2866 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2867 dev->class, new_class);
2868 return 0;
2871 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2872 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2873 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2874 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2875 new_n_sectors = ata_id_n_sectors(new_id);
2877 if (strcmp(model[0], model[1])) {
2878 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2879 "'%s' != '%s'\n", model[0], model[1]);
2880 return 0;
2883 if (strcmp(serial[0], serial[1])) {
2884 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2885 "'%s' != '%s'\n", serial[0], serial[1]);
2886 return 0;
2889 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2890 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2891 "%llu != %llu\n",
2892 (unsigned long long)dev->n_sectors,
2893 (unsigned long long)new_n_sectors);
2894 return 0;
2897 return 1;
2901 * ata_dev_revalidate - Revalidate ATA device
2902 * @dev: device to revalidate
2903 * @post_reset: is this revalidation after reset?
2905 * Re-read IDENTIFY page and make sure @dev is still attached to
2906 * the port.
2908 * LOCKING:
2909 * Kernel thread context (may sleep)
2911 * RETURNS:
2912 * 0 on success, negative errno otherwise
2914 int ata_dev_revalidate(struct ata_device *dev, int post_reset)
2916 unsigned int class = dev->class;
2917 u16 *id = (void *)dev->ap->sector_buf;
2918 int rc;
2920 if (!ata_dev_enabled(dev)) {
2921 rc = -ENODEV;
2922 goto fail;
2925 /* read ID data */
2926 rc = ata_dev_read_id(dev, &class, post_reset, id);
2927 if (rc)
2928 goto fail;
2930 /* is the device still there? */
2931 if (!ata_dev_same_device(dev, class, id)) {
2932 rc = -ENODEV;
2933 goto fail;
2936 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
2938 /* configure device according to the new ID */
2939 rc = ata_dev_configure(dev, 0);
2940 if (rc == 0)
2941 return 0;
2943 fail:
2944 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
2945 return rc;
2948 static const char * const ata_dma_blacklist [] = {
2949 "WDC AC11000H", NULL,
2950 "WDC AC22100H", NULL,
2951 "WDC AC32500H", NULL,
2952 "WDC AC33100H", NULL,
2953 "WDC AC31600H", NULL,
2954 "WDC AC32100H", "24.09P07",
2955 "WDC AC23200L", "21.10N21",
2956 "Compaq CRD-8241B", NULL,
2957 "CRD-8400B", NULL,
2958 "CRD-8480B", NULL,
2959 "CRD-8482B", NULL,
2960 "CRD-84", NULL,
2961 "SanDisk SDP3B", NULL,
2962 "SanDisk SDP3B-64", NULL,
2963 "SANYO CD-ROM CRD", NULL,
2964 "HITACHI CDR-8", NULL,
2965 "HITACHI CDR-8335", NULL,
2966 "HITACHI CDR-8435", NULL,
2967 "Toshiba CD-ROM XM-6202B", NULL,
2968 "TOSHIBA CD-ROM XM-1702BC", NULL,
2969 "CD-532E-A", NULL,
2970 "E-IDE CD-ROM CR-840", NULL,
2971 "CD-ROM Drive/F5A", NULL,
2972 "WPI CDD-820", NULL,
2973 "SAMSUNG CD-ROM SC-148C", NULL,
2974 "SAMSUNG CD-ROM SC", NULL,
2975 "SanDisk SDP3B-64", NULL,
2976 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2977 "_NEC DV5800A", NULL,
2978 "SAMSUNG CD-ROM SN-124", "N001"
2981 static int ata_strim(char *s, size_t len)
2983 len = strnlen(s, len);
2985 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2986 while ((len > 0) && (s[len - 1] == ' ')) {
2987 len--;
2988 s[len] = 0;
2990 return len;
2993 static int ata_dma_blacklisted(const struct ata_device *dev)
2995 unsigned char model_num[40];
2996 unsigned char model_rev[16];
2997 unsigned int nlen, rlen;
2998 int i;
3000 /* We don't support polling DMA.
3001 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3002 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3004 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3005 (dev->flags & ATA_DFLAG_CDB_INTR))
3006 return 1;
3008 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3009 sizeof(model_num));
3010 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3011 sizeof(model_rev));
3012 nlen = ata_strim(model_num, sizeof(model_num));
3013 rlen = ata_strim(model_rev, sizeof(model_rev));
3015 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
3016 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
3017 if (ata_dma_blacklist[i+1] == NULL)
3018 return 1;
3019 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
3020 return 1;
3023 return 0;
3027 * ata_dev_xfermask - Compute supported xfermask of the given device
3028 * @dev: Device to compute xfermask for
3030 * Compute supported xfermask of @dev and store it in
3031 * dev->*_mask. This function is responsible for applying all
3032 * known limits including host controller limits, device
3033 * blacklist, etc...
3035 * FIXME: The current implementation limits all transfer modes to
3036 * the fastest of the lowested device on the port. This is not
3037 * required on most controllers.
3039 * LOCKING:
3040 * None.
3042 static void ata_dev_xfermask(struct ata_device *dev)
3044 struct ata_port *ap = dev->ap;
3045 struct ata_host_set *hs = ap->host_set;
3046 unsigned long xfer_mask;
3047 int i;
3049 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3050 ap->mwdma_mask, ap->udma_mask);
3052 /* Apply cable rule here. Don't apply it early because when
3053 * we handle hot plug the cable type can itself change.
3055 if (ap->cbl == ATA_CBL_PATA40)
3056 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3058 /* FIXME: Use port-wide xfermask for now */
3059 for (i = 0; i < ATA_MAX_DEVICES; i++) {
3060 struct ata_device *d = &ap->device[i];
3062 if (ata_dev_absent(d))
3063 continue;
3065 if (ata_dev_disabled(d)) {
3066 /* to avoid violating device selection timing */
3067 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3068 UINT_MAX, UINT_MAX);
3069 continue;
3072 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3073 d->mwdma_mask, d->udma_mask);
3074 xfer_mask &= ata_id_xfermask(d->id);
3075 if (ata_dma_blacklisted(d))
3076 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3079 if (ata_dma_blacklisted(dev))
3080 ata_dev_printk(dev, KERN_WARNING,
3081 "device is on DMA blacklist, disabling DMA\n");
3083 if (hs->flags & ATA_HOST_SIMPLEX) {
3084 if (hs->simplex_claimed)
3085 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3088 if (ap->ops->mode_filter)
3089 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3091 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3092 &dev->mwdma_mask, &dev->udma_mask);
3096 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3097 * @dev: Device to which command will be sent
3099 * Issue SET FEATURES - XFER MODE command to device @dev
3100 * on port @ap.
3102 * LOCKING:
3103 * PCI/etc. bus probe sem.
3105 * RETURNS:
3106 * 0 on success, AC_ERR_* mask otherwise.
3109 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3111 struct ata_taskfile tf;
3112 unsigned int err_mask;
3114 /* set up set-features taskfile */
3115 DPRINTK("set features - xfer mode\n");
3117 ata_tf_init(dev, &tf);
3118 tf.command = ATA_CMD_SET_FEATURES;
3119 tf.feature = SETFEATURES_XFER;
3120 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3121 tf.protocol = ATA_PROT_NODATA;
3122 tf.nsect = dev->xfer_mode;
3124 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3126 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3127 return err_mask;
3131 * ata_dev_init_params - Issue INIT DEV PARAMS command
3132 * @dev: Device to which command will be sent
3133 * @heads: Number of heads (taskfile parameter)
3134 * @sectors: Number of sectors (taskfile parameter)
3136 * LOCKING:
3137 * Kernel thread context (may sleep)
3139 * RETURNS:
3140 * 0 on success, AC_ERR_* mask otherwise.
3142 static unsigned int ata_dev_init_params(struct ata_device *dev,
3143 u16 heads, u16 sectors)
3145 struct ata_taskfile tf;
3146 unsigned int err_mask;
3148 /* Number of sectors per track 1-255. Number of heads 1-16 */
3149 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3150 return AC_ERR_INVALID;
3152 /* set up init dev params taskfile */
3153 DPRINTK("init dev params \n");
3155 ata_tf_init(dev, &tf);
3156 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3157 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3158 tf.protocol = ATA_PROT_NODATA;
3159 tf.nsect = sectors;
3160 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3162 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3164 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3165 return err_mask;
3169 * ata_sg_clean - Unmap DMA memory associated with command
3170 * @qc: Command containing DMA memory to be released
3172 * Unmap all mapped DMA memory associated with this command.
3174 * LOCKING:
3175 * spin_lock_irqsave(host_set lock)
3178 static void ata_sg_clean(struct ata_queued_cmd *qc)
3180 struct ata_port *ap = qc->ap;
3181 struct scatterlist *sg = qc->__sg;
3182 int dir = qc->dma_dir;
3183 void *pad_buf = NULL;
3185 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3186 WARN_ON(sg == NULL);
3188 if (qc->flags & ATA_QCFLAG_SINGLE)
3189 WARN_ON(qc->n_elem > 1);
3191 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3193 /* if we padded the buffer out to 32-bit bound, and data
3194 * xfer direction is from-device, we must copy from the
3195 * pad buffer back into the supplied buffer
3197 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3198 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3200 if (qc->flags & ATA_QCFLAG_SG) {
3201 if (qc->n_elem)
3202 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3203 /* restore last sg */
3204 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3205 if (pad_buf) {
3206 struct scatterlist *psg = &qc->pad_sgent;
3207 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3208 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3209 kunmap_atomic(addr, KM_IRQ0);
3211 } else {
3212 if (qc->n_elem)
3213 dma_unmap_single(ap->dev,
3214 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3215 dir);
3216 /* restore sg */
3217 sg->length += qc->pad_len;
3218 if (pad_buf)
3219 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3220 pad_buf, qc->pad_len);
3223 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3224 qc->__sg = NULL;
3228 * ata_fill_sg - Fill PCI IDE PRD table
3229 * @qc: Metadata associated with taskfile to be transferred
3231 * Fill PCI IDE PRD (scatter-gather) table with segments
3232 * associated with the current disk command.
3234 * LOCKING:
3235 * spin_lock_irqsave(host_set lock)
3238 static void ata_fill_sg(struct ata_queued_cmd *qc)
3240 struct ata_port *ap = qc->ap;
3241 struct scatterlist *sg;
3242 unsigned int idx;
3244 WARN_ON(qc->__sg == NULL);
3245 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3247 idx = 0;
3248 ata_for_each_sg(sg, qc) {
3249 u32 addr, offset;
3250 u32 sg_len, len;
3252 /* determine if physical DMA addr spans 64K boundary.
3253 * Note h/w doesn't support 64-bit, so we unconditionally
3254 * truncate dma_addr_t to u32.
3256 addr = (u32) sg_dma_address(sg);
3257 sg_len = sg_dma_len(sg);
3259 while (sg_len) {
3260 offset = addr & 0xffff;
3261 len = sg_len;
3262 if ((offset + sg_len) > 0x10000)
3263 len = 0x10000 - offset;
3265 ap->prd[idx].addr = cpu_to_le32(addr);
3266 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3267 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3269 idx++;
3270 sg_len -= len;
3271 addr += len;
3275 if (idx)
3276 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3279 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3280 * @qc: Metadata associated with taskfile to check
3282 * Allow low-level driver to filter ATA PACKET commands, returning
3283 * a status indicating whether or not it is OK to use DMA for the
3284 * supplied PACKET command.
3286 * LOCKING:
3287 * spin_lock_irqsave(host_set lock)
3289 * RETURNS: 0 when ATAPI DMA can be used
3290 * nonzero otherwise
3292 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3294 struct ata_port *ap = qc->ap;
3295 int rc = 0; /* Assume ATAPI DMA is OK by default */
3297 if (ap->ops->check_atapi_dma)
3298 rc = ap->ops->check_atapi_dma(qc);
3300 return rc;
3303 * ata_qc_prep - Prepare taskfile for submission
3304 * @qc: Metadata associated with taskfile to be prepared
3306 * Prepare ATA taskfile for submission.
3308 * LOCKING:
3309 * spin_lock_irqsave(host_set lock)
3311 void ata_qc_prep(struct ata_queued_cmd *qc)
3313 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3314 return;
3316 ata_fill_sg(qc);
3319 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3322 * ata_sg_init_one - Associate command with memory buffer
3323 * @qc: Command to be associated
3324 * @buf: Memory buffer
3325 * @buflen: Length of memory buffer, in bytes.
3327 * Initialize the data-related elements of queued_cmd @qc
3328 * to point to a single memory buffer, @buf of byte length @buflen.
3330 * LOCKING:
3331 * spin_lock_irqsave(host_set lock)
3334 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3336 struct scatterlist *sg;
3338 qc->flags |= ATA_QCFLAG_SINGLE;
3340 memset(&qc->sgent, 0, sizeof(qc->sgent));
3341 qc->__sg = &qc->sgent;
3342 qc->n_elem = 1;
3343 qc->orig_n_elem = 1;
3344 qc->buf_virt = buf;
3345 qc->nbytes = buflen;
3347 sg = qc->__sg;
3348 sg_init_one(sg, buf, buflen);
3352 * ata_sg_init - Associate command with scatter-gather table.
3353 * @qc: Command to be associated
3354 * @sg: Scatter-gather table.
3355 * @n_elem: Number of elements in s/g table.
3357 * Initialize the data-related elements of queued_cmd @qc
3358 * to point to a scatter-gather table @sg, containing @n_elem
3359 * elements.
3361 * LOCKING:
3362 * spin_lock_irqsave(host_set lock)
3365 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3366 unsigned int n_elem)
3368 qc->flags |= ATA_QCFLAG_SG;
3369 qc->__sg = sg;
3370 qc->n_elem = n_elem;
3371 qc->orig_n_elem = n_elem;
3375 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3376 * @qc: Command with memory buffer to be mapped.
3378 * DMA-map the memory buffer associated with queued_cmd @qc.
3380 * LOCKING:
3381 * spin_lock_irqsave(host_set lock)
3383 * RETURNS:
3384 * Zero on success, negative on error.
3387 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3389 struct ata_port *ap = qc->ap;
3390 int dir = qc->dma_dir;
3391 struct scatterlist *sg = qc->__sg;
3392 dma_addr_t dma_address;
3393 int trim_sg = 0;
3395 /* we must lengthen transfers to end on a 32-bit boundary */
3396 qc->pad_len = sg->length & 3;
3397 if (qc->pad_len) {
3398 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3399 struct scatterlist *psg = &qc->pad_sgent;
3401 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3403 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3405 if (qc->tf.flags & ATA_TFLAG_WRITE)
3406 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3407 qc->pad_len);
3409 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3410 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3411 /* trim sg */
3412 sg->length -= qc->pad_len;
3413 if (sg->length == 0)
3414 trim_sg = 1;
3416 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3417 sg->length, qc->pad_len);
3420 if (trim_sg) {
3421 qc->n_elem--;
3422 goto skip_map;
3425 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3426 sg->length, dir);
3427 if (dma_mapping_error(dma_address)) {
3428 /* restore sg */
3429 sg->length += qc->pad_len;
3430 return -1;
3433 sg_dma_address(sg) = dma_address;
3434 sg_dma_len(sg) = sg->length;
3436 skip_map:
3437 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3438 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3440 return 0;
3444 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3445 * @qc: Command with scatter-gather table to be mapped.
3447 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3449 * LOCKING:
3450 * spin_lock_irqsave(host_set lock)
3452 * RETURNS:
3453 * Zero on success, negative on error.
3457 static int ata_sg_setup(struct ata_queued_cmd *qc)
3459 struct ata_port *ap = qc->ap;
3460 struct scatterlist *sg = qc->__sg;
3461 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3462 int n_elem, pre_n_elem, dir, trim_sg = 0;
3464 VPRINTK("ENTER, ata%u\n", ap->id);
3465 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3467 /* we must lengthen transfers to end on a 32-bit boundary */
3468 qc->pad_len = lsg->length & 3;
3469 if (qc->pad_len) {
3470 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3471 struct scatterlist *psg = &qc->pad_sgent;
3472 unsigned int offset;
3474 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3476 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3479 * psg->page/offset are used to copy to-be-written
3480 * data in this function or read data in ata_sg_clean.
3482 offset = lsg->offset + lsg->length - qc->pad_len;
3483 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3484 psg->offset = offset_in_page(offset);
3486 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3487 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3488 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3489 kunmap_atomic(addr, KM_IRQ0);
3492 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3493 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3494 /* trim last sg */
3495 lsg->length -= qc->pad_len;
3496 if (lsg->length == 0)
3497 trim_sg = 1;
3499 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3500 qc->n_elem - 1, lsg->length, qc->pad_len);
3503 pre_n_elem = qc->n_elem;
3504 if (trim_sg && pre_n_elem)
3505 pre_n_elem--;
3507 if (!pre_n_elem) {
3508 n_elem = 0;
3509 goto skip_map;
3512 dir = qc->dma_dir;
3513 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3514 if (n_elem < 1) {
3515 /* restore last sg */
3516 lsg->length += qc->pad_len;
3517 return -1;
3520 DPRINTK("%d sg elements mapped\n", n_elem);
3522 skip_map:
3523 qc->n_elem = n_elem;
3525 return 0;
3529 * swap_buf_le16 - swap halves of 16-bit words in place
3530 * @buf: Buffer to swap
3531 * @buf_words: Number of 16-bit words in buffer.
3533 * Swap halves of 16-bit words if needed to convert from
3534 * little-endian byte order to native cpu byte order, or
3535 * vice-versa.
3537 * LOCKING:
3538 * Inherited from caller.
3540 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3542 #ifdef __BIG_ENDIAN
3543 unsigned int i;
3545 for (i = 0; i < buf_words; i++)
3546 buf[i] = le16_to_cpu(buf[i]);
3547 #endif /* __BIG_ENDIAN */
3551 * ata_mmio_data_xfer - Transfer data by MMIO
3552 * @adev: device for this I/O
3553 * @buf: data buffer
3554 * @buflen: buffer length
3555 * @write_data: read/write
3557 * Transfer data from/to the device data register by MMIO.
3559 * LOCKING:
3560 * Inherited from caller.
3563 void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3564 unsigned int buflen, int write_data)
3566 struct ata_port *ap = adev->ap;
3567 unsigned int i;
3568 unsigned int words = buflen >> 1;
3569 u16 *buf16 = (u16 *) buf;
3570 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3572 /* Transfer multiple of 2 bytes */
3573 if (write_data) {
3574 for (i = 0; i < words; i++)
3575 writew(le16_to_cpu(buf16[i]), mmio);
3576 } else {
3577 for (i = 0; i < words; i++)
3578 buf16[i] = cpu_to_le16(readw(mmio));
3581 /* Transfer trailing 1 byte, if any. */
3582 if (unlikely(buflen & 0x01)) {
3583 u16 align_buf[1] = { 0 };
3584 unsigned char *trailing_buf = buf + buflen - 1;
3586 if (write_data) {
3587 memcpy(align_buf, trailing_buf, 1);
3588 writew(le16_to_cpu(align_buf[0]), mmio);
3589 } else {
3590 align_buf[0] = cpu_to_le16(readw(mmio));
3591 memcpy(trailing_buf, align_buf, 1);
3597 * ata_pio_data_xfer - Transfer data by PIO
3598 * @adev: device to target
3599 * @buf: data buffer
3600 * @buflen: buffer length
3601 * @write_data: read/write
3603 * Transfer data from/to the device data register by PIO.
3605 * LOCKING:
3606 * Inherited from caller.
3609 void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3610 unsigned int buflen, int write_data)
3612 struct ata_port *ap = adev->ap;
3613 unsigned int words = buflen >> 1;
3615 /* Transfer multiple of 2 bytes */
3616 if (write_data)
3617 outsw(ap->ioaddr.data_addr, buf, words);
3618 else
3619 insw(ap->ioaddr.data_addr, buf, words);
3621 /* Transfer trailing 1 byte, if any. */
3622 if (unlikely(buflen & 0x01)) {
3623 u16 align_buf[1] = { 0 };
3624 unsigned char *trailing_buf = buf + buflen - 1;
3626 if (write_data) {
3627 memcpy(align_buf, trailing_buf, 1);
3628 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3629 } else {
3630 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3631 memcpy(trailing_buf, align_buf, 1);
3637 * ata_pio_data_xfer_noirq - Transfer data by PIO
3638 * @adev: device to target
3639 * @buf: data buffer
3640 * @buflen: buffer length
3641 * @write_data: read/write
3643 * Transfer data from/to the device data register by PIO. Do the
3644 * transfer with interrupts disabled.
3646 * LOCKING:
3647 * Inherited from caller.
3650 void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3651 unsigned int buflen, int write_data)
3653 unsigned long flags;
3654 local_irq_save(flags);
3655 ata_pio_data_xfer(adev, buf, buflen, write_data);
3656 local_irq_restore(flags);
3661 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3662 * @qc: Command on going
3664 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3666 * LOCKING:
3667 * Inherited from caller.
3670 static void ata_pio_sector(struct ata_queued_cmd *qc)
3672 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3673 struct scatterlist *sg = qc->__sg;
3674 struct ata_port *ap = qc->ap;
3675 struct page *page;
3676 unsigned int offset;
3677 unsigned char *buf;
3679 if (qc->cursect == (qc->nsect - 1))
3680 ap->hsm_task_state = HSM_ST_LAST;
3682 page = sg[qc->cursg].page;
3683 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3685 /* get the current page and offset */
3686 page = nth_page(page, (offset >> PAGE_SHIFT));
3687 offset %= PAGE_SIZE;
3689 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3691 if (PageHighMem(page)) {
3692 unsigned long flags;
3694 /* FIXME: use a bounce buffer */
3695 local_irq_save(flags);
3696 buf = kmap_atomic(page, KM_IRQ0);
3698 /* do the actual data transfer */
3699 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3701 kunmap_atomic(buf, KM_IRQ0);
3702 local_irq_restore(flags);
3703 } else {
3704 buf = page_address(page);
3705 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3708 qc->cursect++;
3709 qc->cursg_ofs++;
3711 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3712 qc->cursg++;
3713 qc->cursg_ofs = 0;
3718 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3719 * @qc: Command on going
3721 * Transfer one or many ATA_SECT_SIZE of data from/to the
3722 * ATA device for the DRQ request.
3724 * LOCKING:
3725 * Inherited from caller.
3728 static void ata_pio_sectors(struct ata_queued_cmd *qc)
3730 if (is_multi_taskfile(&qc->tf)) {
3731 /* READ/WRITE MULTIPLE */
3732 unsigned int nsect;
3734 WARN_ON(qc->dev->multi_count == 0);
3736 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3737 while (nsect--)
3738 ata_pio_sector(qc);
3739 } else
3740 ata_pio_sector(qc);
3744 * atapi_send_cdb - Write CDB bytes to hardware
3745 * @ap: Port to which ATAPI device is attached.
3746 * @qc: Taskfile currently active
3748 * When device has indicated its readiness to accept
3749 * a CDB, this function is called. Send the CDB.
3751 * LOCKING:
3752 * caller.
3755 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3757 /* send SCSI cdb */
3758 DPRINTK("send cdb\n");
3759 WARN_ON(qc->dev->cdb_len < 12);
3761 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
3762 ata_altstatus(ap); /* flush */
3764 switch (qc->tf.protocol) {
3765 case ATA_PROT_ATAPI:
3766 ap->hsm_task_state = HSM_ST;
3767 break;
3768 case ATA_PROT_ATAPI_NODATA:
3769 ap->hsm_task_state = HSM_ST_LAST;
3770 break;
3771 case ATA_PROT_ATAPI_DMA:
3772 ap->hsm_task_state = HSM_ST_LAST;
3773 /* initiate bmdma */
3774 ap->ops->bmdma_start(qc);
3775 break;
3780 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3781 * @qc: Command on going
3782 * @bytes: number of bytes
3784 * Transfer Transfer data from/to the ATAPI device.
3786 * LOCKING:
3787 * Inherited from caller.
3791 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3793 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3794 struct scatterlist *sg = qc->__sg;
3795 struct ata_port *ap = qc->ap;
3796 struct page *page;
3797 unsigned char *buf;
3798 unsigned int offset, count;
3800 if (qc->curbytes + bytes >= qc->nbytes)
3801 ap->hsm_task_state = HSM_ST_LAST;
3803 next_sg:
3804 if (unlikely(qc->cursg >= qc->n_elem)) {
3806 * The end of qc->sg is reached and the device expects
3807 * more data to transfer. In order not to overrun qc->sg
3808 * and fulfill length specified in the byte count register,
3809 * - for read case, discard trailing data from the device
3810 * - for write case, padding zero data to the device
3812 u16 pad_buf[1] = { 0 };
3813 unsigned int words = bytes >> 1;
3814 unsigned int i;
3816 if (words) /* warning if bytes > 1 */
3817 ata_dev_printk(qc->dev, KERN_WARNING,
3818 "%u bytes trailing data\n", bytes);
3820 for (i = 0; i < words; i++)
3821 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
3823 ap->hsm_task_state = HSM_ST_LAST;
3824 return;
3827 sg = &qc->__sg[qc->cursg];
3829 page = sg->page;
3830 offset = sg->offset + qc->cursg_ofs;
3832 /* get the current page and offset */
3833 page = nth_page(page, (offset >> PAGE_SHIFT));
3834 offset %= PAGE_SIZE;
3836 /* don't overrun current sg */
3837 count = min(sg->length - qc->cursg_ofs, bytes);
3839 /* don't cross page boundaries */
3840 count = min(count, (unsigned int)PAGE_SIZE - offset);
3842 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3844 if (PageHighMem(page)) {
3845 unsigned long flags;
3847 /* FIXME: use bounce buffer */
3848 local_irq_save(flags);
3849 buf = kmap_atomic(page, KM_IRQ0);
3851 /* do the actual data transfer */
3852 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3854 kunmap_atomic(buf, KM_IRQ0);
3855 local_irq_restore(flags);
3856 } else {
3857 buf = page_address(page);
3858 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3861 bytes -= count;
3862 qc->curbytes += count;
3863 qc->cursg_ofs += count;
3865 if (qc->cursg_ofs == sg->length) {
3866 qc->cursg++;
3867 qc->cursg_ofs = 0;
3870 if (bytes)
3871 goto next_sg;
3875 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3876 * @qc: Command on going
3878 * Transfer Transfer data from/to the ATAPI device.
3880 * LOCKING:
3881 * Inherited from caller.
3884 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3886 struct ata_port *ap = qc->ap;
3887 struct ata_device *dev = qc->dev;
3888 unsigned int ireason, bc_lo, bc_hi, bytes;
3889 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3891 /* Abuse qc->result_tf for temp storage of intermediate TF
3892 * here to save some kernel stack usage.
3893 * For normal completion, qc->result_tf is not relevant. For
3894 * error, qc->result_tf is later overwritten by ata_qc_complete().
3895 * So, the correctness of qc->result_tf is not affected.
3897 ap->ops->tf_read(ap, &qc->result_tf);
3898 ireason = qc->result_tf.nsect;
3899 bc_lo = qc->result_tf.lbam;
3900 bc_hi = qc->result_tf.lbah;
3901 bytes = (bc_hi << 8) | bc_lo;
3903 /* shall be cleared to zero, indicating xfer of data */
3904 if (ireason & (1 << 0))
3905 goto err_out;
3907 /* make sure transfer direction matches expected */
3908 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3909 if (do_write != i_write)
3910 goto err_out;
3912 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3914 __atapi_pio_bytes(qc, bytes);
3916 return;
3918 err_out:
3919 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
3920 qc->err_mask |= AC_ERR_HSM;
3921 ap->hsm_task_state = HSM_ST_ERR;
3925 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3926 * @ap: the target ata_port
3927 * @qc: qc on going
3929 * RETURNS:
3930 * 1 if ok in workqueue, 0 otherwise.
3933 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
3935 if (qc->tf.flags & ATA_TFLAG_POLLING)
3936 return 1;
3938 if (ap->hsm_task_state == HSM_ST_FIRST) {
3939 if (qc->tf.protocol == ATA_PROT_PIO &&
3940 (qc->tf.flags & ATA_TFLAG_WRITE))
3941 return 1;
3943 if (is_atapi_taskfile(&qc->tf) &&
3944 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
3945 return 1;
3948 return 0;
3952 * ata_hsm_qc_complete - finish a qc running on standard HSM
3953 * @qc: Command to complete
3954 * @in_wq: 1 if called from workqueue, 0 otherwise
3956 * Finish @qc which is running on standard HSM.
3958 * LOCKING:
3959 * If @in_wq is zero, spin_lock_irqsave(host_set lock).
3960 * Otherwise, none on entry and grabs host lock.
3962 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
3964 struct ata_port *ap = qc->ap;
3965 unsigned long flags;
3967 if (ap->ops->error_handler) {
3968 if (in_wq) {
3969 spin_lock_irqsave(ap->lock, flags);
3971 /* EH might have kicked in while host_set lock
3972 * is released.
3974 qc = ata_qc_from_tag(ap, qc->tag);
3975 if (qc) {
3976 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
3977 ata_irq_on(ap);
3978 ata_qc_complete(qc);
3979 } else
3980 ata_port_freeze(ap);
3983 spin_unlock_irqrestore(ap->lock, flags);
3984 } else {
3985 if (likely(!(qc->err_mask & AC_ERR_HSM)))
3986 ata_qc_complete(qc);
3987 else
3988 ata_port_freeze(ap);
3990 } else {
3991 if (in_wq) {
3992 spin_lock_irqsave(ap->lock, flags);
3993 ata_irq_on(ap);
3994 ata_qc_complete(qc);
3995 spin_unlock_irqrestore(ap->lock, flags);
3996 } else
3997 ata_qc_complete(qc);
4000 ata_altstatus(ap); /* flush */
4004 * ata_hsm_move - move the HSM to the next state.
4005 * @ap: the target ata_port
4006 * @qc: qc on going
4007 * @status: current device status
4008 * @in_wq: 1 if called from workqueue, 0 otherwise
4010 * RETURNS:
4011 * 1 when poll next status needed, 0 otherwise.
4013 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4014 u8 status, int in_wq)
4016 unsigned long flags = 0;
4017 int poll_next;
4019 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4021 /* Make sure ata_qc_issue_prot() does not throw things
4022 * like DMA polling into the workqueue. Notice that
4023 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4025 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4027 fsm_start:
4028 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4029 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4031 switch (ap->hsm_task_state) {
4032 case HSM_ST_FIRST:
4033 /* Send first data block or PACKET CDB */
4035 /* If polling, we will stay in the work queue after
4036 * sending the data. Otherwise, interrupt handler
4037 * takes over after sending the data.
4039 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4041 /* check device status */
4042 if (unlikely((status & ATA_DRQ) == 0)) {
4043 /* handle BSY=0, DRQ=0 as error */
4044 if (likely(status & (ATA_ERR | ATA_DF)))
4045 /* device stops HSM for abort/error */
4046 qc->err_mask |= AC_ERR_DEV;
4047 else
4048 /* HSM violation. Let EH handle this */
4049 qc->err_mask |= AC_ERR_HSM;
4051 ap->hsm_task_state = HSM_ST_ERR;
4052 goto fsm_start;
4055 /* Device should not ask for data transfer (DRQ=1)
4056 * when it finds something wrong.
4057 * We ignore DRQ here and stop the HSM by
4058 * changing hsm_task_state to HSM_ST_ERR and
4059 * let the EH abort the command or reset the device.
4061 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4062 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4063 ap->id, status);
4064 qc->err_mask |= AC_ERR_HSM;
4065 ap->hsm_task_state = HSM_ST_ERR;
4066 goto fsm_start;
4069 /* Send the CDB (atapi) or the first data block (ata pio out).
4070 * During the state transition, interrupt handler shouldn't
4071 * be invoked before the data transfer is complete and
4072 * hsm_task_state is changed. Hence, the following locking.
4074 if (in_wq)
4075 spin_lock_irqsave(ap->lock, flags);
4077 if (qc->tf.protocol == ATA_PROT_PIO) {
4078 /* PIO data out protocol.
4079 * send first data block.
4082 /* ata_pio_sectors() might change the state
4083 * to HSM_ST_LAST. so, the state is changed here
4084 * before ata_pio_sectors().
4086 ap->hsm_task_state = HSM_ST;
4087 ata_pio_sectors(qc);
4088 ata_altstatus(ap); /* flush */
4089 } else
4090 /* send CDB */
4091 atapi_send_cdb(ap, qc);
4093 if (in_wq)
4094 spin_unlock_irqrestore(ap->lock, flags);
4096 /* if polling, ata_pio_task() handles the rest.
4097 * otherwise, interrupt handler takes over from here.
4099 break;
4101 case HSM_ST:
4102 /* complete command or read/write the data register */
4103 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4104 /* ATAPI PIO protocol */
4105 if ((status & ATA_DRQ) == 0) {
4106 /* No more data to transfer or device error.
4107 * Device error will be tagged in HSM_ST_LAST.
4109 ap->hsm_task_state = HSM_ST_LAST;
4110 goto fsm_start;
4113 /* Device should not ask for data transfer (DRQ=1)
4114 * when it finds something wrong.
4115 * We ignore DRQ here and stop the HSM by
4116 * changing hsm_task_state to HSM_ST_ERR and
4117 * let the EH abort the command or reset the device.
4119 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4120 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4121 ap->id, status);
4122 qc->err_mask |= AC_ERR_HSM;
4123 ap->hsm_task_state = HSM_ST_ERR;
4124 goto fsm_start;
4127 atapi_pio_bytes(qc);
4129 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4130 /* bad ireason reported by device */
4131 goto fsm_start;
4133 } else {
4134 /* ATA PIO protocol */
4135 if (unlikely((status & ATA_DRQ) == 0)) {
4136 /* handle BSY=0, DRQ=0 as error */
4137 if (likely(status & (ATA_ERR | ATA_DF)))
4138 /* device stops HSM for abort/error */
4139 qc->err_mask |= AC_ERR_DEV;
4140 else
4141 /* HSM violation. Let EH handle this */
4142 qc->err_mask |= AC_ERR_HSM;
4144 ap->hsm_task_state = HSM_ST_ERR;
4145 goto fsm_start;
4148 /* For PIO reads, some devices may ask for
4149 * data transfer (DRQ=1) alone with ERR=1.
4150 * We respect DRQ here and transfer one
4151 * block of junk data before changing the
4152 * hsm_task_state to HSM_ST_ERR.
4154 * For PIO writes, ERR=1 DRQ=1 doesn't make
4155 * sense since the data block has been
4156 * transferred to the device.
4158 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4159 /* data might be corrputed */
4160 qc->err_mask |= AC_ERR_DEV;
4162 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4163 ata_pio_sectors(qc);
4164 ata_altstatus(ap);
4165 status = ata_wait_idle(ap);
4168 if (status & (ATA_BUSY | ATA_DRQ))
4169 qc->err_mask |= AC_ERR_HSM;
4171 /* ata_pio_sectors() might change the
4172 * state to HSM_ST_LAST. so, the state
4173 * is changed after ata_pio_sectors().
4175 ap->hsm_task_state = HSM_ST_ERR;
4176 goto fsm_start;
4179 ata_pio_sectors(qc);
4181 if (ap->hsm_task_state == HSM_ST_LAST &&
4182 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4183 /* all data read */
4184 ata_altstatus(ap);
4185 status = ata_wait_idle(ap);
4186 goto fsm_start;
4190 ata_altstatus(ap); /* flush */
4191 poll_next = 1;
4192 break;
4194 case HSM_ST_LAST:
4195 if (unlikely(!ata_ok(status))) {
4196 qc->err_mask |= __ac_err_mask(status);
4197 ap->hsm_task_state = HSM_ST_ERR;
4198 goto fsm_start;
4201 /* no more data to transfer */
4202 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4203 ap->id, qc->dev->devno, status);
4205 WARN_ON(qc->err_mask);
4207 ap->hsm_task_state = HSM_ST_IDLE;
4209 /* complete taskfile transaction */
4210 ata_hsm_qc_complete(qc, in_wq);
4212 poll_next = 0;
4213 break;
4215 case HSM_ST_ERR:
4216 /* make sure qc->err_mask is available to
4217 * know what's wrong and recover
4219 WARN_ON(qc->err_mask == 0);
4221 ap->hsm_task_state = HSM_ST_IDLE;
4223 /* complete taskfile transaction */
4224 ata_hsm_qc_complete(qc, in_wq);
4226 poll_next = 0;
4227 break;
4228 default:
4229 poll_next = 0;
4230 BUG();
4233 return poll_next;
4236 static void ata_pio_task(void *_data)
4238 struct ata_queued_cmd *qc = _data;
4239 struct ata_port *ap = qc->ap;
4240 u8 status;
4241 int poll_next;
4243 fsm_start:
4244 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4247 * This is purely heuristic. This is a fast path.
4248 * Sometimes when we enter, BSY will be cleared in
4249 * a chk-status or two. If not, the drive is probably seeking
4250 * or something. Snooze for a couple msecs, then
4251 * chk-status again. If still busy, queue delayed work.
4253 status = ata_busy_wait(ap, ATA_BUSY, 5);
4254 if (status & ATA_BUSY) {
4255 msleep(2);
4256 status = ata_busy_wait(ap, ATA_BUSY, 10);
4257 if (status & ATA_BUSY) {
4258 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4259 return;
4263 /* move the HSM */
4264 poll_next = ata_hsm_move(ap, qc, status, 1);
4266 /* another command or interrupt handler
4267 * may be running at this point.
4269 if (poll_next)
4270 goto fsm_start;
4274 * ata_qc_new - Request an available ATA command, for queueing
4275 * @ap: Port associated with device @dev
4276 * @dev: Device from whom we request an available command structure
4278 * LOCKING:
4279 * None.
4282 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4284 struct ata_queued_cmd *qc = NULL;
4285 unsigned int i;
4287 /* no command while frozen */
4288 if (unlikely(ap->flags & ATA_FLAG_FROZEN))
4289 return NULL;
4291 /* the last tag is reserved for internal command. */
4292 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4293 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4294 qc = __ata_qc_from_tag(ap, i);
4295 break;
4298 if (qc)
4299 qc->tag = i;
4301 return qc;
4305 * ata_qc_new_init - Request an available ATA command, and initialize it
4306 * @dev: Device from whom we request an available command structure
4308 * LOCKING:
4309 * None.
4312 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4314 struct ata_port *ap = dev->ap;
4315 struct ata_queued_cmd *qc;
4317 qc = ata_qc_new(ap);
4318 if (qc) {
4319 qc->scsicmd = NULL;
4320 qc->ap = ap;
4321 qc->dev = dev;
4323 ata_qc_reinit(qc);
4326 return qc;
4330 * ata_qc_free - free unused ata_queued_cmd
4331 * @qc: Command to complete
4333 * Designed to free unused ata_queued_cmd object
4334 * in case something prevents using it.
4336 * LOCKING:
4337 * spin_lock_irqsave(host_set lock)
4339 void ata_qc_free(struct ata_queued_cmd *qc)
4341 struct ata_port *ap = qc->ap;
4342 unsigned int tag;
4344 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4346 qc->flags = 0;
4347 tag = qc->tag;
4348 if (likely(ata_tag_valid(tag))) {
4349 qc->tag = ATA_TAG_POISON;
4350 clear_bit(tag, &ap->qc_allocated);
4354 void __ata_qc_complete(struct ata_queued_cmd *qc)
4356 struct ata_port *ap = qc->ap;
4358 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4359 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4361 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4362 ata_sg_clean(qc);
4364 /* command should be marked inactive atomically with qc completion */
4365 if (qc->tf.protocol == ATA_PROT_NCQ)
4366 ap->sactive &= ~(1 << qc->tag);
4367 else
4368 ap->active_tag = ATA_TAG_POISON;
4370 /* atapi: mark qc as inactive to prevent the interrupt handler
4371 * from completing the command twice later, before the error handler
4372 * is called. (when rc != 0 and atapi request sense is needed)
4374 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4375 ap->qc_active &= ~(1 << qc->tag);
4377 /* call completion callback */
4378 qc->complete_fn(qc);
4382 * ata_qc_complete - Complete an active ATA command
4383 * @qc: Command to complete
4384 * @err_mask: ATA Status register contents
4386 * Indicate to the mid and upper layers that an ATA
4387 * command has completed, with either an ok or not-ok status.
4389 * LOCKING:
4390 * spin_lock_irqsave(host_set lock)
4392 void ata_qc_complete(struct ata_queued_cmd *qc)
4394 struct ata_port *ap = qc->ap;
4396 /* XXX: New EH and old EH use different mechanisms to
4397 * synchronize EH with regular execution path.
4399 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4400 * Normal execution path is responsible for not accessing a
4401 * failed qc. libata core enforces the rule by returning NULL
4402 * from ata_qc_from_tag() for failed qcs.
4404 * Old EH depends on ata_qc_complete() nullifying completion
4405 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4406 * not synchronize with interrupt handler. Only PIO task is
4407 * taken care of.
4409 if (ap->ops->error_handler) {
4410 WARN_ON(ap->flags & ATA_FLAG_FROZEN);
4412 if (unlikely(qc->err_mask))
4413 qc->flags |= ATA_QCFLAG_FAILED;
4415 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4416 if (!ata_tag_internal(qc->tag)) {
4417 /* always fill result TF for failed qc */
4418 ap->ops->tf_read(ap, &qc->result_tf);
4419 ata_qc_schedule_eh(qc);
4420 return;
4424 /* read result TF if requested */
4425 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4426 ap->ops->tf_read(ap, &qc->result_tf);
4428 __ata_qc_complete(qc);
4429 } else {
4430 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4431 return;
4433 /* read result TF if failed or requested */
4434 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4435 ap->ops->tf_read(ap, &qc->result_tf);
4437 __ata_qc_complete(qc);
4442 * ata_qc_complete_multiple - Complete multiple qcs successfully
4443 * @ap: port in question
4444 * @qc_active: new qc_active mask
4445 * @finish_qc: LLDD callback invoked before completing a qc
4447 * Complete in-flight commands. This functions is meant to be
4448 * called from low-level driver's interrupt routine to complete
4449 * requests normally. ap->qc_active and @qc_active is compared
4450 * and commands are completed accordingly.
4452 * LOCKING:
4453 * spin_lock_irqsave(host_set lock)
4455 * RETURNS:
4456 * Number of completed commands on success, -errno otherwise.
4458 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4459 void (*finish_qc)(struct ata_queued_cmd *))
4461 int nr_done = 0;
4462 u32 done_mask;
4463 int i;
4465 done_mask = ap->qc_active ^ qc_active;
4467 if (unlikely(done_mask & qc_active)) {
4468 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4469 "(%08x->%08x)\n", ap->qc_active, qc_active);
4470 return -EINVAL;
4473 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4474 struct ata_queued_cmd *qc;
4476 if (!(done_mask & (1 << i)))
4477 continue;
4479 if ((qc = ata_qc_from_tag(ap, i))) {
4480 if (finish_qc)
4481 finish_qc(qc);
4482 ata_qc_complete(qc);
4483 nr_done++;
4487 return nr_done;
4490 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4492 struct ata_port *ap = qc->ap;
4494 switch (qc->tf.protocol) {
4495 case ATA_PROT_NCQ:
4496 case ATA_PROT_DMA:
4497 case ATA_PROT_ATAPI_DMA:
4498 return 1;
4500 case ATA_PROT_ATAPI:
4501 case ATA_PROT_PIO:
4502 if (ap->flags & ATA_FLAG_PIO_DMA)
4503 return 1;
4505 /* fall through */
4507 default:
4508 return 0;
4511 /* never reached */
4515 * ata_qc_issue - issue taskfile to device
4516 * @qc: command to issue to device
4518 * Prepare an ATA command to submission to device.
4519 * This includes mapping the data into a DMA-able
4520 * area, filling in the S/G table, and finally
4521 * writing the taskfile to hardware, starting the command.
4523 * LOCKING:
4524 * spin_lock_irqsave(host_set lock)
4526 void ata_qc_issue(struct ata_queued_cmd *qc)
4528 struct ata_port *ap = qc->ap;
4530 /* Make sure only one non-NCQ command is outstanding. The
4531 * check is skipped for old EH because it reuses active qc to
4532 * request ATAPI sense.
4534 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4536 if (qc->tf.protocol == ATA_PROT_NCQ) {
4537 WARN_ON(ap->sactive & (1 << qc->tag));
4538 ap->sactive |= 1 << qc->tag;
4539 } else {
4540 WARN_ON(ap->sactive);
4541 ap->active_tag = qc->tag;
4544 qc->flags |= ATA_QCFLAG_ACTIVE;
4545 ap->qc_active |= 1 << qc->tag;
4547 if (ata_should_dma_map(qc)) {
4548 if (qc->flags & ATA_QCFLAG_SG) {
4549 if (ata_sg_setup(qc))
4550 goto sg_err;
4551 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4552 if (ata_sg_setup_one(qc))
4553 goto sg_err;
4555 } else {
4556 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4559 ap->ops->qc_prep(qc);
4561 qc->err_mask |= ap->ops->qc_issue(qc);
4562 if (unlikely(qc->err_mask))
4563 goto err;
4564 return;
4566 sg_err:
4567 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4568 qc->err_mask |= AC_ERR_SYSTEM;
4569 err:
4570 ata_qc_complete(qc);
4574 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4575 * @qc: command to issue to device
4577 * Using various libata functions and hooks, this function
4578 * starts an ATA command. ATA commands are grouped into
4579 * classes called "protocols", and issuing each type of protocol
4580 * is slightly different.
4582 * May be used as the qc_issue() entry in ata_port_operations.
4584 * LOCKING:
4585 * spin_lock_irqsave(host_set lock)
4587 * RETURNS:
4588 * Zero on success, AC_ERR_* mask on failure
4591 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4593 struct ata_port *ap = qc->ap;
4595 /* Use polling pio if the LLD doesn't handle
4596 * interrupt driven pio and atapi CDB interrupt.
4598 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4599 switch (qc->tf.protocol) {
4600 case ATA_PROT_PIO:
4601 case ATA_PROT_ATAPI:
4602 case ATA_PROT_ATAPI_NODATA:
4603 qc->tf.flags |= ATA_TFLAG_POLLING;
4604 break;
4605 case ATA_PROT_ATAPI_DMA:
4606 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4607 /* see ata_dma_blacklisted() */
4608 BUG();
4609 break;
4610 default:
4611 break;
4615 /* select the device */
4616 ata_dev_select(ap, qc->dev->devno, 1, 0);
4618 /* start the command */
4619 switch (qc->tf.protocol) {
4620 case ATA_PROT_NODATA:
4621 if (qc->tf.flags & ATA_TFLAG_POLLING)
4622 ata_qc_set_polling(qc);
4624 ata_tf_to_host(ap, &qc->tf);
4625 ap->hsm_task_state = HSM_ST_LAST;
4627 if (qc->tf.flags & ATA_TFLAG_POLLING)
4628 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4630 break;
4632 case ATA_PROT_DMA:
4633 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4635 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4636 ap->ops->bmdma_setup(qc); /* set up bmdma */
4637 ap->ops->bmdma_start(qc); /* initiate bmdma */
4638 ap->hsm_task_state = HSM_ST_LAST;
4639 break;
4641 case ATA_PROT_PIO:
4642 if (qc->tf.flags & ATA_TFLAG_POLLING)
4643 ata_qc_set_polling(qc);
4645 ata_tf_to_host(ap, &qc->tf);
4647 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4648 /* PIO data out protocol */
4649 ap->hsm_task_state = HSM_ST_FIRST;
4650 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4652 /* always send first data block using
4653 * the ata_pio_task() codepath.
4655 } else {
4656 /* PIO data in protocol */
4657 ap->hsm_task_state = HSM_ST;
4659 if (qc->tf.flags & ATA_TFLAG_POLLING)
4660 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4662 /* if polling, ata_pio_task() handles the rest.
4663 * otherwise, interrupt handler takes over from here.
4667 break;
4669 case ATA_PROT_ATAPI:
4670 case ATA_PROT_ATAPI_NODATA:
4671 if (qc->tf.flags & ATA_TFLAG_POLLING)
4672 ata_qc_set_polling(qc);
4674 ata_tf_to_host(ap, &qc->tf);
4676 ap->hsm_task_state = HSM_ST_FIRST;
4678 /* send cdb by polling if no cdb interrupt */
4679 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4680 (qc->tf.flags & ATA_TFLAG_POLLING))
4681 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4682 break;
4684 case ATA_PROT_ATAPI_DMA:
4685 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4687 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4688 ap->ops->bmdma_setup(qc); /* set up bmdma */
4689 ap->hsm_task_state = HSM_ST_FIRST;
4691 /* send cdb by polling if no cdb interrupt */
4692 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4693 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4694 break;
4696 default:
4697 WARN_ON(1);
4698 return AC_ERR_SYSTEM;
4701 return 0;
4705 * ata_host_intr - Handle host interrupt for given (port, task)
4706 * @ap: Port on which interrupt arrived (possibly...)
4707 * @qc: Taskfile currently active in engine
4709 * Handle host interrupt for given queued command. Currently,
4710 * only DMA interrupts are handled. All other commands are
4711 * handled via polling with interrupts disabled (nIEN bit).
4713 * LOCKING:
4714 * spin_lock_irqsave(host_set lock)
4716 * RETURNS:
4717 * One if interrupt was handled, zero if not (shared irq).
4720 inline unsigned int ata_host_intr (struct ata_port *ap,
4721 struct ata_queued_cmd *qc)
4723 u8 status, host_stat = 0;
4725 VPRINTK("ata%u: protocol %d task_state %d\n",
4726 ap->id, qc->tf.protocol, ap->hsm_task_state);
4728 /* Check whether we are expecting interrupt in this state */
4729 switch (ap->hsm_task_state) {
4730 case HSM_ST_FIRST:
4731 /* Some pre-ATAPI-4 devices assert INTRQ
4732 * at this state when ready to receive CDB.
4735 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4736 * The flag was turned on only for atapi devices.
4737 * No need to check is_atapi_taskfile(&qc->tf) again.
4739 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4740 goto idle_irq;
4741 break;
4742 case HSM_ST_LAST:
4743 if (qc->tf.protocol == ATA_PROT_DMA ||
4744 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4745 /* check status of DMA engine */
4746 host_stat = ap->ops->bmdma_status(ap);
4747 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4749 /* if it's not our irq... */
4750 if (!(host_stat & ATA_DMA_INTR))
4751 goto idle_irq;
4753 /* before we do anything else, clear DMA-Start bit */
4754 ap->ops->bmdma_stop(qc);
4756 if (unlikely(host_stat & ATA_DMA_ERR)) {
4757 /* error when transfering data to/from memory */
4758 qc->err_mask |= AC_ERR_HOST_BUS;
4759 ap->hsm_task_state = HSM_ST_ERR;
4762 break;
4763 case HSM_ST:
4764 break;
4765 default:
4766 goto idle_irq;
4769 /* check altstatus */
4770 status = ata_altstatus(ap);
4771 if (status & ATA_BUSY)
4772 goto idle_irq;
4774 /* check main status, clearing INTRQ */
4775 status = ata_chk_status(ap);
4776 if (unlikely(status & ATA_BUSY))
4777 goto idle_irq;
4779 /* ack bmdma irq events */
4780 ap->ops->irq_clear(ap);
4782 ata_hsm_move(ap, qc, status, 0);
4783 return 1; /* irq handled */
4785 idle_irq:
4786 ap->stats.idle_irq++;
4788 #ifdef ATA_IRQ_TRAP
4789 if ((ap->stats.idle_irq % 1000) == 0) {
4790 ata_irq_ack(ap, 0); /* debug trap */
4791 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
4792 return 1;
4794 #endif
4795 return 0; /* irq not handled */
4799 * ata_interrupt - Default ATA host interrupt handler
4800 * @irq: irq line (unused)
4801 * @dev_instance: pointer to our ata_host_set information structure
4802 * @regs: unused
4804 * Default interrupt handler for PCI IDE devices. Calls
4805 * ata_host_intr() for each port that is not disabled.
4807 * LOCKING:
4808 * Obtains host_set lock during operation.
4810 * RETURNS:
4811 * IRQ_NONE or IRQ_HANDLED.
4814 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4816 struct ata_host_set *host_set = dev_instance;
4817 unsigned int i;
4818 unsigned int handled = 0;
4819 unsigned long flags;
4821 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4822 spin_lock_irqsave(&host_set->lock, flags);
4824 for (i = 0; i < host_set->n_ports; i++) {
4825 struct ata_port *ap;
4827 ap = host_set->ports[i];
4828 if (ap &&
4829 !(ap->flags & ATA_FLAG_DISABLED)) {
4830 struct ata_queued_cmd *qc;
4832 qc = ata_qc_from_tag(ap, ap->active_tag);
4833 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
4834 (qc->flags & ATA_QCFLAG_ACTIVE))
4835 handled |= ata_host_intr(ap, qc);
4839 spin_unlock_irqrestore(&host_set->lock, flags);
4841 return IRQ_RETVAL(handled);
4845 * sata_scr_valid - test whether SCRs are accessible
4846 * @ap: ATA port to test SCR accessibility for
4848 * Test whether SCRs are accessible for @ap.
4850 * LOCKING:
4851 * None.
4853 * RETURNS:
4854 * 1 if SCRs are accessible, 0 otherwise.
4856 int sata_scr_valid(struct ata_port *ap)
4858 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4862 * sata_scr_read - read SCR register of the specified port
4863 * @ap: ATA port to read SCR for
4864 * @reg: SCR to read
4865 * @val: Place to store read value
4867 * Read SCR register @reg of @ap into *@val. This function is
4868 * guaranteed to succeed if the cable type of the port is SATA
4869 * and the port implements ->scr_read.
4871 * LOCKING:
4872 * None.
4874 * RETURNS:
4875 * 0 on success, negative errno on failure.
4877 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4879 if (sata_scr_valid(ap)) {
4880 *val = ap->ops->scr_read(ap, reg);
4881 return 0;
4883 return -EOPNOTSUPP;
4887 * sata_scr_write - write SCR register of the specified port
4888 * @ap: ATA port to write SCR for
4889 * @reg: SCR to write
4890 * @val: value to write
4892 * Write @val to SCR register @reg of @ap. This function is
4893 * guaranteed to succeed if the cable type of the port is SATA
4894 * and the port implements ->scr_read.
4896 * LOCKING:
4897 * None.
4899 * RETURNS:
4900 * 0 on success, negative errno on failure.
4902 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4904 if (sata_scr_valid(ap)) {
4905 ap->ops->scr_write(ap, reg, val);
4906 return 0;
4908 return -EOPNOTSUPP;
4912 * sata_scr_write_flush - write SCR register of the specified port and flush
4913 * @ap: ATA port to write SCR for
4914 * @reg: SCR to write
4915 * @val: value to write
4917 * This function is identical to sata_scr_write() except that this
4918 * function performs flush after writing to the register.
4920 * LOCKING:
4921 * None.
4923 * RETURNS:
4924 * 0 on success, negative errno on failure.
4926 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4928 if (sata_scr_valid(ap)) {
4929 ap->ops->scr_write(ap, reg, val);
4930 ap->ops->scr_read(ap, reg);
4931 return 0;
4933 return -EOPNOTSUPP;
4937 * ata_port_online - test whether the given port is online
4938 * @ap: ATA port to test
4940 * Test whether @ap is online. Note that this function returns 0
4941 * if online status of @ap cannot be obtained, so
4942 * ata_port_online(ap) != !ata_port_offline(ap).
4944 * LOCKING:
4945 * None.
4947 * RETURNS:
4948 * 1 if the port online status is available and online.
4950 int ata_port_online(struct ata_port *ap)
4952 u32 sstatus;
4954 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
4955 return 1;
4956 return 0;
4960 * ata_port_offline - test whether the given port is offline
4961 * @ap: ATA port to test
4963 * Test whether @ap is offline. Note that this function returns
4964 * 0 if offline status of @ap cannot be obtained, so
4965 * ata_port_online(ap) != !ata_port_offline(ap).
4967 * LOCKING:
4968 * None.
4970 * RETURNS:
4971 * 1 if the port offline status is available and offline.
4973 int ata_port_offline(struct ata_port *ap)
4975 u32 sstatus;
4977 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
4978 return 1;
4979 return 0;
4982 int ata_flush_cache(struct ata_device *dev)
4984 unsigned int err_mask;
4985 u8 cmd;
4987 if (!ata_try_flush_cache(dev))
4988 return 0;
4990 if (ata_id_has_flush_ext(dev->id))
4991 cmd = ATA_CMD_FLUSH_EXT;
4992 else
4993 cmd = ATA_CMD_FLUSH;
4995 err_mask = ata_do_simple_cmd(dev, cmd);
4996 if (err_mask) {
4997 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
4998 return -EIO;
5001 return 0;
5004 static int ata_standby_drive(struct ata_device *dev)
5006 unsigned int err_mask;
5008 err_mask = ata_do_simple_cmd(dev, ATA_CMD_STANDBYNOW1);
5009 if (err_mask) {
5010 ata_dev_printk(dev, KERN_ERR, "failed to standby drive "
5011 "(err_mask=0x%x)\n", err_mask);
5012 return -EIO;
5015 return 0;
5018 static int ata_start_drive(struct ata_device *dev)
5020 unsigned int err_mask;
5022 err_mask = ata_do_simple_cmd(dev, ATA_CMD_IDLEIMMEDIATE);
5023 if (err_mask) {
5024 ata_dev_printk(dev, KERN_ERR, "failed to start drive "
5025 "(err_mask=0x%x)\n", err_mask);
5026 return -EIO;
5029 return 0;
5033 * ata_device_resume - wakeup a previously suspended devices
5034 * @dev: the device to resume
5036 * Kick the drive back into action, by sending it an idle immediate
5037 * command and making sure its transfer mode matches between drive
5038 * and host.
5041 int ata_device_resume(struct ata_device *dev)
5043 struct ata_port *ap = dev->ap;
5045 if (ap->flags & ATA_FLAG_SUSPENDED) {
5046 struct ata_device *failed_dev;
5048 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
5049 ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 200000);
5051 ap->flags &= ~ATA_FLAG_SUSPENDED;
5052 while (ata_set_mode(ap, &failed_dev))
5053 ata_dev_disable(failed_dev);
5055 if (!ata_dev_enabled(dev))
5056 return 0;
5057 if (dev->class == ATA_DEV_ATA)
5058 ata_start_drive(dev);
5060 return 0;
5064 * ata_device_suspend - prepare a device for suspend
5065 * @dev: the device to suspend
5066 * @state: target power management state
5068 * Flush the cache on the drive, if appropriate, then issue a
5069 * standbynow command.
5071 int ata_device_suspend(struct ata_device *dev, pm_message_t state)
5073 struct ata_port *ap = dev->ap;
5075 if (!ata_dev_enabled(dev))
5076 return 0;
5077 if (dev->class == ATA_DEV_ATA)
5078 ata_flush_cache(dev);
5080 if (state.event != PM_EVENT_FREEZE)
5081 ata_standby_drive(dev);
5082 ap->flags |= ATA_FLAG_SUSPENDED;
5083 return 0;
5087 * ata_port_start - Set port up for dma.
5088 * @ap: Port to initialize
5090 * Called just after data structures for each port are
5091 * initialized. Allocates space for PRD table.
5093 * May be used as the port_start() entry in ata_port_operations.
5095 * LOCKING:
5096 * Inherited from caller.
5099 int ata_port_start (struct ata_port *ap)
5101 struct device *dev = ap->dev;
5102 int rc;
5104 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5105 if (!ap->prd)
5106 return -ENOMEM;
5108 rc = ata_pad_alloc(ap, dev);
5109 if (rc) {
5110 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5111 return rc;
5114 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5116 return 0;
5121 * ata_port_stop - Undo ata_port_start()
5122 * @ap: Port to shut down
5124 * Frees the PRD table.
5126 * May be used as the port_stop() entry in ata_port_operations.
5128 * LOCKING:
5129 * Inherited from caller.
5132 void ata_port_stop (struct ata_port *ap)
5134 struct device *dev = ap->dev;
5136 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5137 ata_pad_free(ap, dev);
5140 void ata_host_stop (struct ata_host_set *host_set)
5142 if (host_set->mmio_base)
5143 iounmap(host_set->mmio_base);
5148 * ata_host_remove - Unregister SCSI host structure with upper layers
5149 * @ap: Port to unregister
5150 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
5152 * LOCKING:
5153 * Inherited from caller.
5156 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
5158 struct Scsi_Host *sh = ap->host;
5160 DPRINTK("ENTER\n");
5162 if (do_unregister)
5163 scsi_remove_host(sh);
5165 ap->ops->port_stop(ap);
5169 * ata_dev_init - Initialize an ata_device structure
5170 * @dev: Device structure to initialize
5172 * Initialize @dev in preparation for probing.
5174 * LOCKING:
5175 * Inherited from caller.
5177 void ata_dev_init(struct ata_device *dev)
5179 struct ata_port *ap = dev->ap;
5180 unsigned long flags;
5182 /* SATA spd limit is bound to the first device */
5183 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5185 /* High bits of dev->flags are used to record warm plug
5186 * requests which occur asynchronously. Synchronize using
5187 * host_set lock.
5189 spin_lock_irqsave(ap->lock, flags);
5190 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5191 spin_unlock_irqrestore(ap->lock, flags);
5193 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5194 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5195 dev->pio_mask = UINT_MAX;
5196 dev->mwdma_mask = UINT_MAX;
5197 dev->udma_mask = UINT_MAX;
5201 * ata_host_init - Initialize an ata_port structure
5202 * @ap: Structure to initialize
5203 * @host: associated SCSI mid-layer structure
5204 * @host_set: Collection of hosts to which @ap belongs
5205 * @ent: Probe information provided by low-level driver
5206 * @port_no: Port number associated with this ata_port
5208 * Initialize a new ata_port structure, and its associated
5209 * scsi_host.
5211 * LOCKING:
5212 * Inherited from caller.
5214 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
5215 struct ata_host_set *host_set,
5216 const struct ata_probe_ent *ent, unsigned int port_no)
5218 unsigned int i;
5220 host->max_id = 16;
5221 host->max_lun = 1;
5222 host->max_channel = 1;
5223 host->unique_id = ata_unique_id++;
5224 host->max_cmd_len = 12;
5226 ap->lock = &host_set->lock;
5227 ap->flags = ATA_FLAG_DISABLED;
5228 ap->id = host->unique_id;
5229 ap->host = host;
5230 ap->ctl = ATA_DEVCTL_OBS;
5231 ap->host_set = host_set;
5232 ap->dev = ent->dev;
5233 ap->port_no = port_no;
5234 ap->hard_port_no =
5235 ent->legacy_mode ? ent->hard_port_no : port_no;
5236 ap->pio_mask = ent->pio_mask;
5237 ap->mwdma_mask = ent->mwdma_mask;
5238 ap->udma_mask = ent->udma_mask;
5239 ap->flags |= ent->host_flags;
5240 ap->ops = ent->port_ops;
5241 ap->hw_sata_spd_limit = UINT_MAX;
5242 ap->active_tag = ATA_TAG_POISON;
5243 ap->last_ctl = 0xFF;
5245 #if defined(ATA_VERBOSE_DEBUG)
5246 /* turn on all debugging levels */
5247 ap->msg_enable = 0x00FF;
5248 #elif defined(ATA_DEBUG)
5249 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5250 #else
5251 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5252 #endif
5254 INIT_WORK(&ap->port_task, NULL, NULL);
5255 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
5256 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
5257 INIT_LIST_HEAD(&ap->eh_done_q);
5258 init_waitqueue_head(&ap->eh_wait_q);
5260 /* set cable type */
5261 ap->cbl = ATA_CBL_NONE;
5262 if (ap->flags & ATA_FLAG_SATA)
5263 ap->cbl = ATA_CBL_SATA;
5265 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5266 struct ata_device *dev = &ap->device[i];
5267 dev->ap = ap;
5268 dev->devno = i;
5269 ata_dev_init(dev);
5272 #ifdef ATA_IRQ_TRAP
5273 ap->stats.unhandled_irq = 1;
5274 ap->stats.idle_irq = 1;
5275 #endif
5277 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5281 * ata_host_add - Attach low-level ATA driver to system
5282 * @ent: Information provided by low-level driver
5283 * @host_set: Collections of ports to which we add
5284 * @port_no: Port number associated with this host
5286 * Attach low-level ATA driver to system.
5288 * LOCKING:
5289 * PCI/etc. bus probe sem.
5291 * RETURNS:
5292 * New ata_port on success, for NULL on error.
5295 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
5296 struct ata_host_set *host_set,
5297 unsigned int port_no)
5299 struct Scsi_Host *host;
5300 struct ata_port *ap;
5301 int rc;
5303 DPRINTK("ENTER\n");
5305 if (!ent->port_ops->error_handler &&
5306 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5307 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5308 port_no);
5309 return NULL;
5312 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5313 if (!host)
5314 return NULL;
5316 host->transportt = &ata_scsi_transport_template;
5318 ap = ata_shost_to_port(host);
5320 ata_host_init(ap, host, host_set, ent, port_no);
5322 rc = ap->ops->port_start(ap);
5323 if (rc)
5324 goto err_out;
5326 return ap;
5328 err_out:
5329 scsi_host_put(host);
5330 return NULL;
5334 * ata_device_add - Register hardware device with ATA and SCSI layers
5335 * @ent: Probe information describing hardware device to be registered
5337 * This function processes the information provided in the probe
5338 * information struct @ent, allocates the necessary ATA and SCSI
5339 * host information structures, initializes them, and registers
5340 * everything with requisite kernel subsystems.
5342 * This function requests irqs, probes the ATA bus, and probes
5343 * the SCSI bus.
5345 * LOCKING:
5346 * PCI/etc. bus probe sem.
5348 * RETURNS:
5349 * Number of ports registered. Zero on error (no ports registered).
5351 int ata_device_add(const struct ata_probe_ent *ent)
5353 unsigned int count = 0, i;
5354 struct device *dev = ent->dev;
5355 struct ata_host_set *host_set;
5356 int rc;
5358 DPRINTK("ENTER\n");
5359 /* alloc a container for our list of ATA ports (buses) */
5360 host_set = kzalloc(sizeof(struct ata_host_set) +
5361 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5362 if (!host_set)
5363 return 0;
5364 spin_lock_init(&host_set->lock);
5366 host_set->dev = dev;
5367 host_set->n_ports = ent->n_ports;
5368 host_set->irq = ent->irq;
5369 host_set->mmio_base = ent->mmio_base;
5370 host_set->private_data = ent->private_data;
5371 host_set->ops = ent->port_ops;
5372 host_set->flags = ent->host_set_flags;
5374 /* register each port bound to this device */
5375 for (i = 0; i < ent->n_ports; i++) {
5376 struct ata_port *ap;
5377 unsigned long xfer_mode_mask;
5379 ap = ata_host_add(ent, host_set, i);
5380 if (!ap)
5381 goto err_out;
5383 host_set->ports[i] = ap;
5384 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5385 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5386 (ap->pio_mask << ATA_SHIFT_PIO);
5388 /* print per-port info to dmesg */
5389 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5390 "ctl 0x%lX bmdma 0x%lX irq %lu\n",
5391 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5392 ata_mode_string(xfer_mode_mask),
5393 ap->ioaddr.cmd_addr,
5394 ap->ioaddr.ctl_addr,
5395 ap->ioaddr.bmdma_addr,
5396 ent->irq);
5398 ata_chk_status(ap);
5399 host_set->ops->irq_clear(ap);
5400 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
5401 count++;
5404 if (!count)
5405 goto err_free_ret;
5407 /* obtain irq, that is shared between channels */
5408 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5409 DRV_NAME, host_set);
5410 if (rc) {
5411 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5412 ent->irq, rc);
5413 goto err_out;
5416 /* perform each probe synchronously */
5417 DPRINTK("probe begin\n");
5418 for (i = 0; i < count; i++) {
5419 struct ata_port *ap;
5420 u32 scontrol;
5421 int rc;
5423 ap = host_set->ports[i];
5425 /* init sata_spd_limit to the current value */
5426 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5427 int spd = (scontrol >> 4) & 0xf;
5428 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5430 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5432 rc = scsi_add_host(ap->host, dev);
5433 if (rc) {
5434 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5435 /* FIXME: do something useful here */
5436 /* FIXME: handle unconditional calls to
5437 * scsi_scan_host and ata_host_remove, below,
5438 * at the very least
5442 if (ap->ops->error_handler) {
5443 unsigned long flags;
5445 ata_port_probe(ap);
5447 /* kick EH for boot probing */
5448 spin_lock_irqsave(ap->lock, flags);
5450 ap->eh_info.probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5451 ap->eh_info.action |= ATA_EH_SOFTRESET;
5453 ap->flags |= ATA_FLAG_LOADING;
5454 ata_port_schedule_eh(ap);
5456 spin_unlock_irqrestore(ap->lock, flags);
5458 /* wait for EH to finish */
5459 ata_port_wait_eh(ap);
5460 } else {
5461 DPRINTK("ata%u: bus probe begin\n", ap->id);
5462 rc = ata_bus_probe(ap);
5463 DPRINTK("ata%u: bus probe end\n", ap->id);
5465 if (rc) {
5466 /* FIXME: do something useful here?
5467 * Current libata behavior will
5468 * tear down everything when
5469 * the module is removed
5470 * or the h/w is unplugged.
5476 /* probes are done, now scan each port's disk(s) */
5477 DPRINTK("host probe begin\n");
5478 for (i = 0; i < count; i++) {
5479 struct ata_port *ap = host_set->ports[i];
5481 ata_scsi_scan_host(ap);
5484 dev_set_drvdata(dev, host_set);
5486 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5487 return ent->n_ports; /* success */
5489 err_out:
5490 for (i = 0; i < count; i++) {
5491 ata_host_remove(host_set->ports[i], 1);
5492 scsi_host_put(host_set->ports[i]->host);
5494 err_free_ret:
5495 kfree(host_set);
5496 VPRINTK("EXIT, returning 0\n");
5497 return 0;
5501 * ata_port_detach - Detach ATA port in prepration of device removal
5502 * @ap: ATA port to be detached
5504 * Detach all ATA devices and the associated SCSI devices of @ap;
5505 * then, remove the associated SCSI host. @ap is guaranteed to
5506 * be quiescent on return from this function.
5508 * LOCKING:
5509 * Kernel thread context (may sleep).
5511 void ata_port_detach(struct ata_port *ap)
5513 unsigned long flags;
5514 int i;
5516 if (!ap->ops->error_handler)
5517 return;
5519 /* tell EH we're leaving & flush EH */
5520 spin_lock_irqsave(ap->lock, flags);
5521 ap->flags |= ATA_FLAG_UNLOADING;
5522 spin_unlock_irqrestore(ap->lock, flags);
5524 ata_port_wait_eh(ap);
5526 /* EH is now guaranteed to see UNLOADING, so no new device
5527 * will be attached. Disable all existing devices.
5529 spin_lock_irqsave(ap->lock, flags);
5531 for (i = 0; i < ATA_MAX_DEVICES; i++)
5532 ata_dev_disable(&ap->device[i]);
5534 spin_unlock_irqrestore(ap->lock, flags);
5536 /* Final freeze & EH. All in-flight commands are aborted. EH
5537 * will be skipped and retrials will be terminated with bad
5538 * target.
5540 spin_lock_irqsave(ap->lock, flags);
5541 ata_port_freeze(ap); /* won't be thawed */
5542 spin_unlock_irqrestore(ap->lock, flags);
5544 ata_port_wait_eh(ap);
5546 /* Flush hotplug task. The sequence is similar to
5547 * ata_port_flush_task().
5549 flush_workqueue(ata_aux_wq);
5550 cancel_delayed_work(&ap->hotplug_task);
5551 flush_workqueue(ata_aux_wq);
5553 /* remove the associated SCSI host */
5554 scsi_remove_host(ap->host);
5558 * ata_host_set_remove - PCI layer callback for device removal
5559 * @host_set: ATA host set that was removed
5561 * Unregister all objects associated with this host set. Free those
5562 * objects.
5564 * LOCKING:
5565 * Inherited from calling layer (may sleep).
5568 void ata_host_set_remove(struct ata_host_set *host_set)
5570 unsigned int i;
5572 for (i = 0; i < host_set->n_ports; i++)
5573 ata_port_detach(host_set->ports[i]);
5575 free_irq(host_set->irq, host_set);
5577 for (i = 0; i < host_set->n_ports; i++) {
5578 struct ata_port *ap = host_set->ports[i];
5580 ata_scsi_release(ap->host);
5582 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5583 struct ata_ioports *ioaddr = &ap->ioaddr;
5585 if (ioaddr->cmd_addr == 0x1f0)
5586 release_region(0x1f0, 8);
5587 else if (ioaddr->cmd_addr == 0x170)
5588 release_region(0x170, 8);
5591 scsi_host_put(ap->host);
5594 if (host_set->ops->host_stop)
5595 host_set->ops->host_stop(host_set);
5597 kfree(host_set);
5601 * ata_scsi_release - SCSI layer callback hook for host unload
5602 * @host: libata host to be unloaded
5604 * Performs all duties necessary to shut down a libata port...
5605 * Kill port kthread, disable port, and release resources.
5607 * LOCKING:
5608 * Inherited from SCSI layer.
5610 * RETURNS:
5611 * One.
5614 int ata_scsi_release(struct Scsi_Host *host)
5616 struct ata_port *ap = ata_shost_to_port(host);
5618 DPRINTK("ENTER\n");
5620 ap->ops->port_disable(ap);
5621 ata_host_remove(ap, 0);
5623 DPRINTK("EXIT\n");
5624 return 1;
5628 * ata_std_ports - initialize ioaddr with standard port offsets.
5629 * @ioaddr: IO address structure to be initialized
5631 * Utility function which initializes data_addr, error_addr,
5632 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5633 * device_addr, status_addr, and command_addr to standard offsets
5634 * relative to cmd_addr.
5636 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5639 void ata_std_ports(struct ata_ioports *ioaddr)
5641 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5642 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5643 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5644 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5645 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5646 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5647 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5648 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5649 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5650 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5654 #ifdef CONFIG_PCI
5656 void ata_pci_host_stop (struct ata_host_set *host_set)
5658 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5660 pci_iounmap(pdev, host_set->mmio_base);
5664 * ata_pci_remove_one - PCI layer callback for device removal
5665 * @pdev: PCI device that was removed
5667 * PCI layer indicates to libata via this hook that
5668 * hot-unplug or module unload event has occurred.
5669 * Handle this by unregistering all objects associated
5670 * with this PCI device. Free those objects. Then finally
5671 * release PCI resources and disable device.
5673 * LOCKING:
5674 * Inherited from PCI layer (may sleep).
5677 void ata_pci_remove_one (struct pci_dev *pdev)
5679 struct device *dev = pci_dev_to_dev(pdev);
5680 struct ata_host_set *host_set = dev_get_drvdata(dev);
5681 struct ata_host_set *host_set2 = host_set->next;
5683 ata_host_set_remove(host_set);
5684 if (host_set2)
5685 ata_host_set_remove(host_set2);
5687 pci_release_regions(pdev);
5688 pci_disable_device(pdev);
5689 dev_set_drvdata(dev, NULL);
5692 /* move to PCI subsystem */
5693 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5695 unsigned long tmp = 0;
5697 switch (bits->width) {
5698 case 1: {
5699 u8 tmp8 = 0;
5700 pci_read_config_byte(pdev, bits->reg, &tmp8);
5701 tmp = tmp8;
5702 break;
5704 case 2: {
5705 u16 tmp16 = 0;
5706 pci_read_config_word(pdev, bits->reg, &tmp16);
5707 tmp = tmp16;
5708 break;
5710 case 4: {
5711 u32 tmp32 = 0;
5712 pci_read_config_dword(pdev, bits->reg, &tmp32);
5713 tmp = tmp32;
5714 break;
5717 default:
5718 return -EINVAL;
5721 tmp &= bits->mask;
5723 return (tmp == bits->val) ? 1 : 0;
5726 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5728 pci_save_state(pdev);
5729 pci_disable_device(pdev);
5730 pci_set_power_state(pdev, PCI_D3hot);
5731 return 0;
5734 int ata_pci_device_resume(struct pci_dev *pdev)
5736 pci_set_power_state(pdev, PCI_D0);
5737 pci_restore_state(pdev);
5738 pci_enable_device(pdev);
5739 pci_set_master(pdev);
5740 return 0;
5742 #endif /* CONFIG_PCI */
5745 static int __init ata_init(void)
5747 ata_probe_timeout *= HZ;
5748 ata_wq = create_workqueue("ata");
5749 if (!ata_wq)
5750 return -ENOMEM;
5752 ata_aux_wq = create_singlethread_workqueue("ata_aux");
5753 if (!ata_aux_wq) {
5754 destroy_workqueue(ata_wq);
5755 return -ENOMEM;
5758 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5759 return 0;
5762 static void __exit ata_exit(void)
5764 destroy_workqueue(ata_wq);
5765 destroy_workqueue(ata_aux_wq);
5768 module_init(ata_init);
5769 module_exit(ata_exit);
5771 static unsigned long ratelimit_time;
5772 static DEFINE_SPINLOCK(ata_ratelimit_lock);
5774 int ata_ratelimit(void)
5776 int rc;
5777 unsigned long flags;
5779 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5781 if (time_after(jiffies, ratelimit_time)) {
5782 rc = 1;
5783 ratelimit_time = jiffies + (HZ/5);
5784 } else
5785 rc = 0;
5787 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5789 return rc;
5793 * ata_wait_register - wait until register value changes
5794 * @reg: IO-mapped register
5795 * @mask: Mask to apply to read register value
5796 * @val: Wait condition
5797 * @interval_msec: polling interval in milliseconds
5798 * @timeout_msec: timeout in milliseconds
5800 * Waiting for some bits of register to change is a common
5801 * operation for ATA controllers. This function reads 32bit LE
5802 * IO-mapped register @reg and tests for the following condition.
5804 * (*@reg & mask) != val
5806 * If the condition is met, it returns; otherwise, the process is
5807 * repeated after @interval_msec until timeout.
5809 * LOCKING:
5810 * Kernel thread context (may sleep)
5812 * RETURNS:
5813 * The final register value.
5815 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5816 unsigned long interval_msec,
5817 unsigned long timeout_msec)
5819 unsigned long timeout;
5820 u32 tmp;
5822 tmp = ioread32(reg);
5824 /* Calculate timeout _after_ the first read to make sure
5825 * preceding writes reach the controller before starting to
5826 * eat away the timeout.
5828 timeout = jiffies + (timeout_msec * HZ) / 1000;
5830 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5831 msleep(interval_msec);
5832 tmp = ioread32(reg);
5835 return tmp;
5839 * libata is essentially a library of internal helper functions for
5840 * low-level ATA host controller drivers. As such, the API/ABI is
5841 * likely to change as new drivers are added and updated.
5842 * Do not depend on ABI/API stability.
5845 EXPORT_SYMBOL_GPL(sata_deb_timing_boot);
5846 EXPORT_SYMBOL_GPL(sata_deb_timing_eh);
5847 EXPORT_SYMBOL_GPL(sata_deb_timing_before_fsrst);
5848 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5849 EXPORT_SYMBOL_GPL(ata_std_ports);
5850 EXPORT_SYMBOL_GPL(ata_device_add);
5851 EXPORT_SYMBOL_GPL(ata_port_detach);
5852 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5853 EXPORT_SYMBOL_GPL(ata_sg_init);
5854 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5855 EXPORT_SYMBOL_GPL(ata_hsm_move);
5856 EXPORT_SYMBOL_GPL(ata_qc_complete);
5857 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
5858 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5859 EXPORT_SYMBOL_GPL(ata_tf_load);
5860 EXPORT_SYMBOL_GPL(ata_tf_read);
5861 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5862 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5863 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5864 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5865 EXPORT_SYMBOL_GPL(ata_check_status);
5866 EXPORT_SYMBOL_GPL(ata_altstatus);
5867 EXPORT_SYMBOL_GPL(ata_exec_command);
5868 EXPORT_SYMBOL_GPL(ata_port_start);
5869 EXPORT_SYMBOL_GPL(ata_port_stop);
5870 EXPORT_SYMBOL_GPL(ata_host_stop);
5871 EXPORT_SYMBOL_GPL(ata_interrupt);
5872 EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
5873 EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
5874 EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
5875 EXPORT_SYMBOL_GPL(ata_qc_prep);
5876 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
5877 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5878 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5879 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5880 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5881 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5882 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
5883 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
5884 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
5885 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
5886 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
5887 EXPORT_SYMBOL_GPL(ata_port_probe);
5888 EXPORT_SYMBOL_GPL(sata_set_spd);
5889 EXPORT_SYMBOL_GPL(sata_phy_debounce);
5890 EXPORT_SYMBOL_GPL(sata_phy_resume);
5891 EXPORT_SYMBOL_GPL(sata_phy_reset);
5892 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5893 EXPORT_SYMBOL_GPL(ata_bus_reset);
5894 EXPORT_SYMBOL_GPL(ata_std_prereset);
5895 EXPORT_SYMBOL_GPL(ata_std_softreset);
5896 EXPORT_SYMBOL_GPL(sata_std_hardreset);
5897 EXPORT_SYMBOL_GPL(ata_std_postreset);
5898 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
5899 EXPORT_SYMBOL_GPL(ata_dev_classify);
5900 EXPORT_SYMBOL_GPL(ata_dev_pair);
5901 EXPORT_SYMBOL_GPL(ata_port_disable);
5902 EXPORT_SYMBOL_GPL(ata_ratelimit);
5903 EXPORT_SYMBOL_GPL(ata_wait_register);
5904 EXPORT_SYMBOL_GPL(ata_busy_sleep);
5905 EXPORT_SYMBOL_GPL(ata_port_queue_task);
5906 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5907 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5908 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5909 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
5910 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
5911 EXPORT_SYMBOL_GPL(ata_scsi_release);
5912 EXPORT_SYMBOL_GPL(ata_host_intr);
5913 EXPORT_SYMBOL_GPL(sata_scr_valid);
5914 EXPORT_SYMBOL_GPL(sata_scr_read);
5915 EXPORT_SYMBOL_GPL(sata_scr_write);
5916 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
5917 EXPORT_SYMBOL_GPL(ata_port_online);
5918 EXPORT_SYMBOL_GPL(ata_port_offline);
5919 EXPORT_SYMBOL_GPL(ata_id_string);
5920 EXPORT_SYMBOL_GPL(ata_id_c_string);
5921 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5923 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5924 EXPORT_SYMBOL_GPL(ata_timing_compute);
5925 EXPORT_SYMBOL_GPL(ata_timing_merge);
5927 #ifdef CONFIG_PCI
5928 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5929 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5930 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5931 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5932 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5933 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5934 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5935 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5936 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
5937 #endif /* CONFIG_PCI */
5939 EXPORT_SYMBOL_GPL(ata_device_suspend);
5940 EXPORT_SYMBOL_GPL(ata_device_resume);
5941 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5942 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
5944 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5945 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
5946 EXPORT_SYMBOL_GPL(ata_port_abort);
5947 EXPORT_SYMBOL_GPL(ata_port_freeze);
5948 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
5949 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
5950 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5951 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
5952 EXPORT_SYMBOL_GPL(ata_do_eh);