V4L/DVB (3801): Cx88-tvaudio: replace 'if' with 'switch..case'
[linux-2.6/suspend2-2.6.18.git] / fs / namespace.c
blobc13072a5f1ee8bd1a57c9186de12a5a55c553d1b
1 /*
2 * linux/fs/namespace.c
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
11 #include <linux/config.h>
12 #include <linux/syscalls.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/smp_lock.h>
16 #include <linux/init.h>
17 #include <linux/quotaops.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/module.h>
21 #include <linux/seq_file.h>
22 #include <linux/namespace.h>
23 #include <linux/namei.h>
24 #include <linux/security.h>
25 #include <linux/mount.h>
26 #include <asm/uaccess.h>
27 #include <asm/unistd.h>
28 #include "pnode.h"
30 extern int __init init_rootfs(void);
32 #ifdef CONFIG_SYSFS
33 extern int __init sysfs_init(void);
34 #else
35 static inline int sysfs_init(void)
37 return 0;
39 #endif
41 /* spinlock for vfsmount related operations, inplace of dcache_lock */
42 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
44 static int event;
46 static struct list_head *mount_hashtable __read_mostly;
47 static int hash_mask __read_mostly, hash_bits __read_mostly;
48 static kmem_cache_t *mnt_cache __read_mostly;
49 static struct rw_semaphore namespace_sem;
51 /* /sys/fs */
52 decl_subsys(fs, NULL, NULL);
53 EXPORT_SYMBOL_GPL(fs_subsys);
55 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
57 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
58 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
59 tmp = tmp + (tmp >> hash_bits);
60 return tmp & hash_mask;
63 struct vfsmount *alloc_vfsmnt(const char *name)
65 struct vfsmount *mnt = kmem_cache_alloc(mnt_cache, GFP_KERNEL);
66 if (mnt) {
67 memset(mnt, 0, sizeof(struct vfsmount));
68 atomic_set(&mnt->mnt_count, 1);
69 INIT_LIST_HEAD(&mnt->mnt_hash);
70 INIT_LIST_HEAD(&mnt->mnt_child);
71 INIT_LIST_HEAD(&mnt->mnt_mounts);
72 INIT_LIST_HEAD(&mnt->mnt_list);
73 INIT_LIST_HEAD(&mnt->mnt_expire);
74 INIT_LIST_HEAD(&mnt->mnt_share);
75 INIT_LIST_HEAD(&mnt->mnt_slave_list);
76 INIT_LIST_HEAD(&mnt->mnt_slave);
77 if (name) {
78 int size = strlen(name) + 1;
79 char *newname = kmalloc(size, GFP_KERNEL);
80 if (newname) {
81 memcpy(newname, name, size);
82 mnt->mnt_devname = newname;
86 return mnt;
89 int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
91 mnt->mnt_sb = sb;
92 mnt->mnt_root = dget(sb->s_root);
93 return 0;
96 EXPORT_SYMBOL(simple_set_mnt);
98 void free_vfsmnt(struct vfsmount *mnt)
100 kfree(mnt->mnt_devname);
101 kmem_cache_free(mnt_cache, mnt);
105 * find the first or last mount at @dentry on vfsmount @mnt depending on
106 * @dir. If @dir is set return the first mount else return the last mount.
108 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
109 int dir)
111 struct list_head *head = mount_hashtable + hash(mnt, dentry);
112 struct list_head *tmp = head;
113 struct vfsmount *p, *found = NULL;
115 for (;;) {
116 tmp = dir ? tmp->next : tmp->prev;
117 p = NULL;
118 if (tmp == head)
119 break;
120 p = list_entry(tmp, struct vfsmount, mnt_hash);
121 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
122 found = p;
123 break;
126 return found;
130 * lookup_mnt increments the ref count before returning
131 * the vfsmount struct.
133 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
135 struct vfsmount *child_mnt;
136 spin_lock(&vfsmount_lock);
137 if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
138 mntget(child_mnt);
139 spin_unlock(&vfsmount_lock);
140 return child_mnt;
143 static inline int check_mnt(struct vfsmount *mnt)
145 return mnt->mnt_namespace == current->namespace;
148 static void touch_namespace(struct namespace *ns)
150 if (ns) {
151 ns->event = ++event;
152 wake_up_interruptible(&ns->poll);
156 static void __touch_namespace(struct namespace *ns)
158 if (ns && ns->event != event) {
159 ns->event = event;
160 wake_up_interruptible(&ns->poll);
164 static void detach_mnt(struct vfsmount *mnt, struct nameidata *old_nd)
166 old_nd->dentry = mnt->mnt_mountpoint;
167 old_nd->mnt = mnt->mnt_parent;
168 mnt->mnt_parent = mnt;
169 mnt->mnt_mountpoint = mnt->mnt_root;
170 list_del_init(&mnt->mnt_child);
171 list_del_init(&mnt->mnt_hash);
172 old_nd->dentry->d_mounted--;
175 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
176 struct vfsmount *child_mnt)
178 child_mnt->mnt_parent = mntget(mnt);
179 child_mnt->mnt_mountpoint = dget(dentry);
180 dentry->d_mounted++;
183 static void attach_mnt(struct vfsmount *mnt, struct nameidata *nd)
185 mnt_set_mountpoint(nd->mnt, nd->dentry, mnt);
186 list_add_tail(&mnt->mnt_hash, mount_hashtable +
187 hash(nd->mnt, nd->dentry));
188 list_add_tail(&mnt->mnt_child, &nd->mnt->mnt_mounts);
192 * the caller must hold vfsmount_lock
194 static void commit_tree(struct vfsmount *mnt)
196 struct vfsmount *parent = mnt->mnt_parent;
197 struct vfsmount *m;
198 LIST_HEAD(head);
199 struct namespace *n = parent->mnt_namespace;
201 BUG_ON(parent == mnt);
203 list_add_tail(&head, &mnt->mnt_list);
204 list_for_each_entry(m, &head, mnt_list)
205 m->mnt_namespace = n;
206 list_splice(&head, n->list.prev);
208 list_add_tail(&mnt->mnt_hash, mount_hashtable +
209 hash(parent, mnt->mnt_mountpoint));
210 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
211 touch_namespace(n);
214 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
216 struct list_head *next = p->mnt_mounts.next;
217 if (next == &p->mnt_mounts) {
218 while (1) {
219 if (p == root)
220 return NULL;
221 next = p->mnt_child.next;
222 if (next != &p->mnt_parent->mnt_mounts)
223 break;
224 p = p->mnt_parent;
227 return list_entry(next, struct vfsmount, mnt_child);
230 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
232 struct list_head *prev = p->mnt_mounts.prev;
233 while (prev != &p->mnt_mounts) {
234 p = list_entry(prev, struct vfsmount, mnt_child);
235 prev = p->mnt_mounts.prev;
237 return p;
240 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
241 int flag)
243 struct super_block *sb = old->mnt_sb;
244 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
246 if (mnt) {
247 mnt->mnt_flags = old->mnt_flags;
248 atomic_inc(&sb->s_active);
249 mnt->mnt_sb = sb;
250 mnt->mnt_root = dget(root);
251 mnt->mnt_mountpoint = mnt->mnt_root;
252 mnt->mnt_parent = mnt;
254 if (flag & CL_SLAVE) {
255 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
256 mnt->mnt_master = old;
257 CLEAR_MNT_SHARED(mnt);
258 } else {
259 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
260 list_add(&mnt->mnt_share, &old->mnt_share);
261 if (IS_MNT_SLAVE(old))
262 list_add(&mnt->mnt_slave, &old->mnt_slave);
263 mnt->mnt_master = old->mnt_master;
265 if (flag & CL_MAKE_SHARED)
266 set_mnt_shared(mnt);
268 /* stick the duplicate mount on the same expiry list
269 * as the original if that was on one */
270 if (flag & CL_EXPIRE) {
271 spin_lock(&vfsmount_lock);
272 if (!list_empty(&old->mnt_expire))
273 list_add(&mnt->mnt_expire, &old->mnt_expire);
274 spin_unlock(&vfsmount_lock);
277 return mnt;
280 static inline void __mntput(struct vfsmount *mnt)
282 struct super_block *sb = mnt->mnt_sb;
283 dput(mnt->mnt_root);
284 free_vfsmnt(mnt);
285 deactivate_super(sb);
288 void mntput_no_expire(struct vfsmount *mnt)
290 repeat:
291 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
292 if (likely(!mnt->mnt_pinned)) {
293 spin_unlock(&vfsmount_lock);
294 __mntput(mnt);
295 return;
297 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
298 mnt->mnt_pinned = 0;
299 spin_unlock(&vfsmount_lock);
300 acct_auto_close_mnt(mnt);
301 security_sb_umount_close(mnt);
302 goto repeat;
306 EXPORT_SYMBOL(mntput_no_expire);
308 void mnt_pin(struct vfsmount *mnt)
310 spin_lock(&vfsmount_lock);
311 mnt->mnt_pinned++;
312 spin_unlock(&vfsmount_lock);
315 EXPORT_SYMBOL(mnt_pin);
317 void mnt_unpin(struct vfsmount *mnt)
319 spin_lock(&vfsmount_lock);
320 if (mnt->mnt_pinned) {
321 atomic_inc(&mnt->mnt_count);
322 mnt->mnt_pinned--;
324 spin_unlock(&vfsmount_lock);
327 EXPORT_SYMBOL(mnt_unpin);
329 /* iterator */
330 static void *m_start(struct seq_file *m, loff_t *pos)
332 struct namespace *n = m->private;
333 struct list_head *p;
334 loff_t l = *pos;
336 down_read(&namespace_sem);
337 list_for_each(p, &n->list)
338 if (!l--)
339 return list_entry(p, struct vfsmount, mnt_list);
340 return NULL;
343 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
345 struct namespace *n = m->private;
346 struct list_head *p = ((struct vfsmount *)v)->mnt_list.next;
347 (*pos)++;
348 return p == &n->list ? NULL : list_entry(p, struct vfsmount, mnt_list);
351 static void m_stop(struct seq_file *m, void *v)
353 up_read(&namespace_sem);
356 static inline void mangle(struct seq_file *m, const char *s)
358 seq_escape(m, s, " \t\n\\");
361 static int show_vfsmnt(struct seq_file *m, void *v)
363 struct vfsmount *mnt = v;
364 int err = 0;
365 static struct proc_fs_info {
366 int flag;
367 char *str;
368 } fs_info[] = {
369 { MS_SYNCHRONOUS, ",sync" },
370 { MS_DIRSYNC, ",dirsync" },
371 { MS_MANDLOCK, ",mand" },
372 { 0, NULL }
374 static struct proc_fs_info mnt_info[] = {
375 { MNT_NOSUID, ",nosuid" },
376 { MNT_NODEV, ",nodev" },
377 { MNT_NOEXEC, ",noexec" },
378 { MNT_NOATIME, ",noatime" },
379 { MNT_NODIRATIME, ",nodiratime" },
380 { 0, NULL }
382 struct proc_fs_info *fs_infop;
384 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
385 seq_putc(m, ' ');
386 seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
387 seq_putc(m, ' ');
388 mangle(m, mnt->mnt_sb->s_type->name);
389 seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
390 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
391 if (mnt->mnt_sb->s_flags & fs_infop->flag)
392 seq_puts(m, fs_infop->str);
394 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
395 if (mnt->mnt_flags & fs_infop->flag)
396 seq_puts(m, fs_infop->str);
398 if (mnt->mnt_sb->s_op->show_options)
399 err = mnt->mnt_sb->s_op->show_options(m, mnt);
400 seq_puts(m, " 0 0\n");
401 return err;
404 struct seq_operations mounts_op = {
405 .start = m_start,
406 .next = m_next,
407 .stop = m_stop,
408 .show = show_vfsmnt
411 static int show_vfsstat(struct seq_file *m, void *v)
413 struct vfsmount *mnt = v;
414 int err = 0;
416 /* device */
417 if (mnt->mnt_devname) {
418 seq_puts(m, "device ");
419 mangle(m, mnt->mnt_devname);
420 } else
421 seq_puts(m, "no device");
423 /* mount point */
424 seq_puts(m, " mounted on ");
425 seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
426 seq_putc(m, ' ');
428 /* file system type */
429 seq_puts(m, "with fstype ");
430 mangle(m, mnt->mnt_sb->s_type->name);
432 /* optional statistics */
433 if (mnt->mnt_sb->s_op->show_stats) {
434 seq_putc(m, ' ');
435 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
438 seq_putc(m, '\n');
439 return err;
442 struct seq_operations mountstats_op = {
443 .start = m_start,
444 .next = m_next,
445 .stop = m_stop,
446 .show = show_vfsstat,
450 * may_umount_tree - check if a mount tree is busy
451 * @mnt: root of mount tree
453 * This is called to check if a tree of mounts has any
454 * open files, pwds, chroots or sub mounts that are
455 * busy.
457 int may_umount_tree(struct vfsmount *mnt)
459 int actual_refs = 0;
460 int minimum_refs = 0;
461 struct vfsmount *p;
463 spin_lock(&vfsmount_lock);
464 for (p = mnt; p; p = next_mnt(p, mnt)) {
465 actual_refs += atomic_read(&p->mnt_count);
466 minimum_refs += 2;
468 spin_unlock(&vfsmount_lock);
470 if (actual_refs > minimum_refs)
471 return 0;
473 return 1;
476 EXPORT_SYMBOL(may_umount_tree);
479 * may_umount - check if a mount point is busy
480 * @mnt: root of mount
482 * This is called to check if a mount point has any
483 * open files, pwds, chroots or sub mounts. If the
484 * mount has sub mounts this will return busy
485 * regardless of whether the sub mounts are busy.
487 * Doesn't take quota and stuff into account. IOW, in some cases it will
488 * give false negatives. The main reason why it's here is that we need
489 * a non-destructive way to look for easily umountable filesystems.
491 int may_umount(struct vfsmount *mnt)
493 int ret = 1;
494 spin_lock(&vfsmount_lock);
495 if (propagate_mount_busy(mnt, 2))
496 ret = 0;
497 spin_unlock(&vfsmount_lock);
498 return ret;
501 EXPORT_SYMBOL(may_umount);
503 void release_mounts(struct list_head *head)
505 struct vfsmount *mnt;
506 while (!list_empty(head)) {
507 mnt = list_entry(head->next, struct vfsmount, mnt_hash);
508 list_del_init(&mnt->mnt_hash);
509 if (mnt->mnt_parent != mnt) {
510 struct dentry *dentry;
511 struct vfsmount *m;
512 spin_lock(&vfsmount_lock);
513 dentry = mnt->mnt_mountpoint;
514 m = mnt->mnt_parent;
515 mnt->mnt_mountpoint = mnt->mnt_root;
516 mnt->mnt_parent = mnt;
517 spin_unlock(&vfsmount_lock);
518 dput(dentry);
519 mntput(m);
521 mntput(mnt);
525 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
527 struct vfsmount *p;
529 for (p = mnt; p; p = next_mnt(p, mnt)) {
530 list_del(&p->mnt_hash);
531 list_add(&p->mnt_hash, kill);
534 if (propagate)
535 propagate_umount(kill);
537 list_for_each_entry(p, kill, mnt_hash) {
538 list_del_init(&p->mnt_expire);
539 list_del_init(&p->mnt_list);
540 __touch_namespace(p->mnt_namespace);
541 p->mnt_namespace = NULL;
542 list_del_init(&p->mnt_child);
543 if (p->mnt_parent != p)
544 p->mnt_mountpoint->d_mounted--;
545 change_mnt_propagation(p, MS_PRIVATE);
549 static int do_umount(struct vfsmount *mnt, int flags)
551 struct super_block *sb = mnt->mnt_sb;
552 int retval;
553 LIST_HEAD(umount_list);
555 retval = security_sb_umount(mnt, flags);
556 if (retval)
557 return retval;
560 * Allow userspace to request a mountpoint be expired rather than
561 * unmounting unconditionally. Unmount only happens if:
562 * (1) the mark is already set (the mark is cleared by mntput())
563 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
565 if (flags & MNT_EXPIRE) {
566 if (mnt == current->fs->rootmnt ||
567 flags & (MNT_FORCE | MNT_DETACH))
568 return -EINVAL;
570 if (atomic_read(&mnt->mnt_count) != 2)
571 return -EBUSY;
573 if (!xchg(&mnt->mnt_expiry_mark, 1))
574 return -EAGAIN;
578 * If we may have to abort operations to get out of this
579 * mount, and they will themselves hold resources we must
580 * allow the fs to do things. In the Unix tradition of
581 * 'Gee thats tricky lets do it in userspace' the umount_begin
582 * might fail to complete on the first run through as other tasks
583 * must return, and the like. Thats for the mount program to worry
584 * about for the moment.
587 lock_kernel();
588 if ((flags & MNT_FORCE) && sb->s_op->umount_begin)
589 sb->s_op->umount_begin(sb);
590 unlock_kernel();
593 * No sense to grab the lock for this test, but test itself looks
594 * somewhat bogus. Suggestions for better replacement?
595 * Ho-hum... In principle, we might treat that as umount + switch
596 * to rootfs. GC would eventually take care of the old vfsmount.
597 * Actually it makes sense, especially if rootfs would contain a
598 * /reboot - static binary that would close all descriptors and
599 * call reboot(9). Then init(8) could umount root and exec /reboot.
601 if (mnt == current->fs->rootmnt && !(flags & MNT_DETACH)) {
603 * Special case for "unmounting" root ...
604 * we just try to remount it readonly.
606 down_write(&sb->s_umount);
607 if (!(sb->s_flags & MS_RDONLY)) {
608 lock_kernel();
609 DQUOT_OFF(sb);
610 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
611 unlock_kernel();
613 up_write(&sb->s_umount);
614 return retval;
617 down_write(&namespace_sem);
618 spin_lock(&vfsmount_lock);
619 event++;
621 retval = -EBUSY;
622 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
623 if (!list_empty(&mnt->mnt_list))
624 umount_tree(mnt, 1, &umount_list);
625 retval = 0;
627 spin_unlock(&vfsmount_lock);
628 if (retval)
629 security_sb_umount_busy(mnt);
630 up_write(&namespace_sem);
631 release_mounts(&umount_list);
632 return retval;
636 * Now umount can handle mount points as well as block devices.
637 * This is important for filesystems which use unnamed block devices.
639 * We now support a flag for forced unmount like the other 'big iron'
640 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
643 asmlinkage long sys_umount(char __user * name, int flags)
645 struct nameidata nd;
646 int retval;
648 retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
649 if (retval)
650 goto out;
651 retval = -EINVAL;
652 if (nd.dentry != nd.mnt->mnt_root)
653 goto dput_and_out;
654 if (!check_mnt(nd.mnt))
655 goto dput_and_out;
657 retval = -EPERM;
658 if (!capable(CAP_SYS_ADMIN))
659 goto dput_and_out;
661 retval = do_umount(nd.mnt, flags);
662 dput_and_out:
663 path_release_on_umount(&nd);
664 out:
665 return retval;
668 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
671 * The 2.0 compatible umount. No flags.
673 asmlinkage long sys_oldumount(char __user * name)
675 return sys_umount(name, 0);
678 #endif
680 static int mount_is_safe(struct nameidata *nd)
682 if (capable(CAP_SYS_ADMIN))
683 return 0;
684 return -EPERM;
685 #ifdef notyet
686 if (S_ISLNK(nd->dentry->d_inode->i_mode))
687 return -EPERM;
688 if (nd->dentry->d_inode->i_mode & S_ISVTX) {
689 if (current->uid != nd->dentry->d_inode->i_uid)
690 return -EPERM;
692 if (vfs_permission(nd, MAY_WRITE))
693 return -EPERM;
694 return 0;
695 #endif
698 static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
700 while (1) {
701 if (d == dentry)
702 return 1;
703 if (d == NULL || d == d->d_parent)
704 return 0;
705 d = d->d_parent;
709 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
710 int flag)
712 struct vfsmount *res, *p, *q, *r, *s;
713 struct nameidata nd;
715 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
716 return NULL;
718 res = q = clone_mnt(mnt, dentry, flag);
719 if (!q)
720 goto Enomem;
721 q->mnt_mountpoint = mnt->mnt_mountpoint;
723 p = mnt;
724 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
725 if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
726 continue;
728 for (s = r; s; s = next_mnt(s, r)) {
729 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
730 s = skip_mnt_tree(s);
731 continue;
733 while (p != s->mnt_parent) {
734 p = p->mnt_parent;
735 q = q->mnt_parent;
737 p = s;
738 nd.mnt = q;
739 nd.dentry = p->mnt_mountpoint;
740 q = clone_mnt(p, p->mnt_root, flag);
741 if (!q)
742 goto Enomem;
743 spin_lock(&vfsmount_lock);
744 list_add_tail(&q->mnt_list, &res->mnt_list);
745 attach_mnt(q, &nd);
746 spin_unlock(&vfsmount_lock);
749 return res;
750 Enomem:
751 if (res) {
752 LIST_HEAD(umount_list);
753 spin_lock(&vfsmount_lock);
754 umount_tree(res, 0, &umount_list);
755 spin_unlock(&vfsmount_lock);
756 release_mounts(&umount_list);
758 return NULL;
762 * @source_mnt : mount tree to be attached
763 * @nd : place the mount tree @source_mnt is attached
764 * @parent_nd : if non-null, detach the source_mnt from its parent and
765 * store the parent mount and mountpoint dentry.
766 * (done when source_mnt is moved)
768 * NOTE: in the table below explains the semantics when a source mount
769 * of a given type is attached to a destination mount of a given type.
770 * ---------------------------------------------------------------------------
771 * | BIND MOUNT OPERATION |
772 * |**************************************************************************
773 * | source-->| shared | private | slave | unbindable |
774 * | dest | | | | |
775 * | | | | | | |
776 * | v | | | | |
777 * |**************************************************************************
778 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
779 * | | | | | |
780 * |non-shared| shared (+) | private | slave (*) | invalid |
781 * ***************************************************************************
782 * A bind operation clones the source mount and mounts the clone on the
783 * destination mount.
785 * (++) the cloned mount is propagated to all the mounts in the propagation
786 * tree of the destination mount and the cloned mount is added to
787 * the peer group of the source mount.
788 * (+) the cloned mount is created under the destination mount and is marked
789 * as shared. The cloned mount is added to the peer group of the source
790 * mount.
791 * (+++) the mount is propagated to all the mounts in the propagation tree
792 * of the destination mount and the cloned mount is made slave
793 * of the same master as that of the source mount. The cloned mount
794 * is marked as 'shared and slave'.
795 * (*) the cloned mount is made a slave of the same master as that of the
796 * source mount.
798 * ---------------------------------------------------------------------------
799 * | MOVE MOUNT OPERATION |
800 * |**************************************************************************
801 * | source-->| shared | private | slave | unbindable |
802 * | dest | | | | |
803 * | | | | | | |
804 * | v | | | | |
805 * |**************************************************************************
806 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
807 * | | | | | |
808 * |non-shared| shared (+*) | private | slave (*) | unbindable |
809 * ***************************************************************************
811 * (+) the mount is moved to the destination. And is then propagated to
812 * all the mounts in the propagation tree of the destination mount.
813 * (+*) the mount is moved to the destination.
814 * (+++) the mount is moved to the destination and is then propagated to
815 * all the mounts belonging to the destination mount's propagation tree.
816 * the mount is marked as 'shared and slave'.
817 * (*) the mount continues to be a slave at the new location.
819 * if the source mount is a tree, the operations explained above is
820 * applied to each mount in the tree.
821 * Must be called without spinlocks held, since this function can sleep
822 * in allocations.
824 static int attach_recursive_mnt(struct vfsmount *source_mnt,
825 struct nameidata *nd, struct nameidata *parent_nd)
827 LIST_HEAD(tree_list);
828 struct vfsmount *dest_mnt = nd->mnt;
829 struct dentry *dest_dentry = nd->dentry;
830 struct vfsmount *child, *p;
832 if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list))
833 return -EINVAL;
835 if (IS_MNT_SHARED(dest_mnt)) {
836 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
837 set_mnt_shared(p);
840 spin_lock(&vfsmount_lock);
841 if (parent_nd) {
842 detach_mnt(source_mnt, parent_nd);
843 attach_mnt(source_mnt, nd);
844 touch_namespace(current->namespace);
845 } else {
846 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
847 commit_tree(source_mnt);
850 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
851 list_del_init(&child->mnt_hash);
852 commit_tree(child);
854 spin_unlock(&vfsmount_lock);
855 return 0;
858 static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
860 int err;
861 if (mnt->mnt_sb->s_flags & MS_NOUSER)
862 return -EINVAL;
864 if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
865 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
866 return -ENOTDIR;
868 err = -ENOENT;
869 mutex_lock(&nd->dentry->d_inode->i_mutex);
870 if (IS_DEADDIR(nd->dentry->d_inode))
871 goto out_unlock;
873 err = security_sb_check_sb(mnt, nd);
874 if (err)
875 goto out_unlock;
877 err = -ENOENT;
878 if (IS_ROOT(nd->dentry) || !d_unhashed(nd->dentry))
879 err = attach_recursive_mnt(mnt, nd, NULL);
880 out_unlock:
881 mutex_unlock(&nd->dentry->d_inode->i_mutex);
882 if (!err)
883 security_sb_post_addmount(mnt, nd);
884 return err;
888 * recursively change the type of the mountpoint.
890 static int do_change_type(struct nameidata *nd, int flag)
892 struct vfsmount *m, *mnt = nd->mnt;
893 int recurse = flag & MS_REC;
894 int type = flag & ~MS_REC;
896 if (nd->dentry != nd->mnt->mnt_root)
897 return -EINVAL;
899 down_write(&namespace_sem);
900 spin_lock(&vfsmount_lock);
901 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
902 change_mnt_propagation(m, type);
903 spin_unlock(&vfsmount_lock);
904 up_write(&namespace_sem);
905 return 0;
909 * do loopback mount.
911 static int do_loopback(struct nameidata *nd, char *old_name, int recurse)
913 struct nameidata old_nd;
914 struct vfsmount *mnt = NULL;
915 int err = mount_is_safe(nd);
916 if (err)
917 return err;
918 if (!old_name || !*old_name)
919 return -EINVAL;
920 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
921 if (err)
922 return err;
924 down_write(&namespace_sem);
925 err = -EINVAL;
926 if (IS_MNT_UNBINDABLE(old_nd.mnt))
927 goto out;
929 if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
930 goto out;
932 err = -ENOMEM;
933 if (recurse)
934 mnt = copy_tree(old_nd.mnt, old_nd.dentry, 0);
935 else
936 mnt = clone_mnt(old_nd.mnt, old_nd.dentry, 0);
938 if (!mnt)
939 goto out;
941 err = graft_tree(mnt, nd);
942 if (err) {
943 LIST_HEAD(umount_list);
944 spin_lock(&vfsmount_lock);
945 umount_tree(mnt, 0, &umount_list);
946 spin_unlock(&vfsmount_lock);
947 release_mounts(&umount_list);
950 out:
951 up_write(&namespace_sem);
952 path_release(&old_nd);
953 return err;
957 * change filesystem flags. dir should be a physical root of filesystem.
958 * If you've mounted a non-root directory somewhere and want to do remount
959 * on it - tough luck.
961 static int do_remount(struct nameidata *nd, int flags, int mnt_flags,
962 void *data)
964 int err;
965 struct super_block *sb = nd->mnt->mnt_sb;
967 if (!capable(CAP_SYS_ADMIN))
968 return -EPERM;
970 if (!check_mnt(nd->mnt))
971 return -EINVAL;
973 if (nd->dentry != nd->mnt->mnt_root)
974 return -EINVAL;
976 down_write(&sb->s_umount);
977 err = do_remount_sb(sb, flags, data, 0);
978 if (!err)
979 nd->mnt->mnt_flags = mnt_flags;
980 up_write(&sb->s_umount);
981 if (!err)
982 security_sb_post_remount(nd->mnt, flags, data);
983 return err;
986 static inline int tree_contains_unbindable(struct vfsmount *mnt)
988 struct vfsmount *p;
989 for (p = mnt; p; p = next_mnt(p, mnt)) {
990 if (IS_MNT_UNBINDABLE(p))
991 return 1;
993 return 0;
996 static int do_move_mount(struct nameidata *nd, char *old_name)
998 struct nameidata old_nd, parent_nd;
999 struct vfsmount *p;
1000 int err = 0;
1001 if (!capable(CAP_SYS_ADMIN))
1002 return -EPERM;
1003 if (!old_name || !*old_name)
1004 return -EINVAL;
1005 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1006 if (err)
1007 return err;
1009 down_write(&namespace_sem);
1010 while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
1012 err = -EINVAL;
1013 if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
1014 goto out;
1016 err = -ENOENT;
1017 mutex_lock(&nd->dentry->d_inode->i_mutex);
1018 if (IS_DEADDIR(nd->dentry->d_inode))
1019 goto out1;
1021 if (!IS_ROOT(nd->dentry) && d_unhashed(nd->dentry))
1022 goto out1;
1024 err = -EINVAL;
1025 if (old_nd.dentry != old_nd.mnt->mnt_root)
1026 goto out1;
1028 if (old_nd.mnt == old_nd.mnt->mnt_parent)
1029 goto out1;
1031 if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
1032 S_ISDIR(old_nd.dentry->d_inode->i_mode))
1033 goto out1;
1035 * Don't move a mount residing in a shared parent.
1037 if (old_nd.mnt->mnt_parent && IS_MNT_SHARED(old_nd.mnt->mnt_parent))
1038 goto out1;
1040 * Don't move a mount tree containing unbindable mounts to a destination
1041 * mount which is shared.
1043 if (IS_MNT_SHARED(nd->mnt) && tree_contains_unbindable(old_nd.mnt))
1044 goto out1;
1045 err = -ELOOP;
1046 for (p = nd->mnt; p->mnt_parent != p; p = p->mnt_parent)
1047 if (p == old_nd.mnt)
1048 goto out1;
1050 if ((err = attach_recursive_mnt(old_nd.mnt, nd, &parent_nd)))
1051 goto out1;
1053 spin_lock(&vfsmount_lock);
1054 /* if the mount is moved, it should no longer be expire
1055 * automatically */
1056 list_del_init(&old_nd.mnt->mnt_expire);
1057 spin_unlock(&vfsmount_lock);
1058 out1:
1059 mutex_unlock(&nd->dentry->d_inode->i_mutex);
1060 out:
1061 up_write(&namespace_sem);
1062 if (!err)
1063 path_release(&parent_nd);
1064 path_release(&old_nd);
1065 return err;
1069 * create a new mount for userspace and request it to be added into the
1070 * namespace's tree
1072 static int do_new_mount(struct nameidata *nd, char *type, int flags,
1073 int mnt_flags, char *name, void *data)
1075 struct vfsmount *mnt;
1077 if (!type || !memchr(type, 0, PAGE_SIZE))
1078 return -EINVAL;
1080 /* we need capabilities... */
1081 if (!capable(CAP_SYS_ADMIN))
1082 return -EPERM;
1084 mnt = do_kern_mount(type, flags, name, data);
1085 if (IS_ERR(mnt))
1086 return PTR_ERR(mnt);
1088 return do_add_mount(mnt, nd, mnt_flags, NULL);
1092 * add a mount into a namespace's mount tree
1093 * - provide the option of adding the new mount to an expiration list
1095 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1096 int mnt_flags, struct list_head *fslist)
1098 int err;
1100 down_write(&namespace_sem);
1101 /* Something was mounted here while we slept */
1102 while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
1104 err = -EINVAL;
1105 if (!check_mnt(nd->mnt))
1106 goto unlock;
1108 /* Refuse the same filesystem on the same mount point */
1109 err = -EBUSY;
1110 if (nd->mnt->mnt_sb == newmnt->mnt_sb &&
1111 nd->mnt->mnt_root == nd->dentry)
1112 goto unlock;
1114 err = -EINVAL;
1115 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1116 goto unlock;
1118 newmnt->mnt_flags = mnt_flags;
1119 if ((err = graft_tree(newmnt, nd)))
1120 goto unlock;
1122 if (fslist) {
1123 /* add to the specified expiration list */
1124 spin_lock(&vfsmount_lock);
1125 list_add_tail(&newmnt->mnt_expire, fslist);
1126 spin_unlock(&vfsmount_lock);
1128 up_write(&namespace_sem);
1129 return 0;
1131 unlock:
1132 up_write(&namespace_sem);
1133 mntput(newmnt);
1134 return err;
1137 EXPORT_SYMBOL_GPL(do_add_mount);
1139 static void expire_mount(struct vfsmount *mnt, struct list_head *mounts,
1140 struct list_head *umounts)
1142 spin_lock(&vfsmount_lock);
1145 * Check if mount is still attached, if not, let whoever holds it deal
1146 * with the sucker
1148 if (mnt->mnt_parent == mnt) {
1149 spin_unlock(&vfsmount_lock);
1150 return;
1154 * Check that it is still dead: the count should now be 2 - as
1155 * contributed by the vfsmount parent and the mntget above
1157 if (!propagate_mount_busy(mnt, 2)) {
1158 /* delete from the namespace */
1159 touch_namespace(mnt->mnt_namespace);
1160 list_del_init(&mnt->mnt_list);
1161 mnt->mnt_namespace = NULL;
1162 umount_tree(mnt, 1, umounts);
1163 spin_unlock(&vfsmount_lock);
1164 } else {
1166 * Someone brought it back to life whilst we didn't have any
1167 * locks held so return it to the expiration list
1169 list_add_tail(&mnt->mnt_expire, mounts);
1170 spin_unlock(&vfsmount_lock);
1175 * process a list of expirable mountpoints with the intent of discarding any
1176 * mountpoints that aren't in use and haven't been touched since last we came
1177 * here
1179 void mark_mounts_for_expiry(struct list_head *mounts)
1181 struct namespace *namespace;
1182 struct vfsmount *mnt, *next;
1183 LIST_HEAD(graveyard);
1185 if (list_empty(mounts))
1186 return;
1188 spin_lock(&vfsmount_lock);
1190 /* extract from the expiration list every vfsmount that matches the
1191 * following criteria:
1192 * - only referenced by its parent vfsmount
1193 * - still marked for expiry (marked on the last call here; marks are
1194 * cleared by mntput())
1196 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1197 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1198 atomic_read(&mnt->mnt_count) != 1)
1199 continue;
1201 mntget(mnt);
1202 list_move(&mnt->mnt_expire, &graveyard);
1206 * go through the vfsmounts we've just consigned to the graveyard to
1207 * - check that they're still dead
1208 * - delete the vfsmount from the appropriate namespace under lock
1209 * - dispose of the corpse
1211 while (!list_empty(&graveyard)) {
1212 LIST_HEAD(umounts);
1213 mnt = list_entry(graveyard.next, struct vfsmount, mnt_expire);
1214 list_del_init(&mnt->mnt_expire);
1216 /* don't do anything if the namespace is dead - all the
1217 * vfsmounts from it are going away anyway */
1218 namespace = mnt->mnt_namespace;
1219 if (!namespace || !namespace->root)
1220 continue;
1221 get_namespace(namespace);
1223 spin_unlock(&vfsmount_lock);
1224 down_write(&namespace_sem);
1225 expire_mount(mnt, mounts, &umounts);
1226 up_write(&namespace_sem);
1227 release_mounts(&umounts);
1228 mntput(mnt);
1229 put_namespace(namespace);
1230 spin_lock(&vfsmount_lock);
1233 spin_unlock(&vfsmount_lock);
1236 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1239 * Some copy_from_user() implementations do not return the exact number of
1240 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1241 * Note that this function differs from copy_from_user() in that it will oops
1242 * on bad values of `to', rather than returning a short copy.
1244 static long exact_copy_from_user(void *to, const void __user * from,
1245 unsigned long n)
1247 char *t = to;
1248 const char __user *f = from;
1249 char c;
1251 if (!access_ok(VERIFY_READ, from, n))
1252 return n;
1254 while (n) {
1255 if (__get_user(c, f)) {
1256 memset(t, 0, n);
1257 break;
1259 *t++ = c;
1260 f++;
1261 n--;
1263 return n;
1266 int copy_mount_options(const void __user * data, unsigned long *where)
1268 int i;
1269 unsigned long page;
1270 unsigned long size;
1272 *where = 0;
1273 if (!data)
1274 return 0;
1276 if (!(page = __get_free_page(GFP_KERNEL)))
1277 return -ENOMEM;
1279 /* We only care that *some* data at the address the user
1280 * gave us is valid. Just in case, we'll zero
1281 * the remainder of the page.
1283 /* copy_from_user cannot cross TASK_SIZE ! */
1284 size = TASK_SIZE - (unsigned long)data;
1285 if (size > PAGE_SIZE)
1286 size = PAGE_SIZE;
1288 i = size - exact_copy_from_user((void *)page, data, size);
1289 if (!i) {
1290 free_page(page);
1291 return -EFAULT;
1293 if (i != PAGE_SIZE)
1294 memset((char *)page + i, 0, PAGE_SIZE - i);
1295 *where = page;
1296 return 0;
1300 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1301 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1303 * data is a (void *) that can point to any structure up to
1304 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1305 * information (or be NULL).
1307 * Pre-0.97 versions of mount() didn't have a flags word.
1308 * When the flags word was introduced its top half was required
1309 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1310 * Therefore, if this magic number is present, it carries no information
1311 * and must be discarded.
1313 long do_mount(char *dev_name, char *dir_name, char *type_page,
1314 unsigned long flags, void *data_page)
1316 struct nameidata nd;
1317 int retval = 0;
1318 int mnt_flags = 0;
1320 /* Discard magic */
1321 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1322 flags &= ~MS_MGC_MSK;
1324 /* Basic sanity checks */
1326 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1327 return -EINVAL;
1328 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1329 return -EINVAL;
1331 if (data_page)
1332 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1334 /* Separate the per-mountpoint flags */
1335 if (flags & MS_NOSUID)
1336 mnt_flags |= MNT_NOSUID;
1337 if (flags & MS_NODEV)
1338 mnt_flags |= MNT_NODEV;
1339 if (flags & MS_NOEXEC)
1340 mnt_flags |= MNT_NOEXEC;
1341 if (flags & MS_NOATIME)
1342 mnt_flags |= MNT_NOATIME;
1343 if (flags & MS_NODIRATIME)
1344 mnt_flags |= MNT_NODIRATIME;
1346 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1347 MS_NOATIME | MS_NODIRATIME);
1349 /* ... and get the mountpoint */
1350 retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1351 if (retval)
1352 return retval;
1354 retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page);
1355 if (retval)
1356 goto dput_out;
1358 if (flags & MS_REMOUNT)
1359 retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1360 data_page);
1361 else if (flags & MS_BIND)
1362 retval = do_loopback(&nd, dev_name, flags & MS_REC);
1363 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1364 retval = do_change_type(&nd, flags);
1365 else if (flags & MS_MOVE)
1366 retval = do_move_mount(&nd, dev_name);
1367 else
1368 retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1369 dev_name, data_page);
1370 dput_out:
1371 path_release(&nd);
1372 return retval;
1376 * Allocate a new namespace structure and populate it with contents
1377 * copied from the namespace of the passed in task structure.
1379 struct namespace *dup_namespace(struct task_struct *tsk, struct fs_struct *fs)
1381 struct namespace *namespace = tsk->namespace;
1382 struct namespace *new_ns;
1383 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1384 struct vfsmount *p, *q;
1386 new_ns = kmalloc(sizeof(struct namespace), GFP_KERNEL);
1387 if (!new_ns)
1388 return NULL;
1390 atomic_set(&new_ns->count, 1);
1391 INIT_LIST_HEAD(&new_ns->list);
1392 init_waitqueue_head(&new_ns->poll);
1393 new_ns->event = 0;
1395 down_write(&namespace_sem);
1396 /* First pass: copy the tree topology */
1397 new_ns->root = copy_tree(namespace->root, namespace->root->mnt_root,
1398 CL_COPY_ALL | CL_EXPIRE);
1399 if (!new_ns->root) {
1400 up_write(&namespace_sem);
1401 kfree(new_ns);
1402 return NULL;
1404 spin_lock(&vfsmount_lock);
1405 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1406 spin_unlock(&vfsmount_lock);
1409 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1410 * as belonging to new namespace. We have already acquired a private
1411 * fs_struct, so tsk->fs->lock is not needed.
1413 p = namespace->root;
1414 q = new_ns->root;
1415 while (p) {
1416 q->mnt_namespace = new_ns;
1417 if (fs) {
1418 if (p == fs->rootmnt) {
1419 rootmnt = p;
1420 fs->rootmnt = mntget(q);
1422 if (p == fs->pwdmnt) {
1423 pwdmnt = p;
1424 fs->pwdmnt = mntget(q);
1426 if (p == fs->altrootmnt) {
1427 altrootmnt = p;
1428 fs->altrootmnt = mntget(q);
1431 p = next_mnt(p, namespace->root);
1432 q = next_mnt(q, new_ns->root);
1434 up_write(&namespace_sem);
1436 if (rootmnt)
1437 mntput(rootmnt);
1438 if (pwdmnt)
1439 mntput(pwdmnt);
1440 if (altrootmnt)
1441 mntput(altrootmnt);
1443 return new_ns;
1446 int copy_namespace(int flags, struct task_struct *tsk)
1448 struct namespace *namespace = tsk->namespace;
1449 struct namespace *new_ns;
1450 int err = 0;
1452 if (!namespace)
1453 return 0;
1455 get_namespace(namespace);
1457 if (!(flags & CLONE_NEWNS))
1458 return 0;
1460 if (!capable(CAP_SYS_ADMIN)) {
1461 err = -EPERM;
1462 goto out;
1465 new_ns = dup_namespace(tsk, tsk->fs);
1466 if (!new_ns) {
1467 err = -ENOMEM;
1468 goto out;
1471 tsk->namespace = new_ns;
1473 out:
1474 put_namespace(namespace);
1475 return err;
1478 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
1479 char __user * type, unsigned long flags,
1480 void __user * data)
1482 int retval;
1483 unsigned long data_page;
1484 unsigned long type_page;
1485 unsigned long dev_page;
1486 char *dir_page;
1488 retval = copy_mount_options(type, &type_page);
1489 if (retval < 0)
1490 return retval;
1492 dir_page = getname(dir_name);
1493 retval = PTR_ERR(dir_page);
1494 if (IS_ERR(dir_page))
1495 goto out1;
1497 retval = copy_mount_options(dev_name, &dev_page);
1498 if (retval < 0)
1499 goto out2;
1501 retval = copy_mount_options(data, &data_page);
1502 if (retval < 0)
1503 goto out3;
1505 lock_kernel();
1506 retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
1507 flags, (void *)data_page);
1508 unlock_kernel();
1509 free_page(data_page);
1511 out3:
1512 free_page(dev_page);
1513 out2:
1514 putname(dir_page);
1515 out1:
1516 free_page(type_page);
1517 return retval;
1521 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
1522 * It can block. Requires the big lock held.
1524 void set_fs_root(struct fs_struct *fs, struct vfsmount *mnt,
1525 struct dentry *dentry)
1527 struct dentry *old_root;
1528 struct vfsmount *old_rootmnt;
1529 write_lock(&fs->lock);
1530 old_root = fs->root;
1531 old_rootmnt = fs->rootmnt;
1532 fs->rootmnt = mntget(mnt);
1533 fs->root = dget(dentry);
1534 write_unlock(&fs->lock);
1535 if (old_root) {
1536 dput(old_root);
1537 mntput(old_rootmnt);
1542 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
1543 * It can block. Requires the big lock held.
1545 void set_fs_pwd(struct fs_struct *fs, struct vfsmount *mnt,
1546 struct dentry *dentry)
1548 struct dentry *old_pwd;
1549 struct vfsmount *old_pwdmnt;
1551 write_lock(&fs->lock);
1552 old_pwd = fs->pwd;
1553 old_pwdmnt = fs->pwdmnt;
1554 fs->pwdmnt = mntget(mnt);
1555 fs->pwd = dget(dentry);
1556 write_unlock(&fs->lock);
1558 if (old_pwd) {
1559 dput(old_pwd);
1560 mntput(old_pwdmnt);
1564 static void chroot_fs_refs(struct nameidata *old_nd, struct nameidata *new_nd)
1566 struct task_struct *g, *p;
1567 struct fs_struct *fs;
1569 read_lock(&tasklist_lock);
1570 do_each_thread(g, p) {
1571 task_lock(p);
1572 fs = p->fs;
1573 if (fs) {
1574 atomic_inc(&fs->count);
1575 task_unlock(p);
1576 if (fs->root == old_nd->dentry
1577 && fs->rootmnt == old_nd->mnt)
1578 set_fs_root(fs, new_nd->mnt, new_nd->dentry);
1579 if (fs->pwd == old_nd->dentry
1580 && fs->pwdmnt == old_nd->mnt)
1581 set_fs_pwd(fs, new_nd->mnt, new_nd->dentry);
1582 put_fs_struct(fs);
1583 } else
1584 task_unlock(p);
1585 } while_each_thread(g, p);
1586 read_unlock(&tasklist_lock);
1590 * pivot_root Semantics:
1591 * Moves the root file system of the current process to the directory put_old,
1592 * makes new_root as the new root file system of the current process, and sets
1593 * root/cwd of all processes which had them on the current root to new_root.
1595 * Restrictions:
1596 * The new_root and put_old must be directories, and must not be on the
1597 * same file system as the current process root. The put_old must be
1598 * underneath new_root, i.e. adding a non-zero number of /.. to the string
1599 * pointed to by put_old must yield the same directory as new_root. No other
1600 * file system may be mounted on put_old. After all, new_root is a mountpoint.
1602 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
1603 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
1604 * in this situation.
1606 * Notes:
1607 * - we don't move root/cwd if they are not at the root (reason: if something
1608 * cared enough to change them, it's probably wrong to force them elsewhere)
1609 * - it's okay to pick a root that isn't the root of a file system, e.g.
1610 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
1611 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
1612 * first.
1614 asmlinkage long sys_pivot_root(const char __user * new_root,
1615 const char __user * put_old)
1617 struct vfsmount *tmp;
1618 struct nameidata new_nd, old_nd, parent_nd, root_parent, user_nd;
1619 int error;
1621 if (!capable(CAP_SYS_ADMIN))
1622 return -EPERM;
1624 lock_kernel();
1626 error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
1627 &new_nd);
1628 if (error)
1629 goto out0;
1630 error = -EINVAL;
1631 if (!check_mnt(new_nd.mnt))
1632 goto out1;
1634 error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
1635 if (error)
1636 goto out1;
1638 error = security_sb_pivotroot(&old_nd, &new_nd);
1639 if (error) {
1640 path_release(&old_nd);
1641 goto out1;
1644 read_lock(&current->fs->lock);
1645 user_nd.mnt = mntget(current->fs->rootmnt);
1646 user_nd.dentry = dget(current->fs->root);
1647 read_unlock(&current->fs->lock);
1648 down_write(&namespace_sem);
1649 mutex_lock(&old_nd.dentry->d_inode->i_mutex);
1650 error = -EINVAL;
1651 if (IS_MNT_SHARED(old_nd.mnt) ||
1652 IS_MNT_SHARED(new_nd.mnt->mnt_parent) ||
1653 IS_MNT_SHARED(user_nd.mnt->mnt_parent))
1654 goto out2;
1655 if (!check_mnt(user_nd.mnt))
1656 goto out2;
1657 error = -ENOENT;
1658 if (IS_DEADDIR(new_nd.dentry->d_inode))
1659 goto out2;
1660 if (d_unhashed(new_nd.dentry) && !IS_ROOT(new_nd.dentry))
1661 goto out2;
1662 if (d_unhashed(old_nd.dentry) && !IS_ROOT(old_nd.dentry))
1663 goto out2;
1664 error = -EBUSY;
1665 if (new_nd.mnt == user_nd.mnt || old_nd.mnt == user_nd.mnt)
1666 goto out2; /* loop, on the same file system */
1667 error = -EINVAL;
1668 if (user_nd.mnt->mnt_root != user_nd.dentry)
1669 goto out2; /* not a mountpoint */
1670 if (user_nd.mnt->mnt_parent == user_nd.mnt)
1671 goto out2; /* not attached */
1672 if (new_nd.mnt->mnt_root != new_nd.dentry)
1673 goto out2; /* not a mountpoint */
1674 if (new_nd.mnt->mnt_parent == new_nd.mnt)
1675 goto out2; /* not attached */
1676 tmp = old_nd.mnt; /* make sure we can reach put_old from new_root */
1677 spin_lock(&vfsmount_lock);
1678 if (tmp != new_nd.mnt) {
1679 for (;;) {
1680 if (tmp->mnt_parent == tmp)
1681 goto out3; /* already mounted on put_old */
1682 if (tmp->mnt_parent == new_nd.mnt)
1683 break;
1684 tmp = tmp->mnt_parent;
1686 if (!is_subdir(tmp->mnt_mountpoint, new_nd.dentry))
1687 goto out3;
1688 } else if (!is_subdir(old_nd.dentry, new_nd.dentry))
1689 goto out3;
1690 detach_mnt(new_nd.mnt, &parent_nd);
1691 detach_mnt(user_nd.mnt, &root_parent);
1692 attach_mnt(user_nd.mnt, &old_nd); /* mount old root on put_old */
1693 attach_mnt(new_nd.mnt, &root_parent); /* mount new_root on / */
1694 touch_namespace(current->namespace);
1695 spin_unlock(&vfsmount_lock);
1696 chroot_fs_refs(&user_nd, &new_nd);
1697 security_sb_post_pivotroot(&user_nd, &new_nd);
1698 error = 0;
1699 path_release(&root_parent);
1700 path_release(&parent_nd);
1701 out2:
1702 mutex_unlock(&old_nd.dentry->d_inode->i_mutex);
1703 up_write(&namespace_sem);
1704 path_release(&user_nd);
1705 path_release(&old_nd);
1706 out1:
1707 path_release(&new_nd);
1708 out0:
1709 unlock_kernel();
1710 return error;
1711 out3:
1712 spin_unlock(&vfsmount_lock);
1713 goto out2;
1716 static void __init init_mount_tree(void)
1718 struct vfsmount *mnt;
1719 struct namespace *namespace;
1720 struct task_struct *g, *p;
1722 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
1723 if (IS_ERR(mnt))
1724 panic("Can't create rootfs");
1725 namespace = kmalloc(sizeof(*namespace), GFP_KERNEL);
1726 if (!namespace)
1727 panic("Can't allocate initial namespace");
1728 atomic_set(&namespace->count, 1);
1729 INIT_LIST_HEAD(&namespace->list);
1730 init_waitqueue_head(&namespace->poll);
1731 namespace->event = 0;
1732 list_add(&mnt->mnt_list, &namespace->list);
1733 namespace->root = mnt;
1734 mnt->mnt_namespace = namespace;
1736 init_task.namespace = namespace;
1737 read_lock(&tasklist_lock);
1738 do_each_thread(g, p) {
1739 get_namespace(namespace);
1740 p->namespace = namespace;
1741 } while_each_thread(g, p);
1742 read_unlock(&tasklist_lock);
1744 set_fs_pwd(current->fs, namespace->root, namespace->root->mnt_root);
1745 set_fs_root(current->fs, namespace->root, namespace->root->mnt_root);
1748 void __init mnt_init(unsigned long mempages)
1750 struct list_head *d;
1751 unsigned int nr_hash;
1752 int i;
1754 init_rwsem(&namespace_sem);
1756 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
1757 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL, NULL);
1759 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1761 if (!mount_hashtable)
1762 panic("Failed to allocate mount hash table\n");
1765 * Find the power-of-two list-heads that can fit into the allocation..
1766 * We don't guarantee that "sizeof(struct list_head)" is necessarily
1767 * a power-of-two.
1769 nr_hash = PAGE_SIZE / sizeof(struct list_head);
1770 hash_bits = 0;
1771 do {
1772 hash_bits++;
1773 } while ((nr_hash >> hash_bits) != 0);
1774 hash_bits--;
1777 * Re-calculate the actual number of entries and the mask
1778 * from the number of bits we can fit.
1780 nr_hash = 1UL << hash_bits;
1781 hash_mask = nr_hash - 1;
1783 printk("Mount-cache hash table entries: %d\n", nr_hash);
1785 /* And initialize the newly allocated array */
1786 d = mount_hashtable;
1787 i = nr_hash;
1788 do {
1789 INIT_LIST_HEAD(d);
1790 d++;
1791 i--;
1792 } while (i);
1793 sysfs_init();
1794 subsystem_register(&fs_subsys);
1795 init_rootfs();
1796 init_mount_tree();
1799 void __put_namespace(struct namespace *namespace)
1801 struct vfsmount *root = namespace->root;
1802 LIST_HEAD(umount_list);
1803 namespace->root = NULL;
1804 spin_unlock(&vfsmount_lock);
1805 down_write(&namespace_sem);
1806 spin_lock(&vfsmount_lock);
1807 umount_tree(root, 0, &umount_list);
1808 spin_unlock(&vfsmount_lock);
1809 up_write(&namespace_sem);
1810 release_mounts(&umount_list);
1811 kfree(namespace);