2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@suse.de>
9 #include <linux/config.h>
10 #include <linux/module.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/hash.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
20 static const int cfq_quantum
= 4; /* max queue in one round of service */
21 static const int cfq_queued
= 8; /* minimum rq allocate limit per-queue*/
22 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
23 static const int cfq_back_max
= 16 * 1024; /* maximum backwards seek, in KiB */
24 static const int cfq_back_penalty
= 2; /* penalty of a backwards seek */
26 static const int cfq_slice_sync
= HZ
/ 10;
27 static int cfq_slice_async
= HZ
/ 25;
28 static const int cfq_slice_async_rq
= 2;
29 static int cfq_slice_idle
= HZ
/ 70;
31 #define CFQ_IDLE_GRACE (HZ / 10)
32 #define CFQ_SLICE_SCALE (5)
34 #define CFQ_KEY_ASYNC (0)
36 static DEFINE_RWLOCK(cfq_exit_lock
);
39 * for the hash of cfqq inside the cfqd
41 #define CFQ_QHASH_SHIFT 6
42 #define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT)
43 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
46 * for the hash of crq inside the cfqq
48 #define CFQ_MHASH_SHIFT 6
49 #define CFQ_MHASH_BLOCK(sec) ((sec) >> 3)
50 #define CFQ_MHASH_ENTRIES (1 << CFQ_MHASH_SHIFT)
51 #define CFQ_MHASH_FN(sec) hash_long(CFQ_MHASH_BLOCK(sec), CFQ_MHASH_SHIFT)
52 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
53 #define list_entry_hash(ptr) hlist_entry((ptr), struct cfq_rq, hash)
55 #define list_entry_cfqq(ptr) list_entry((ptr), struct cfq_queue, cfq_list)
56 #define list_entry_fifo(ptr) list_entry((ptr), struct request, queuelist)
58 #define RQ_DATA(rq) (rq)->elevator_private
64 #define RB_EMPTY(node) ((node)->rb_node == NULL)
65 #define RB_CLEAR_COLOR(node) (node)->rb_color = RB_NONE
66 #define RB_CLEAR(node) do { \
67 (node)->rb_parent = NULL; \
68 RB_CLEAR_COLOR((node)); \
69 (node)->rb_right = NULL; \
70 (node)->rb_left = NULL; \
72 #define RB_CLEAR_ROOT(root) ((root)->rb_node = NULL)
73 #define rb_entry_crq(node) rb_entry((node), struct cfq_rq, rb_node)
74 #define rq_rb_key(rq) (rq)->sector
76 static kmem_cache_t
*crq_pool
;
77 static kmem_cache_t
*cfq_pool
;
78 static kmem_cache_t
*cfq_ioc_pool
;
80 static atomic_t ioc_count
= ATOMIC_INIT(0);
81 static struct completion
*ioc_gone
;
83 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
84 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
85 #define cfq_class_be(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_BE)
86 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
91 #define cfq_cfqq_dispatched(cfqq) \
92 ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
94 #define cfq_cfqq_class_sync(cfqq) ((cfqq)->key != CFQ_KEY_ASYNC)
96 #define cfq_cfqq_sync(cfqq) \
97 (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
99 #define sample_valid(samples) ((samples) > 80)
102 * Per block device queue structure
105 request_queue_t
*queue
;
108 * rr list of queues with requests and the count of them
110 struct list_head rr_list
[CFQ_PRIO_LISTS
];
111 struct list_head busy_rr
;
112 struct list_head cur_rr
;
113 struct list_head idle_rr
;
114 unsigned int busy_queues
;
117 * non-ordered list of empty cfqq's
119 struct list_head empty_list
;
124 struct hlist_head
*cfq_hash
;
127 * global crq hash for all queues
129 struct hlist_head
*crq_hash
;
131 unsigned int max_queued
;
138 * schedule slice state info
141 * idle window management
143 struct timer_list idle_slice_timer
;
144 struct work_struct unplug_work
;
146 struct cfq_queue
*active_queue
;
147 struct cfq_io_context
*active_cic
;
148 int cur_prio
, cur_end_prio
;
149 unsigned int dispatch_slice
;
151 struct timer_list idle_class_timer
;
153 sector_t last_sector
;
154 unsigned long last_end_request
;
156 unsigned int rq_starved
;
159 * tunables, see top of file
161 unsigned int cfq_quantum
;
162 unsigned int cfq_queued
;
163 unsigned int cfq_fifo_expire
[2];
164 unsigned int cfq_back_penalty
;
165 unsigned int cfq_back_max
;
166 unsigned int cfq_slice
[2];
167 unsigned int cfq_slice_async_rq
;
168 unsigned int cfq_slice_idle
;
170 struct list_head cic_list
;
174 * Per process-grouping structure
177 /* reference count */
179 /* parent cfq_data */
180 struct cfq_data
*cfqd
;
181 /* cfqq lookup hash */
182 struct hlist_node cfq_hash
;
185 /* on either rr or empty list of cfqd */
186 struct list_head cfq_list
;
187 /* sorted list of pending requests */
188 struct rb_root sort_list
;
189 /* if fifo isn't expired, next request to serve */
190 struct cfq_rq
*next_crq
;
191 /* requests queued in sort_list */
193 /* currently allocated requests */
195 /* fifo list of requests in sort_list */
196 struct list_head fifo
;
198 unsigned long slice_start
;
199 unsigned long slice_end
;
200 unsigned long slice_left
;
201 unsigned long service_last
;
203 /* number of requests that are on the dispatch list */
206 /* io prio of this group */
207 unsigned short ioprio
, org_ioprio
;
208 unsigned short ioprio_class
, org_ioprio_class
;
210 /* various state flags, see below */
215 struct rb_node rb_node
;
217 struct request
*request
;
218 struct hlist_node hash
;
220 struct cfq_queue
*cfq_queue
;
221 struct cfq_io_context
*io_context
;
223 unsigned int crq_flags
;
226 enum cfqq_state_flags
{
227 CFQ_CFQQ_FLAG_on_rr
= 0,
228 CFQ_CFQQ_FLAG_wait_request
,
229 CFQ_CFQQ_FLAG_must_alloc
,
230 CFQ_CFQQ_FLAG_must_alloc_slice
,
231 CFQ_CFQQ_FLAG_must_dispatch
,
232 CFQ_CFQQ_FLAG_fifo_expire
,
233 CFQ_CFQQ_FLAG_idle_window
,
234 CFQ_CFQQ_FLAG_prio_changed
,
237 #define CFQ_CFQQ_FNS(name) \
238 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
240 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
242 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
244 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
246 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
248 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
252 CFQ_CFQQ_FNS(wait_request
);
253 CFQ_CFQQ_FNS(must_alloc
);
254 CFQ_CFQQ_FNS(must_alloc_slice
);
255 CFQ_CFQQ_FNS(must_dispatch
);
256 CFQ_CFQQ_FNS(fifo_expire
);
257 CFQ_CFQQ_FNS(idle_window
);
258 CFQ_CFQQ_FNS(prio_changed
);
261 enum cfq_rq_state_flags
{
262 CFQ_CRQ_FLAG_is_sync
= 0,
265 #define CFQ_CRQ_FNS(name) \
266 static inline void cfq_mark_crq_##name(struct cfq_rq *crq) \
268 crq->crq_flags |= (1 << CFQ_CRQ_FLAG_##name); \
270 static inline void cfq_clear_crq_##name(struct cfq_rq *crq) \
272 crq->crq_flags &= ~(1 << CFQ_CRQ_FLAG_##name); \
274 static inline int cfq_crq_##name(const struct cfq_rq *crq) \
276 return (crq->crq_flags & (1 << CFQ_CRQ_FLAG_##name)) != 0; \
279 CFQ_CRQ_FNS(is_sync
);
282 static struct cfq_queue
*cfq_find_cfq_hash(struct cfq_data
*, unsigned int, unsigned short);
283 static void cfq_dispatch_insert(request_queue_t
*, struct cfq_rq
*);
284 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*cfqd
, unsigned int key
, struct task_struct
*tsk
, gfp_t gfp_mask
);
286 #define process_sync(tsk) ((tsk)->flags & PF_SYNCWRITE)
289 * lots of deadline iosched dupes, can be abstracted later...
291 static inline void cfq_del_crq_hash(struct cfq_rq
*crq
)
293 hlist_del_init(&crq
->hash
);
296 static inline void cfq_add_crq_hash(struct cfq_data
*cfqd
, struct cfq_rq
*crq
)
298 const int hash_idx
= CFQ_MHASH_FN(rq_hash_key(crq
->request
));
300 hlist_add_head(&crq
->hash
, &cfqd
->crq_hash
[hash_idx
]);
303 static struct request
*cfq_find_rq_hash(struct cfq_data
*cfqd
, sector_t offset
)
305 struct hlist_head
*hash_list
= &cfqd
->crq_hash
[CFQ_MHASH_FN(offset
)];
306 struct hlist_node
*entry
, *next
;
308 hlist_for_each_safe(entry
, next
, hash_list
) {
309 struct cfq_rq
*crq
= list_entry_hash(entry
);
310 struct request
*__rq
= crq
->request
;
312 if (!rq_mergeable(__rq
)) {
313 cfq_del_crq_hash(crq
);
317 if (rq_hash_key(__rq
) == offset
)
325 * scheduler run of queue, if there are requests pending and no one in the
326 * driver that will restart queueing
328 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
330 if (cfqd
->busy_queues
)
331 kblockd_schedule_work(&cfqd
->unplug_work
);
334 static int cfq_queue_empty(request_queue_t
*q
)
336 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
338 return !cfqd
->busy_queues
;
341 static inline pid_t
cfq_queue_pid(struct task_struct
*task
, int rw
)
343 if (rw
== READ
|| process_sync(task
))
346 return CFQ_KEY_ASYNC
;
350 * Lifted from AS - choose which of crq1 and crq2 that is best served now.
351 * We choose the request that is closest to the head right now. Distance
352 * behind the head is penalized and only allowed to a certain extent.
354 static struct cfq_rq
*
355 cfq_choose_req(struct cfq_data
*cfqd
, struct cfq_rq
*crq1
, struct cfq_rq
*crq2
)
357 sector_t last
, s1
, s2
, d1
= 0, d2
= 0;
358 unsigned long back_max
;
359 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
360 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
361 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
363 if (crq1
== NULL
|| crq1
== crq2
)
368 if (cfq_crq_is_sync(crq1
) && !cfq_crq_is_sync(crq2
))
370 else if (cfq_crq_is_sync(crq2
) && !cfq_crq_is_sync(crq1
))
373 s1
= crq1
->request
->sector
;
374 s2
= crq2
->request
->sector
;
376 last
= cfqd
->last_sector
;
379 * by definition, 1KiB is 2 sectors
381 back_max
= cfqd
->cfq_back_max
* 2;
384 * Strict one way elevator _except_ in the case where we allow
385 * short backward seeks which are biased as twice the cost of a
386 * similar forward seek.
390 else if (s1
+ back_max
>= last
)
391 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
393 wrap
|= CFQ_RQ1_WRAP
;
397 else if (s2
+ back_max
>= last
)
398 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
400 wrap
|= CFQ_RQ2_WRAP
;
402 /* Found required data */
405 * By doing switch() on the bit mask "wrap" we avoid having to
406 * check two variables for all permutations: --> faster!
409 case 0: /* common case for CFQ: crq1 and crq2 not wrapped */
425 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both crqs wrapped */
428 * Since both rqs are wrapped,
429 * start with the one that's further behind head
430 * (--> only *one* back seek required),
431 * since back seek takes more time than forward.
441 * would be nice to take fifo expire time into account as well
443 static struct cfq_rq
*
444 cfq_find_next_crq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
447 struct cfq_rq
*crq_next
= NULL
, *crq_prev
= NULL
;
448 struct rb_node
*rbnext
, *rbprev
;
450 if (!(rbnext
= rb_next(&last
->rb_node
))) {
451 rbnext
= rb_first(&cfqq
->sort_list
);
452 if (rbnext
== &last
->rb_node
)
456 rbprev
= rb_prev(&last
->rb_node
);
459 crq_prev
= rb_entry_crq(rbprev
);
461 crq_next
= rb_entry_crq(rbnext
);
463 return cfq_choose_req(cfqd
, crq_next
, crq_prev
);
466 static void cfq_update_next_crq(struct cfq_rq
*crq
)
468 struct cfq_queue
*cfqq
= crq
->cfq_queue
;
470 if (cfqq
->next_crq
== crq
)
471 cfqq
->next_crq
= cfq_find_next_crq(cfqq
->cfqd
, cfqq
, crq
);
474 static void cfq_resort_rr_list(struct cfq_queue
*cfqq
, int preempted
)
476 struct cfq_data
*cfqd
= cfqq
->cfqd
;
477 struct list_head
*list
, *entry
;
479 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
481 list_del(&cfqq
->cfq_list
);
483 if (cfq_class_rt(cfqq
))
484 list
= &cfqd
->cur_rr
;
485 else if (cfq_class_idle(cfqq
))
486 list
= &cfqd
->idle_rr
;
489 * if cfqq has requests in flight, don't allow it to be
490 * found in cfq_set_active_queue before it has finished them.
491 * this is done to increase fairness between a process that
492 * has lots of io pending vs one that only generates one
493 * sporadically or synchronously
495 if (cfq_cfqq_dispatched(cfqq
))
496 list
= &cfqd
->busy_rr
;
498 list
= &cfqd
->rr_list
[cfqq
->ioprio
];
502 * if queue was preempted, just add to front to be fair. busy_rr
505 if (preempted
|| list
== &cfqd
->busy_rr
) {
506 list_add(&cfqq
->cfq_list
, list
);
511 * sort by when queue was last serviced
514 while ((entry
= entry
->prev
) != list
) {
515 struct cfq_queue
*__cfqq
= list_entry_cfqq(entry
);
517 if (!__cfqq
->service_last
)
519 if (time_before(__cfqq
->service_last
, cfqq
->service_last
))
523 list_add(&cfqq
->cfq_list
, entry
);
527 * add to busy list of queues for service, trying to be fair in ordering
528 * the pending list according to last request service
531 cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
533 BUG_ON(cfq_cfqq_on_rr(cfqq
));
534 cfq_mark_cfqq_on_rr(cfqq
);
537 cfq_resort_rr_list(cfqq
, 0);
541 cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
543 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
544 cfq_clear_cfqq_on_rr(cfqq
);
545 list_move(&cfqq
->cfq_list
, &cfqd
->empty_list
);
547 BUG_ON(!cfqd
->busy_queues
);
552 * rb tree support functions
554 static inline void cfq_del_crq_rb(struct cfq_rq
*crq
)
556 struct cfq_queue
*cfqq
= crq
->cfq_queue
;
557 struct cfq_data
*cfqd
= cfqq
->cfqd
;
558 const int sync
= cfq_crq_is_sync(crq
);
560 BUG_ON(!cfqq
->queued
[sync
]);
561 cfqq
->queued
[sync
]--;
563 cfq_update_next_crq(crq
);
565 rb_erase(&crq
->rb_node
, &cfqq
->sort_list
);
566 RB_CLEAR_COLOR(&crq
->rb_node
);
568 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY(&cfqq
->sort_list
))
569 cfq_del_cfqq_rr(cfqd
, cfqq
);
572 static struct cfq_rq
*
573 __cfq_add_crq_rb(struct cfq_rq
*crq
)
575 struct rb_node
**p
= &crq
->cfq_queue
->sort_list
.rb_node
;
576 struct rb_node
*parent
= NULL
;
577 struct cfq_rq
*__crq
;
581 __crq
= rb_entry_crq(parent
);
583 if (crq
->rb_key
< __crq
->rb_key
)
585 else if (crq
->rb_key
> __crq
->rb_key
)
591 rb_link_node(&crq
->rb_node
, parent
, p
);
595 static void cfq_add_crq_rb(struct cfq_rq
*crq
)
597 struct cfq_queue
*cfqq
= crq
->cfq_queue
;
598 struct cfq_data
*cfqd
= cfqq
->cfqd
;
599 struct request
*rq
= crq
->request
;
600 struct cfq_rq
*__alias
;
602 crq
->rb_key
= rq_rb_key(rq
);
603 cfqq
->queued
[cfq_crq_is_sync(crq
)]++;
606 * looks a little odd, but the first insert might return an alias.
607 * if that happens, put the alias on the dispatch list
609 while ((__alias
= __cfq_add_crq_rb(crq
)) != NULL
)
610 cfq_dispatch_insert(cfqd
->queue
, __alias
);
612 rb_insert_color(&crq
->rb_node
, &cfqq
->sort_list
);
614 if (!cfq_cfqq_on_rr(cfqq
))
615 cfq_add_cfqq_rr(cfqd
, cfqq
);
618 * check if this request is a better next-serve candidate
620 cfqq
->next_crq
= cfq_choose_req(cfqd
, cfqq
->next_crq
, crq
);
624 cfq_reposition_crq_rb(struct cfq_queue
*cfqq
, struct cfq_rq
*crq
)
626 rb_erase(&crq
->rb_node
, &cfqq
->sort_list
);
627 cfqq
->queued
[cfq_crq_is_sync(crq
)]--;
632 static struct request
*
633 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
635 struct task_struct
*tsk
= current
;
636 pid_t key
= cfq_queue_pid(tsk
, bio_data_dir(bio
));
637 struct cfq_queue
*cfqq
;
641 cfqq
= cfq_find_cfq_hash(cfqd
, key
, tsk
->ioprio
);
645 sector
= bio
->bi_sector
+ bio_sectors(bio
);
646 n
= cfqq
->sort_list
.rb_node
;
648 struct cfq_rq
*crq
= rb_entry_crq(n
);
650 if (sector
< crq
->rb_key
)
652 else if (sector
> crq
->rb_key
)
662 static void cfq_activate_request(request_queue_t
*q
, struct request
*rq
)
664 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
666 cfqd
->rq_in_driver
++;
669 static void cfq_deactivate_request(request_queue_t
*q
, struct request
*rq
)
671 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
673 WARN_ON(!cfqd
->rq_in_driver
);
674 cfqd
->rq_in_driver
--;
677 static void cfq_remove_request(struct request
*rq
)
679 struct cfq_rq
*crq
= RQ_DATA(rq
);
681 list_del_init(&rq
->queuelist
);
683 cfq_del_crq_hash(crq
);
687 cfq_merge(request_queue_t
*q
, struct request
**req
, struct bio
*bio
)
689 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
690 struct request
*__rq
;
693 __rq
= cfq_find_rq_hash(cfqd
, bio
->bi_sector
);
694 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
695 ret
= ELEVATOR_BACK_MERGE
;
699 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
700 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
701 ret
= ELEVATOR_FRONT_MERGE
;
705 return ELEVATOR_NO_MERGE
;
711 static void cfq_merged_request(request_queue_t
*q
, struct request
*req
)
713 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
714 struct cfq_rq
*crq
= RQ_DATA(req
);
716 cfq_del_crq_hash(crq
);
717 cfq_add_crq_hash(cfqd
, crq
);
719 if (rq_rb_key(req
) != crq
->rb_key
) {
720 struct cfq_queue
*cfqq
= crq
->cfq_queue
;
722 cfq_update_next_crq(crq
);
723 cfq_reposition_crq_rb(cfqq
, crq
);
728 cfq_merged_requests(request_queue_t
*q
, struct request
*rq
,
729 struct request
*next
)
731 cfq_merged_request(q
, rq
);
734 * reposition in fifo if next is older than rq
736 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
737 time_before(next
->start_time
, rq
->start_time
))
738 list_move(&rq
->queuelist
, &next
->queuelist
);
740 cfq_remove_request(next
);
744 __cfq_set_active_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
748 * stop potential idle class queues waiting service
750 del_timer(&cfqd
->idle_class_timer
);
752 cfqq
->slice_start
= jiffies
;
754 cfqq
->slice_left
= 0;
755 cfq_clear_cfqq_must_alloc_slice(cfqq
);
756 cfq_clear_cfqq_fifo_expire(cfqq
);
759 cfqd
->active_queue
= cfqq
;
763 * current cfqq expired its slice (or was too idle), select new one
766 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
769 unsigned long now
= jiffies
;
771 if (cfq_cfqq_wait_request(cfqq
))
772 del_timer(&cfqd
->idle_slice_timer
);
774 if (!preempted
&& !cfq_cfqq_dispatched(cfqq
)) {
775 cfqq
->service_last
= now
;
776 cfq_schedule_dispatch(cfqd
);
779 cfq_clear_cfqq_must_dispatch(cfqq
);
780 cfq_clear_cfqq_wait_request(cfqq
);
783 * store what was left of this slice, if the queue idled out
786 if (time_after(cfqq
->slice_end
, now
))
787 cfqq
->slice_left
= cfqq
->slice_end
- now
;
789 cfqq
->slice_left
= 0;
791 if (cfq_cfqq_on_rr(cfqq
))
792 cfq_resort_rr_list(cfqq
, preempted
);
794 if (cfqq
== cfqd
->active_queue
)
795 cfqd
->active_queue
= NULL
;
797 if (cfqd
->active_cic
) {
798 put_io_context(cfqd
->active_cic
->ioc
);
799 cfqd
->active_cic
= NULL
;
802 cfqd
->dispatch_slice
= 0;
805 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, int preempted
)
807 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
810 __cfq_slice_expired(cfqd
, cfqq
, preempted
);
823 static int cfq_get_next_prio_level(struct cfq_data
*cfqd
)
832 for (p
= cfqd
->cur_prio
; p
<= cfqd
->cur_end_prio
; p
++) {
833 if (!list_empty(&cfqd
->rr_list
[p
])) {
842 if (++cfqd
->cur_end_prio
== CFQ_PRIO_LISTS
) {
843 cfqd
->cur_end_prio
= 0;
850 if (unlikely(prio
== -1))
853 BUG_ON(prio
>= CFQ_PRIO_LISTS
);
855 list_splice_init(&cfqd
->rr_list
[prio
], &cfqd
->cur_rr
);
857 cfqd
->cur_prio
= prio
+ 1;
858 if (cfqd
->cur_prio
> cfqd
->cur_end_prio
) {
859 cfqd
->cur_end_prio
= cfqd
->cur_prio
;
862 if (cfqd
->cur_end_prio
== CFQ_PRIO_LISTS
) {
864 cfqd
->cur_end_prio
= 0;
870 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
)
872 struct cfq_queue
*cfqq
= NULL
;
875 * if current list is non-empty, grab first entry. if it is empty,
876 * get next prio level and grab first entry then if any are spliced
878 if (!list_empty(&cfqd
->cur_rr
) || cfq_get_next_prio_level(cfqd
) != -1)
879 cfqq
= list_entry_cfqq(cfqd
->cur_rr
.next
);
882 * if we have idle queues and no rt or be queues had pending
883 * requests, either allow immediate service if the grace period
884 * has passed or arm the idle grace timer
886 if (!cfqq
&& !list_empty(&cfqd
->idle_rr
)) {
887 unsigned long end
= cfqd
->last_end_request
+ CFQ_IDLE_GRACE
;
889 if (time_after_eq(jiffies
, end
))
890 cfqq
= list_entry_cfqq(cfqd
->idle_rr
.next
);
892 mod_timer(&cfqd
->idle_class_timer
, end
);
895 __cfq_set_active_queue(cfqd
, cfqq
);
899 static int cfq_arm_slice_timer(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
902 struct cfq_io_context
*cic
;
905 WARN_ON(!RB_EMPTY(&cfqq
->sort_list
));
906 WARN_ON(cfqq
!= cfqd
->active_queue
);
909 * idle is disabled, either manually or by past process history
911 if (!cfqd
->cfq_slice_idle
)
913 if (!cfq_cfqq_idle_window(cfqq
))
916 * task has exited, don't wait
918 cic
= cfqd
->active_cic
;
919 if (!cic
|| !cic
->ioc
->task
)
922 cfq_mark_cfqq_must_dispatch(cfqq
);
923 cfq_mark_cfqq_wait_request(cfqq
);
925 sl
= min(cfqq
->slice_end
- 1, (unsigned long) cfqd
->cfq_slice_idle
);
928 * we don't want to idle for seeks, but we do want to allow
929 * fair distribution of slice time for a process doing back-to-back
930 * seeks. so allow a little bit of time for him to submit a new rq
932 if (sample_valid(cic
->seek_samples
) && cic
->seek_mean
> 131072)
935 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
939 static void cfq_dispatch_insert(request_queue_t
*q
, struct cfq_rq
*crq
)
941 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
942 struct cfq_queue
*cfqq
= crq
->cfq_queue
;
944 cfqq
->next_crq
= cfq_find_next_crq(cfqd
, cfqq
, crq
);
945 cfq_remove_request(crq
->request
);
946 cfqq
->on_dispatch
[cfq_crq_is_sync(crq
)]++;
947 elv_dispatch_sort(q
, crq
->request
);
951 * return expired entry, or NULL to just start from scratch in rbtree
953 static inline struct cfq_rq
*cfq_check_fifo(struct cfq_queue
*cfqq
)
955 struct cfq_data
*cfqd
= cfqq
->cfqd
;
959 if (cfq_cfqq_fifo_expire(cfqq
))
962 if (!list_empty(&cfqq
->fifo
)) {
963 int fifo
= cfq_cfqq_class_sync(cfqq
);
965 crq
= RQ_DATA(list_entry_fifo(cfqq
->fifo
.next
));
967 if (time_after(jiffies
, rq
->start_time
+ cfqd
->cfq_fifo_expire
[fifo
])) {
968 cfq_mark_cfqq_fifo_expire(cfqq
);
977 * Scale schedule slice based on io priority. Use the sync time slice only
978 * if a queue is marked sync and has sync io queued. A sync queue with async
979 * io only, should not get full sync slice length.
982 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
984 const int base_slice
= cfqd
->cfq_slice
[cfq_cfqq_sync(cfqq
)];
986 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
988 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - cfqq
->ioprio
));
992 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
994 cfqq
->slice_end
= cfq_prio_to_slice(cfqd
, cfqq
) + jiffies
;
998 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1000 const int base_rq
= cfqd
->cfq_slice_async_rq
;
1002 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
1004 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
1008 * get next queue for service
1010 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
1012 unsigned long now
= jiffies
;
1013 struct cfq_queue
*cfqq
;
1015 cfqq
= cfqd
->active_queue
;
1022 if (!cfq_cfqq_must_dispatch(cfqq
) && time_after(now
, cfqq
->slice_end
))
1026 * if queue has requests, dispatch one. if not, check if
1027 * enough slice is left to wait for one
1029 if (!RB_EMPTY(&cfqq
->sort_list
))
1031 else if (cfq_cfqq_class_sync(cfqq
) &&
1032 time_before(now
, cfqq
->slice_end
)) {
1033 if (cfq_arm_slice_timer(cfqd
, cfqq
))
1038 cfq_slice_expired(cfqd
, 0);
1040 cfqq
= cfq_set_active_queue(cfqd
);
1046 __cfq_dispatch_requests(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1051 BUG_ON(RB_EMPTY(&cfqq
->sort_list
));
1057 * follow expired path, else get first next available
1059 if ((crq
= cfq_check_fifo(cfqq
)) == NULL
)
1060 crq
= cfqq
->next_crq
;
1063 * finally, insert request into driver dispatch list
1065 cfq_dispatch_insert(cfqd
->queue
, crq
);
1067 cfqd
->dispatch_slice
++;
1070 if (!cfqd
->active_cic
) {
1071 atomic_inc(&crq
->io_context
->ioc
->refcount
);
1072 cfqd
->active_cic
= crq
->io_context
;
1075 if (RB_EMPTY(&cfqq
->sort_list
))
1078 } while (dispatched
< max_dispatch
);
1081 * if slice end isn't set yet, set it. if at least one request was
1082 * sync, use the sync time slice value
1084 if (!cfqq
->slice_end
)
1085 cfq_set_prio_slice(cfqd
, cfqq
);
1088 * expire an async queue immediately if it has used up its slice. idle
1089 * queue always expire after 1 dispatch round.
1091 if ((!cfq_cfqq_sync(cfqq
) &&
1092 cfqd
->dispatch_slice
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
1093 cfq_class_idle(cfqq
))
1094 cfq_slice_expired(cfqd
, 0);
1100 cfq_forced_dispatch_cfqqs(struct list_head
*list
)
1103 struct cfq_queue
*cfqq
, *next
;
1106 list_for_each_entry_safe(cfqq
, next
, list
, cfq_list
) {
1107 while ((crq
= cfqq
->next_crq
)) {
1108 cfq_dispatch_insert(cfqq
->cfqd
->queue
, crq
);
1111 BUG_ON(!list_empty(&cfqq
->fifo
));
1117 cfq_forced_dispatch(struct cfq_data
*cfqd
)
1119 int i
, dispatched
= 0;
1121 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
1122 dispatched
+= cfq_forced_dispatch_cfqqs(&cfqd
->rr_list
[i
]);
1124 dispatched
+= cfq_forced_dispatch_cfqqs(&cfqd
->busy_rr
);
1125 dispatched
+= cfq_forced_dispatch_cfqqs(&cfqd
->cur_rr
);
1126 dispatched
+= cfq_forced_dispatch_cfqqs(&cfqd
->idle_rr
);
1128 cfq_slice_expired(cfqd
, 0);
1130 BUG_ON(cfqd
->busy_queues
);
1136 cfq_dispatch_requests(request_queue_t
*q
, int force
)
1138 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1139 struct cfq_queue
*cfqq
;
1141 if (!cfqd
->busy_queues
)
1144 if (unlikely(force
))
1145 return cfq_forced_dispatch(cfqd
);
1147 cfqq
= cfq_select_queue(cfqd
);
1151 cfq_clear_cfqq_must_dispatch(cfqq
);
1152 cfq_clear_cfqq_wait_request(cfqq
);
1153 del_timer(&cfqd
->idle_slice_timer
);
1155 max_dispatch
= cfqd
->cfq_quantum
;
1156 if (cfq_class_idle(cfqq
))
1159 return __cfq_dispatch_requests(cfqd
, cfqq
, max_dispatch
);
1166 * task holds one reference to the queue, dropped when task exits. each crq
1167 * in-flight on this queue also holds a reference, dropped when crq is freed.
1169 * queue lock must be held here.
1171 static void cfq_put_queue(struct cfq_queue
*cfqq
)
1173 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1175 BUG_ON(atomic_read(&cfqq
->ref
) <= 0);
1177 if (!atomic_dec_and_test(&cfqq
->ref
))
1180 BUG_ON(rb_first(&cfqq
->sort_list
));
1181 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
1182 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1184 if (unlikely(cfqd
->active_queue
== cfqq
))
1185 __cfq_slice_expired(cfqd
, cfqq
, 0);
1188 * it's on the empty list and still hashed
1190 list_del(&cfqq
->cfq_list
);
1191 hlist_del(&cfqq
->cfq_hash
);
1192 kmem_cache_free(cfq_pool
, cfqq
);
1195 static inline struct cfq_queue
*
1196 __cfq_find_cfq_hash(struct cfq_data
*cfqd
, unsigned int key
, unsigned int prio
,
1199 struct hlist_head
*hash_list
= &cfqd
->cfq_hash
[hashval
];
1200 struct hlist_node
*entry
;
1201 struct cfq_queue
*__cfqq
;
1203 hlist_for_each_entry(__cfqq
, entry
, hash_list
, cfq_hash
) {
1204 const unsigned short __p
= IOPRIO_PRIO_VALUE(__cfqq
->org_ioprio_class
, __cfqq
->org_ioprio
);
1206 if (__cfqq
->key
== key
&& (__p
== prio
|| !prio
))
1213 static struct cfq_queue
*
1214 cfq_find_cfq_hash(struct cfq_data
*cfqd
, unsigned int key
, unsigned short prio
)
1216 return __cfq_find_cfq_hash(cfqd
, key
, prio
, hash_long(key
, CFQ_QHASH_SHIFT
));
1219 static void cfq_free_io_context(struct io_context
*ioc
)
1221 struct cfq_io_context
*__cic
;
1225 while ((n
= rb_first(&ioc
->cic_root
)) != NULL
) {
1226 __cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
1227 rb_erase(&__cic
->rb_node
, &ioc
->cic_root
);
1228 kmem_cache_free(cfq_ioc_pool
, __cic
);
1232 if (atomic_sub_and_test(freed
, &ioc_count
) && ioc_gone
)
1236 static void cfq_trim(struct io_context
*ioc
)
1238 ioc
->set_ioprio
= NULL
;
1239 cfq_free_io_context(ioc
);
1243 * Called with interrupts disabled
1245 static void cfq_exit_single_io_context(struct cfq_io_context
*cic
)
1247 struct cfq_data
*cfqd
= cic
->key
;
1255 WARN_ON(!irqs_disabled());
1257 spin_lock(q
->queue_lock
);
1259 if (cic
->cfqq
[ASYNC
]) {
1260 if (unlikely(cic
->cfqq
[ASYNC
] == cfqd
->active_queue
))
1261 __cfq_slice_expired(cfqd
, cic
->cfqq
[ASYNC
], 0);
1262 cfq_put_queue(cic
->cfqq
[ASYNC
]);
1263 cic
->cfqq
[ASYNC
] = NULL
;
1266 if (cic
->cfqq
[SYNC
]) {
1267 if (unlikely(cic
->cfqq
[SYNC
] == cfqd
->active_queue
))
1268 __cfq_slice_expired(cfqd
, cic
->cfqq
[SYNC
], 0);
1269 cfq_put_queue(cic
->cfqq
[SYNC
]);
1270 cic
->cfqq
[SYNC
] = NULL
;
1274 list_del_init(&cic
->queue_list
);
1275 spin_unlock(q
->queue_lock
);
1278 static void cfq_exit_io_context(struct io_context
*ioc
)
1280 struct cfq_io_context
*__cic
;
1281 unsigned long flags
;
1285 * put the reference this task is holding to the various queues
1287 read_lock_irqsave(&cfq_exit_lock
, flags
);
1289 n
= rb_first(&ioc
->cic_root
);
1291 __cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
1293 cfq_exit_single_io_context(__cic
);
1297 read_unlock_irqrestore(&cfq_exit_lock
, flags
);
1300 static struct cfq_io_context
*
1301 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1303 struct cfq_io_context
*cic
= kmem_cache_alloc(cfq_ioc_pool
, gfp_mask
);
1306 RB_CLEAR(&cic
->rb_node
);
1308 cic
->cfqq
[ASYNC
] = NULL
;
1309 cic
->cfqq
[SYNC
] = NULL
;
1310 cic
->last_end_request
= jiffies
;
1311 cic
->ttime_total
= 0;
1312 cic
->ttime_samples
= 0;
1313 cic
->ttime_mean
= 0;
1314 cic
->dtor
= cfq_free_io_context
;
1315 cic
->exit
= cfq_exit_io_context
;
1316 INIT_LIST_HEAD(&cic
->queue_list
);
1317 atomic_inc(&ioc_count
);
1323 static void cfq_init_prio_data(struct cfq_queue
*cfqq
)
1325 struct task_struct
*tsk
= current
;
1328 if (!cfq_cfqq_prio_changed(cfqq
))
1331 ioprio_class
= IOPRIO_PRIO_CLASS(tsk
->ioprio
);
1332 switch (ioprio_class
) {
1334 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
1335 case IOPRIO_CLASS_NONE
:
1337 * no prio set, place us in the middle of the BE classes
1339 cfqq
->ioprio
= task_nice_ioprio(tsk
);
1340 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1342 case IOPRIO_CLASS_RT
:
1343 cfqq
->ioprio
= task_ioprio(tsk
);
1344 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
1346 case IOPRIO_CLASS_BE
:
1347 cfqq
->ioprio
= task_ioprio(tsk
);
1348 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1350 case IOPRIO_CLASS_IDLE
:
1351 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
1353 cfq_clear_cfqq_idle_window(cfqq
);
1358 * keep track of original prio settings in case we have to temporarily
1359 * elevate the priority of this queue
1361 cfqq
->org_ioprio
= cfqq
->ioprio
;
1362 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
1364 if (cfq_cfqq_on_rr(cfqq
))
1365 cfq_resort_rr_list(cfqq
, 0);
1367 cfq_clear_cfqq_prio_changed(cfqq
);
1370 static inline void changed_ioprio(struct cfq_io_context
*cic
)
1372 struct cfq_data
*cfqd
= cic
->key
;
1373 struct cfq_queue
*cfqq
;
1375 spin_lock(cfqd
->queue
->queue_lock
);
1376 cfqq
= cic
->cfqq
[ASYNC
];
1378 struct cfq_queue
*new_cfqq
;
1379 new_cfqq
= cfq_get_queue(cfqd
, CFQ_KEY_ASYNC
,
1380 cic
->ioc
->task
, GFP_ATOMIC
);
1382 cic
->cfqq
[ASYNC
] = new_cfqq
;
1383 cfq_put_queue(cfqq
);
1386 cfqq
= cic
->cfqq
[SYNC
];
1388 cfq_mark_cfqq_prio_changed(cfqq
);
1389 cfq_init_prio_data(cfqq
);
1391 spin_unlock(cfqd
->queue
->queue_lock
);
1396 * callback from sys_ioprio_set, irqs are disabled
1398 static int cfq_ioc_set_ioprio(struct io_context
*ioc
, unsigned int ioprio
)
1400 struct cfq_io_context
*cic
;
1403 write_lock(&cfq_exit_lock
);
1405 n
= rb_first(&ioc
->cic_root
);
1407 cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
1409 changed_ioprio(cic
);
1413 write_unlock(&cfq_exit_lock
);
1418 static struct cfq_queue
*
1419 cfq_get_queue(struct cfq_data
*cfqd
, unsigned int key
, struct task_struct
*tsk
,
1422 const int hashval
= hash_long(key
, CFQ_QHASH_SHIFT
);
1423 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
1424 unsigned short ioprio
;
1427 ioprio
= tsk
->ioprio
;
1428 cfqq
= __cfq_find_cfq_hash(cfqd
, key
, ioprio
, hashval
);
1434 } else if (gfp_mask
& __GFP_WAIT
) {
1435 spin_unlock_irq(cfqd
->queue
->queue_lock
);
1436 new_cfqq
= kmem_cache_alloc(cfq_pool
, gfp_mask
);
1437 spin_lock_irq(cfqd
->queue
->queue_lock
);
1440 cfqq
= kmem_cache_alloc(cfq_pool
, gfp_mask
);
1445 memset(cfqq
, 0, sizeof(*cfqq
));
1447 INIT_HLIST_NODE(&cfqq
->cfq_hash
);
1448 INIT_LIST_HEAD(&cfqq
->cfq_list
);
1449 RB_CLEAR_ROOT(&cfqq
->sort_list
);
1450 INIT_LIST_HEAD(&cfqq
->fifo
);
1453 hlist_add_head(&cfqq
->cfq_hash
, &cfqd
->cfq_hash
[hashval
]);
1454 atomic_set(&cfqq
->ref
, 0);
1456 cfqq
->service_last
= 0;
1458 * set ->slice_left to allow preemption for a new process
1460 cfqq
->slice_left
= 2 * cfqd
->cfq_slice_idle
;
1461 cfq_mark_cfqq_idle_window(cfqq
);
1462 cfq_mark_cfqq_prio_changed(cfqq
);
1463 cfq_init_prio_data(cfqq
);
1467 kmem_cache_free(cfq_pool
, new_cfqq
);
1469 atomic_inc(&cfqq
->ref
);
1471 WARN_ON((gfp_mask
& __GFP_WAIT
) && !cfqq
);
1476 cfq_drop_dead_cic(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1478 read_lock(&cfq_exit_lock
);
1479 rb_erase(&cic
->rb_node
, &ioc
->cic_root
);
1480 read_unlock(&cfq_exit_lock
);
1481 kmem_cache_free(cfq_ioc_pool
, cic
);
1482 atomic_dec(&ioc_count
);
1485 static struct cfq_io_context
*
1486 cfq_cic_rb_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
1489 struct cfq_io_context
*cic
;
1490 void *k
, *key
= cfqd
;
1493 n
= ioc
->cic_root
.rb_node
;
1495 cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
1496 /* ->key must be copied to avoid race with cfq_exit_queue() */
1499 cfq_drop_dead_cic(ioc
, cic
);
1515 cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
1516 struct cfq_io_context
*cic
)
1519 struct rb_node
*parent
;
1520 struct cfq_io_context
*__cic
;
1526 ioc
->set_ioprio
= cfq_ioc_set_ioprio
;
1529 p
= &ioc
->cic_root
.rb_node
;
1532 __cic
= rb_entry(parent
, struct cfq_io_context
, rb_node
);
1533 /* ->key must be copied to avoid race with cfq_exit_queue() */
1536 cfq_drop_dead_cic(ioc
, cic
);
1542 else if (cic
->key
> k
)
1543 p
= &(*p
)->rb_right
;
1548 read_lock(&cfq_exit_lock
);
1549 rb_link_node(&cic
->rb_node
, parent
, p
);
1550 rb_insert_color(&cic
->rb_node
, &ioc
->cic_root
);
1551 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
1552 read_unlock(&cfq_exit_lock
);
1556 * Setup general io context and cfq io context. There can be several cfq
1557 * io contexts per general io context, if this process is doing io to more
1558 * than one device managed by cfq.
1560 static struct cfq_io_context
*
1561 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1563 struct io_context
*ioc
= NULL
;
1564 struct cfq_io_context
*cic
;
1566 might_sleep_if(gfp_mask
& __GFP_WAIT
);
1568 ioc
= get_io_context(gfp_mask
);
1572 cic
= cfq_cic_rb_lookup(cfqd
, ioc
);
1576 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
1580 cfq_cic_link(cfqd
, ioc
, cic
);
1584 put_io_context(ioc
);
1589 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
1591 unsigned long elapsed
, ttime
;
1594 * if this context already has stuff queued, thinktime is from
1595 * last queue not last end
1598 if (time_after(cic
->last_end_request
, cic
->last_queue
))
1599 elapsed
= jiffies
- cic
->last_end_request
;
1601 elapsed
= jiffies
- cic
->last_queue
;
1603 elapsed
= jiffies
- cic
->last_end_request
;
1606 ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
1608 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
1609 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
1610 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
1614 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
1620 if (cic
->last_request_pos
< crq
->request
->sector
)
1621 sdist
= crq
->request
->sector
- cic
->last_request_pos
;
1623 sdist
= cic
->last_request_pos
- crq
->request
->sector
;
1626 * Don't allow the seek distance to get too large from the
1627 * odd fragment, pagein, etc
1629 if (cic
->seek_samples
<= 60) /* second&third seek */
1630 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*1024);
1632 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*64);
1634 cic
->seek_samples
= (7*cic
->seek_samples
+ 256) / 8;
1635 cic
->seek_total
= (7*cic
->seek_total
+ (u64
)256*sdist
) / 8;
1636 total
= cic
->seek_total
+ (cic
->seek_samples
/2);
1637 do_div(total
, cic
->seek_samples
);
1638 cic
->seek_mean
= (sector_t
)total
;
1642 * Disable idle window if the process thinks too long or seeks so much that
1646 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1647 struct cfq_io_context
*cic
)
1649 int enable_idle
= cfq_cfqq_idle_window(cfqq
);
1651 if (!cic
->ioc
->task
|| !cfqd
->cfq_slice_idle
)
1653 else if (sample_valid(cic
->ttime_samples
)) {
1654 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
1661 cfq_mark_cfqq_idle_window(cfqq
);
1663 cfq_clear_cfqq_idle_window(cfqq
);
1668 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1669 * no or if we aren't sure, a 1 will cause a preempt.
1672 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
1675 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1677 if (cfq_class_idle(new_cfqq
))
1683 if (cfq_class_idle(cfqq
))
1685 if (!cfq_cfqq_wait_request(new_cfqq
))
1688 * if it doesn't have slice left, forget it
1690 if (new_cfqq
->slice_left
< cfqd
->cfq_slice_idle
)
1692 if (cfq_crq_is_sync(crq
) && !cfq_cfqq_sync(cfqq
))
1699 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1700 * let it have half of its nominal slice.
1702 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1704 struct cfq_queue
*__cfqq
, *next
;
1706 list_for_each_entry_safe(__cfqq
, next
, &cfqd
->cur_rr
, cfq_list
)
1707 cfq_resort_rr_list(__cfqq
, 1);
1709 if (!cfqq
->slice_left
)
1710 cfqq
->slice_left
= cfq_prio_to_slice(cfqd
, cfqq
) / 2;
1712 cfqq
->slice_end
= cfqq
->slice_left
+ jiffies
;
1713 __cfq_slice_expired(cfqd
, cfqq
, 1);
1714 __cfq_set_active_queue(cfqd
, cfqq
);
1718 * should really be a ll_rw_blk.c helper
1720 static void cfq_start_queueing(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1722 request_queue_t
*q
= cfqd
->queue
;
1724 if (!blk_queue_plugged(q
))
1727 __generic_unplug_device(q
);
1731 * Called when a new fs request (crq) is added (to cfqq). Check if there's
1732 * something we should do about it
1735 cfq_crq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1738 struct cfq_io_context
*cic
;
1740 cfqq
->next_crq
= cfq_choose_req(cfqd
, cfqq
->next_crq
, crq
);
1743 * we never wait for an async request and we don't allow preemption
1744 * of an async request. so just return early
1746 if (!cfq_crq_is_sync(crq
))
1749 cic
= crq
->io_context
;
1751 cfq_update_io_thinktime(cfqd
, cic
);
1752 cfq_update_io_seektime(cfqd
, cic
, crq
);
1753 cfq_update_idle_window(cfqd
, cfqq
, cic
);
1755 cic
->last_queue
= jiffies
;
1756 cic
->last_request_pos
= crq
->request
->sector
+ crq
->request
->nr_sectors
;
1758 if (cfqq
== cfqd
->active_queue
) {
1760 * if we are waiting for a request for this queue, let it rip
1761 * immediately and flag that we must not expire this queue
1764 if (cfq_cfqq_wait_request(cfqq
)) {
1765 cfq_mark_cfqq_must_dispatch(cfqq
);
1766 del_timer(&cfqd
->idle_slice_timer
);
1767 cfq_start_queueing(cfqd
, cfqq
);
1769 } else if (cfq_should_preempt(cfqd
, cfqq
, crq
)) {
1771 * not the active queue - expire current slice if it is
1772 * idle and has expired it's mean thinktime or this new queue
1773 * has some old slice time left and is of higher priority
1775 cfq_preempt_queue(cfqd
, cfqq
);
1776 cfq_mark_cfqq_must_dispatch(cfqq
);
1777 cfq_start_queueing(cfqd
, cfqq
);
1781 static void cfq_insert_request(request_queue_t
*q
, struct request
*rq
)
1783 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1784 struct cfq_rq
*crq
= RQ_DATA(rq
);
1785 struct cfq_queue
*cfqq
= crq
->cfq_queue
;
1787 cfq_init_prio_data(cfqq
);
1789 cfq_add_crq_rb(crq
);
1791 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
1793 if (rq_mergeable(rq
))
1794 cfq_add_crq_hash(cfqd
, crq
);
1796 cfq_crq_enqueued(cfqd
, cfqq
, crq
);
1799 static void cfq_completed_request(request_queue_t
*q
, struct request
*rq
)
1801 struct cfq_rq
*crq
= RQ_DATA(rq
);
1802 struct cfq_queue
*cfqq
= crq
->cfq_queue
;
1803 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1804 const int sync
= cfq_crq_is_sync(crq
);
1809 WARN_ON(!cfqd
->rq_in_driver
);
1810 WARN_ON(!cfqq
->on_dispatch
[sync
]);
1811 cfqd
->rq_in_driver
--;
1812 cfqq
->on_dispatch
[sync
]--;
1814 if (!cfq_class_idle(cfqq
))
1815 cfqd
->last_end_request
= now
;
1817 if (!cfq_cfqq_dispatched(cfqq
)) {
1818 if (cfq_cfqq_on_rr(cfqq
)) {
1819 cfqq
->service_last
= now
;
1820 cfq_resort_rr_list(cfqq
, 0);
1822 cfq_schedule_dispatch(cfqd
);
1825 if (cfq_crq_is_sync(crq
))
1826 crq
->io_context
->last_end_request
= now
;
1829 static struct request
*
1830 cfq_former_request(request_queue_t
*q
, struct request
*rq
)
1832 struct cfq_rq
*crq
= RQ_DATA(rq
);
1833 struct rb_node
*rbprev
= rb_prev(&crq
->rb_node
);
1836 return rb_entry_crq(rbprev
)->request
;
1841 static struct request
*
1842 cfq_latter_request(request_queue_t
*q
, struct request
*rq
)
1844 struct cfq_rq
*crq
= RQ_DATA(rq
);
1845 struct rb_node
*rbnext
= rb_next(&crq
->rb_node
);
1848 return rb_entry_crq(rbnext
)->request
;
1854 * we temporarily boost lower priority queues if they are holding fs exclusive
1855 * resources. they are boosted to normal prio (CLASS_BE/4)
1857 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
1859 const int ioprio_class
= cfqq
->ioprio_class
;
1860 const int ioprio
= cfqq
->ioprio
;
1862 if (has_fs_excl()) {
1864 * boost idle prio on transactions that would lock out other
1865 * users of the filesystem
1867 if (cfq_class_idle(cfqq
))
1868 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1869 if (cfqq
->ioprio
> IOPRIO_NORM
)
1870 cfqq
->ioprio
= IOPRIO_NORM
;
1873 * check if we need to unboost the queue
1875 if (cfqq
->ioprio_class
!= cfqq
->org_ioprio_class
)
1876 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
1877 if (cfqq
->ioprio
!= cfqq
->org_ioprio
)
1878 cfqq
->ioprio
= cfqq
->org_ioprio
;
1882 * refile between round-robin lists if we moved the priority class
1884 if ((ioprio_class
!= cfqq
->ioprio_class
|| ioprio
!= cfqq
->ioprio
) &&
1885 cfq_cfqq_on_rr(cfqq
))
1886 cfq_resort_rr_list(cfqq
, 0);
1890 __cfq_may_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1891 struct task_struct
*task
, int rw
)
1894 if ((cfq_cfqq_wait_request(cfqq
) || cfq_cfqq_must_alloc(cfqq
)) &&
1895 !cfq_cfqq_must_alloc_slice(cfqq
)) {
1896 cfq_mark_cfqq_must_alloc_slice(cfqq
);
1897 return ELV_MQUEUE_MUST
;
1900 return ELV_MQUEUE_MAY
;
1902 if (!cfqq
|| task
->flags
& PF_MEMALLOC
)
1903 return ELV_MQUEUE_MAY
;
1904 if (!cfqq
->allocated
[rw
] || cfq_cfqq_must_alloc(cfqq
)) {
1905 if (cfq_cfqq_wait_request(cfqq
))
1906 return ELV_MQUEUE_MUST
;
1909 * only allow 1 ELV_MQUEUE_MUST per slice, otherwise we
1910 * can quickly flood the queue with writes from a single task
1912 if (rw
== READ
|| !cfq_cfqq_must_alloc_slice(cfqq
)) {
1913 cfq_mark_cfqq_must_alloc_slice(cfqq
);
1914 return ELV_MQUEUE_MUST
;
1917 return ELV_MQUEUE_MAY
;
1919 if (cfq_class_idle(cfqq
))
1920 return ELV_MQUEUE_NO
;
1921 if (cfqq
->allocated
[rw
] >= cfqd
->max_queued
) {
1922 struct io_context
*ioc
= get_io_context(GFP_ATOMIC
);
1923 int ret
= ELV_MQUEUE_NO
;
1925 if (ioc
&& ioc
->nr_batch_requests
)
1926 ret
= ELV_MQUEUE_MAY
;
1928 put_io_context(ioc
);
1932 return ELV_MQUEUE_MAY
;
1936 static int cfq_may_queue(request_queue_t
*q
, int rw
, struct bio
*bio
)
1938 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1939 struct task_struct
*tsk
= current
;
1940 struct cfq_queue
*cfqq
;
1943 * don't force setup of a queue from here, as a call to may_queue
1944 * does not necessarily imply that a request actually will be queued.
1945 * so just lookup a possibly existing queue, or return 'may queue'
1948 cfqq
= cfq_find_cfq_hash(cfqd
, cfq_queue_pid(tsk
, rw
), tsk
->ioprio
);
1950 cfq_init_prio_data(cfqq
);
1951 cfq_prio_boost(cfqq
);
1953 return __cfq_may_queue(cfqd
, cfqq
, tsk
, rw
);
1956 return ELV_MQUEUE_MAY
;
1959 static void cfq_check_waiters(request_queue_t
*q
, struct cfq_queue
*cfqq
)
1961 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1962 struct request_list
*rl
= &q
->rq
;
1964 if (cfqq
->allocated
[READ
] <= cfqd
->max_queued
|| cfqd
->rq_starved
) {
1966 if (waitqueue_active(&rl
->wait
[READ
]))
1967 wake_up(&rl
->wait
[READ
]);
1970 if (cfqq
->allocated
[WRITE
] <= cfqd
->max_queued
|| cfqd
->rq_starved
) {
1972 if (waitqueue_active(&rl
->wait
[WRITE
]))
1973 wake_up(&rl
->wait
[WRITE
]);
1978 * queue lock held here
1980 static void cfq_put_request(request_queue_t
*q
, struct request
*rq
)
1982 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1983 struct cfq_rq
*crq
= RQ_DATA(rq
);
1986 struct cfq_queue
*cfqq
= crq
->cfq_queue
;
1987 const int rw
= rq_data_dir(rq
);
1989 BUG_ON(!cfqq
->allocated
[rw
]);
1990 cfqq
->allocated
[rw
]--;
1992 put_io_context(crq
->io_context
->ioc
);
1994 mempool_free(crq
, cfqd
->crq_pool
);
1995 rq
->elevator_private
= NULL
;
1997 cfq_check_waiters(q
, cfqq
);
1998 cfq_put_queue(cfqq
);
2003 * Allocate cfq data structures associated with this request.
2006 cfq_set_request(request_queue_t
*q
, struct request
*rq
, struct bio
*bio
,
2009 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2010 struct task_struct
*tsk
= current
;
2011 struct cfq_io_context
*cic
;
2012 const int rw
= rq_data_dir(rq
);
2013 pid_t key
= cfq_queue_pid(tsk
, rw
);
2014 struct cfq_queue
*cfqq
;
2016 unsigned long flags
;
2017 int is_sync
= key
!= CFQ_KEY_ASYNC
;
2019 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2021 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
2023 spin_lock_irqsave(q
->queue_lock
, flags
);
2028 if (!cic
->cfqq
[is_sync
]) {
2029 cfqq
= cfq_get_queue(cfqd
, key
, tsk
, gfp_mask
);
2033 cic
->cfqq
[is_sync
] = cfqq
;
2035 cfqq
= cic
->cfqq
[is_sync
];
2037 cfqq
->allocated
[rw
]++;
2038 cfq_clear_cfqq_must_alloc(cfqq
);
2039 cfqd
->rq_starved
= 0;
2040 atomic_inc(&cfqq
->ref
);
2041 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2043 crq
= mempool_alloc(cfqd
->crq_pool
, gfp_mask
);
2045 RB_CLEAR(&crq
->rb_node
);
2048 INIT_HLIST_NODE(&crq
->hash
);
2049 crq
->cfq_queue
= cfqq
;
2050 crq
->io_context
= cic
;
2053 cfq_mark_crq_is_sync(crq
);
2055 cfq_clear_crq_is_sync(crq
);
2057 rq
->elevator_private
= crq
;
2061 spin_lock_irqsave(q
->queue_lock
, flags
);
2062 cfqq
->allocated
[rw
]--;
2063 if (!(cfqq
->allocated
[0] + cfqq
->allocated
[1]))
2064 cfq_mark_cfqq_must_alloc(cfqq
);
2065 cfq_put_queue(cfqq
);
2068 put_io_context(cic
->ioc
);
2070 * mark us rq allocation starved. we need to kickstart the process
2071 * ourselves if there are no pending requests that can do it for us.
2072 * that would be an extremely rare OOM situation
2074 cfqd
->rq_starved
= 1;
2075 cfq_schedule_dispatch(cfqd
);
2076 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2080 static void cfq_kick_queue(void *data
)
2082 request_queue_t
*q
= data
;
2083 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2084 unsigned long flags
;
2086 spin_lock_irqsave(q
->queue_lock
, flags
);
2088 if (cfqd
->rq_starved
) {
2089 struct request_list
*rl
= &q
->rq
;
2092 * we aren't guaranteed to get a request after this, but we
2093 * have to be opportunistic
2096 if (waitqueue_active(&rl
->wait
[READ
]))
2097 wake_up(&rl
->wait
[READ
]);
2098 if (waitqueue_active(&rl
->wait
[WRITE
]))
2099 wake_up(&rl
->wait
[WRITE
]);
2104 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2108 * Timer running if the active_queue is currently idling inside its time slice
2110 static void cfq_idle_slice_timer(unsigned long data
)
2112 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
2113 struct cfq_queue
*cfqq
;
2114 unsigned long flags
;
2116 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2118 if ((cfqq
= cfqd
->active_queue
) != NULL
) {
2119 unsigned long now
= jiffies
;
2124 if (time_after(now
, cfqq
->slice_end
))
2128 * only expire and reinvoke request handler, if there are
2129 * other queues with pending requests
2131 if (!cfqd
->busy_queues
) {
2132 cfqd
->idle_slice_timer
.expires
= min(now
+ cfqd
->cfq_slice_idle
, cfqq
->slice_end
);
2133 add_timer(&cfqd
->idle_slice_timer
);
2138 * not expired and it has a request pending, let it dispatch
2140 if (!RB_EMPTY(&cfqq
->sort_list
)) {
2141 cfq_mark_cfqq_must_dispatch(cfqq
);
2146 cfq_slice_expired(cfqd
, 0);
2148 cfq_schedule_dispatch(cfqd
);
2150 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2154 * Timer running if an idle class queue is waiting for service
2156 static void cfq_idle_class_timer(unsigned long data
)
2158 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
2159 unsigned long flags
, end
;
2161 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2164 * race with a non-idle queue, reset timer
2166 end
= cfqd
->last_end_request
+ CFQ_IDLE_GRACE
;
2167 if (!time_after_eq(jiffies
, end
)) {
2168 cfqd
->idle_class_timer
.expires
= end
;
2169 add_timer(&cfqd
->idle_class_timer
);
2171 cfq_schedule_dispatch(cfqd
);
2173 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2176 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
2178 del_timer_sync(&cfqd
->idle_slice_timer
);
2179 del_timer_sync(&cfqd
->idle_class_timer
);
2180 blk_sync_queue(cfqd
->queue
);
2183 static void cfq_exit_queue(elevator_t
*e
)
2185 struct cfq_data
*cfqd
= e
->elevator_data
;
2186 request_queue_t
*q
= cfqd
->queue
;
2188 cfq_shutdown_timer_wq(cfqd
);
2190 write_lock(&cfq_exit_lock
);
2191 spin_lock_irq(q
->queue_lock
);
2193 if (cfqd
->active_queue
)
2194 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
2196 while (!list_empty(&cfqd
->cic_list
)) {
2197 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
2198 struct cfq_io_context
,
2200 if (cic
->cfqq
[ASYNC
]) {
2201 cfq_put_queue(cic
->cfqq
[ASYNC
]);
2202 cic
->cfqq
[ASYNC
] = NULL
;
2204 if (cic
->cfqq
[SYNC
]) {
2205 cfq_put_queue(cic
->cfqq
[SYNC
]);
2206 cic
->cfqq
[SYNC
] = NULL
;
2209 list_del_init(&cic
->queue_list
);
2212 spin_unlock_irq(q
->queue_lock
);
2213 write_unlock(&cfq_exit_lock
);
2215 cfq_shutdown_timer_wq(cfqd
);
2217 mempool_destroy(cfqd
->crq_pool
);
2218 kfree(cfqd
->crq_hash
);
2219 kfree(cfqd
->cfq_hash
);
2223 static int cfq_init_queue(request_queue_t
*q
, elevator_t
*e
)
2225 struct cfq_data
*cfqd
;
2228 cfqd
= kmalloc(sizeof(*cfqd
), GFP_KERNEL
);
2232 memset(cfqd
, 0, sizeof(*cfqd
));
2234 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
2235 INIT_LIST_HEAD(&cfqd
->rr_list
[i
]);
2237 INIT_LIST_HEAD(&cfqd
->busy_rr
);
2238 INIT_LIST_HEAD(&cfqd
->cur_rr
);
2239 INIT_LIST_HEAD(&cfqd
->idle_rr
);
2240 INIT_LIST_HEAD(&cfqd
->empty_list
);
2241 INIT_LIST_HEAD(&cfqd
->cic_list
);
2243 cfqd
->crq_hash
= kmalloc(sizeof(struct hlist_head
) * CFQ_MHASH_ENTRIES
, GFP_KERNEL
);
2244 if (!cfqd
->crq_hash
)
2247 cfqd
->cfq_hash
= kmalloc(sizeof(struct hlist_head
) * CFQ_QHASH_ENTRIES
, GFP_KERNEL
);
2248 if (!cfqd
->cfq_hash
)
2251 cfqd
->crq_pool
= mempool_create_slab_pool(BLKDEV_MIN_RQ
, crq_pool
);
2252 if (!cfqd
->crq_pool
)
2255 for (i
= 0; i
< CFQ_MHASH_ENTRIES
; i
++)
2256 INIT_HLIST_HEAD(&cfqd
->crq_hash
[i
]);
2257 for (i
= 0; i
< CFQ_QHASH_ENTRIES
; i
++)
2258 INIT_HLIST_HEAD(&cfqd
->cfq_hash
[i
]);
2260 e
->elevator_data
= cfqd
;
2264 cfqd
->max_queued
= q
->nr_requests
/ 4;
2265 q
->nr_batching
= cfq_queued
;
2267 init_timer(&cfqd
->idle_slice_timer
);
2268 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
2269 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
2271 init_timer(&cfqd
->idle_class_timer
);
2272 cfqd
->idle_class_timer
.function
= cfq_idle_class_timer
;
2273 cfqd
->idle_class_timer
.data
= (unsigned long) cfqd
;
2275 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
, q
);
2277 cfqd
->cfq_queued
= cfq_queued
;
2278 cfqd
->cfq_quantum
= cfq_quantum
;
2279 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
2280 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
2281 cfqd
->cfq_back_max
= cfq_back_max
;
2282 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
2283 cfqd
->cfq_slice
[0] = cfq_slice_async
;
2284 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
2285 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
2286 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
2290 kfree(cfqd
->cfq_hash
);
2292 kfree(cfqd
->crq_hash
);
2298 static void cfq_slab_kill(void)
2301 kmem_cache_destroy(crq_pool
);
2303 kmem_cache_destroy(cfq_pool
);
2305 kmem_cache_destroy(cfq_ioc_pool
);
2308 static int __init
cfq_slab_setup(void)
2310 crq_pool
= kmem_cache_create("crq_pool", sizeof(struct cfq_rq
), 0, 0,
2315 cfq_pool
= kmem_cache_create("cfq_pool", sizeof(struct cfq_queue
), 0, 0,
2320 cfq_ioc_pool
= kmem_cache_create("cfq_ioc_pool",
2321 sizeof(struct cfq_io_context
), 0, 0, NULL
, NULL
);
2332 * sysfs parts below -->
2336 cfq_var_show(unsigned int var
, char *page
)
2338 return sprintf(page
, "%d\n", var
);
2342 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
2344 char *p
= (char *) page
;
2346 *var
= simple_strtoul(p
, &p
, 10);
2350 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2351 static ssize_t __FUNC(elevator_t *e, char *page) \
2353 struct cfq_data *cfqd = e->elevator_data; \
2354 unsigned int __data = __VAR; \
2356 __data = jiffies_to_msecs(__data); \
2357 return cfq_var_show(__data, (page)); \
2359 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
2360 SHOW_FUNCTION(cfq_queued_show
, cfqd
->cfq_queued
, 0);
2361 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
2362 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
2363 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
2364 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
2365 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
2366 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
2367 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
2368 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
2369 #undef SHOW_FUNCTION
2371 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2372 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2374 struct cfq_data *cfqd = e->elevator_data; \
2375 unsigned int __data; \
2376 int ret = cfq_var_store(&__data, (page), count); \
2377 if (__data < (MIN)) \
2379 else if (__data > (MAX)) \
2382 *(__PTR) = msecs_to_jiffies(__data); \
2384 *(__PTR) = __data; \
2387 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
2388 STORE_FUNCTION(cfq_queued_store
, &cfqd
->cfq_queued
, 1, UINT_MAX
, 0);
2389 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1, UINT_MAX
, 1);
2390 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1, UINT_MAX
, 1);
2391 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
2392 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1, UINT_MAX
, 0);
2393 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
2394 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
2395 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
2396 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1, UINT_MAX
, 0);
2397 #undef STORE_FUNCTION
2399 #define CFQ_ATTR(name) \
2400 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2402 static struct elv_fs_entry cfq_attrs
[] = {
2405 CFQ_ATTR(fifo_expire_sync
),
2406 CFQ_ATTR(fifo_expire_async
),
2407 CFQ_ATTR(back_seek_max
),
2408 CFQ_ATTR(back_seek_penalty
),
2409 CFQ_ATTR(slice_sync
),
2410 CFQ_ATTR(slice_async
),
2411 CFQ_ATTR(slice_async_rq
),
2412 CFQ_ATTR(slice_idle
),
2416 static struct elevator_type iosched_cfq
= {
2418 .elevator_merge_fn
= cfq_merge
,
2419 .elevator_merged_fn
= cfq_merged_request
,
2420 .elevator_merge_req_fn
= cfq_merged_requests
,
2421 .elevator_dispatch_fn
= cfq_dispatch_requests
,
2422 .elevator_add_req_fn
= cfq_insert_request
,
2423 .elevator_activate_req_fn
= cfq_activate_request
,
2424 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
2425 .elevator_queue_empty_fn
= cfq_queue_empty
,
2426 .elevator_completed_req_fn
= cfq_completed_request
,
2427 .elevator_former_req_fn
= cfq_former_request
,
2428 .elevator_latter_req_fn
= cfq_latter_request
,
2429 .elevator_set_req_fn
= cfq_set_request
,
2430 .elevator_put_req_fn
= cfq_put_request
,
2431 .elevator_may_queue_fn
= cfq_may_queue
,
2432 .elevator_init_fn
= cfq_init_queue
,
2433 .elevator_exit_fn
= cfq_exit_queue
,
2436 .elevator_attrs
= cfq_attrs
,
2437 .elevator_name
= "cfq",
2438 .elevator_owner
= THIS_MODULE
,
2441 static int __init
cfq_init(void)
2446 * could be 0 on HZ < 1000 setups
2448 if (!cfq_slice_async
)
2449 cfq_slice_async
= 1;
2450 if (!cfq_slice_idle
)
2453 if (cfq_slab_setup())
2456 ret
= elv_register(&iosched_cfq
);
2463 static void __exit
cfq_exit(void)
2465 DECLARE_COMPLETION(all_gone
);
2466 elv_unregister(&iosched_cfq
);
2467 ioc_gone
= &all_gone
;
2468 /* ioc_gone's update must be visible before reading ioc_count */
2470 if (atomic_read(&ioc_count
))
2471 wait_for_completion(ioc_gone
);
2476 module_init(cfq_init
);
2477 module_exit(cfq_exit
);
2479 MODULE_AUTHOR("Jens Axboe");
2480 MODULE_LICENSE("GPL");
2481 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");