[PATCH] v4l: 669: added prolink pixelview pv bt878p rev 2e compatibility
[linux-2.6/suspend2-2.6.18.git] / net / ipv6 / ip6_fib.c
blob1bf6d9a769e61fa2a54a1838c9f26a0aaf502127
1 /*
2 * Linux INET6 implementation
3 * Forwarding Information Database
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
8 * $Id: ip6_fib.c,v 1.25 2001/10/31 21:55:55 davem Exp $
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
17 * Changes:
18 * Yuji SEKIYA @USAGI: Support default route on router node;
19 * remove ip6_null_entry from the top of
20 * routing table.
22 #include <linux/config.h>
23 #include <linux/errno.h>
24 #include <linux/types.h>
25 #include <linux/net.h>
26 #include <linux/route.h>
27 #include <linux/netdevice.h>
28 #include <linux/in6.h>
29 #include <linux/init.h>
31 #ifdef CONFIG_PROC_FS
32 #include <linux/proc_fs.h>
33 #endif
35 #include <net/ipv6.h>
36 #include <net/ndisc.h>
37 #include <net/addrconf.h>
39 #include <net/ip6_fib.h>
40 #include <net/ip6_route.h>
42 #define RT6_DEBUG 2
44 #if RT6_DEBUG >= 3
45 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
46 #else
47 #define RT6_TRACE(x...) do { ; } while (0)
48 #endif
50 struct rt6_statistics rt6_stats;
52 static kmem_cache_t * fib6_node_kmem __read_mostly;
54 enum fib_walk_state_t
56 #ifdef CONFIG_IPV6_SUBTREES
57 FWS_S,
58 #endif
59 FWS_L,
60 FWS_R,
61 FWS_C,
62 FWS_U
65 struct fib6_cleaner_t
67 struct fib6_walker_t w;
68 int (*func)(struct rt6_info *, void *arg);
69 void *arg;
72 DEFINE_RWLOCK(fib6_walker_lock);
75 #ifdef CONFIG_IPV6_SUBTREES
76 #define FWS_INIT FWS_S
77 #define SUBTREE(fn) ((fn)->subtree)
78 #else
79 #define FWS_INIT FWS_L
80 #define SUBTREE(fn) NULL
81 #endif
83 static void fib6_prune_clones(struct fib6_node *fn, struct rt6_info *rt);
84 static struct fib6_node * fib6_repair_tree(struct fib6_node *fn);
87 * A routing update causes an increase of the serial number on the
88 * affected subtree. This allows for cached routes to be asynchronously
89 * tested when modifications are made to the destination cache as a
90 * result of redirects, path MTU changes, etc.
93 static __u32 rt_sernum;
95 static DEFINE_TIMER(ip6_fib_timer, fib6_run_gc, 0, 0);
97 struct fib6_walker_t fib6_walker_list = {
98 .prev = &fib6_walker_list,
99 .next = &fib6_walker_list,
102 #define FOR_WALKERS(w) for ((w)=fib6_walker_list.next; (w) != &fib6_walker_list; (w)=(w)->next)
104 static __inline__ u32 fib6_new_sernum(void)
106 u32 n = ++rt_sernum;
107 if ((__s32)n <= 0)
108 rt_sernum = n = 1;
109 return n;
113 * Auxiliary address test functions for the radix tree.
115 * These assume a 32bit processor (although it will work on
116 * 64bit processors)
120 * test bit
123 static __inline__ int addr_bit_set(void *token, int fn_bit)
125 __u32 *addr = token;
127 return htonl(1 << ((~fn_bit)&0x1F)) & addr[fn_bit>>5];
130 static __inline__ struct fib6_node * node_alloc(void)
132 struct fib6_node *fn;
134 if ((fn = kmem_cache_alloc(fib6_node_kmem, SLAB_ATOMIC)) != NULL)
135 memset(fn, 0, sizeof(struct fib6_node));
137 return fn;
140 static __inline__ void node_free(struct fib6_node * fn)
142 kmem_cache_free(fib6_node_kmem, fn);
145 static __inline__ void rt6_release(struct rt6_info *rt)
147 if (atomic_dec_and_test(&rt->rt6i_ref))
148 dst_free(&rt->u.dst);
153 * Routing Table
155 * return the appropriate node for a routing tree "add" operation
156 * by either creating and inserting or by returning an existing
157 * node.
160 static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
161 int addrlen, int plen,
162 int offset)
164 struct fib6_node *fn, *in, *ln;
165 struct fib6_node *pn = NULL;
166 struct rt6key *key;
167 int bit;
168 int dir = 0;
169 __u32 sernum = fib6_new_sernum();
171 RT6_TRACE("fib6_add_1\n");
173 /* insert node in tree */
175 fn = root;
177 do {
178 key = (struct rt6key *)((u8 *)fn->leaf + offset);
181 * Prefix match
183 if (plen < fn->fn_bit ||
184 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
185 goto insert_above;
188 * Exact match ?
191 if (plen == fn->fn_bit) {
192 /* clean up an intermediate node */
193 if ((fn->fn_flags & RTN_RTINFO) == 0) {
194 rt6_release(fn->leaf);
195 fn->leaf = NULL;
198 fn->fn_sernum = sernum;
200 return fn;
204 * We have more bits to go
207 /* Try to walk down on tree. */
208 fn->fn_sernum = sernum;
209 dir = addr_bit_set(addr, fn->fn_bit);
210 pn = fn;
211 fn = dir ? fn->right: fn->left;
212 } while (fn);
215 * We walked to the bottom of tree.
216 * Create new leaf node without children.
219 ln = node_alloc();
221 if (ln == NULL)
222 return NULL;
223 ln->fn_bit = plen;
225 ln->parent = pn;
226 ln->fn_sernum = sernum;
228 if (dir)
229 pn->right = ln;
230 else
231 pn->left = ln;
233 return ln;
236 insert_above:
238 * split since we don't have a common prefix anymore or
239 * we have a less significant route.
240 * we've to insert an intermediate node on the list
241 * this new node will point to the one we need to create
242 * and the current
245 pn = fn->parent;
247 /* find 1st bit in difference between the 2 addrs.
249 See comment in __ipv6_addr_diff: bit may be an invalid value,
250 but if it is >= plen, the value is ignored in any case.
253 bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
256 * (intermediate)[in]
257 * / \
258 * (new leaf node)[ln] (old node)[fn]
260 if (plen > bit) {
261 in = node_alloc();
262 ln = node_alloc();
264 if (in == NULL || ln == NULL) {
265 if (in)
266 node_free(in);
267 if (ln)
268 node_free(ln);
269 return NULL;
273 * new intermediate node.
274 * RTN_RTINFO will
275 * be off since that an address that chooses one of
276 * the branches would not match less specific routes
277 * in the other branch
280 in->fn_bit = bit;
282 in->parent = pn;
283 in->leaf = fn->leaf;
284 atomic_inc(&in->leaf->rt6i_ref);
286 in->fn_sernum = sernum;
288 /* update parent pointer */
289 if (dir)
290 pn->right = in;
291 else
292 pn->left = in;
294 ln->fn_bit = plen;
296 ln->parent = in;
297 fn->parent = in;
299 ln->fn_sernum = sernum;
301 if (addr_bit_set(addr, bit)) {
302 in->right = ln;
303 in->left = fn;
304 } else {
305 in->left = ln;
306 in->right = fn;
308 } else { /* plen <= bit */
311 * (new leaf node)[ln]
312 * / \
313 * (old node)[fn] NULL
316 ln = node_alloc();
318 if (ln == NULL)
319 return NULL;
321 ln->fn_bit = plen;
323 ln->parent = pn;
325 ln->fn_sernum = sernum;
327 if (dir)
328 pn->right = ln;
329 else
330 pn->left = ln;
332 if (addr_bit_set(&key->addr, plen))
333 ln->right = fn;
334 else
335 ln->left = fn;
337 fn->parent = ln;
339 return ln;
343 * Insert routing information in a node.
346 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
347 struct nlmsghdr *nlh, struct netlink_skb_parms *req)
349 struct rt6_info *iter = NULL;
350 struct rt6_info **ins;
352 ins = &fn->leaf;
354 if (fn->fn_flags&RTN_TL_ROOT &&
355 fn->leaf == &ip6_null_entry &&
356 !(rt->rt6i_flags & (RTF_DEFAULT | RTF_ADDRCONF)) ){
357 fn->leaf = rt;
358 rt->u.next = NULL;
359 goto out;
362 for (iter = fn->leaf; iter; iter=iter->u.next) {
364 * Search for duplicates
367 if (iter->rt6i_metric == rt->rt6i_metric) {
369 * Same priority level
372 if (iter->rt6i_dev == rt->rt6i_dev &&
373 iter->rt6i_idev == rt->rt6i_idev &&
374 ipv6_addr_equal(&iter->rt6i_gateway,
375 &rt->rt6i_gateway)) {
376 if (!(iter->rt6i_flags&RTF_EXPIRES))
377 return -EEXIST;
378 iter->rt6i_expires = rt->rt6i_expires;
379 if (!(rt->rt6i_flags&RTF_EXPIRES)) {
380 iter->rt6i_flags &= ~RTF_EXPIRES;
381 iter->rt6i_expires = 0;
383 return -EEXIST;
387 if (iter->rt6i_metric > rt->rt6i_metric)
388 break;
390 ins = &iter->u.next;
394 * insert node
397 out:
398 rt->u.next = iter;
399 *ins = rt;
400 rt->rt6i_node = fn;
401 atomic_inc(&rt->rt6i_ref);
402 inet6_rt_notify(RTM_NEWROUTE, rt, nlh, req);
403 rt6_stats.fib_rt_entries++;
405 if ((fn->fn_flags & RTN_RTINFO) == 0) {
406 rt6_stats.fib_route_nodes++;
407 fn->fn_flags |= RTN_RTINFO;
410 return 0;
413 static __inline__ void fib6_start_gc(struct rt6_info *rt)
415 if (ip6_fib_timer.expires == 0 &&
416 (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
417 mod_timer(&ip6_fib_timer, jiffies + ip6_rt_gc_interval);
420 void fib6_force_start_gc(void)
422 if (ip6_fib_timer.expires == 0)
423 mod_timer(&ip6_fib_timer, jiffies + ip6_rt_gc_interval);
427 * Add routing information to the routing tree.
428 * <destination addr>/<source addr>
429 * with source addr info in sub-trees
432 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
433 struct nlmsghdr *nlh, void *_rtattr, struct netlink_skb_parms *req)
435 struct fib6_node *fn;
436 int err = -ENOMEM;
438 fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
439 rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst));
441 if (fn == NULL)
442 goto out;
444 #ifdef CONFIG_IPV6_SUBTREES
445 if (rt->rt6i_src.plen) {
446 struct fib6_node *sn;
448 if (fn->subtree == NULL) {
449 struct fib6_node *sfn;
452 * Create subtree.
454 * fn[main tree]
456 * sfn[subtree root]
458 * sn[new leaf node]
461 /* Create subtree root node */
462 sfn = node_alloc();
463 if (sfn == NULL)
464 goto st_failure;
466 sfn->leaf = &ip6_null_entry;
467 atomic_inc(&ip6_null_entry.rt6i_ref);
468 sfn->fn_flags = RTN_ROOT;
469 sfn->fn_sernum = fib6_new_sernum();
471 /* Now add the first leaf node to new subtree */
473 sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
474 sizeof(struct in6_addr), rt->rt6i_src.plen,
475 offsetof(struct rt6_info, rt6i_src));
477 if (sn == NULL) {
478 /* If it is failed, discard just allocated
479 root, and then (in st_failure) stale node
480 in main tree.
482 node_free(sfn);
483 goto st_failure;
486 /* Now link new subtree to main tree */
487 sfn->parent = fn;
488 fn->subtree = sfn;
489 if (fn->leaf == NULL) {
490 fn->leaf = rt;
491 atomic_inc(&rt->rt6i_ref);
493 } else {
494 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
495 sizeof(struct in6_addr), rt->rt6i_src.plen,
496 offsetof(struct rt6_info, rt6i_src));
498 if (sn == NULL)
499 goto st_failure;
502 fn = sn;
504 #endif
506 err = fib6_add_rt2node(fn, rt, nlh, req);
508 if (err == 0) {
509 fib6_start_gc(rt);
510 if (!(rt->rt6i_flags&RTF_CACHE))
511 fib6_prune_clones(fn, rt);
514 out:
515 if (err)
516 dst_free(&rt->u.dst);
517 return err;
519 #ifdef CONFIG_IPV6_SUBTREES
520 /* Subtree creation failed, probably main tree node
521 is orphan. If it is, shoot it.
523 st_failure:
524 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
525 fib6_repair_tree(fn);
526 dst_free(&rt->u.dst);
527 return err;
528 #endif
532 * Routing tree lookup
536 struct lookup_args {
537 int offset; /* key offset on rt6_info */
538 struct in6_addr *addr; /* search key */
541 static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
542 struct lookup_args *args)
544 struct fib6_node *fn;
545 int dir;
548 * Descend on a tree
551 fn = root;
553 for (;;) {
554 struct fib6_node *next;
556 dir = addr_bit_set(args->addr, fn->fn_bit);
558 next = dir ? fn->right : fn->left;
560 if (next) {
561 fn = next;
562 continue;
565 break;
568 while ((fn->fn_flags & RTN_ROOT) == 0) {
569 #ifdef CONFIG_IPV6_SUBTREES
570 if (fn->subtree) {
571 struct fib6_node *st;
572 struct lookup_args *narg;
574 narg = args + 1;
576 if (narg->addr) {
577 st = fib6_lookup_1(fn->subtree, narg);
579 if (st && !(st->fn_flags & RTN_ROOT))
580 return st;
583 #endif
585 if (fn->fn_flags & RTN_RTINFO) {
586 struct rt6key *key;
588 key = (struct rt6key *) ((u8 *) fn->leaf +
589 args->offset);
591 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen))
592 return fn;
595 fn = fn->parent;
598 return NULL;
601 struct fib6_node * fib6_lookup(struct fib6_node *root, struct in6_addr *daddr,
602 struct in6_addr *saddr)
604 struct lookup_args args[2];
605 struct fib6_node *fn;
607 args[0].offset = offsetof(struct rt6_info, rt6i_dst);
608 args[0].addr = daddr;
610 #ifdef CONFIG_IPV6_SUBTREES
611 args[1].offset = offsetof(struct rt6_info, rt6i_src);
612 args[1].addr = saddr;
613 #endif
615 fn = fib6_lookup_1(root, args);
617 if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
618 fn = root;
620 return fn;
624 * Get node with specified destination prefix (and source prefix,
625 * if subtrees are used)
629 static struct fib6_node * fib6_locate_1(struct fib6_node *root,
630 struct in6_addr *addr,
631 int plen, int offset)
633 struct fib6_node *fn;
635 for (fn = root; fn ; ) {
636 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
639 * Prefix match
641 if (plen < fn->fn_bit ||
642 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
643 return NULL;
645 if (plen == fn->fn_bit)
646 return fn;
649 * We have more bits to go
651 if (addr_bit_set(addr, fn->fn_bit))
652 fn = fn->right;
653 else
654 fn = fn->left;
656 return NULL;
659 struct fib6_node * fib6_locate(struct fib6_node *root,
660 struct in6_addr *daddr, int dst_len,
661 struct in6_addr *saddr, int src_len)
663 struct fib6_node *fn;
665 fn = fib6_locate_1(root, daddr, dst_len,
666 offsetof(struct rt6_info, rt6i_dst));
668 #ifdef CONFIG_IPV6_SUBTREES
669 if (src_len) {
670 BUG_TRAP(saddr!=NULL);
671 if (fn == NULL)
672 fn = fn->subtree;
673 if (fn)
674 fn = fib6_locate_1(fn, saddr, src_len,
675 offsetof(struct rt6_info, rt6i_src));
677 #endif
679 if (fn && fn->fn_flags&RTN_RTINFO)
680 return fn;
682 return NULL;
687 * Deletion
691 static struct rt6_info * fib6_find_prefix(struct fib6_node *fn)
693 if (fn->fn_flags&RTN_ROOT)
694 return &ip6_null_entry;
696 while(fn) {
697 if(fn->left)
698 return fn->left->leaf;
700 if(fn->right)
701 return fn->right->leaf;
703 fn = SUBTREE(fn);
705 return NULL;
709 * Called to trim the tree of intermediate nodes when possible. "fn"
710 * is the node we want to try and remove.
713 static struct fib6_node * fib6_repair_tree(struct fib6_node *fn)
715 int children;
716 int nstate;
717 struct fib6_node *child, *pn;
718 struct fib6_walker_t *w;
719 int iter = 0;
721 for (;;) {
722 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
723 iter++;
725 BUG_TRAP(!(fn->fn_flags&RTN_RTINFO));
726 BUG_TRAP(!(fn->fn_flags&RTN_TL_ROOT));
727 BUG_TRAP(fn->leaf==NULL);
729 children = 0;
730 child = NULL;
731 if (fn->right) child = fn->right, children |= 1;
732 if (fn->left) child = fn->left, children |= 2;
734 if (children == 3 || SUBTREE(fn)
735 #ifdef CONFIG_IPV6_SUBTREES
736 /* Subtree root (i.e. fn) may have one child */
737 || (children && fn->fn_flags&RTN_ROOT)
738 #endif
740 fn->leaf = fib6_find_prefix(fn);
741 #if RT6_DEBUG >= 2
742 if (fn->leaf==NULL) {
743 BUG_TRAP(fn->leaf);
744 fn->leaf = &ip6_null_entry;
746 #endif
747 atomic_inc(&fn->leaf->rt6i_ref);
748 return fn->parent;
751 pn = fn->parent;
752 #ifdef CONFIG_IPV6_SUBTREES
753 if (SUBTREE(pn) == fn) {
754 BUG_TRAP(fn->fn_flags&RTN_ROOT);
755 SUBTREE(pn) = NULL;
756 nstate = FWS_L;
757 } else {
758 BUG_TRAP(!(fn->fn_flags&RTN_ROOT));
759 #endif
760 if (pn->right == fn) pn->right = child;
761 else if (pn->left == fn) pn->left = child;
762 #if RT6_DEBUG >= 2
763 else BUG_TRAP(0);
764 #endif
765 if (child)
766 child->parent = pn;
767 nstate = FWS_R;
768 #ifdef CONFIG_IPV6_SUBTREES
770 #endif
772 read_lock(&fib6_walker_lock);
773 FOR_WALKERS(w) {
774 if (child == NULL) {
775 if (w->root == fn) {
776 w->root = w->node = NULL;
777 RT6_TRACE("W %p adjusted by delroot 1\n", w);
778 } else if (w->node == fn) {
779 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
780 w->node = pn;
781 w->state = nstate;
783 } else {
784 if (w->root == fn) {
785 w->root = child;
786 RT6_TRACE("W %p adjusted by delroot 2\n", w);
788 if (w->node == fn) {
789 w->node = child;
790 if (children&2) {
791 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
792 w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
793 } else {
794 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
795 w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
800 read_unlock(&fib6_walker_lock);
802 node_free(fn);
803 if (pn->fn_flags&RTN_RTINFO || SUBTREE(pn))
804 return pn;
806 rt6_release(pn->leaf);
807 pn->leaf = NULL;
808 fn = pn;
812 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
813 struct nlmsghdr *nlh, void *_rtattr, struct netlink_skb_parms *req)
815 struct fib6_walker_t *w;
816 struct rt6_info *rt = *rtp;
818 RT6_TRACE("fib6_del_route\n");
820 /* Unlink it */
821 *rtp = rt->u.next;
822 rt->rt6i_node = NULL;
823 rt6_stats.fib_rt_entries--;
824 rt6_stats.fib_discarded_routes++;
826 /* Adjust walkers */
827 read_lock(&fib6_walker_lock);
828 FOR_WALKERS(w) {
829 if (w->state == FWS_C && w->leaf == rt) {
830 RT6_TRACE("walker %p adjusted by delroute\n", w);
831 w->leaf = rt->u.next;
832 if (w->leaf == NULL)
833 w->state = FWS_U;
836 read_unlock(&fib6_walker_lock);
838 rt->u.next = NULL;
840 if (fn->leaf == NULL && fn->fn_flags&RTN_TL_ROOT)
841 fn->leaf = &ip6_null_entry;
843 /* If it was last route, expunge its radix tree node */
844 if (fn->leaf == NULL) {
845 fn->fn_flags &= ~RTN_RTINFO;
846 rt6_stats.fib_route_nodes--;
847 fn = fib6_repair_tree(fn);
850 if (atomic_read(&rt->rt6i_ref) != 1) {
851 /* This route is used as dummy address holder in some split
852 * nodes. It is not leaked, but it still holds other resources,
853 * which must be released in time. So, scan ascendant nodes
854 * and replace dummy references to this route with references
855 * to still alive ones.
857 while (fn) {
858 if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
859 fn->leaf = fib6_find_prefix(fn);
860 atomic_inc(&fn->leaf->rt6i_ref);
861 rt6_release(rt);
863 fn = fn->parent;
865 /* No more references are possible at this point. */
866 if (atomic_read(&rt->rt6i_ref) != 1) BUG();
869 inet6_rt_notify(RTM_DELROUTE, rt, nlh, req);
870 rt6_release(rt);
873 int fib6_del(struct rt6_info *rt, struct nlmsghdr *nlh, void *_rtattr, struct netlink_skb_parms *req)
875 struct fib6_node *fn = rt->rt6i_node;
876 struct rt6_info **rtp;
878 #if RT6_DEBUG >= 2
879 if (rt->u.dst.obsolete>0) {
880 BUG_TRAP(fn==NULL);
881 return -ENOENT;
883 #endif
884 if (fn == NULL || rt == &ip6_null_entry)
885 return -ENOENT;
887 BUG_TRAP(fn->fn_flags&RTN_RTINFO);
889 if (!(rt->rt6i_flags&RTF_CACHE))
890 fib6_prune_clones(fn, rt);
893 * Walk the leaf entries looking for ourself
896 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->u.next) {
897 if (*rtp == rt) {
898 fib6_del_route(fn, rtp, nlh, _rtattr, req);
899 return 0;
902 return -ENOENT;
906 * Tree traversal function.
908 * Certainly, it is not interrupt safe.
909 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
910 * It means, that we can modify tree during walking
911 * and use this function for garbage collection, clone pruning,
912 * cleaning tree when a device goes down etc. etc.
914 * It guarantees that every node will be traversed,
915 * and that it will be traversed only once.
917 * Callback function w->func may return:
918 * 0 -> continue walking.
919 * positive value -> walking is suspended (used by tree dumps,
920 * and probably by gc, if it will be split to several slices)
921 * negative value -> terminate walking.
923 * The function itself returns:
924 * 0 -> walk is complete.
925 * >0 -> walk is incomplete (i.e. suspended)
926 * <0 -> walk is terminated by an error.
929 int fib6_walk_continue(struct fib6_walker_t *w)
931 struct fib6_node *fn, *pn;
933 for (;;) {
934 fn = w->node;
935 if (fn == NULL)
936 return 0;
938 if (w->prune && fn != w->root &&
939 fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
940 w->state = FWS_C;
941 w->leaf = fn->leaf;
943 switch (w->state) {
944 #ifdef CONFIG_IPV6_SUBTREES
945 case FWS_S:
946 if (SUBTREE(fn)) {
947 w->node = SUBTREE(fn);
948 continue;
950 w->state = FWS_L;
951 #endif
952 case FWS_L:
953 if (fn->left) {
954 w->node = fn->left;
955 w->state = FWS_INIT;
956 continue;
958 w->state = FWS_R;
959 case FWS_R:
960 if (fn->right) {
961 w->node = fn->right;
962 w->state = FWS_INIT;
963 continue;
965 w->state = FWS_C;
966 w->leaf = fn->leaf;
967 case FWS_C:
968 if (w->leaf && fn->fn_flags&RTN_RTINFO) {
969 int err = w->func(w);
970 if (err)
971 return err;
972 continue;
974 w->state = FWS_U;
975 case FWS_U:
976 if (fn == w->root)
977 return 0;
978 pn = fn->parent;
979 w->node = pn;
980 #ifdef CONFIG_IPV6_SUBTREES
981 if (SUBTREE(pn) == fn) {
982 BUG_TRAP(fn->fn_flags&RTN_ROOT);
983 w->state = FWS_L;
984 continue;
986 #endif
987 if (pn->left == fn) {
988 w->state = FWS_R;
989 continue;
991 if (pn->right == fn) {
992 w->state = FWS_C;
993 w->leaf = w->node->leaf;
994 continue;
996 #if RT6_DEBUG >= 2
997 BUG_TRAP(0);
998 #endif
1003 int fib6_walk(struct fib6_walker_t *w)
1005 int res;
1007 w->state = FWS_INIT;
1008 w->node = w->root;
1010 fib6_walker_link(w);
1011 res = fib6_walk_continue(w);
1012 if (res <= 0)
1013 fib6_walker_unlink(w);
1014 return res;
1017 static int fib6_clean_node(struct fib6_walker_t *w)
1019 int res;
1020 struct rt6_info *rt;
1021 struct fib6_cleaner_t *c = (struct fib6_cleaner_t*)w;
1023 for (rt = w->leaf; rt; rt = rt->u.next) {
1024 res = c->func(rt, c->arg);
1025 if (res < 0) {
1026 w->leaf = rt;
1027 res = fib6_del(rt, NULL, NULL, NULL);
1028 if (res) {
1029 #if RT6_DEBUG >= 2
1030 printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
1031 #endif
1032 continue;
1034 return 0;
1036 BUG_TRAP(res==0);
1038 w->leaf = rt;
1039 return 0;
1043 * Convenient frontend to tree walker.
1045 * func is called on each route.
1046 * It may return -1 -> delete this route.
1047 * 0 -> continue walking
1049 * prune==1 -> only immediate children of node (certainly,
1050 * ignoring pure split nodes) will be scanned.
1053 void fib6_clean_tree(struct fib6_node *root,
1054 int (*func)(struct rt6_info *, void *arg),
1055 int prune, void *arg)
1057 struct fib6_cleaner_t c;
1059 c.w.root = root;
1060 c.w.func = fib6_clean_node;
1061 c.w.prune = prune;
1062 c.func = func;
1063 c.arg = arg;
1065 fib6_walk(&c.w);
1068 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1070 if (rt->rt6i_flags & RTF_CACHE) {
1071 RT6_TRACE("pruning clone %p\n", rt);
1072 return -1;
1075 return 0;
1078 static void fib6_prune_clones(struct fib6_node *fn, struct rt6_info *rt)
1080 fib6_clean_tree(fn, fib6_prune_clone, 1, rt);
1084 * Garbage collection
1087 static struct fib6_gc_args
1089 int timeout;
1090 int more;
1091 } gc_args;
1093 static int fib6_age(struct rt6_info *rt, void *arg)
1095 unsigned long now = jiffies;
1098 * check addrconf expiration here.
1099 * Routes are expired even if they are in use.
1101 * Also age clones. Note, that clones are aged out
1102 * only if they are not in use now.
1105 if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
1106 if (time_after(now, rt->rt6i_expires)) {
1107 RT6_TRACE("expiring %p\n", rt);
1108 rt6_reset_dflt_pointer(rt);
1109 return -1;
1111 gc_args.more++;
1112 } else if (rt->rt6i_flags & RTF_CACHE) {
1113 if (atomic_read(&rt->u.dst.__refcnt) == 0 &&
1114 time_after_eq(now, rt->u.dst.lastuse + gc_args.timeout)) {
1115 RT6_TRACE("aging clone %p\n", rt);
1116 return -1;
1117 } else if ((rt->rt6i_flags & RTF_GATEWAY) &&
1118 (!(rt->rt6i_nexthop->flags & NTF_ROUTER))) {
1119 RT6_TRACE("purging route %p via non-router but gateway\n",
1120 rt);
1121 return -1;
1123 gc_args.more++;
1126 return 0;
1129 static DEFINE_SPINLOCK(fib6_gc_lock);
1131 void fib6_run_gc(unsigned long dummy)
1133 if (dummy != ~0UL) {
1134 spin_lock_bh(&fib6_gc_lock);
1135 gc_args.timeout = dummy ? (int)dummy : ip6_rt_gc_interval;
1136 } else {
1137 local_bh_disable();
1138 if (!spin_trylock(&fib6_gc_lock)) {
1139 mod_timer(&ip6_fib_timer, jiffies + HZ);
1140 local_bh_enable();
1141 return;
1143 gc_args.timeout = ip6_rt_gc_interval;
1145 gc_args.more = 0;
1148 write_lock_bh(&rt6_lock);
1149 ndisc_dst_gc(&gc_args.more);
1150 fib6_clean_tree(&ip6_routing_table, fib6_age, 0, NULL);
1151 write_unlock_bh(&rt6_lock);
1153 if (gc_args.more)
1154 mod_timer(&ip6_fib_timer, jiffies + ip6_rt_gc_interval);
1155 else {
1156 del_timer(&ip6_fib_timer);
1157 ip6_fib_timer.expires = 0;
1159 spin_unlock_bh(&fib6_gc_lock);
1162 void __init fib6_init(void)
1164 fib6_node_kmem = kmem_cache_create("fib6_nodes",
1165 sizeof(struct fib6_node),
1166 0, SLAB_HWCACHE_ALIGN,
1167 NULL, NULL);
1168 if (!fib6_node_kmem)
1169 panic("cannot create fib6_nodes cache");
1172 void fib6_gc_cleanup(void)
1174 del_timer(&ip6_fib_timer);
1175 kmem_cache_destroy(fib6_node_kmem);