[PATCH] list.h doc: change "counter" to "cursor"
[linux-2.6/suspend2-2.6.18.git] / arch / i386 / mm / fault.c
blobbd6fe96cc16d1f5cf0814aae900425a7dc39fecc
1 /*
2 * linux/arch/i386/mm/fault.c
4 * Copyright (C) 1995 Linus Torvalds
5 */
7 #include <linux/signal.h>
8 #include <linux/sched.h>
9 #include <linux/kernel.h>
10 #include <linux/errno.h>
11 #include <linux/string.h>
12 #include <linux/types.h>
13 #include <linux/ptrace.h>
14 #include <linux/mman.h>
15 #include <linux/mm.h>
16 #include <linux/smp.h>
17 #include <linux/smp_lock.h>
18 #include <linux/interrupt.h>
19 #include <linux/init.h>
20 #include <linux/tty.h>
21 #include <linux/vt_kern.h> /* For unblank_screen() */
22 #include <linux/highmem.h>
23 #include <linux/module.h>
24 #include <linux/kprobes.h>
26 #include <asm/system.h>
27 #include <asm/uaccess.h>
28 #include <asm/desc.h>
29 #include <asm/kdebug.h>
31 extern void die(const char *,struct pt_regs *,long);
34 * Unlock any spinlocks which will prevent us from getting the
35 * message out
37 void bust_spinlocks(int yes)
39 int loglevel_save = console_loglevel;
41 if (yes) {
42 oops_in_progress = 1;
43 return;
45 #ifdef CONFIG_VT
46 unblank_screen();
47 #endif
48 oops_in_progress = 0;
50 * OK, the message is on the console. Now we call printk()
51 * without oops_in_progress set so that printk will give klogd
52 * a poke. Hold onto your hats...
54 console_loglevel = 15; /* NMI oopser may have shut the console up */
55 printk(" ");
56 console_loglevel = loglevel_save;
60 * Return EIP plus the CS segment base. The segment limit is also
61 * adjusted, clamped to the kernel/user address space (whichever is
62 * appropriate), and returned in *eip_limit.
64 * The segment is checked, because it might have been changed by another
65 * task between the original faulting instruction and here.
67 * If CS is no longer a valid code segment, or if EIP is beyond the
68 * limit, or if it is a kernel address when CS is not a kernel segment,
69 * then the returned value will be greater than *eip_limit.
71 * This is slow, but is very rarely executed.
73 static inline unsigned long get_segment_eip(struct pt_regs *regs,
74 unsigned long *eip_limit)
76 unsigned long eip = regs->eip;
77 unsigned seg = regs->xcs & 0xffff;
78 u32 seg_ar, seg_limit, base, *desc;
80 /* Unlikely, but must come before segment checks. */
81 if (unlikely(regs->eflags & VM_MASK)) {
82 base = seg << 4;
83 *eip_limit = base + 0xffff;
84 return base + (eip & 0xffff);
87 /* The standard kernel/user address space limit. */
88 *eip_limit = (seg & 3) ? USER_DS.seg : KERNEL_DS.seg;
90 /* By far the most common cases. */
91 if (likely(seg == __USER_CS || seg == __KERNEL_CS))
92 return eip;
94 /* Check the segment exists, is within the current LDT/GDT size,
95 that kernel/user (ring 0..3) has the appropriate privilege,
96 that it's a code segment, and get the limit. */
97 __asm__ ("larl %3,%0; lsll %3,%1"
98 : "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg));
99 if ((~seg_ar & 0x9800) || eip > seg_limit) {
100 *eip_limit = 0;
101 return 1; /* So that returned eip > *eip_limit. */
104 /* Get the GDT/LDT descriptor base.
105 When you look for races in this code remember that
106 LDT and other horrors are only used in user space. */
107 if (seg & (1<<2)) {
108 /* Must lock the LDT while reading it. */
109 down(&current->mm->context.sem);
110 desc = current->mm->context.ldt;
111 desc = (void *)desc + (seg & ~7);
112 } else {
113 /* Must disable preemption while reading the GDT. */
114 desc = (u32 *)get_cpu_gdt_table(get_cpu());
115 desc = (void *)desc + (seg & ~7);
118 /* Decode the code segment base from the descriptor */
119 base = get_desc_base((unsigned long *)desc);
121 if (seg & (1<<2)) {
122 up(&current->mm->context.sem);
123 } else
124 put_cpu();
126 /* Adjust EIP and segment limit, and clamp at the kernel limit.
127 It's legitimate for segments to wrap at 0xffffffff. */
128 seg_limit += base;
129 if (seg_limit < *eip_limit && seg_limit >= base)
130 *eip_limit = seg_limit;
131 return eip + base;
135 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
136 * Check that here and ignore it.
138 static int __is_prefetch(struct pt_regs *regs, unsigned long addr)
140 unsigned long limit;
141 unsigned long instr = get_segment_eip (regs, &limit);
142 int scan_more = 1;
143 int prefetch = 0;
144 int i;
146 for (i = 0; scan_more && i < 15; i++) {
147 unsigned char opcode;
148 unsigned char instr_hi;
149 unsigned char instr_lo;
151 if (instr > limit)
152 break;
153 if (__get_user(opcode, (unsigned char __user *) instr))
154 break;
156 instr_hi = opcode & 0xf0;
157 instr_lo = opcode & 0x0f;
158 instr++;
160 switch (instr_hi) {
161 case 0x20:
162 case 0x30:
163 /* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. */
164 scan_more = ((instr_lo & 7) == 0x6);
165 break;
167 case 0x60:
168 /* 0x64 thru 0x67 are valid prefixes in all modes. */
169 scan_more = (instr_lo & 0xC) == 0x4;
170 break;
171 case 0xF0:
172 /* 0xF0, 0xF2, and 0xF3 are valid prefixes */
173 scan_more = !instr_lo || (instr_lo>>1) == 1;
174 break;
175 case 0x00:
176 /* Prefetch instruction is 0x0F0D or 0x0F18 */
177 scan_more = 0;
178 if (instr > limit)
179 break;
180 if (__get_user(opcode, (unsigned char __user *) instr))
181 break;
182 prefetch = (instr_lo == 0xF) &&
183 (opcode == 0x0D || opcode == 0x18);
184 break;
185 default:
186 scan_more = 0;
187 break;
190 return prefetch;
193 static inline int is_prefetch(struct pt_regs *regs, unsigned long addr,
194 unsigned long error_code)
196 if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
197 boot_cpu_data.x86 >= 6)) {
198 /* Catch an obscure case of prefetch inside an NX page. */
199 if (nx_enabled && (error_code & 16))
200 return 0;
201 return __is_prefetch(regs, addr);
203 return 0;
206 static noinline void force_sig_info_fault(int si_signo, int si_code,
207 unsigned long address, struct task_struct *tsk)
209 siginfo_t info;
211 info.si_signo = si_signo;
212 info.si_errno = 0;
213 info.si_code = si_code;
214 info.si_addr = (void __user *)address;
215 force_sig_info(si_signo, &info, tsk);
218 fastcall void do_invalid_op(struct pt_regs *, unsigned long);
220 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
222 unsigned index = pgd_index(address);
223 pgd_t *pgd_k;
224 pud_t *pud, *pud_k;
225 pmd_t *pmd, *pmd_k;
227 pgd += index;
228 pgd_k = init_mm.pgd + index;
230 if (!pgd_present(*pgd_k))
231 return NULL;
234 * set_pgd(pgd, *pgd_k); here would be useless on PAE
235 * and redundant with the set_pmd() on non-PAE. As would
236 * set_pud.
239 pud = pud_offset(pgd, address);
240 pud_k = pud_offset(pgd_k, address);
241 if (!pud_present(*pud_k))
242 return NULL;
244 pmd = pmd_offset(pud, address);
245 pmd_k = pmd_offset(pud_k, address);
246 if (!pmd_present(*pmd_k))
247 return NULL;
248 if (!pmd_present(*pmd))
249 set_pmd(pmd, *pmd_k);
250 else
251 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
252 return pmd_k;
256 * Handle a fault on the vmalloc or module mapping area
258 * This assumes no large pages in there.
260 static inline int vmalloc_fault(unsigned long address)
262 unsigned long pgd_paddr;
263 pmd_t *pmd_k;
264 pte_t *pte_k;
266 * Synchronize this task's top level page-table
267 * with the 'reference' page table.
269 * Do _not_ use "current" here. We might be inside
270 * an interrupt in the middle of a task switch..
272 pgd_paddr = read_cr3();
273 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
274 if (!pmd_k)
275 return -1;
276 pte_k = pte_offset_kernel(pmd_k, address);
277 if (!pte_present(*pte_k))
278 return -1;
279 return 0;
283 * This routine handles page faults. It determines the address,
284 * and the problem, and then passes it off to one of the appropriate
285 * routines.
287 * error_code:
288 * bit 0 == 0 means no page found, 1 means protection fault
289 * bit 1 == 0 means read, 1 means write
290 * bit 2 == 0 means kernel, 1 means user-mode
291 * bit 3 == 1 means use of reserved bit detected
292 * bit 4 == 1 means fault was an instruction fetch
294 fastcall void __kprobes do_page_fault(struct pt_regs *regs,
295 unsigned long error_code)
297 struct task_struct *tsk;
298 struct mm_struct *mm;
299 struct vm_area_struct * vma;
300 unsigned long address;
301 unsigned long page;
302 int write, si_code;
304 /* get the address */
305 address = read_cr2();
307 tsk = current;
309 si_code = SEGV_MAPERR;
312 * We fault-in kernel-space virtual memory on-demand. The
313 * 'reference' page table is init_mm.pgd.
315 * NOTE! We MUST NOT take any locks for this case. We may
316 * be in an interrupt or a critical region, and should
317 * only copy the information from the master page table,
318 * nothing more.
320 * This verifies that the fault happens in kernel space
321 * (error_code & 4) == 0, and that the fault was not a
322 * protection error (error_code & 9) == 0.
324 if (unlikely(address >= TASK_SIZE)) {
325 if (!(error_code & 0x0000000d) && vmalloc_fault(address) >= 0)
326 return;
327 if (notify_die(DIE_PAGE_FAULT, "page fault", regs, error_code, 14,
328 SIGSEGV) == NOTIFY_STOP)
329 return;
331 * Don't take the mm semaphore here. If we fixup a prefetch
332 * fault we could otherwise deadlock.
334 goto bad_area_nosemaphore;
337 if (notify_die(DIE_PAGE_FAULT, "page fault", regs, error_code, 14,
338 SIGSEGV) == NOTIFY_STOP)
339 return;
341 /* It's safe to allow irq's after cr2 has been saved and the vmalloc
342 fault has been handled. */
343 if (regs->eflags & (X86_EFLAGS_IF|VM_MASK))
344 local_irq_enable();
346 mm = tsk->mm;
349 * If we're in an interrupt, have no user context or are running in an
350 * atomic region then we must not take the fault..
352 if (in_atomic() || !mm)
353 goto bad_area_nosemaphore;
355 /* When running in the kernel we expect faults to occur only to
356 * addresses in user space. All other faults represent errors in the
357 * kernel and should generate an OOPS. Unfortunatly, in the case of an
358 * erroneous fault occuring in a code path which already holds mmap_sem
359 * we will deadlock attempting to validate the fault against the
360 * address space. Luckily the kernel only validly references user
361 * space from well defined areas of code, which are listed in the
362 * exceptions table.
364 * As the vast majority of faults will be valid we will only perform
365 * the source reference check when there is a possibilty of a deadlock.
366 * Attempt to lock the address space, if we cannot we then validate the
367 * source. If this is invalid we can skip the address space check,
368 * thus avoiding the deadlock.
370 if (!down_read_trylock(&mm->mmap_sem)) {
371 if ((error_code & 4) == 0 &&
372 !search_exception_tables(regs->eip))
373 goto bad_area_nosemaphore;
374 down_read(&mm->mmap_sem);
377 vma = find_vma(mm, address);
378 if (!vma)
379 goto bad_area;
380 if (vma->vm_start <= address)
381 goto good_area;
382 if (!(vma->vm_flags & VM_GROWSDOWN))
383 goto bad_area;
384 if (error_code & 4) {
386 * Accessing the stack below %esp is always a bug.
387 * The large cushion allows instructions like enter
388 * and pusha to work. ("enter $65535,$31" pushes
389 * 32 pointers and then decrements %esp by 65535.)
391 if (address + 65536 + 32 * sizeof(unsigned long) < regs->esp)
392 goto bad_area;
394 if (expand_stack(vma, address))
395 goto bad_area;
397 * Ok, we have a good vm_area for this memory access, so
398 * we can handle it..
400 good_area:
401 si_code = SEGV_ACCERR;
402 write = 0;
403 switch (error_code & 3) {
404 default: /* 3: write, present */
405 #ifdef TEST_VERIFY_AREA
406 if (regs->cs == KERNEL_CS)
407 printk("WP fault at %08lx\n", regs->eip);
408 #endif
409 /* fall through */
410 case 2: /* write, not present */
411 if (!(vma->vm_flags & VM_WRITE))
412 goto bad_area;
413 write++;
414 break;
415 case 1: /* read, present */
416 goto bad_area;
417 case 0: /* read, not present */
418 if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
419 goto bad_area;
422 survive:
424 * If for any reason at all we couldn't handle the fault,
425 * make sure we exit gracefully rather than endlessly redo
426 * the fault.
428 switch (handle_mm_fault(mm, vma, address, write)) {
429 case VM_FAULT_MINOR:
430 tsk->min_flt++;
431 break;
432 case VM_FAULT_MAJOR:
433 tsk->maj_flt++;
434 break;
435 case VM_FAULT_SIGBUS:
436 goto do_sigbus;
437 case VM_FAULT_OOM:
438 goto out_of_memory;
439 default:
440 BUG();
444 * Did it hit the DOS screen memory VA from vm86 mode?
446 if (regs->eflags & VM_MASK) {
447 unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
448 if (bit < 32)
449 tsk->thread.screen_bitmap |= 1 << bit;
451 up_read(&mm->mmap_sem);
452 return;
455 * Something tried to access memory that isn't in our memory map..
456 * Fix it, but check if it's kernel or user first..
458 bad_area:
459 up_read(&mm->mmap_sem);
461 bad_area_nosemaphore:
462 /* User mode accesses just cause a SIGSEGV */
463 if (error_code & 4) {
465 * Valid to do another page fault here because this one came
466 * from user space.
468 if (is_prefetch(regs, address, error_code))
469 return;
471 tsk->thread.cr2 = address;
472 /* Kernel addresses are always protection faults */
473 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
474 tsk->thread.trap_no = 14;
475 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
476 return;
479 #ifdef CONFIG_X86_F00F_BUG
481 * Pentium F0 0F C7 C8 bug workaround.
483 if (boot_cpu_data.f00f_bug) {
484 unsigned long nr;
486 nr = (address - idt_descr.address) >> 3;
488 if (nr == 6) {
489 do_invalid_op(regs, 0);
490 return;
493 #endif
495 no_context:
496 /* Are we prepared to handle this kernel fault? */
497 if (fixup_exception(regs))
498 return;
501 * Valid to do another page fault here, because if this fault
502 * had been triggered by is_prefetch fixup_exception would have
503 * handled it.
505 if (is_prefetch(regs, address, error_code))
506 return;
509 * Oops. The kernel tried to access some bad page. We'll have to
510 * terminate things with extreme prejudice.
513 bust_spinlocks(1);
515 if (oops_may_print()) {
516 #ifdef CONFIG_X86_PAE
517 if (error_code & 16) {
518 pte_t *pte = lookup_address(address);
520 if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
521 printk(KERN_CRIT "kernel tried to execute "
522 "NX-protected page - exploit attempt? "
523 "(uid: %d)\n", current->uid);
525 #endif
526 if (address < PAGE_SIZE)
527 printk(KERN_ALERT "BUG: unable to handle kernel NULL "
528 "pointer dereference");
529 else
530 printk(KERN_ALERT "BUG: unable to handle kernel paging"
531 " request");
532 printk(" at virtual address %08lx\n",address);
533 printk(KERN_ALERT " printing eip:\n");
534 printk("%08lx\n", regs->eip);
536 page = read_cr3();
537 page = ((unsigned long *) __va(page))[address >> 22];
538 if (oops_may_print())
539 printk(KERN_ALERT "*pde = %08lx\n", page);
541 * We must not directly access the pte in the highpte
542 * case, the page table might be allocated in highmem.
543 * And lets rather not kmap-atomic the pte, just in case
544 * it's allocated already.
546 #ifndef CONFIG_HIGHPTE
547 if ((page & 1) && oops_may_print()) {
548 page &= PAGE_MASK;
549 address &= 0x003ff000;
550 page = ((unsigned long *) __va(page))[address >> PAGE_SHIFT];
551 printk(KERN_ALERT "*pte = %08lx\n", page);
553 #endif
554 tsk->thread.cr2 = address;
555 tsk->thread.trap_no = 14;
556 tsk->thread.error_code = error_code;
557 die("Oops", regs, error_code);
558 bust_spinlocks(0);
559 do_exit(SIGKILL);
562 * We ran out of memory, or some other thing happened to us that made
563 * us unable to handle the page fault gracefully.
565 out_of_memory:
566 up_read(&mm->mmap_sem);
567 if (tsk->pid == 1) {
568 yield();
569 down_read(&mm->mmap_sem);
570 goto survive;
572 printk("VM: killing process %s\n", tsk->comm);
573 if (error_code & 4)
574 do_exit(SIGKILL);
575 goto no_context;
577 do_sigbus:
578 up_read(&mm->mmap_sem);
580 /* Kernel mode? Handle exceptions or die */
581 if (!(error_code & 4))
582 goto no_context;
584 /* User space => ok to do another page fault */
585 if (is_prefetch(regs, address, error_code))
586 return;
588 tsk->thread.cr2 = address;
589 tsk->thread.error_code = error_code;
590 tsk->thread.trap_no = 14;
591 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
594 #ifndef CONFIG_X86_PAE
595 void vmalloc_sync_all(void)
598 * Note that races in the updates of insync and start aren't
599 * problematic: insync can only get set bits added, and updates to
600 * start are only improving performance (without affecting correctness
601 * if undone).
603 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
604 static unsigned long start = TASK_SIZE;
605 unsigned long address;
607 BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK);
608 for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) {
609 if (!test_bit(pgd_index(address), insync)) {
610 unsigned long flags;
611 struct page *page;
613 spin_lock_irqsave(&pgd_lock, flags);
614 for (page = pgd_list; page; page =
615 (struct page *)page->index)
616 if (!vmalloc_sync_one(page_address(page),
617 address)) {
618 BUG_ON(page != pgd_list);
619 break;
621 spin_unlock_irqrestore(&pgd_lock, flags);
622 if (!page)
623 set_bit(pgd_index(address), insync);
625 if (address == start && test_bit(pgd_index(address), insync))
626 start = address + PGDIR_SIZE;
629 #endif