[PATCH] mm: split highorder pages
[linux-2.6/suspend2-2.6.18.git] / mm / page_alloc.c
blobfc65e87368b39e21290b0262913f1db1089d7746
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
41 #include <asm/tlbflush.h>
42 #include "internal.h"
45 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
46 * initializer cleaner
48 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
49 EXPORT_SYMBOL(node_online_map);
50 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
51 EXPORT_SYMBOL(node_possible_map);
52 struct pglist_data *pgdat_list __read_mostly;
53 unsigned long totalram_pages __read_mostly;
54 unsigned long totalhigh_pages __read_mostly;
55 long nr_swap_pages;
56 int percpu_pagelist_fraction;
58 static void fastcall free_hot_cold_page(struct page *page, int cold);
59 static void __free_pages_ok(struct page *page, unsigned int order);
62 * results with 256, 32 in the lowmem_reserve sysctl:
63 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
64 * 1G machine -> (16M dma, 784M normal, 224M high)
65 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
66 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
67 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
69 * TBD: should special case ZONE_DMA32 machines here - in those we normally
70 * don't need any ZONE_NORMAL reservation
72 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
74 EXPORT_SYMBOL(totalram_pages);
77 * Used by page_zone() to look up the address of the struct zone whose
78 * id is encoded in the upper bits of page->flags
80 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
81 EXPORT_SYMBOL(zone_table);
83 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
84 int min_free_kbytes = 1024;
86 unsigned long __initdata nr_kernel_pages;
87 unsigned long __initdata nr_all_pages;
89 #ifdef CONFIG_DEBUG_VM
90 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
92 int ret = 0;
93 unsigned seq;
94 unsigned long pfn = page_to_pfn(page);
96 do {
97 seq = zone_span_seqbegin(zone);
98 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
99 ret = 1;
100 else if (pfn < zone->zone_start_pfn)
101 ret = 1;
102 } while (zone_span_seqretry(zone, seq));
104 return ret;
107 static int page_is_consistent(struct zone *zone, struct page *page)
109 #ifdef CONFIG_HOLES_IN_ZONE
110 if (!pfn_valid(page_to_pfn(page)))
111 return 0;
112 #endif
113 if (zone != page_zone(page))
114 return 0;
116 return 1;
119 * Temporary debugging check for pages not lying within a given zone.
121 static int bad_range(struct zone *zone, struct page *page)
123 if (page_outside_zone_boundaries(zone, page))
124 return 1;
125 if (!page_is_consistent(zone, page))
126 return 1;
128 return 0;
131 #else
132 static inline int bad_range(struct zone *zone, struct page *page)
134 return 0;
136 #endif
138 static void bad_page(struct page *page)
140 printk(KERN_EMERG "Bad page state in process '%s'\n"
141 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
142 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
143 KERN_EMERG "Backtrace:\n",
144 current->comm, page, (int)(2*sizeof(unsigned long)),
145 (unsigned long)page->flags, page->mapping,
146 page_mapcount(page), page_count(page));
147 dump_stack();
148 page->flags &= ~(1 << PG_lru |
149 1 << PG_private |
150 1 << PG_locked |
151 1 << PG_active |
152 1 << PG_dirty |
153 1 << PG_reclaim |
154 1 << PG_slab |
155 1 << PG_swapcache |
156 1 << PG_writeback );
157 set_page_count(page, 0);
158 reset_page_mapcount(page);
159 page->mapping = NULL;
160 add_taint(TAINT_BAD_PAGE);
164 * Higher-order pages are called "compound pages". They are structured thusly:
166 * The first PAGE_SIZE page is called the "head page".
168 * The remaining PAGE_SIZE pages are called "tail pages".
170 * All pages have PG_compound set. All pages have their ->private pointing at
171 * the head page (even the head page has this).
173 * The first tail page's ->lru.next holds the address of the compound page's
174 * put_page() function. Its ->lru.prev holds the order of allocation.
175 * This usage means that zero-order pages may not be compound.
178 static void free_compound_page(struct page *page)
180 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
183 static void prep_compound_page(struct page *page, unsigned long order)
185 int i;
186 int nr_pages = 1 << order;
188 page[1].lru.next = (void *)free_compound_page; /* set dtor */
189 page[1].lru.prev = (void *)order;
190 for (i = 0; i < nr_pages; i++) {
191 struct page *p = page + i;
193 __SetPageCompound(p);
194 set_page_private(p, (unsigned long)page);
198 static void destroy_compound_page(struct page *page, unsigned long order)
200 int i;
201 int nr_pages = 1 << order;
203 if (unlikely((unsigned long)page[1].lru.prev != order))
204 bad_page(page);
206 for (i = 0; i < nr_pages; i++) {
207 struct page *p = page + i;
209 if (unlikely(!PageCompound(p) |
210 (page_private(p) != (unsigned long)page)))
211 bad_page(page);
212 __ClearPageCompound(p);
217 * function for dealing with page's order in buddy system.
218 * zone->lock is already acquired when we use these.
219 * So, we don't need atomic page->flags operations here.
221 static inline unsigned long page_order(struct page *page) {
222 return page_private(page);
225 static inline void set_page_order(struct page *page, int order) {
226 set_page_private(page, order);
227 __SetPagePrivate(page);
230 static inline void rmv_page_order(struct page *page)
232 __ClearPagePrivate(page);
233 set_page_private(page, 0);
237 * Locate the struct page for both the matching buddy in our
238 * pair (buddy1) and the combined O(n+1) page they form (page).
240 * 1) Any buddy B1 will have an order O twin B2 which satisfies
241 * the following equation:
242 * B2 = B1 ^ (1 << O)
243 * For example, if the starting buddy (buddy2) is #8 its order
244 * 1 buddy is #10:
245 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
247 * 2) Any buddy B will have an order O+1 parent P which
248 * satisfies the following equation:
249 * P = B & ~(1 << O)
251 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
253 static inline struct page *
254 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
256 unsigned long buddy_idx = page_idx ^ (1 << order);
258 return page + (buddy_idx - page_idx);
261 static inline unsigned long
262 __find_combined_index(unsigned long page_idx, unsigned int order)
264 return (page_idx & ~(1 << order));
268 * This function checks whether a page is free && is the buddy
269 * we can do coalesce a page and its buddy if
270 * (a) the buddy is not in a hole &&
271 * (b) the buddy is free &&
272 * (c) the buddy is on the buddy system &&
273 * (d) a page and its buddy have the same order.
274 * for recording page's order, we use page_private(page) and PG_private.
277 static inline int page_is_buddy(struct page *page, int order)
279 #ifdef CONFIG_HOLES_IN_ZONE
280 if (!pfn_valid(page_to_pfn(page)))
281 return 0;
282 #endif
284 if (PagePrivate(page) &&
285 (page_order(page) == order) &&
286 page_count(page) == 0)
287 return 1;
288 return 0;
292 * Freeing function for a buddy system allocator.
294 * The concept of a buddy system is to maintain direct-mapped table
295 * (containing bit values) for memory blocks of various "orders".
296 * The bottom level table contains the map for the smallest allocatable
297 * units of memory (here, pages), and each level above it describes
298 * pairs of units from the levels below, hence, "buddies".
299 * At a high level, all that happens here is marking the table entry
300 * at the bottom level available, and propagating the changes upward
301 * as necessary, plus some accounting needed to play nicely with other
302 * parts of the VM system.
303 * At each level, we keep a list of pages, which are heads of continuous
304 * free pages of length of (1 << order) and marked with PG_Private.Page's
305 * order is recorded in page_private(page) field.
306 * So when we are allocating or freeing one, we can derive the state of the
307 * other. That is, if we allocate a small block, and both were
308 * free, the remainder of the region must be split into blocks.
309 * If a block is freed, and its buddy is also free, then this
310 * triggers coalescing into a block of larger size.
312 * -- wli
315 static inline void __free_one_page(struct page *page,
316 struct zone *zone, unsigned int order)
318 unsigned long page_idx;
319 int order_size = 1 << order;
321 if (unlikely(PageCompound(page)))
322 destroy_compound_page(page, order);
324 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
326 BUG_ON(page_idx & (order_size - 1));
327 BUG_ON(bad_range(zone, page));
329 zone->free_pages += order_size;
330 while (order < MAX_ORDER-1) {
331 unsigned long combined_idx;
332 struct free_area *area;
333 struct page *buddy;
335 buddy = __page_find_buddy(page, page_idx, order);
336 if (!page_is_buddy(buddy, order))
337 break; /* Move the buddy up one level. */
339 list_del(&buddy->lru);
340 area = zone->free_area + order;
341 area->nr_free--;
342 rmv_page_order(buddy);
343 combined_idx = __find_combined_index(page_idx, order);
344 page = page + (combined_idx - page_idx);
345 page_idx = combined_idx;
346 order++;
348 set_page_order(page, order);
349 list_add(&page->lru, &zone->free_area[order].free_list);
350 zone->free_area[order].nr_free++;
353 static inline int free_pages_check(struct page *page)
355 if (unlikely(page_mapcount(page) |
356 (page->mapping != NULL) |
357 (page_count(page) != 0) |
358 (page->flags & (
359 1 << PG_lru |
360 1 << PG_private |
361 1 << PG_locked |
362 1 << PG_active |
363 1 << PG_reclaim |
364 1 << PG_slab |
365 1 << PG_swapcache |
366 1 << PG_writeback |
367 1 << PG_reserved ))))
368 bad_page(page);
369 if (PageDirty(page))
370 __ClearPageDirty(page);
372 * For now, we report if PG_reserved was found set, but do not
373 * clear it, and do not free the page. But we shall soon need
374 * to do more, for when the ZERO_PAGE count wraps negative.
376 return PageReserved(page);
380 * Frees a list of pages.
381 * Assumes all pages on list are in same zone, and of same order.
382 * count is the number of pages to free.
384 * If the zone was previously in an "all pages pinned" state then look to
385 * see if this freeing clears that state.
387 * And clear the zone's pages_scanned counter, to hold off the "all pages are
388 * pinned" detection logic.
390 static void free_pages_bulk(struct zone *zone, int count,
391 struct list_head *list, int order)
393 spin_lock(&zone->lock);
394 zone->all_unreclaimable = 0;
395 zone->pages_scanned = 0;
396 while (count--) {
397 struct page *page;
399 BUG_ON(list_empty(list));
400 page = list_entry(list->prev, struct page, lru);
401 /* have to delete it as __free_one_page list manipulates */
402 list_del(&page->lru);
403 __free_one_page(page, zone, order);
405 spin_unlock(&zone->lock);
408 static void free_one_page(struct zone *zone, struct page *page, int order)
410 LIST_HEAD(list);
411 list_add(&page->lru, &list);
412 free_pages_bulk(zone, 1, &list, order);
415 static void __free_pages_ok(struct page *page, unsigned int order)
417 unsigned long flags;
418 int i;
419 int reserved = 0;
421 arch_free_page(page, order);
422 if (!PageHighMem(page))
423 mutex_debug_check_no_locks_freed(page_address(page),
424 PAGE_SIZE<<order);
426 #ifndef CONFIG_MMU
427 for (i = 1 ; i < (1 << order) ; ++i)
428 __put_page(page + i);
429 #endif
431 for (i = 0 ; i < (1 << order) ; ++i)
432 reserved += free_pages_check(page + i);
433 if (reserved)
434 return;
436 kernel_map_pages(page, 1 << order, 0);
437 local_irq_save(flags);
438 __mod_page_state(pgfree, 1 << order);
439 free_one_page(page_zone(page), page, order);
440 local_irq_restore(flags);
444 * permit the bootmem allocator to evade page validation on high-order frees
446 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
448 if (order == 0) {
449 __ClearPageReserved(page);
450 set_page_count(page, 0);
452 free_hot_cold_page(page, 0);
453 } else {
454 LIST_HEAD(list);
455 int loop;
457 for (loop = 0; loop < BITS_PER_LONG; loop++) {
458 struct page *p = &page[loop];
460 if (loop + 16 < BITS_PER_LONG)
461 prefetchw(p + 16);
462 __ClearPageReserved(p);
463 set_page_count(p, 0);
466 arch_free_page(page, order);
468 mod_page_state(pgfree, 1 << order);
470 list_add(&page->lru, &list);
471 kernel_map_pages(page, 1 << order, 0);
472 free_pages_bulk(page_zone(page), 1, &list, order);
478 * The order of subdivision here is critical for the IO subsystem.
479 * Please do not alter this order without good reasons and regression
480 * testing. Specifically, as large blocks of memory are subdivided,
481 * the order in which smaller blocks are delivered depends on the order
482 * they're subdivided in this function. This is the primary factor
483 * influencing the order in which pages are delivered to the IO
484 * subsystem according to empirical testing, and this is also justified
485 * by considering the behavior of a buddy system containing a single
486 * large block of memory acted on by a series of small allocations.
487 * This behavior is a critical factor in sglist merging's success.
489 * -- wli
491 static inline void expand(struct zone *zone, struct page *page,
492 int low, int high, struct free_area *area)
494 unsigned long size = 1 << high;
496 while (high > low) {
497 area--;
498 high--;
499 size >>= 1;
500 BUG_ON(bad_range(zone, &page[size]));
501 list_add(&page[size].lru, &area->free_list);
502 area->nr_free++;
503 set_page_order(&page[size], high);
508 * This page is about to be returned from the page allocator
510 static int prep_new_page(struct page *page, int order)
512 if (unlikely(page_mapcount(page) |
513 (page->mapping != NULL) |
514 (page_count(page) != 0) |
515 (page->flags & (
516 1 << PG_lru |
517 1 << PG_private |
518 1 << PG_locked |
519 1 << PG_active |
520 1 << PG_dirty |
521 1 << PG_reclaim |
522 1 << PG_slab |
523 1 << PG_swapcache |
524 1 << PG_writeback |
525 1 << PG_reserved ))))
526 bad_page(page);
529 * For now, we report if PG_reserved was found set, but do not
530 * clear it, and do not allocate the page: as a safety net.
532 if (PageReserved(page))
533 return 1;
535 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
536 1 << PG_referenced | 1 << PG_arch_1 |
537 1 << PG_checked | 1 << PG_mappedtodisk);
538 set_page_private(page, 0);
539 set_page_refs(page, order);
540 kernel_map_pages(page, 1 << order, 1);
541 return 0;
545 * Do the hard work of removing an element from the buddy allocator.
546 * Call me with the zone->lock already held.
548 static struct page *__rmqueue(struct zone *zone, unsigned int order)
550 struct free_area * area;
551 unsigned int current_order;
552 struct page *page;
554 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
555 area = zone->free_area + current_order;
556 if (list_empty(&area->free_list))
557 continue;
559 page = list_entry(area->free_list.next, struct page, lru);
560 list_del(&page->lru);
561 rmv_page_order(page);
562 area->nr_free--;
563 zone->free_pages -= 1UL << order;
564 expand(zone, page, order, current_order, area);
565 return page;
568 return NULL;
572 * Obtain a specified number of elements from the buddy allocator, all under
573 * a single hold of the lock, for efficiency. Add them to the supplied list.
574 * Returns the number of new pages which were placed at *list.
576 static int rmqueue_bulk(struct zone *zone, unsigned int order,
577 unsigned long count, struct list_head *list)
579 int i;
581 spin_lock(&zone->lock);
582 for (i = 0; i < count; ++i) {
583 struct page *page = __rmqueue(zone, order);
584 if (unlikely(page == NULL))
585 break;
586 list_add_tail(&page->lru, list);
588 spin_unlock(&zone->lock);
589 return i;
592 #ifdef CONFIG_NUMA
594 * Called from the slab reaper to drain pagesets on a particular node that
595 * belong to the currently executing processor.
597 void drain_node_pages(int nodeid)
599 int i, z;
600 unsigned long flags;
602 local_irq_save(flags);
603 for (z = 0; z < MAX_NR_ZONES; z++) {
604 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
605 struct per_cpu_pageset *pset;
607 pset = zone_pcp(zone, smp_processor_id());
608 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
609 struct per_cpu_pages *pcp;
611 pcp = &pset->pcp[i];
612 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
613 pcp->count = 0;
616 local_irq_restore(flags);
618 #endif
620 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
621 static void __drain_pages(unsigned int cpu)
623 unsigned long flags;
624 struct zone *zone;
625 int i;
627 for_each_zone(zone) {
628 struct per_cpu_pageset *pset;
630 pset = zone_pcp(zone, cpu);
631 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
632 struct per_cpu_pages *pcp;
634 pcp = &pset->pcp[i];
635 local_irq_save(flags);
636 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
637 pcp->count = 0;
638 local_irq_restore(flags);
642 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
644 #ifdef CONFIG_PM
646 void mark_free_pages(struct zone *zone)
648 unsigned long zone_pfn, flags;
649 int order;
650 struct list_head *curr;
652 if (!zone->spanned_pages)
653 return;
655 spin_lock_irqsave(&zone->lock, flags);
656 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
657 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
659 for (order = MAX_ORDER - 1; order >= 0; --order)
660 list_for_each(curr, &zone->free_area[order].free_list) {
661 unsigned long start_pfn, i;
663 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
665 for (i=0; i < (1<<order); i++)
666 SetPageNosaveFree(pfn_to_page(start_pfn+i));
668 spin_unlock_irqrestore(&zone->lock, flags);
672 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
674 void drain_local_pages(void)
676 unsigned long flags;
678 local_irq_save(flags);
679 __drain_pages(smp_processor_id());
680 local_irq_restore(flags);
682 #endif /* CONFIG_PM */
684 static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
686 #ifdef CONFIG_NUMA
687 pg_data_t *pg = z->zone_pgdat;
688 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
689 struct per_cpu_pageset *p;
691 p = zone_pcp(z, cpu);
692 if (pg == orig) {
693 p->numa_hit++;
694 } else {
695 p->numa_miss++;
696 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
698 if (pg == NODE_DATA(numa_node_id()))
699 p->local_node++;
700 else
701 p->other_node++;
702 #endif
706 * Free a 0-order page
708 static void fastcall free_hot_cold_page(struct page *page, int cold)
710 struct zone *zone = page_zone(page);
711 struct per_cpu_pages *pcp;
712 unsigned long flags;
714 arch_free_page(page, 0);
716 if (PageAnon(page))
717 page->mapping = NULL;
718 if (free_pages_check(page))
719 return;
721 kernel_map_pages(page, 1, 0);
723 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
724 local_irq_save(flags);
725 __inc_page_state(pgfree);
726 list_add(&page->lru, &pcp->list);
727 pcp->count++;
728 if (pcp->count >= pcp->high) {
729 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
730 pcp->count -= pcp->batch;
732 local_irq_restore(flags);
733 put_cpu();
736 void fastcall free_hot_page(struct page *page)
738 free_hot_cold_page(page, 0);
741 void fastcall free_cold_page(struct page *page)
743 free_hot_cold_page(page, 1);
746 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
748 int i;
750 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
751 for(i = 0; i < (1 << order); i++)
752 clear_highpage(page + i);
755 #ifdef CONFIG_MMU
757 * split_page takes a non-compound higher-order page, and splits it into
758 * n (1<<order) sub-pages: page[0..n]
759 * Each sub-page must be freed individually.
761 * Note: this is probably too low level an operation for use in drivers.
762 * Please consult with lkml before using this in your driver.
764 void split_page(struct page *page, unsigned int order)
766 int i;
768 BUG_ON(PageCompound(page));
769 BUG_ON(!page_count(page));
770 for (i = 1; i < (1 << order); i++) {
771 BUG_ON(page_count(page + i));
772 set_page_count(page + i, 1);
775 #endif
778 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
779 * we cheat by calling it from here, in the order > 0 path. Saves a branch
780 * or two.
782 static struct page *buffered_rmqueue(struct zonelist *zonelist,
783 struct zone *zone, int order, gfp_t gfp_flags)
785 unsigned long flags;
786 struct page *page;
787 int cold = !!(gfp_flags & __GFP_COLD);
788 int cpu;
790 again:
791 cpu = get_cpu();
792 if (likely(order == 0)) {
793 struct per_cpu_pages *pcp;
795 pcp = &zone_pcp(zone, cpu)->pcp[cold];
796 local_irq_save(flags);
797 if (!pcp->count) {
798 pcp->count += rmqueue_bulk(zone, 0,
799 pcp->batch, &pcp->list);
800 if (unlikely(!pcp->count))
801 goto failed;
803 page = list_entry(pcp->list.next, struct page, lru);
804 list_del(&page->lru);
805 pcp->count--;
806 } else {
807 spin_lock_irqsave(&zone->lock, flags);
808 page = __rmqueue(zone, order);
809 spin_unlock(&zone->lock);
810 if (!page)
811 goto failed;
814 __mod_page_state_zone(zone, pgalloc, 1 << order);
815 zone_statistics(zonelist, zone, cpu);
816 local_irq_restore(flags);
817 put_cpu();
819 BUG_ON(bad_range(zone, page));
820 if (prep_new_page(page, order))
821 goto again;
823 if (gfp_flags & __GFP_ZERO)
824 prep_zero_page(page, order, gfp_flags);
826 if (order && (gfp_flags & __GFP_COMP))
827 prep_compound_page(page, order);
828 return page;
830 failed:
831 local_irq_restore(flags);
832 put_cpu();
833 return NULL;
836 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
837 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
838 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
839 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
840 #define ALLOC_HARDER 0x10 /* try to alloc harder */
841 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
842 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
845 * Return 1 if free pages are above 'mark'. This takes into account the order
846 * of the allocation.
848 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
849 int classzone_idx, int alloc_flags)
851 /* free_pages my go negative - that's OK */
852 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
853 int o;
855 if (alloc_flags & ALLOC_HIGH)
856 min -= min / 2;
857 if (alloc_flags & ALLOC_HARDER)
858 min -= min / 4;
860 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
861 return 0;
862 for (o = 0; o < order; o++) {
863 /* At the next order, this order's pages become unavailable */
864 free_pages -= z->free_area[o].nr_free << o;
866 /* Require fewer higher order pages to be free */
867 min >>= 1;
869 if (free_pages <= min)
870 return 0;
872 return 1;
876 * get_page_from_freeliest goes through the zonelist trying to allocate
877 * a page.
879 static struct page *
880 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
881 struct zonelist *zonelist, int alloc_flags)
883 struct zone **z = zonelist->zones;
884 struct page *page = NULL;
885 int classzone_idx = zone_idx(*z);
888 * Go through the zonelist once, looking for a zone with enough free.
889 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
891 do {
892 if ((alloc_flags & ALLOC_CPUSET) &&
893 !cpuset_zone_allowed(*z, gfp_mask))
894 continue;
896 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
897 unsigned long mark;
898 if (alloc_flags & ALLOC_WMARK_MIN)
899 mark = (*z)->pages_min;
900 else if (alloc_flags & ALLOC_WMARK_LOW)
901 mark = (*z)->pages_low;
902 else
903 mark = (*z)->pages_high;
904 if (!zone_watermark_ok(*z, order, mark,
905 classzone_idx, alloc_flags))
906 if (!zone_reclaim_mode ||
907 !zone_reclaim(*z, gfp_mask, order))
908 continue;
911 page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
912 if (page) {
913 break;
915 } while (*(++z) != NULL);
916 return page;
920 * This is the 'heart' of the zoned buddy allocator.
922 struct page * fastcall
923 __alloc_pages(gfp_t gfp_mask, unsigned int order,
924 struct zonelist *zonelist)
926 const gfp_t wait = gfp_mask & __GFP_WAIT;
927 struct zone **z;
928 struct page *page;
929 struct reclaim_state reclaim_state;
930 struct task_struct *p = current;
931 int do_retry;
932 int alloc_flags;
933 int did_some_progress;
935 might_sleep_if(wait);
937 restart:
938 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
940 if (unlikely(*z == NULL)) {
941 /* Should this ever happen?? */
942 return NULL;
945 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
946 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
947 if (page)
948 goto got_pg;
950 do {
951 wakeup_kswapd(*z, order);
952 } while (*(++z));
955 * OK, we're below the kswapd watermark and have kicked background
956 * reclaim. Now things get more complex, so set up alloc_flags according
957 * to how we want to proceed.
959 * The caller may dip into page reserves a bit more if the caller
960 * cannot run direct reclaim, or if the caller has realtime scheduling
961 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
962 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
964 alloc_flags = ALLOC_WMARK_MIN;
965 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
966 alloc_flags |= ALLOC_HARDER;
967 if (gfp_mask & __GFP_HIGH)
968 alloc_flags |= ALLOC_HIGH;
969 alloc_flags |= ALLOC_CPUSET;
972 * Go through the zonelist again. Let __GFP_HIGH and allocations
973 * coming from realtime tasks go deeper into reserves.
975 * This is the last chance, in general, before the goto nopage.
976 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
977 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
979 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
980 if (page)
981 goto got_pg;
983 /* This allocation should allow future memory freeing. */
985 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
986 && !in_interrupt()) {
987 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
988 nofail_alloc:
989 /* go through the zonelist yet again, ignoring mins */
990 page = get_page_from_freelist(gfp_mask, order,
991 zonelist, ALLOC_NO_WATERMARKS);
992 if (page)
993 goto got_pg;
994 if (gfp_mask & __GFP_NOFAIL) {
995 blk_congestion_wait(WRITE, HZ/50);
996 goto nofail_alloc;
999 goto nopage;
1002 /* Atomic allocations - we can't balance anything */
1003 if (!wait)
1004 goto nopage;
1006 rebalance:
1007 cond_resched();
1009 /* We now go into synchronous reclaim */
1010 cpuset_memory_pressure_bump();
1011 p->flags |= PF_MEMALLOC;
1012 reclaim_state.reclaimed_slab = 0;
1013 p->reclaim_state = &reclaim_state;
1015 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1017 p->reclaim_state = NULL;
1018 p->flags &= ~PF_MEMALLOC;
1020 cond_resched();
1022 if (likely(did_some_progress)) {
1023 page = get_page_from_freelist(gfp_mask, order,
1024 zonelist, alloc_flags);
1025 if (page)
1026 goto got_pg;
1027 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1029 * Go through the zonelist yet one more time, keep
1030 * very high watermark here, this is only to catch
1031 * a parallel oom killing, we must fail if we're still
1032 * under heavy pressure.
1034 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1035 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1036 if (page)
1037 goto got_pg;
1039 out_of_memory(zonelist, gfp_mask, order);
1040 goto restart;
1044 * Don't let big-order allocations loop unless the caller explicitly
1045 * requests that. Wait for some write requests to complete then retry.
1047 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1048 * <= 3, but that may not be true in other implementations.
1050 do_retry = 0;
1051 if (!(gfp_mask & __GFP_NORETRY)) {
1052 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1053 do_retry = 1;
1054 if (gfp_mask & __GFP_NOFAIL)
1055 do_retry = 1;
1057 if (do_retry) {
1058 blk_congestion_wait(WRITE, HZ/50);
1059 goto rebalance;
1062 nopage:
1063 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1064 printk(KERN_WARNING "%s: page allocation failure."
1065 " order:%d, mode:0x%x\n",
1066 p->comm, order, gfp_mask);
1067 dump_stack();
1068 show_mem();
1070 got_pg:
1071 return page;
1074 EXPORT_SYMBOL(__alloc_pages);
1077 * Common helper functions.
1079 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1081 struct page * page;
1082 page = alloc_pages(gfp_mask, order);
1083 if (!page)
1084 return 0;
1085 return (unsigned long) page_address(page);
1088 EXPORT_SYMBOL(__get_free_pages);
1090 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1092 struct page * page;
1095 * get_zeroed_page() returns a 32-bit address, which cannot represent
1096 * a highmem page
1098 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1100 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1101 if (page)
1102 return (unsigned long) page_address(page);
1103 return 0;
1106 EXPORT_SYMBOL(get_zeroed_page);
1108 void __pagevec_free(struct pagevec *pvec)
1110 int i = pagevec_count(pvec);
1112 while (--i >= 0)
1113 free_hot_cold_page(pvec->pages[i], pvec->cold);
1116 fastcall void __free_pages(struct page *page, unsigned int order)
1118 if (put_page_testzero(page)) {
1119 if (order == 0)
1120 free_hot_page(page);
1121 else
1122 __free_pages_ok(page, order);
1126 EXPORT_SYMBOL(__free_pages);
1128 fastcall void free_pages(unsigned long addr, unsigned int order)
1130 if (addr != 0) {
1131 BUG_ON(!virt_addr_valid((void *)addr));
1132 __free_pages(virt_to_page((void *)addr), order);
1136 EXPORT_SYMBOL(free_pages);
1139 * Total amount of free (allocatable) RAM:
1141 unsigned int nr_free_pages(void)
1143 unsigned int sum = 0;
1144 struct zone *zone;
1146 for_each_zone(zone)
1147 sum += zone->free_pages;
1149 return sum;
1152 EXPORT_SYMBOL(nr_free_pages);
1154 #ifdef CONFIG_NUMA
1155 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1157 unsigned int i, sum = 0;
1159 for (i = 0; i < MAX_NR_ZONES; i++)
1160 sum += pgdat->node_zones[i].free_pages;
1162 return sum;
1164 #endif
1166 static unsigned int nr_free_zone_pages(int offset)
1168 /* Just pick one node, since fallback list is circular */
1169 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1170 unsigned int sum = 0;
1172 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1173 struct zone **zonep = zonelist->zones;
1174 struct zone *zone;
1176 for (zone = *zonep++; zone; zone = *zonep++) {
1177 unsigned long size = zone->present_pages;
1178 unsigned long high = zone->pages_high;
1179 if (size > high)
1180 sum += size - high;
1183 return sum;
1187 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1189 unsigned int nr_free_buffer_pages(void)
1191 return nr_free_zone_pages(gfp_zone(GFP_USER));
1195 * Amount of free RAM allocatable within all zones
1197 unsigned int nr_free_pagecache_pages(void)
1199 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1202 #ifdef CONFIG_HIGHMEM
1203 unsigned int nr_free_highpages (void)
1205 pg_data_t *pgdat;
1206 unsigned int pages = 0;
1208 for_each_pgdat(pgdat)
1209 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1211 return pages;
1213 #endif
1215 #ifdef CONFIG_NUMA
1216 static void show_node(struct zone *zone)
1218 printk("Node %d ", zone->zone_pgdat->node_id);
1220 #else
1221 #define show_node(zone) do { } while (0)
1222 #endif
1225 * Accumulate the page_state information across all CPUs.
1226 * The result is unavoidably approximate - it can change
1227 * during and after execution of this function.
1229 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1231 atomic_t nr_pagecache = ATOMIC_INIT(0);
1232 EXPORT_SYMBOL(nr_pagecache);
1233 #ifdef CONFIG_SMP
1234 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1235 #endif
1237 static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1239 unsigned cpu;
1241 memset(ret, 0, nr * sizeof(unsigned long));
1242 cpus_and(*cpumask, *cpumask, cpu_online_map);
1244 for_each_cpu_mask(cpu, *cpumask) {
1245 unsigned long *in;
1246 unsigned long *out;
1247 unsigned off;
1248 unsigned next_cpu;
1250 in = (unsigned long *)&per_cpu(page_states, cpu);
1252 next_cpu = next_cpu(cpu, *cpumask);
1253 if (likely(next_cpu < NR_CPUS))
1254 prefetch(&per_cpu(page_states, next_cpu));
1256 out = (unsigned long *)ret;
1257 for (off = 0; off < nr; off++)
1258 *out++ += *in++;
1262 void get_page_state_node(struct page_state *ret, int node)
1264 int nr;
1265 cpumask_t mask = node_to_cpumask(node);
1267 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1268 nr /= sizeof(unsigned long);
1270 __get_page_state(ret, nr+1, &mask);
1273 void get_page_state(struct page_state *ret)
1275 int nr;
1276 cpumask_t mask = CPU_MASK_ALL;
1278 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1279 nr /= sizeof(unsigned long);
1281 __get_page_state(ret, nr + 1, &mask);
1284 void get_full_page_state(struct page_state *ret)
1286 cpumask_t mask = CPU_MASK_ALL;
1288 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1291 unsigned long read_page_state_offset(unsigned long offset)
1293 unsigned long ret = 0;
1294 int cpu;
1296 for_each_online_cpu(cpu) {
1297 unsigned long in;
1299 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1300 ret += *((unsigned long *)in);
1302 return ret;
1305 void __mod_page_state_offset(unsigned long offset, unsigned long delta)
1307 void *ptr;
1309 ptr = &__get_cpu_var(page_states);
1310 *(unsigned long *)(ptr + offset) += delta;
1312 EXPORT_SYMBOL(__mod_page_state_offset);
1314 void mod_page_state_offset(unsigned long offset, unsigned long delta)
1316 unsigned long flags;
1317 void *ptr;
1319 local_irq_save(flags);
1320 ptr = &__get_cpu_var(page_states);
1321 *(unsigned long *)(ptr + offset) += delta;
1322 local_irq_restore(flags);
1324 EXPORT_SYMBOL(mod_page_state_offset);
1326 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1327 unsigned long *free, struct pglist_data *pgdat)
1329 struct zone *zones = pgdat->node_zones;
1330 int i;
1332 *active = 0;
1333 *inactive = 0;
1334 *free = 0;
1335 for (i = 0; i < MAX_NR_ZONES; i++) {
1336 *active += zones[i].nr_active;
1337 *inactive += zones[i].nr_inactive;
1338 *free += zones[i].free_pages;
1342 void get_zone_counts(unsigned long *active,
1343 unsigned long *inactive, unsigned long *free)
1345 struct pglist_data *pgdat;
1347 *active = 0;
1348 *inactive = 0;
1349 *free = 0;
1350 for_each_pgdat(pgdat) {
1351 unsigned long l, m, n;
1352 __get_zone_counts(&l, &m, &n, pgdat);
1353 *active += l;
1354 *inactive += m;
1355 *free += n;
1359 void si_meminfo(struct sysinfo *val)
1361 val->totalram = totalram_pages;
1362 val->sharedram = 0;
1363 val->freeram = nr_free_pages();
1364 val->bufferram = nr_blockdev_pages();
1365 #ifdef CONFIG_HIGHMEM
1366 val->totalhigh = totalhigh_pages;
1367 val->freehigh = nr_free_highpages();
1368 #else
1369 val->totalhigh = 0;
1370 val->freehigh = 0;
1371 #endif
1372 val->mem_unit = PAGE_SIZE;
1375 EXPORT_SYMBOL(si_meminfo);
1377 #ifdef CONFIG_NUMA
1378 void si_meminfo_node(struct sysinfo *val, int nid)
1380 pg_data_t *pgdat = NODE_DATA(nid);
1382 val->totalram = pgdat->node_present_pages;
1383 val->freeram = nr_free_pages_pgdat(pgdat);
1384 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1385 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1386 val->mem_unit = PAGE_SIZE;
1388 #endif
1390 #define K(x) ((x) << (PAGE_SHIFT-10))
1393 * Show free area list (used inside shift_scroll-lock stuff)
1394 * We also calculate the percentage fragmentation. We do this by counting the
1395 * memory on each free list with the exception of the first item on the list.
1397 void show_free_areas(void)
1399 struct page_state ps;
1400 int cpu, temperature;
1401 unsigned long active;
1402 unsigned long inactive;
1403 unsigned long free;
1404 struct zone *zone;
1406 for_each_zone(zone) {
1407 show_node(zone);
1408 printk("%s per-cpu:", zone->name);
1410 if (!populated_zone(zone)) {
1411 printk(" empty\n");
1412 continue;
1413 } else
1414 printk("\n");
1416 for_each_online_cpu(cpu) {
1417 struct per_cpu_pageset *pageset;
1419 pageset = zone_pcp(zone, cpu);
1421 for (temperature = 0; temperature < 2; temperature++)
1422 printk("cpu %d %s: high %d, batch %d used:%d\n",
1423 cpu,
1424 temperature ? "cold" : "hot",
1425 pageset->pcp[temperature].high,
1426 pageset->pcp[temperature].batch,
1427 pageset->pcp[temperature].count);
1431 get_page_state(&ps);
1432 get_zone_counts(&active, &inactive, &free);
1434 printk("Free pages: %11ukB (%ukB HighMem)\n",
1435 K(nr_free_pages()),
1436 K(nr_free_highpages()));
1438 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1439 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1440 active,
1441 inactive,
1442 ps.nr_dirty,
1443 ps.nr_writeback,
1444 ps.nr_unstable,
1445 nr_free_pages(),
1446 ps.nr_slab,
1447 ps.nr_mapped,
1448 ps.nr_page_table_pages);
1450 for_each_zone(zone) {
1451 int i;
1453 show_node(zone);
1454 printk("%s"
1455 " free:%lukB"
1456 " min:%lukB"
1457 " low:%lukB"
1458 " high:%lukB"
1459 " active:%lukB"
1460 " inactive:%lukB"
1461 " present:%lukB"
1462 " pages_scanned:%lu"
1463 " all_unreclaimable? %s"
1464 "\n",
1465 zone->name,
1466 K(zone->free_pages),
1467 K(zone->pages_min),
1468 K(zone->pages_low),
1469 K(zone->pages_high),
1470 K(zone->nr_active),
1471 K(zone->nr_inactive),
1472 K(zone->present_pages),
1473 zone->pages_scanned,
1474 (zone->all_unreclaimable ? "yes" : "no")
1476 printk("lowmem_reserve[]:");
1477 for (i = 0; i < MAX_NR_ZONES; i++)
1478 printk(" %lu", zone->lowmem_reserve[i]);
1479 printk("\n");
1482 for_each_zone(zone) {
1483 unsigned long nr, flags, order, total = 0;
1485 show_node(zone);
1486 printk("%s: ", zone->name);
1487 if (!populated_zone(zone)) {
1488 printk("empty\n");
1489 continue;
1492 spin_lock_irqsave(&zone->lock, flags);
1493 for (order = 0; order < MAX_ORDER; order++) {
1494 nr = zone->free_area[order].nr_free;
1495 total += nr << order;
1496 printk("%lu*%lukB ", nr, K(1UL) << order);
1498 spin_unlock_irqrestore(&zone->lock, flags);
1499 printk("= %lukB\n", K(total));
1502 show_swap_cache_info();
1506 * Builds allocation fallback zone lists.
1508 * Add all populated zones of a node to the zonelist.
1510 static int __init build_zonelists_node(pg_data_t *pgdat,
1511 struct zonelist *zonelist, int nr_zones, int zone_type)
1513 struct zone *zone;
1515 BUG_ON(zone_type > ZONE_HIGHMEM);
1517 do {
1518 zone = pgdat->node_zones + zone_type;
1519 if (populated_zone(zone)) {
1520 #ifndef CONFIG_HIGHMEM
1521 BUG_ON(zone_type > ZONE_NORMAL);
1522 #endif
1523 zonelist->zones[nr_zones++] = zone;
1524 check_highest_zone(zone_type);
1526 zone_type--;
1528 } while (zone_type >= 0);
1529 return nr_zones;
1532 static inline int highest_zone(int zone_bits)
1534 int res = ZONE_NORMAL;
1535 if (zone_bits & (__force int)__GFP_HIGHMEM)
1536 res = ZONE_HIGHMEM;
1537 if (zone_bits & (__force int)__GFP_DMA32)
1538 res = ZONE_DMA32;
1539 if (zone_bits & (__force int)__GFP_DMA)
1540 res = ZONE_DMA;
1541 return res;
1544 #ifdef CONFIG_NUMA
1545 #define MAX_NODE_LOAD (num_online_nodes())
1546 static int __initdata node_load[MAX_NUMNODES];
1548 * find_next_best_node - find the next node that should appear in a given node's fallback list
1549 * @node: node whose fallback list we're appending
1550 * @used_node_mask: nodemask_t of already used nodes
1552 * We use a number of factors to determine which is the next node that should
1553 * appear on a given node's fallback list. The node should not have appeared
1554 * already in @node's fallback list, and it should be the next closest node
1555 * according to the distance array (which contains arbitrary distance values
1556 * from each node to each node in the system), and should also prefer nodes
1557 * with no CPUs, since presumably they'll have very little allocation pressure
1558 * on them otherwise.
1559 * It returns -1 if no node is found.
1561 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1563 int n, val;
1564 int min_val = INT_MAX;
1565 int best_node = -1;
1567 /* Use the local node if we haven't already */
1568 if (!node_isset(node, *used_node_mask)) {
1569 node_set(node, *used_node_mask);
1570 return node;
1573 for_each_online_node(n) {
1574 cpumask_t tmp;
1576 /* Don't want a node to appear more than once */
1577 if (node_isset(n, *used_node_mask))
1578 continue;
1580 /* Use the distance array to find the distance */
1581 val = node_distance(node, n);
1583 /* Penalize nodes under us ("prefer the next node") */
1584 val += (n < node);
1586 /* Give preference to headless and unused nodes */
1587 tmp = node_to_cpumask(n);
1588 if (!cpus_empty(tmp))
1589 val += PENALTY_FOR_NODE_WITH_CPUS;
1591 /* Slight preference for less loaded node */
1592 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1593 val += node_load[n];
1595 if (val < min_val) {
1596 min_val = val;
1597 best_node = n;
1601 if (best_node >= 0)
1602 node_set(best_node, *used_node_mask);
1604 return best_node;
1607 static void __init build_zonelists(pg_data_t *pgdat)
1609 int i, j, k, node, local_node;
1610 int prev_node, load;
1611 struct zonelist *zonelist;
1612 nodemask_t used_mask;
1614 /* initialize zonelists */
1615 for (i = 0; i < GFP_ZONETYPES; i++) {
1616 zonelist = pgdat->node_zonelists + i;
1617 zonelist->zones[0] = NULL;
1620 /* NUMA-aware ordering of nodes */
1621 local_node = pgdat->node_id;
1622 load = num_online_nodes();
1623 prev_node = local_node;
1624 nodes_clear(used_mask);
1625 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1626 int distance = node_distance(local_node, node);
1629 * If another node is sufficiently far away then it is better
1630 * to reclaim pages in a zone before going off node.
1632 if (distance > RECLAIM_DISTANCE)
1633 zone_reclaim_mode = 1;
1636 * We don't want to pressure a particular node.
1637 * So adding penalty to the first node in same
1638 * distance group to make it round-robin.
1641 if (distance != node_distance(local_node, prev_node))
1642 node_load[node] += load;
1643 prev_node = node;
1644 load--;
1645 for (i = 0; i < GFP_ZONETYPES; i++) {
1646 zonelist = pgdat->node_zonelists + i;
1647 for (j = 0; zonelist->zones[j] != NULL; j++);
1649 k = highest_zone(i);
1651 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1652 zonelist->zones[j] = NULL;
1657 #else /* CONFIG_NUMA */
1659 static void __init build_zonelists(pg_data_t *pgdat)
1661 int i, j, k, node, local_node;
1663 local_node = pgdat->node_id;
1664 for (i = 0; i < GFP_ZONETYPES; i++) {
1665 struct zonelist *zonelist;
1667 zonelist = pgdat->node_zonelists + i;
1669 j = 0;
1670 k = highest_zone(i);
1671 j = build_zonelists_node(pgdat, zonelist, j, k);
1673 * Now we build the zonelist so that it contains the zones
1674 * of all the other nodes.
1675 * We don't want to pressure a particular node, so when
1676 * building the zones for node N, we make sure that the
1677 * zones coming right after the local ones are those from
1678 * node N+1 (modulo N)
1680 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1681 if (!node_online(node))
1682 continue;
1683 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1685 for (node = 0; node < local_node; node++) {
1686 if (!node_online(node))
1687 continue;
1688 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1691 zonelist->zones[j] = NULL;
1695 #endif /* CONFIG_NUMA */
1697 void __init build_all_zonelists(void)
1699 int i;
1701 for_each_online_node(i)
1702 build_zonelists(NODE_DATA(i));
1703 printk("Built %i zonelists\n", num_online_nodes());
1704 cpuset_init_current_mems_allowed();
1708 * Helper functions to size the waitqueue hash table.
1709 * Essentially these want to choose hash table sizes sufficiently
1710 * large so that collisions trying to wait on pages are rare.
1711 * But in fact, the number of active page waitqueues on typical
1712 * systems is ridiculously low, less than 200. So this is even
1713 * conservative, even though it seems large.
1715 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1716 * waitqueues, i.e. the size of the waitq table given the number of pages.
1718 #define PAGES_PER_WAITQUEUE 256
1720 static inline unsigned long wait_table_size(unsigned long pages)
1722 unsigned long size = 1;
1724 pages /= PAGES_PER_WAITQUEUE;
1726 while (size < pages)
1727 size <<= 1;
1730 * Once we have dozens or even hundreds of threads sleeping
1731 * on IO we've got bigger problems than wait queue collision.
1732 * Limit the size of the wait table to a reasonable size.
1734 size = min(size, 4096UL);
1736 return max(size, 4UL);
1740 * This is an integer logarithm so that shifts can be used later
1741 * to extract the more random high bits from the multiplicative
1742 * hash function before the remainder is taken.
1744 static inline unsigned long wait_table_bits(unsigned long size)
1746 return ffz(~size);
1749 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1751 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1752 unsigned long *zones_size, unsigned long *zholes_size)
1754 unsigned long realtotalpages, totalpages = 0;
1755 int i;
1757 for (i = 0; i < MAX_NR_ZONES; i++)
1758 totalpages += zones_size[i];
1759 pgdat->node_spanned_pages = totalpages;
1761 realtotalpages = totalpages;
1762 if (zholes_size)
1763 for (i = 0; i < MAX_NR_ZONES; i++)
1764 realtotalpages -= zholes_size[i];
1765 pgdat->node_present_pages = realtotalpages;
1766 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1771 * Initially all pages are reserved - free ones are freed
1772 * up by free_all_bootmem() once the early boot process is
1773 * done. Non-atomic initialization, single-pass.
1775 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1776 unsigned long start_pfn)
1778 struct page *page;
1779 unsigned long end_pfn = start_pfn + size;
1780 unsigned long pfn;
1782 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1783 if (!early_pfn_valid(pfn))
1784 continue;
1785 page = pfn_to_page(pfn);
1786 set_page_links(page, zone, nid, pfn);
1787 set_page_count(page, 1);
1788 reset_page_mapcount(page);
1789 SetPageReserved(page);
1790 INIT_LIST_HEAD(&page->lru);
1791 #ifdef WANT_PAGE_VIRTUAL
1792 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1793 if (!is_highmem_idx(zone))
1794 set_page_address(page, __va(pfn << PAGE_SHIFT));
1795 #endif
1799 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1800 unsigned long size)
1802 int order;
1803 for (order = 0; order < MAX_ORDER ; order++) {
1804 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1805 zone->free_area[order].nr_free = 0;
1809 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1810 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1811 unsigned long size)
1813 unsigned long snum = pfn_to_section_nr(pfn);
1814 unsigned long end = pfn_to_section_nr(pfn + size);
1816 if (FLAGS_HAS_NODE)
1817 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1818 else
1819 for (; snum <= end; snum++)
1820 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1823 #ifndef __HAVE_ARCH_MEMMAP_INIT
1824 #define memmap_init(size, nid, zone, start_pfn) \
1825 memmap_init_zone((size), (nid), (zone), (start_pfn))
1826 #endif
1828 static int __cpuinit zone_batchsize(struct zone *zone)
1830 int batch;
1833 * The per-cpu-pages pools are set to around 1000th of the
1834 * size of the zone. But no more than 1/2 of a meg.
1836 * OK, so we don't know how big the cache is. So guess.
1838 batch = zone->present_pages / 1024;
1839 if (batch * PAGE_SIZE > 512 * 1024)
1840 batch = (512 * 1024) / PAGE_SIZE;
1841 batch /= 4; /* We effectively *= 4 below */
1842 if (batch < 1)
1843 batch = 1;
1846 * Clamp the batch to a 2^n - 1 value. Having a power
1847 * of 2 value was found to be more likely to have
1848 * suboptimal cache aliasing properties in some cases.
1850 * For example if 2 tasks are alternately allocating
1851 * batches of pages, one task can end up with a lot
1852 * of pages of one half of the possible page colors
1853 * and the other with pages of the other colors.
1855 batch = (1 << (fls(batch + batch/2)-1)) - 1;
1857 return batch;
1860 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1862 struct per_cpu_pages *pcp;
1864 memset(p, 0, sizeof(*p));
1866 pcp = &p->pcp[0]; /* hot */
1867 pcp->count = 0;
1868 pcp->high = 6 * batch;
1869 pcp->batch = max(1UL, 1 * batch);
1870 INIT_LIST_HEAD(&pcp->list);
1872 pcp = &p->pcp[1]; /* cold*/
1873 pcp->count = 0;
1874 pcp->high = 2 * batch;
1875 pcp->batch = max(1UL, batch/2);
1876 INIT_LIST_HEAD(&pcp->list);
1880 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1881 * to the value high for the pageset p.
1884 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1885 unsigned long high)
1887 struct per_cpu_pages *pcp;
1889 pcp = &p->pcp[0]; /* hot list */
1890 pcp->high = high;
1891 pcp->batch = max(1UL, high/4);
1892 if ((high/4) > (PAGE_SHIFT * 8))
1893 pcp->batch = PAGE_SHIFT * 8;
1897 #ifdef CONFIG_NUMA
1899 * Boot pageset table. One per cpu which is going to be used for all
1900 * zones and all nodes. The parameters will be set in such a way
1901 * that an item put on a list will immediately be handed over to
1902 * the buddy list. This is safe since pageset manipulation is done
1903 * with interrupts disabled.
1905 * Some NUMA counter updates may also be caught by the boot pagesets.
1907 * The boot_pagesets must be kept even after bootup is complete for
1908 * unused processors and/or zones. They do play a role for bootstrapping
1909 * hotplugged processors.
1911 * zoneinfo_show() and maybe other functions do
1912 * not check if the processor is online before following the pageset pointer.
1913 * Other parts of the kernel may not check if the zone is available.
1915 static struct per_cpu_pageset boot_pageset[NR_CPUS];
1918 * Dynamically allocate memory for the
1919 * per cpu pageset array in struct zone.
1921 static int __cpuinit process_zones(int cpu)
1923 struct zone *zone, *dzone;
1925 for_each_zone(zone) {
1927 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1928 GFP_KERNEL, cpu_to_node(cpu));
1929 if (!zone_pcp(zone, cpu))
1930 goto bad;
1932 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1934 if (percpu_pagelist_fraction)
1935 setup_pagelist_highmark(zone_pcp(zone, cpu),
1936 (zone->present_pages / percpu_pagelist_fraction));
1939 return 0;
1940 bad:
1941 for_each_zone(dzone) {
1942 if (dzone == zone)
1943 break;
1944 kfree(zone_pcp(dzone, cpu));
1945 zone_pcp(dzone, cpu) = NULL;
1947 return -ENOMEM;
1950 static inline void free_zone_pagesets(int cpu)
1952 struct zone *zone;
1954 for_each_zone(zone) {
1955 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1957 zone_pcp(zone, cpu) = NULL;
1958 kfree(pset);
1962 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
1963 unsigned long action,
1964 void *hcpu)
1966 int cpu = (long)hcpu;
1967 int ret = NOTIFY_OK;
1969 switch (action) {
1970 case CPU_UP_PREPARE:
1971 if (process_zones(cpu))
1972 ret = NOTIFY_BAD;
1973 break;
1974 case CPU_UP_CANCELED:
1975 case CPU_DEAD:
1976 free_zone_pagesets(cpu);
1977 break;
1978 default:
1979 break;
1981 return ret;
1984 static struct notifier_block pageset_notifier =
1985 { &pageset_cpuup_callback, NULL, 0 };
1987 void __init setup_per_cpu_pageset(void)
1989 int err;
1991 /* Initialize per_cpu_pageset for cpu 0.
1992 * A cpuup callback will do this for every cpu
1993 * as it comes online
1995 err = process_zones(smp_processor_id());
1996 BUG_ON(err);
1997 register_cpu_notifier(&pageset_notifier);
2000 #endif
2002 static __meminit
2003 void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2005 int i;
2006 struct pglist_data *pgdat = zone->zone_pgdat;
2009 * The per-page waitqueue mechanism uses hashed waitqueues
2010 * per zone.
2012 zone->wait_table_size = wait_table_size(zone_size_pages);
2013 zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
2014 zone->wait_table = (wait_queue_head_t *)
2015 alloc_bootmem_node(pgdat, zone->wait_table_size
2016 * sizeof(wait_queue_head_t));
2018 for(i = 0; i < zone->wait_table_size; ++i)
2019 init_waitqueue_head(zone->wait_table + i);
2022 static __meminit void zone_pcp_init(struct zone *zone)
2024 int cpu;
2025 unsigned long batch = zone_batchsize(zone);
2027 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2028 #ifdef CONFIG_NUMA
2029 /* Early boot. Slab allocator not functional yet */
2030 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2031 setup_pageset(&boot_pageset[cpu],0);
2032 #else
2033 setup_pageset(zone_pcp(zone,cpu), batch);
2034 #endif
2036 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2037 zone->name, zone->present_pages, batch);
2040 static __meminit void init_currently_empty_zone(struct zone *zone,
2041 unsigned long zone_start_pfn, unsigned long size)
2043 struct pglist_data *pgdat = zone->zone_pgdat;
2045 zone_wait_table_init(zone, size);
2046 pgdat->nr_zones = zone_idx(zone) + 1;
2048 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
2049 zone->zone_start_pfn = zone_start_pfn;
2051 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2053 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2057 * Set up the zone data structures:
2058 * - mark all pages reserved
2059 * - mark all memory queues empty
2060 * - clear the memory bitmaps
2062 static void __init free_area_init_core(struct pglist_data *pgdat,
2063 unsigned long *zones_size, unsigned long *zholes_size)
2065 unsigned long j;
2066 int nid = pgdat->node_id;
2067 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2069 pgdat_resize_init(pgdat);
2070 pgdat->nr_zones = 0;
2071 init_waitqueue_head(&pgdat->kswapd_wait);
2072 pgdat->kswapd_max_order = 0;
2074 for (j = 0; j < MAX_NR_ZONES; j++) {
2075 struct zone *zone = pgdat->node_zones + j;
2076 unsigned long size, realsize;
2078 realsize = size = zones_size[j];
2079 if (zholes_size)
2080 realsize -= zholes_size[j];
2082 if (j < ZONE_HIGHMEM)
2083 nr_kernel_pages += realsize;
2084 nr_all_pages += realsize;
2086 zone->spanned_pages = size;
2087 zone->present_pages = realsize;
2088 zone->name = zone_names[j];
2089 spin_lock_init(&zone->lock);
2090 spin_lock_init(&zone->lru_lock);
2091 zone_seqlock_init(zone);
2092 zone->zone_pgdat = pgdat;
2093 zone->free_pages = 0;
2095 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2097 zone_pcp_init(zone);
2098 INIT_LIST_HEAD(&zone->active_list);
2099 INIT_LIST_HEAD(&zone->inactive_list);
2100 zone->nr_scan_active = 0;
2101 zone->nr_scan_inactive = 0;
2102 zone->nr_active = 0;
2103 zone->nr_inactive = 0;
2104 atomic_set(&zone->reclaim_in_progress, 0);
2105 if (!size)
2106 continue;
2108 zonetable_add(zone, nid, j, zone_start_pfn, size);
2109 init_currently_empty_zone(zone, zone_start_pfn, size);
2110 zone_start_pfn += size;
2114 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2116 /* Skip empty nodes */
2117 if (!pgdat->node_spanned_pages)
2118 return;
2120 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2121 /* ia64 gets its own node_mem_map, before this, without bootmem */
2122 if (!pgdat->node_mem_map) {
2123 unsigned long size;
2124 struct page *map;
2126 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
2127 map = alloc_remap(pgdat->node_id, size);
2128 if (!map)
2129 map = alloc_bootmem_node(pgdat, size);
2130 pgdat->node_mem_map = map;
2132 #ifdef CONFIG_FLATMEM
2134 * With no DISCONTIG, the global mem_map is just set as node 0's
2136 if (pgdat == NODE_DATA(0))
2137 mem_map = NODE_DATA(0)->node_mem_map;
2138 #endif
2139 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2142 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2143 unsigned long *zones_size, unsigned long node_start_pfn,
2144 unsigned long *zholes_size)
2146 pgdat->node_id = nid;
2147 pgdat->node_start_pfn = node_start_pfn;
2148 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2150 alloc_node_mem_map(pgdat);
2152 free_area_init_core(pgdat, zones_size, zholes_size);
2155 #ifndef CONFIG_NEED_MULTIPLE_NODES
2156 static bootmem_data_t contig_bootmem_data;
2157 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2159 EXPORT_SYMBOL(contig_page_data);
2160 #endif
2162 void __init free_area_init(unsigned long *zones_size)
2164 free_area_init_node(0, NODE_DATA(0), zones_size,
2165 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2168 #ifdef CONFIG_PROC_FS
2170 #include <linux/seq_file.h>
2172 static void *frag_start(struct seq_file *m, loff_t *pos)
2174 pg_data_t *pgdat;
2175 loff_t node = *pos;
2177 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2178 --node;
2180 return pgdat;
2183 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2185 pg_data_t *pgdat = (pg_data_t *)arg;
2187 (*pos)++;
2188 return pgdat->pgdat_next;
2191 static void frag_stop(struct seq_file *m, void *arg)
2196 * This walks the free areas for each zone.
2198 static int frag_show(struct seq_file *m, void *arg)
2200 pg_data_t *pgdat = (pg_data_t *)arg;
2201 struct zone *zone;
2202 struct zone *node_zones = pgdat->node_zones;
2203 unsigned long flags;
2204 int order;
2206 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2207 if (!populated_zone(zone))
2208 continue;
2210 spin_lock_irqsave(&zone->lock, flags);
2211 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2212 for (order = 0; order < MAX_ORDER; ++order)
2213 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2214 spin_unlock_irqrestore(&zone->lock, flags);
2215 seq_putc(m, '\n');
2217 return 0;
2220 struct seq_operations fragmentation_op = {
2221 .start = frag_start,
2222 .next = frag_next,
2223 .stop = frag_stop,
2224 .show = frag_show,
2228 * Output information about zones in @pgdat.
2230 static int zoneinfo_show(struct seq_file *m, void *arg)
2232 pg_data_t *pgdat = arg;
2233 struct zone *zone;
2234 struct zone *node_zones = pgdat->node_zones;
2235 unsigned long flags;
2237 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2238 int i;
2240 if (!populated_zone(zone))
2241 continue;
2243 spin_lock_irqsave(&zone->lock, flags);
2244 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2245 seq_printf(m,
2246 "\n pages free %lu"
2247 "\n min %lu"
2248 "\n low %lu"
2249 "\n high %lu"
2250 "\n active %lu"
2251 "\n inactive %lu"
2252 "\n scanned %lu (a: %lu i: %lu)"
2253 "\n spanned %lu"
2254 "\n present %lu",
2255 zone->free_pages,
2256 zone->pages_min,
2257 zone->pages_low,
2258 zone->pages_high,
2259 zone->nr_active,
2260 zone->nr_inactive,
2261 zone->pages_scanned,
2262 zone->nr_scan_active, zone->nr_scan_inactive,
2263 zone->spanned_pages,
2264 zone->present_pages);
2265 seq_printf(m,
2266 "\n protection: (%lu",
2267 zone->lowmem_reserve[0]);
2268 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2269 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2270 seq_printf(m,
2272 "\n pagesets");
2273 for_each_online_cpu(i) {
2274 struct per_cpu_pageset *pageset;
2275 int j;
2277 pageset = zone_pcp(zone, i);
2278 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2279 if (pageset->pcp[j].count)
2280 break;
2282 if (j == ARRAY_SIZE(pageset->pcp))
2283 continue;
2284 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2285 seq_printf(m,
2286 "\n cpu: %i pcp: %i"
2287 "\n count: %i"
2288 "\n high: %i"
2289 "\n batch: %i",
2290 i, j,
2291 pageset->pcp[j].count,
2292 pageset->pcp[j].high,
2293 pageset->pcp[j].batch);
2295 #ifdef CONFIG_NUMA
2296 seq_printf(m,
2297 "\n numa_hit: %lu"
2298 "\n numa_miss: %lu"
2299 "\n numa_foreign: %lu"
2300 "\n interleave_hit: %lu"
2301 "\n local_node: %lu"
2302 "\n other_node: %lu",
2303 pageset->numa_hit,
2304 pageset->numa_miss,
2305 pageset->numa_foreign,
2306 pageset->interleave_hit,
2307 pageset->local_node,
2308 pageset->other_node);
2309 #endif
2311 seq_printf(m,
2312 "\n all_unreclaimable: %u"
2313 "\n prev_priority: %i"
2314 "\n temp_priority: %i"
2315 "\n start_pfn: %lu",
2316 zone->all_unreclaimable,
2317 zone->prev_priority,
2318 zone->temp_priority,
2319 zone->zone_start_pfn);
2320 spin_unlock_irqrestore(&zone->lock, flags);
2321 seq_putc(m, '\n');
2323 return 0;
2326 struct seq_operations zoneinfo_op = {
2327 .start = frag_start, /* iterate over all zones. The same as in
2328 * fragmentation. */
2329 .next = frag_next,
2330 .stop = frag_stop,
2331 .show = zoneinfo_show,
2334 static char *vmstat_text[] = {
2335 "nr_dirty",
2336 "nr_writeback",
2337 "nr_unstable",
2338 "nr_page_table_pages",
2339 "nr_mapped",
2340 "nr_slab",
2342 "pgpgin",
2343 "pgpgout",
2344 "pswpin",
2345 "pswpout",
2347 "pgalloc_high",
2348 "pgalloc_normal",
2349 "pgalloc_dma32",
2350 "pgalloc_dma",
2352 "pgfree",
2353 "pgactivate",
2354 "pgdeactivate",
2356 "pgfault",
2357 "pgmajfault",
2359 "pgrefill_high",
2360 "pgrefill_normal",
2361 "pgrefill_dma32",
2362 "pgrefill_dma",
2364 "pgsteal_high",
2365 "pgsteal_normal",
2366 "pgsteal_dma32",
2367 "pgsteal_dma",
2369 "pgscan_kswapd_high",
2370 "pgscan_kswapd_normal",
2371 "pgscan_kswapd_dma32",
2372 "pgscan_kswapd_dma",
2374 "pgscan_direct_high",
2375 "pgscan_direct_normal",
2376 "pgscan_direct_dma32",
2377 "pgscan_direct_dma",
2379 "pginodesteal",
2380 "slabs_scanned",
2381 "kswapd_steal",
2382 "kswapd_inodesteal",
2383 "pageoutrun",
2384 "allocstall",
2386 "pgrotated",
2387 "nr_bounce",
2390 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2392 struct page_state *ps;
2394 if (*pos >= ARRAY_SIZE(vmstat_text))
2395 return NULL;
2397 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2398 m->private = ps;
2399 if (!ps)
2400 return ERR_PTR(-ENOMEM);
2401 get_full_page_state(ps);
2402 ps->pgpgin /= 2; /* sectors -> kbytes */
2403 ps->pgpgout /= 2;
2404 return (unsigned long *)ps + *pos;
2407 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2409 (*pos)++;
2410 if (*pos >= ARRAY_SIZE(vmstat_text))
2411 return NULL;
2412 return (unsigned long *)m->private + *pos;
2415 static int vmstat_show(struct seq_file *m, void *arg)
2417 unsigned long *l = arg;
2418 unsigned long off = l - (unsigned long *)m->private;
2420 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2421 return 0;
2424 static void vmstat_stop(struct seq_file *m, void *arg)
2426 kfree(m->private);
2427 m->private = NULL;
2430 struct seq_operations vmstat_op = {
2431 .start = vmstat_start,
2432 .next = vmstat_next,
2433 .stop = vmstat_stop,
2434 .show = vmstat_show,
2437 #endif /* CONFIG_PROC_FS */
2439 #ifdef CONFIG_HOTPLUG_CPU
2440 static int page_alloc_cpu_notify(struct notifier_block *self,
2441 unsigned long action, void *hcpu)
2443 int cpu = (unsigned long)hcpu;
2444 long *count;
2445 unsigned long *src, *dest;
2447 if (action == CPU_DEAD) {
2448 int i;
2450 /* Drain local pagecache count. */
2451 count = &per_cpu(nr_pagecache_local, cpu);
2452 atomic_add(*count, &nr_pagecache);
2453 *count = 0;
2454 local_irq_disable();
2455 __drain_pages(cpu);
2457 /* Add dead cpu's page_states to our own. */
2458 dest = (unsigned long *)&__get_cpu_var(page_states);
2459 src = (unsigned long *)&per_cpu(page_states, cpu);
2461 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2462 i++) {
2463 dest[i] += src[i];
2464 src[i] = 0;
2467 local_irq_enable();
2469 return NOTIFY_OK;
2471 #endif /* CONFIG_HOTPLUG_CPU */
2473 void __init page_alloc_init(void)
2475 hotcpu_notifier(page_alloc_cpu_notify, 0);
2479 * setup_per_zone_lowmem_reserve - called whenever
2480 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2481 * has a correct pages reserved value, so an adequate number of
2482 * pages are left in the zone after a successful __alloc_pages().
2484 static void setup_per_zone_lowmem_reserve(void)
2486 struct pglist_data *pgdat;
2487 int j, idx;
2489 for_each_pgdat(pgdat) {
2490 for (j = 0; j < MAX_NR_ZONES; j++) {
2491 struct zone *zone = pgdat->node_zones + j;
2492 unsigned long present_pages = zone->present_pages;
2494 zone->lowmem_reserve[j] = 0;
2496 for (idx = j-1; idx >= 0; idx--) {
2497 struct zone *lower_zone;
2499 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2500 sysctl_lowmem_reserve_ratio[idx] = 1;
2502 lower_zone = pgdat->node_zones + idx;
2503 lower_zone->lowmem_reserve[j] = present_pages /
2504 sysctl_lowmem_reserve_ratio[idx];
2505 present_pages += lower_zone->present_pages;
2512 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2513 * that the pages_{min,low,high} values for each zone are set correctly
2514 * with respect to min_free_kbytes.
2516 void setup_per_zone_pages_min(void)
2518 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2519 unsigned long lowmem_pages = 0;
2520 struct zone *zone;
2521 unsigned long flags;
2523 /* Calculate total number of !ZONE_HIGHMEM pages */
2524 for_each_zone(zone) {
2525 if (!is_highmem(zone))
2526 lowmem_pages += zone->present_pages;
2529 for_each_zone(zone) {
2530 unsigned long tmp;
2531 spin_lock_irqsave(&zone->lru_lock, flags);
2532 tmp = (pages_min * zone->present_pages) / lowmem_pages;
2533 if (is_highmem(zone)) {
2535 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2536 * need highmem pages, so cap pages_min to a small
2537 * value here.
2539 * The (pages_high-pages_low) and (pages_low-pages_min)
2540 * deltas controls asynch page reclaim, and so should
2541 * not be capped for highmem.
2543 int min_pages;
2545 min_pages = zone->present_pages / 1024;
2546 if (min_pages < SWAP_CLUSTER_MAX)
2547 min_pages = SWAP_CLUSTER_MAX;
2548 if (min_pages > 128)
2549 min_pages = 128;
2550 zone->pages_min = min_pages;
2551 } else {
2553 * If it's a lowmem zone, reserve a number of pages
2554 * proportionate to the zone's size.
2556 zone->pages_min = tmp;
2559 zone->pages_low = zone->pages_min + tmp / 4;
2560 zone->pages_high = zone->pages_min + tmp / 2;
2561 spin_unlock_irqrestore(&zone->lru_lock, flags);
2566 * Initialise min_free_kbytes.
2568 * For small machines we want it small (128k min). For large machines
2569 * we want it large (64MB max). But it is not linear, because network
2570 * bandwidth does not increase linearly with machine size. We use
2572 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2573 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2575 * which yields
2577 * 16MB: 512k
2578 * 32MB: 724k
2579 * 64MB: 1024k
2580 * 128MB: 1448k
2581 * 256MB: 2048k
2582 * 512MB: 2896k
2583 * 1024MB: 4096k
2584 * 2048MB: 5792k
2585 * 4096MB: 8192k
2586 * 8192MB: 11584k
2587 * 16384MB: 16384k
2589 static int __init init_per_zone_pages_min(void)
2591 unsigned long lowmem_kbytes;
2593 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2595 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2596 if (min_free_kbytes < 128)
2597 min_free_kbytes = 128;
2598 if (min_free_kbytes > 65536)
2599 min_free_kbytes = 65536;
2600 setup_per_zone_pages_min();
2601 setup_per_zone_lowmem_reserve();
2602 return 0;
2604 module_init(init_per_zone_pages_min)
2607 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2608 * that we can call two helper functions whenever min_free_kbytes
2609 * changes.
2611 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2612 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2614 proc_dointvec(table, write, file, buffer, length, ppos);
2615 setup_per_zone_pages_min();
2616 return 0;
2620 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2621 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2622 * whenever sysctl_lowmem_reserve_ratio changes.
2624 * The reserve ratio obviously has absolutely no relation with the
2625 * pages_min watermarks. The lowmem reserve ratio can only make sense
2626 * if in function of the boot time zone sizes.
2628 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2629 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2631 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2632 setup_per_zone_lowmem_reserve();
2633 return 0;
2637 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2638 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2639 * can have before it gets flushed back to buddy allocator.
2642 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2643 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2645 struct zone *zone;
2646 unsigned int cpu;
2647 int ret;
2649 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2650 if (!write || (ret == -EINVAL))
2651 return ret;
2652 for_each_zone(zone) {
2653 for_each_online_cpu(cpu) {
2654 unsigned long high;
2655 high = zone->present_pages / percpu_pagelist_fraction;
2656 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2659 return 0;
2662 __initdata int hashdist = HASHDIST_DEFAULT;
2664 #ifdef CONFIG_NUMA
2665 static int __init set_hashdist(char *str)
2667 if (!str)
2668 return 0;
2669 hashdist = simple_strtoul(str, &str, 0);
2670 return 1;
2672 __setup("hashdist=", set_hashdist);
2673 #endif
2676 * allocate a large system hash table from bootmem
2677 * - it is assumed that the hash table must contain an exact power-of-2
2678 * quantity of entries
2679 * - limit is the number of hash buckets, not the total allocation size
2681 void *__init alloc_large_system_hash(const char *tablename,
2682 unsigned long bucketsize,
2683 unsigned long numentries,
2684 int scale,
2685 int flags,
2686 unsigned int *_hash_shift,
2687 unsigned int *_hash_mask,
2688 unsigned long limit)
2690 unsigned long long max = limit;
2691 unsigned long log2qty, size;
2692 void *table = NULL;
2694 /* allow the kernel cmdline to have a say */
2695 if (!numentries) {
2696 /* round applicable memory size up to nearest megabyte */
2697 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2698 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2699 numentries >>= 20 - PAGE_SHIFT;
2700 numentries <<= 20 - PAGE_SHIFT;
2702 /* limit to 1 bucket per 2^scale bytes of low memory */
2703 if (scale > PAGE_SHIFT)
2704 numentries >>= (scale - PAGE_SHIFT);
2705 else
2706 numentries <<= (PAGE_SHIFT - scale);
2708 /* rounded up to nearest power of 2 in size */
2709 numentries = 1UL << (long_log2(numentries) + 1);
2711 /* limit allocation size to 1/16 total memory by default */
2712 if (max == 0) {
2713 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2714 do_div(max, bucketsize);
2717 if (numentries > max)
2718 numentries = max;
2720 log2qty = long_log2(numentries);
2722 do {
2723 size = bucketsize << log2qty;
2724 if (flags & HASH_EARLY)
2725 table = alloc_bootmem(size);
2726 else if (hashdist)
2727 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2728 else {
2729 unsigned long order;
2730 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2732 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2734 } while (!table && size > PAGE_SIZE && --log2qty);
2736 if (!table)
2737 panic("Failed to allocate %s hash table\n", tablename);
2739 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2740 tablename,
2741 (1U << log2qty),
2742 long_log2(size) - PAGE_SHIFT,
2743 size);
2745 if (_hash_shift)
2746 *_hash_shift = log2qty;
2747 if (_hash_mask)
2748 *_hash_mask = (1 << log2qty) - 1;
2750 return table;