[PATCH] x86_64: fls in asm for x86_64
[linux-2.6/suspend2-2.6.18.git] / drivers / scsi / libata-core.c
blobf55b9b3f7b37f1e8b4ad71e8c9950d8a1f3a9797
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
58 #include <asm/io.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
62 #include "libata.h"
64 static unsigned int ata_busy_sleep (struct ata_port *ap,
65 unsigned long tmout_pat,
66 unsigned long tmout);
67 static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev);
68 static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev);
69 static void ata_set_mode(struct ata_port *ap);
70 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
71 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift);
72 static int fgb(u32 bitmap);
73 static int ata_choose_xfer_mode(const struct ata_port *ap,
74 u8 *xfer_mode_out,
75 unsigned int *xfer_shift_out);
76 static void __ata_qc_complete(struct ata_queued_cmd *qc);
78 static unsigned int ata_unique_id = 1;
79 static struct workqueue_struct *ata_wq;
81 int atapi_enabled = 0;
82 module_param(atapi_enabled, int, 0444);
83 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
85 MODULE_AUTHOR("Jeff Garzik");
86 MODULE_DESCRIPTION("Library module for ATA devices");
87 MODULE_LICENSE("GPL");
88 MODULE_VERSION(DRV_VERSION);
90 /**
91 * ata_tf_load_pio - send taskfile registers to host controller
92 * @ap: Port to which output is sent
93 * @tf: ATA taskfile register set
95 * Outputs ATA taskfile to standard ATA host controller.
97 * LOCKING:
98 * Inherited from caller.
101 static void ata_tf_load_pio(struct ata_port *ap, const struct ata_taskfile *tf)
103 struct ata_ioports *ioaddr = &ap->ioaddr;
104 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
106 if (tf->ctl != ap->last_ctl) {
107 outb(tf->ctl, ioaddr->ctl_addr);
108 ap->last_ctl = tf->ctl;
109 ata_wait_idle(ap);
112 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
113 outb(tf->hob_feature, ioaddr->feature_addr);
114 outb(tf->hob_nsect, ioaddr->nsect_addr);
115 outb(tf->hob_lbal, ioaddr->lbal_addr);
116 outb(tf->hob_lbam, ioaddr->lbam_addr);
117 outb(tf->hob_lbah, ioaddr->lbah_addr);
118 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
119 tf->hob_feature,
120 tf->hob_nsect,
121 tf->hob_lbal,
122 tf->hob_lbam,
123 tf->hob_lbah);
126 if (is_addr) {
127 outb(tf->feature, ioaddr->feature_addr);
128 outb(tf->nsect, ioaddr->nsect_addr);
129 outb(tf->lbal, ioaddr->lbal_addr);
130 outb(tf->lbam, ioaddr->lbam_addr);
131 outb(tf->lbah, ioaddr->lbah_addr);
132 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
133 tf->feature,
134 tf->nsect,
135 tf->lbal,
136 tf->lbam,
137 tf->lbah);
140 if (tf->flags & ATA_TFLAG_DEVICE) {
141 outb(tf->device, ioaddr->device_addr);
142 VPRINTK("device 0x%X\n", tf->device);
145 ata_wait_idle(ap);
149 * ata_tf_load_mmio - send taskfile registers to host controller
150 * @ap: Port to which output is sent
151 * @tf: ATA taskfile register set
153 * Outputs ATA taskfile to standard ATA host controller using MMIO.
155 * LOCKING:
156 * Inherited from caller.
159 static void ata_tf_load_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
161 struct ata_ioports *ioaddr = &ap->ioaddr;
162 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
164 if (tf->ctl != ap->last_ctl) {
165 writeb(tf->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
166 ap->last_ctl = tf->ctl;
167 ata_wait_idle(ap);
170 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
171 writeb(tf->hob_feature, (void __iomem *) ioaddr->feature_addr);
172 writeb(tf->hob_nsect, (void __iomem *) ioaddr->nsect_addr);
173 writeb(tf->hob_lbal, (void __iomem *) ioaddr->lbal_addr);
174 writeb(tf->hob_lbam, (void __iomem *) ioaddr->lbam_addr);
175 writeb(tf->hob_lbah, (void __iomem *) ioaddr->lbah_addr);
176 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
177 tf->hob_feature,
178 tf->hob_nsect,
179 tf->hob_lbal,
180 tf->hob_lbam,
181 tf->hob_lbah);
184 if (is_addr) {
185 writeb(tf->feature, (void __iomem *) ioaddr->feature_addr);
186 writeb(tf->nsect, (void __iomem *) ioaddr->nsect_addr);
187 writeb(tf->lbal, (void __iomem *) ioaddr->lbal_addr);
188 writeb(tf->lbam, (void __iomem *) ioaddr->lbam_addr);
189 writeb(tf->lbah, (void __iomem *) ioaddr->lbah_addr);
190 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
191 tf->feature,
192 tf->nsect,
193 tf->lbal,
194 tf->lbam,
195 tf->lbah);
198 if (tf->flags & ATA_TFLAG_DEVICE) {
199 writeb(tf->device, (void __iomem *) ioaddr->device_addr);
200 VPRINTK("device 0x%X\n", tf->device);
203 ata_wait_idle(ap);
208 * ata_tf_load - send taskfile registers to host controller
209 * @ap: Port to which output is sent
210 * @tf: ATA taskfile register set
212 * Outputs ATA taskfile to standard ATA host controller using MMIO
213 * or PIO as indicated by the ATA_FLAG_MMIO flag.
214 * Writes the control, feature, nsect, lbal, lbam, and lbah registers.
215 * Optionally (ATA_TFLAG_LBA48) writes hob_feature, hob_nsect,
216 * hob_lbal, hob_lbam, and hob_lbah.
218 * This function waits for idle (!BUSY and !DRQ) after writing
219 * registers. If the control register has a new value, this
220 * function also waits for idle after writing control and before
221 * writing the remaining registers.
223 * May be used as the tf_load() entry in ata_port_operations.
225 * LOCKING:
226 * Inherited from caller.
228 void ata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
230 if (ap->flags & ATA_FLAG_MMIO)
231 ata_tf_load_mmio(ap, tf);
232 else
233 ata_tf_load_pio(ap, tf);
237 * ata_exec_command_pio - issue ATA command to host controller
238 * @ap: port to which command is being issued
239 * @tf: ATA taskfile register set
241 * Issues PIO write to ATA command register, with proper
242 * synchronization with interrupt handler / other threads.
244 * LOCKING:
245 * spin_lock_irqsave(host_set lock)
248 static void ata_exec_command_pio(struct ata_port *ap, const struct ata_taskfile *tf)
250 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
252 outb(tf->command, ap->ioaddr.command_addr);
253 ata_pause(ap);
258 * ata_exec_command_mmio - issue ATA command to host controller
259 * @ap: port to which command is being issued
260 * @tf: ATA taskfile register set
262 * Issues MMIO write to ATA command register, with proper
263 * synchronization with interrupt handler / other threads.
265 * LOCKING:
266 * spin_lock_irqsave(host_set lock)
269 static void ata_exec_command_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
271 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
273 writeb(tf->command, (void __iomem *) ap->ioaddr.command_addr);
274 ata_pause(ap);
279 * ata_exec_command - issue ATA command to host controller
280 * @ap: port to which command is being issued
281 * @tf: ATA taskfile register set
283 * Issues PIO/MMIO write to ATA command register, with proper
284 * synchronization with interrupt handler / other threads.
286 * LOCKING:
287 * spin_lock_irqsave(host_set lock)
289 void ata_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
291 if (ap->flags & ATA_FLAG_MMIO)
292 ata_exec_command_mmio(ap, tf);
293 else
294 ata_exec_command_pio(ap, tf);
298 * ata_tf_to_host - issue ATA taskfile to host controller
299 * @ap: port to which command is being issued
300 * @tf: ATA taskfile register set
302 * Issues ATA taskfile register set to ATA host controller,
303 * with proper synchronization with interrupt handler and
304 * other threads.
306 * LOCKING:
307 * spin_lock_irqsave(host_set lock)
310 static inline void ata_tf_to_host(struct ata_port *ap,
311 const struct ata_taskfile *tf)
313 ap->ops->tf_load(ap, tf);
314 ap->ops->exec_command(ap, tf);
318 * ata_tf_read_pio - input device's ATA taskfile shadow registers
319 * @ap: Port from which input is read
320 * @tf: ATA taskfile register set for storing input
322 * Reads ATA taskfile registers for currently-selected device
323 * into @tf.
325 * LOCKING:
326 * Inherited from caller.
329 static void ata_tf_read_pio(struct ata_port *ap, struct ata_taskfile *tf)
331 struct ata_ioports *ioaddr = &ap->ioaddr;
333 tf->command = ata_check_status(ap);
334 tf->feature = inb(ioaddr->error_addr);
335 tf->nsect = inb(ioaddr->nsect_addr);
336 tf->lbal = inb(ioaddr->lbal_addr);
337 tf->lbam = inb(ioaddr->lbam_addr);
338 tf->lbah = inb(ioaddr->lbah_addr);
339 tf->device = inb(ioaddr->device_addr);
341 if (tf->flags & ATA_TFLAG_LBA48) {
342 outb(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
343 tf->hob_feature = inb(ioaddr->error_addr);
344 tf->hob_nsect = inb(ioaddr->nsect_addr);
345 tf->hob_lbal = inb(ioaddr->lbal_addr);
346 tf->hob_lbam = inb(ioaddr->lbam_addr);
347 tf->hob_lbah = inb(ioaddr->lbah_addr);
352 * ata_tf_read_mmio - input device's ATA taskfile shadow registers
353 * @ap: Port from which input is read
354 * @tf: ATA taskfile register set for storing input
356 * Reads ATA taskfile registers for currently-selected device
357 * into @tf via MMIO.
359 * LOCKING:
360 * Inherited from caller.
363 static void ata_tf_read_mmio(struct ata_port *ap, struct ata_taskfile *tf)
365 struct ata_ioports *ioaddr = &ap->ioaddr;
367 tf->command = ata_check_status(ap);
368 tf->feature = readb((void __iomem *)ioaddr->error_addr);
369 tf->nsect = readb((void __iomem *)ioaddr->nsect_addr);
370 tf->lbal = readb((void __iomem *)ioaddr->lbal_addr);
371 tf->lbam = readb((void __iomem *)ioaddr->lbam_addr);
372 tf->lbah = readb((void __iomem *)ioaddr->lbah_addr);
373 tf->device = readb((void __iomem *)ioaddr->device_addr);
375 if (tf->flags & ATA_TFLAG_LBA48) {
376 writeb(tf->ctl | ATA_HOB, (void __iomem *) ap->ioaddr.ctl_addr);
377 tf->hob_feature = readb((void __iomem *)ioaddr->error_addr);
378 tf->hob_nsect = readb((void __iomem *)ioaddr->nsect_addr);
379 tf->hob_lbal = readb((void __iomem *)ioaddr->lbal_addr);
380 tf->hob_lbam = readb((void __iomem *)ioaddr->lbam_addr);
381 tf->hob_lbah = readb((void __iomem *)ioaddr->lbah_addr);
387 * ata_tf_read - input device's ATA taskfile shadow registers
388 * @ap: Port from which input is read
389 * @tf: ATA taskfile register set for storing input
391 * Reads ATA taskfile registers for currently-selected device
392 * into @tf.
394 * Reads nsect, lbal, lbam, lbah, and device. If ATA_TFLAG_LBA48
395 * is set, also reads the hob registers.
397 * May be used as the tf_read() entry in ata_port_operations.
399 * LOCKING:
400 * Inherited from caller.
402 void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
404 if (ap->flags & ATA_FLAG_MMIO)
405 ata_tf_read_mmio(ap, tf);
406 else
407 ata_tf_read_pio(ap, tf);
411 * ata_check_status_pio - Read device status reg & clear interrupt
412 * @ap: port where the device is
414 * Reads ATA taskfile status register for currently-selected device
415 * and return its value. This also clears pending interrupts
416 * from this device
418 * LOCKING:
419 * Inherited from caller.
421 static u8 ata_check_status_pio(struct ata_port *ap)
423 return inb(ap->ioaddr.status_addr);
427 * ata_check_status_mmio - Read device status reg & clear interrupt
428 * @ap: port where the device is
430 * Reads ATA taskfile status register for currently-selected device
431 * via MMIO and return its value. This also clears pending interrupts
432 * from this device
434 * LOCKING:
435 * Inherited from caller.
437 static u8 ata_check_status_mmio(struct ata_port *ap)
439 return readb((void __iomem *) ap->ioaddr.status_addr);
444 * ata_check_status - Read device status reg & clear interrupt
445 * @ap: port where the device is
447 * Reads ATA taskfile status register for currently-selected device
448 * and return its value. This also clears pending interrupts
449 * from this device
451 * May be used as the check_status() entry in ata_port_operations.
453 * LOCKING:
454 * Inherited from caller.
456 u8 ata_check_status(struct ata_port *ap)
458 if (ap->flags & ATA_FLAG_MMIO)
459 return ata_check_status_mmio(ap);
460 return ata_check_status_pio(ap);
465 * ata_altstatus - Read device alternate status reg
466 * @ap: port where the device is
468 * Reads ATA taskfile alternate status register for
469 * currently-selected device and return its value.
471 * Note: may NOT be used as the check_altstatus() entry in
472 * ata_port_operations.
474 * LOCKING:
475 * Inherited from caller.
477 u8 ata_altstatus(struct ata_port *ap)
479 if (ap->ops->check_altstatus)
480 return ap->ops->check_altstatus(ap);
482 if (ap->flags & ATA_FLAG_MMIO)
483 return readb((void __iomem *)ap->ioaddr.altstatus_addr);
484 return inb(ap->ioaddr.altstatus_addr);
489 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
490 * @tf: Taskfile to convert
491 * @fis: Buffer into which data will output
492 * @pmp: Port multiplier port
494 * Converts a standard ATA taskfile to a Serial ATA
495 * FIS structure (Register - Host to Device).
497 * LOCKING:
498 * Inherited from caller.
501 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
503 fis[0] = 0x27; /* Register - Host to Device FIS */
504 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
505 bit 7 indicates Command FIS */
506 fis[2] = tf->command;
507 fis[3] = tf->feature;
509 fis[4] = tf->lbal;
510 fis[5] = tf->lbam;
511 fis[6] = tf->lbah;
512 fis[7] = tf->device;
514 fis[8] = tf->hob_lbal;
515 fis[9] = tf->hob_lbam;
516 fis[10] = tf->hob_lbah;
517 fis[11] = tf->hob_feature;
519 fis[12] = tf->nsect;
520 fis[13] = tf->hob_nsect;
521 fis[14] = 0;
522 fis[15] = tf->ctl;
524 fis[16] = 0;
525 fis[17] = 0;
526 fis[18] = 0;
527 fis[19] = 0;
531 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
532 * @fis: Buffer from which data will be input
533 * @tf: Taskfile to output
535 * Converts a serial ATA FIS structure to a standard ATA taskfile.
537 * LOCKING:
538 * Inherited from caller.
541 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
543 tf->command = fis[2]; /* status */
544 tf->feature = fis[3]; /* error */
546 tf->lbal = fis[4];
547 tf->lbam = fis[5];
548 tf->lbah = fis[6];
549 tf->device = fis[7];
551 tf->hob_lbal = fis[8];
552 tf->hob_lbam = fis[9];
553 tf->hob_lbah = fis[10];
555 tf->nsect = fis[12];
556 tf->hob_nsect = fis[13];
559 static const u8 ata_rw_cmds[] = {
560 /* pio multi */
561 ATA_CMD_READ_MULTI,
562 ATA_CMD_WRITE_MULTI,
563 ATA_CMD_READ_MULTI_EXT,
564 ATA_CMD_WRITE_MULTI_EXT,
568 ATA_CMD_WRITE_MULTI_FUA_EXT,
569 /* pio */
570 ATA_CMD_PIO_READ,
571 ATA_CMD_PIO_WRITE,
572 ATA_CMD_PIO_READ_EXT,
573 ATA_CMD_PIO_WRITE_EXT,
578 /* dma */
579 ATA_CMD_READ,
580 ATA_CMD_WRITE,
581 ATA_CMD_READ_EXT,
582 ATA_CMD_WRITE_EXT,
586 ATA_CMD_WRITE_FUA_EXT
590 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
591 * @qc: command to examine and configure
593 * Examine the device configuration and tf->flags to calculate
594 * the proper read/write commands and protocol to use.
596 * LOCKING:
597 * caller.
599 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
601 struct ata_taskfile *tf = &qc->tf;
602 struct ata_device *dev = qc->dev;
603 u8 cmd;
605 int index, fua, lba48, write;
607 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
608 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
609 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
611 if (dev->flags & ATA_DFLAG_PIO) {
612 tf->protocol = ATA_PROT_PIO;
613 index = dev->multi_count ? 0 : 8;
614 } else {
615 tf->protocol = ATA_PROT_DMA;
616 index = 16;
619 cmd = ata_rw_cmds[index + fua + lba48 + write];
620 if (cmd) {
621 tf->command = cmd;
622 return 0;
624 return -1;
627 static const char * const xfer_mode_str[] = {
628 "UDMA/16",
629 "UDMA/25",
630 "UDMA/33",
631 "UDMA/44",
632 "UDMA/66",
633 "UDMA/100",
634 "UDMA/133",
635 "UDMA7",
636 "MWDMA0",
637 "MWDMA1",
638 "MWDMA2",
639 "PIO0",
640 "PIO1",
641 "PIO2",
642 "PIO3",
643 "PIO4",
647 * ata_udma_string - convert UDMA bit offset to string
648 * @mask: mask of bits supported; only highest bit counts.
650 * Determine string which represents the highest speed
651 * (highest bit in @udma_mask).
653 * LOCKING:
654 * None.
656 * RETURNS:
657 * Constant C string representing highest speed listed in
658 * @udma_mask, or the constant C string "<n/a>".
661 static const char *ata_mode_string(unsigned int mask)
663 int i;
665 for (i = 7; i >= 0; i--)
666 if (mask & (1 << i))
667 goto out;
668 for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--)
669 if (mask & (1 << i))
670 goto out;
671 for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--)
672 if (mask & (1 << i))
673 goto out;
675 return "<n/a>";
677 out:
678 return xfer_mode_str[i];
682 * ata_pio_devchk - PATA device presence detection
683 * @ap: ATA channel to examine
684 * @device: Device to examine (starting at zero)
686 * This technique was originally described in
687 * Hale Landis's ATADRVR (www.ata-atapi.com), and
688 * later found its way into the ATA/ATAPI spec.
690 * Write a pattern to the ATA shadow registers,
691 * and if a device is present, it will respond by
692 * correctly storing and echoing back the
693 * ATA shadow register contents.
695 * LOCKING:
696 * caller.
699 static unsigned int ata_pio_devchk(struct ata_port *ap,
700 unsigned int device)
702 struct ata_ioports *ioaddr = &ap->ioaddr;
703 u8 nsect, lbal;
705 ap->ops->dev_select(ap, device);
707 outb(0x55, ioaddr->nsect_addr);
708 outb(0xaa, ioaddr->lbal_addr);
710 outb(0xaa, ioaddr->nsect_addr);
711 outb(0x55, ioaddr->lbal_addr);
713 outb(0x55, ioaddr->nsect_addr);
714 outb(0xaa, ioaddr->lbal_addr);
716 nsect = inb(ioaddr->nsect_addr);
717 lbal = inb(ioaddr->lbal_addr);
719 if ((nsect == 0x55) && (lbal == 0xaa))
720 return 1; /* we found a device */
722 return 0; /* nothing found */
726 * ata_mmio_devchk - PATA device presence detection
727 * @ap: ATA channel to examine
728 * @device: Device to examine (starting at zero)
730 * This technique was originally described in
731 * Hale Landis's ATADRVR (www.ata-atapi.com), and
732 * later found its way into the ATA/ATAPI spec.
734 * Write a pattern to the ATA shadow registers,
735 * and if a device is present, it will respond by
736 * correctly storing and echoing back the
737 * ATA shadow register contents.
739 * LOCKING:
740 * caller.
743 static unsigned int ata_mmio_devchk(struct ata_port *ap,
744 unsigned int device)
746 struct ata_ioports *ioaddr = &ap->ioaddr;
747 u8 nsect, lbal;
749 ap->ops->dev_select(ap, device);
751 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
752 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
754 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
755 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
757 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
758 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
760 nsect = readb((void __iomem *) ioaddr->nsect_addr);
761 lbal = readb((void __iomem *) ioaddr->lbal_addr);
763 if ((nsect == 0x55) && (lbal == 0xaa))
764 return 1; /* we found a device */
766 return 0; /* nothing found */
770 * ata_devchk - PATA device presence detection
771 * @ap: ATA channel to examine
772 * @device: Device to examine (starting at zero)
774 * Dispatch ATA device presence detection, depending
775 * on whether we are using PIO or MMIO to talk to the
776 * ATA shadow registers.
778 * LOCKING:
779 * caller.
782 static unsigned int ata_devchk(struct ata_port *ap,
783 unsigned int device)
785 if (ap->flags & ATA_FLAG_MMIO)
786 return ata_mmio_devchk(ap, device);
787 return ata_pio_devchk(ap, device);
791 * ata_dev_classify - determine device type based on ATA-spec signature
792 * @tf: ATA taskfile register set for device to be identified
794 * Determine from taskfile register contents whether a device is
795 * ATA or ATAPI, as per "Signature and persistence" section
796 * of ATA/PI spec (volume 1, sect 5.14).
798 * LOCKING:
799 * None.
801 * RETURNS:
802 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
803 * the event of failure.
806 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
808 /* Apple's open source Darwin code hints that some devices only
809 * put a proper signature into the LBA mid/high registers,
810 * So, we only check those. It's sufficient for uniqueness.
813 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
814 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
815 DPRINTK("found ATA device by sig\n");
816 return ATA_DEV_ATA;
819 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
820 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
821 DPRINTK("found ATAPI device by sig\n");
822 return ATA_DEV_ATAPI;
825 DPRINTK("unknown device\n");
826 return ATA_DEV_UNKNOWN;
830 * ata_dev_try_classify - Parse returned ATA device signature
831 * @ap: ATA channel to examine
832 * @device: Device to examine (starting at zero)
834 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
835 * an ATA/ATAPI-defined set of values is placed in the ATA
836 * shadow registers, indicating the results of device detection
837 * and diagnostics.
839 * Select the ATA device, and read the values from the ATA shadow
840 * registers. Then parse according to the Error register value,
841 * and the spec-defined values examined by ata_dev_classify().
843 * LOCKING:
844 * caller.
847 static u8 ata_dev_try_classify(struct ata_port *ap, unsigned int device)
849 struct ata_device *dev = &ap->device[device];
850 struct ata_taskfile tf;
851 unsigned int class;
852 u8 err;
854 ap->ops->dev_select(ap, device);
856 memset(&tf, 0, sizeof(tf));
858 ap->ops->tf_read(ap, &tf);
859 err = tf.feature;
861 dev->class = ATA_DEV_NONE;
863 /* see if device passed diags */
864 if (err == 1)
865 /* do nothing */ ;
866 else if ((device == 0) && (err == 0x81))
867 /* do nothing */ ;
868 else
869 return err;
871 /* determine if device if ATA or ATAPI */
872 class = ata_dev_classify(&tf);
873 if (class == ATA_DEV_UNKNOWN)
874 return err;
875 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
876 return err;
878 dev->class = class;
880 return err;
884 * ata_dev_id_string - Convert IDENTIFY DEVICE page into string
885 * @id: IDENTIFY DEVICE results we will examine
886 * @s: string into which data is output
887 * @ofs: offset into identify device page
888 * @len: length of string to return. must be an even number.
890 * The strings in the IDENTIFY DEVICE page are broken up into
891 * 16-bit chunks. Run through the string, and output each
892 * 8-bit chunk linearly, regardless of platform.
894 * LOCKING:
895 * caller.
898 void ata_dev_id_string(const u16 *id, unsigned char *s,
899 unsigned int ofs, unsigned int len)
901 unsigned int c;
903 while (len > 0) {
904 c = id[ofs] >> 8;
905 *s = c;
906 s++;
908 c = id[ofs] & 0xff;
909 *s = c;
910 s++;
912 ofs++;
913 len -= 2;
919 * ata_noop_dev_select - Select device 0/1 on ATA bus
920 * @ap: ATA channel to manipulate
921 * @device: ATA device (numbered from zero) to select
923 * This function performs no actual function.
925 * May be used as the dev_select() entry in ata_port_operations.
927 * LOCKING:
928 * caller.
930 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
936 * ata_std_dev_select - Select device 0/1 on ATA bus
937 * @ap: ATA channel to manipulate
938 * @device: ATA device (numbered from zero) to select
940 * Use the method defined in the ATA specification to
941 * make either device 0, or device 1, active on the
942 * ATA channel. Works with both PIO and MMIO.
944 * May be used as the dev_select() entry in ata_port_operations.
946 * LOCKING:
947 * caller.
950 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
952 u8 tmp;
954 if (device == 0)
955 tmp = ATA_DEVICE_OBS;
956 else
957 tmp = ATA_DEVICE_OBS | ATA_DEV1;
959 if (ap->flags & ATA_FLAG_MMIO) {
960 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
961 } else {
962 outb(tmp, ap->ioaddr.device_addr);
964 ata_pause(ap); /* needed; also flushes, for mmio */
968 * ata_dev_select - Select device 0/1 on ATA bus
969 * @ap: ATA channel to manipulate
970 * @device: ATA device (numbered from zero) to select
971 * @wait: non-zero to wait for Status register BSY bit to clear
972 * @can_sleep: non-zero if context allows sleeping
974 * Use the method defined in the ATA specification to
975 * make either device 0, or device 1, active on the
976 * ATA channel.
978 * This is a high-level version of ata_std_dev_select(),
979 * which additionally provides the services of inserting
980 * the proper pauses and status polling, where needed.
982 * LOCKING:
983 * caller.
986 void ata_dev_select(struct ata_port *ap, unsigned int device,
987 unsigned int wait, unsigned int can_sleep)
989 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
990 ap->id, device, wait);
992 if (wait)
993 ata_wait_idle(ap);
995 ap->ops->dev_select(ap, device);
997 if (wait) {
998 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
999 msleep(150);
1000 ata_wait_idle(ap);
1005 * ata_dump_id - IDENTIFY DEVICE info debugging output
1006 * @dev: Device whose IDENTIFY DEVICE page we will dump
1008 * Dump selected 16-bit words from a detected device's
1009 * IDENTIFY PAGE page.
1011 * LOCKING:
1012 * caller.
1015 static inline void ata_dump_id(const struct ata_device *dev)
1017 DPRINTK("49==0x%04x "
1018 "53==0x%04x "
1019 "63==0x%04x "
1020 "64==0x%04x "
1021 "75==0x%04x \n",
1022 dev->id[49],
1023 dev->id[53],
1024 dev->id[63],
1025 dev->id[64],
1026 dev->id[75]);
1027 DPRINTK("80==0x%04x "
1028 "81==0x%04x "
1029 "82==0x%04x "
1030 "83==0x%04x "
1031 "84==0x%04x \n",
1032 dev->id[80],
1033 dev->id[81],
1034 dev->id[82],
1035 dev->id[83],
1036 dev->id[84]);
1037 DPRINTK("88==0x%04x "
1038 "93==0x%04x\n",
1039 dev->id[88],
1040 dev->id[93]);
1044 * Compute the PIO modes available for this device. This is not as
1045 * trivial as it seems if we must consider early devices correctly.
1047 * FIXME: pre IDE drive timing (do we care ?).
1050 static unsigned int ata_pio_modes(const struct ata_device *adev)
1052 u16 modes;
1054 /* Usual case. Word 53 indicates word 88 is valid */
1055 if (adev->id[ATA_ID_FIELD_VALID] & (1 << 2)) {
1056 modes = adev->id[ATA_ID_PIO_MODES] & 0x03;
1057 modes <<= 3;
1058 modes |= 0x7;
1059 return modes;
1062 /* If word 88 isn't valid then Word 51 holds the PIO timing number
1063 for the maximum. Turn it into a mask and return it */
1064 modes = (2 << (adev->id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
1065 return modes;
1068 struct ata_exec_internal_arg {
1069 unsigned int err_mask;
1070 struct ata_taskfile *tf;
1071 struct completion *waiting;
1074 int ata_qc_complete_internal(struct ata_queued_cmd *qc)
1076 struct ata_exec_internal_arg *arg = qc->private_data;
1077 struct completion *waiting = arg->waiting;
1079 if (!(qc->err_mask & ~AC_ERR_DEV))
1080 qc->ap->ops->tf_read(qc->ap, arg->tf);
1081 arg->err_mask = qc->err_mask;
1082 arg->waiting = NULL;
1083 complete(waiting);
1085 return 0;
1089 * ata_exec_internal - execute libata internal command
1090 * @ap: Port to which the command is sent
1091 * @dev: Device to which the command is sent
1092 * @tf: Taskfile registers for the command and the result
1093 * @dma_dir: Data tranfer direction of the command
1094 * @buf: Data buffer of the command
1095 * @buflen: Length of data buffer
1097 * Executes libata internal command with timeout. @tf contains
1098 * command on entry and result on return. Timeout and error
1099 * conditions are reported via return value. No recovery action
1100 * is taken after a command times out. It's caller's duty to
1101 * clean up after timeout.
1103 * LOCKING:
1104 * None. Should be called with kernel context, might sleep.
1107 static unsigned
1108 ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
1109 struct ata_taskfile *tf,
1110 int dma_dir, void *buf, unsigned int buflen)
1112 u8 command = tf->command;
1113 struct ata_queued_cmd *qc;
1114 DECLARE_COMPLETION(wait);
1115 unsigned long flags;
1116 struct ata_exec_internal_arg arg;
1118 spin_lock_irqsave(&ap->host_set->lock, flags);
1120 qc = ata_qc_new_init(ap, dev);
1121 BUG_ON(qc == NULL);
1123 qc->tf = *tf;
1124 qc->dma_dir = dma_dir;
1125 if (dma_dir != DMA_NONE) {
1126 ata_sg_init_one(qc, buf, buflen);
1127 qc->nsect = buflen / ATA_SECT_SIZE;
1130 arg.waiting = &wait;
1131 arg.tf = tf;
1132 qc->private_data = &arg;
1133 qc->complete_fn = ata_qc_complete_internal;
1135 if (ata_qc_issue(qc))
1136 goto issue_fail;
1138 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1140 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
1141 spin_lock_irqsave(&ap->host_set->lock, flags);
1143 /* We're racing with irq here. If we lose, the
1144 * following test prevents us from completing the qc
1145 * again. If completion irq occurs after here but
1146 * before the caller cleans up, it will result in a
1147 * spurious interrupt. We can live with that.
1149 if (arg.waiting) {
1150 qc->err_mask = AC_ERR_OTHER;
1151 ata_qc_complete(qc);
1152 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1153 ap->id, command);
1156 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1159 return arg.err_mask;
1161 issue_fail:
1162 ata_qc_free(qc);
1163 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1164 return AC_ERR_OTHER;
1168 * ata_dev_identify - obtain IDENTIFY x DEVICE page
1169 * @ap: port on which device we wish to probe resides
1170 * @device: device bus address, starting at zero
1172 * Following bus reset, we issue the IDENTIFY [PACKET] DEVICE
1173 * command, and read back the 512-byte device information page.
1174 * The device information page is fed to us via the standard
1175 * PIO-IN protocol, but we hand-code it here. (TODO: investigate
1176 * using standard PIO-IN paths)
1178 * After reading the device information page, we use several
1179 * bits of information from it to initialize data structures
1180 * that will be used during the lifetime of the ata_device.
1181 * Other data from the info page is used to disqualify certain
1182 * older ATA devices we do not wish to support.
1184 * LOCKING:
1185 * Inherited from caller. Some functions called by this function
1186 * obtain the host_set lock.
1189 static void ata_dev_identify(struct ata_port *ap, unsigned int device)
1191 struct ata_device *dev = &ap->device[device];
1192 unsigned int major_version;
1193 u16 tmp;
1194 unsigned long xfer_modes;
1195 unsigned int using_edd;
1196 struct ata_taskfile tf;
1197 unsigned int err_mask;
1198 int rc;
1200 if (!ata_dev_present(dev)) {
1201 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1202 ap->id, device);
1203 return;
1206 if (ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
1207 using_edd = 0;
1208 else
1209 using_edd = 1;
1211 DPRINTK("ENTER, host %u, dev %u\n", ap->id, device);
1213 assert (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ATAPI ||
1214 dev->class == ATA_DEV_NONE);
1216 ata_dev_select(ap, device, 1, 1); /* select device 0/1 */
1218 retry:
1219 ata_tf_init(ap, &tf, device);
1221 if (dev->class == ATA_DEV_ATA) {
1222 tf.command = ATA_CMD_ID_ATA;
1223 DPRINTK("do ATA identify\n");
1224 } else {
1225 tf.command = ATA_CMD_ID_ATAPI;
1226 DPRINTK("do ATAPI identify\n");
1229 tf.protocol = ATA_PROT_PIO;
1231 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
1232 dev->id, sizeof(dev->id));
1234 if (err_mask) {
1235 if (err_mask & ~AC_ERR_DEV)
1236 goto err_out;
1239 * arg! EDD works for all test cases, but seems to return
1240 * the ATA signature for some ATAPI devices. Until the
1241 * reason for this is found and fixed, we fix up the mess
1242 * here. If IDENTIFY DEVICE returns command aborted
1243 * (as ATAPI devices do), then we issue an
1244 * IDENTIFY PACKET DEVICE.
1246 * ATA software reset (SRST, the default) does not appear
1247 * to have this problem.
1249 if ((using_edd) && (dev->class == ATA_DEV_ATA)) {
1250 u8 err = tf.feature;
1251 if (err & ATA_ABORTED) {
1252 dev->class = ATA_DEV_ATAPI;
1253 goto retry;
1256 goto err_out;
1259 swap_buf_le16(dev->id, ATA_ID_WORDS);
1261 /* print device capabilities */
1262 printk(KERN_DEBUG "ata%u: dev %u cfg "
1263 "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1264 ap->id, device, dev->id[49],
1265 dev->id[82], dev->id[83], dev->id[84],
1266 dev->id[85], dev->id[86], dev->id[87],
1267 dev->id[88]);
1270 * common ATA, ATAPI feature tests
1273 /* we require DMA support (bits 8 of word 49) */
1274 if (!ata_id_has_dma(dev->id)) {
1275 printk(KERN_DEBUG "ata%u: no dma\n", ap->id);
1276 goto err_out_nosup;
1279 /* quick-n-dirty find max transfer mode; for printk only */
1280 xfer_modes = dev->id[ATA_ID_UDMA_MODES];
1281 if (!xfer_modes)
1282 xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA;
1283 if (!xfer_modes)
1284 xfer_modes = ata_pio_modes(dev);
1286 ata_dump_id(dev);
1288 /* ATA-specific feature tests */
1289 if (dev->class == ATA_DEV_ATA) {
1290 if (!ata_id_is_ata(dev->id)) /* sanity check */
1291 goto err_out_nosup;
1293 /* get major version */
1294 tmp = dev->id[ATA_ID_MAJOR_VER];
1295 for (major_version = 14; major_version >= 1; major_version--)
1296 if (tmp & (1 << major_version))
1297 break;
1300 * The exact sequence expected by certain pre-ATA4 drives is:
1301 * SRST RESET
1302 * IDENTIFY
1303 * INITIALIZE DEVICE PARAMETERS
1304 * anything else..
1305 * Some drives were very specific about that exact sequence.
1307 if (major_version < 4 || (!ata_id_has_lba(dev->id))) {
1308 ata_dev_init_params(ap, dev);
1310 /* current CHS translation info (id[53-58]) might be
1311 * changed. reread the identify device info.
1313 ata_dev_reread_id(ap, dev);
1316 if (ata_id_has_lba(dev->id)) {
1317 dev->flags |= ATA_DFLAG_LBA;
1319 if (ata_id_has_lba48(dev->id)) {
1320 dev->flags |= ATA_DFLAG_LBA48;
1321 dev->n_sectors = ata_id_u64(dev->id, 100);
1322 } else {
1323 dev->n_sectors = ata_id_u32(dev->id, 60);
1326 /* print device info to dmesg */
1327 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors:%s\n",
1328 ap->id, device,
1329 major_version,
1330 ata_mode_string(xfer_modes),
1331 (unsigned long long)dev->n_sectors,
1332 dev->flags & ATA_DFLAG_LBA48 ? " LBA48" : " LBA");
1333 } else {
1334 /* CHS */
1336 /* Default translation */
1337 dev->cylinders = dev->id[1];
1338 dev->heads = dev->id[3];
1339 dev->sectors = dev->id[6];
1340 dev->n_sectors = dev->cylinders * dev->heads * dev->sectors;
1342 if (ata_id_current_chs_valid(dev->id)) {
1343 /* Current CHS translation is valid. */
1344 dev->cylinders = dev->id[54];
1345 dev->heads = dev->id[55];
1346 dev->sectors = dev->id[56];
1348 dev->n_sectors = ata_id_u32(dev->id, 57);
1351 /* print device info to dmesg */
1352 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors: CHS %d/%d/%d\n",
1353 ap->id, device,
1354 major_version,
1355 ata_mode_string(xfer_modes),
1356 (unsigned long long)dev->n_sectors,
1357 (int)dev->cylinders, (int)dev->heads, (int)dev->sectors);
1361 ap->host->max_cmd_len = 16;
1364 /* ATAPI-specific feature tests */
1365 else if (dev->class == ATA_DEV_ATAPI) {
1366 if (ata_id_is_ata(dev->id)) /* sanity check */
1367 goto err_out_nosup;
1369 rc = atapi_cdb_len(dev->id);
1370 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1371 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1372 goto err_out_nosup;
1374 ap->cdb_len = (unsigned int) rc;
1375 ap->host->max_cmd_len = (unsigned char) ap->cdb_len;
1377 /* print device info to dmesg */
1378 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1379 ap->id, device,
1380 ata_mode_string(xfer_modes));
1383 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1384 return;
1386 err_out_nosup:
1387 printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
1388 ap->id, device);
1389 err_out:
1390 dev->class++; /* converts ATA_DEV_xxx into ATA_DEV_xxx_UNSUP */
1391 DPRINTK("EXIT, err\n");
1395 static inline u8 ata_dev_knobble(const struct ata_port *ap)
1397 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(ap->device->id)));
1401 * ata_dev_config - Run device specific handlers and check for
1402 * SATA->PATA bridges
1403 * @ap: Bus
1404 * @i: Device
1406 * LOCKING:
1409 void ata_dev_config(struct ata_port *ap, unsigned int i)
1411 /* limit bridge transfers to udma5, 200 sectors */
1412 if (ata_dev_knobble(ap)) {
1413 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1414 ap->id, ap->device->devno);
1415 ap->udma_mask &= ATA_UDMA5;
1416 ap->host->max_sectors = ATA_MAX_SECTORS;
1417 ap->host->hostt->max_sectors = ATA_MAX_SECTORS;
1418 ap->device->flags |= ATA_DFLAG_LOCK_SECTORS;
1421 if (ap->ops->dev_config)
1422 ap->ops->dev_config(ap, &ap->device[i]);
1426 * ata_bus_probe - Reset and probe ATA bus
1427 * @ap: Bus to probe
1429 * Master ATA bus probing function. Initiates a hardware-dependent
1430 * bus reset, then attempts to identify any devices found on
1431 * the bus.
1433 * LOCKING:
1434 * PCI/etc. bus probe sem.
1436 * RETURNS:
1437 * Zero on success, non-zero on error.
1440 static int ata_bus_probe(struct ata_port *ap)
1442 unsigned int i, found = 0;
1444 ap->ops->phy_reset(ap);
1445 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1446 goto err_out;
1448 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1449 ata_dev_identify(ap, i);
1450 if (ata_dev_present(&ap->device[i])) {
1451 found = 1;
1452 ata_dev_config(ap,i);
1456 if ((!found) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1457 goto err_out_disable;
1459 ata_set_mode(ap);
1460 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1461 goto err_out_disable;
1463 return 0;
1465 err_out_disable:
1466 ap->ops->port_disable(ap);
1467 err_out:
1468 return -1;
1472 * ata_port_probe - Mark port as enabled
1473 * @ap: Port for which we indicate enablement
1475 * Modify @ap data structure such that the system
1476 * thinks that the entire port is enabled.
1478 * LOCKING: host_set lock, or some other form of
1479 * serialization.
1482 void ata_port_probe(struct ata_port *ap)
1484 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1488 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1489 * @ap: SATA port associated with target SATA PHY.
1491 * This function issues commands to standard SATA Sxxx
1492 * PHY registers, to wake up the phy (and device), and
1493 * clear any reset condition.
1495 * LOCKING:
1496 * PCI/etc. bus probe sem.
1499 void __sata_phy_reset(struct ata_port *ap)
1501 u32 sstatus;
1502 unsigned long timeout = jiffies + (HZ * 5);
1504 if (ap->flags & ATA_FLAG_SATA_RESET) {
1505 /* issue phy wake/reset */
1506 scr_write_flush(ap, SCR_CONTROL, 0x301);
1507 /* Couldn't find anything in SATA I/II specs, but
1508 * AHCI-1.1 10.4.2 says at least 1 ms. */
1509 mdelay(1);
1511 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1513 /* wait for phy to become ready, if necessary */
1514 do {
1515 msleep(200);
1516 sstatus = scr_read(ap, SCR_STATUS);
1517 if ((sstatus & 0xf) != 1)
1518 break;
1519 } while (time_before(jiffies, timeout));
1521 /* TODO: phy layer with polling, timeouts, etc. */
1522 sstatus = scr_read(ap, SCR_STATUS);
1523 if (sata_dev_present(ap)) {
1524 const char *speed;
1525 u32 tmp;
1527 tmp = (sstatus >> 4) & 0xf;
1528 if (tmp & (1 << 0))
1529 speed = "1.5";
1530 else if (tmp & (1 << 1))
1531 speed = "3.0";
1532 else
1533 speed = "<unknown>";
1534 printk(KERN_INFO "ata%u: SATA link up %s Gbps (SStatus %X)\n",
1535 ap->id, speed, sstatus);
1536 ata_port_probe(ap);
1537 } else {
1538 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1539 ap->id, sstatus);
1540 ata_port_disable(ap);
1543 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1544 return;
1546 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1547 ata_port_disable(ap);
1548 return;
1551 ap->cbl = ATA_CBL_SATA;
1555 * sata_phy_reset - Reset SATA bus.
1556 * @ap: SATA port associated with target SATA PHY.
1558 * This function resets the SATA bus, and then probes
1559 * the bus for devices.
1561 * LOCKING:
1562 * PCI/etc. bus probe sem.
1565 void sata_phy_reset(struct ata_port *ap)
1567 __sata_phy_reset(ap);
1568 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1569 return;
1570 ata_bus_reset(ap);
1574 * ata_port_disable - Disable port.
1575 * @ap: Port to be disabled.
1577 * Modify @ap data structure such that the system
1578 * thinks that the entire port is disabled, and should
1579 * never attempt to probe or communicate with devices
1580 * on this port.
1582 * LOCKING: host_set lock, or some other form of
1583 * serialization.
1586 void ata_port_disable(struct ata_port *ap)
1588 ap->device[0].class = ATA_DEV_NONE;
1589 ap->device[1].class = ATA_DEV_NONE;
1590 ap->flags |= ATA_FLAG_PORT_DISABLED;
1594 * This mode timing computation functionality is ported over from
1595 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1598 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1599 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1600 * for PIO 5, which is a nonstandard extension and UDMA6, which
1601 * is currently supported only by Maxtor drives.
1604 static const struct ata_timing ata_timing[] = {
1606 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1607 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1608 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1609 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1611 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1612 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1613 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1615 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1617 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1618 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1619 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1621 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1622 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1623 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1625 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1626 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1627 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1629 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1630 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1631 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1633 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1635 { 0xFF }
1638 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1639 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1641 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1643 q->setup = EZ(t->setup * 1000, T);
1644 q->act8b = EZ(t->act8b * 1000, T);
1645 q->rec8b = EZ(t->rec8b * 1000, T);
1646 q->cyc8b = EZ(t->cyc8b * 1000, T);
1647 q->active = EZ(t->active * 1000, T);
1648 q->recover = EZ(t->recover * 1000, T);
1649 q->cycle = EZ(t->cycle * 1000, T);
1650 q->udma = EZ(t->udma * 1000, UT);
1653 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1654 struct ata_timing *m, unsigned int what)
1656 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1657 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1658 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1659 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1660 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1661 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1662 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1663 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1666 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1668 const struct ata_timing *t;
1670 for (t = ata_timing; t->mode != speed; t++)
1671 if (t->mode == 0xFF)
1672 return NULL;
1673 return t;
1676 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1677 struct ata_timing *t, int T, int UT)
1679 const struct ata_timing *s;
1680 struct ata_timing p;
1683 * Find the mode.
1686 if (!(s = ata_timing_find_mode(speed)))
1687 return -EINVAL;
1689 memcpy(t, s, sizeof(*s));
1692 * If the drive is an EIDE drive, it can tell us it needs extended
1693 * PIO/MW_DMA cycle timing.
1696 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1697 memset(&p, 0, sizeof(p));
1698 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1699 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1700 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1701 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1702 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1704 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1708 * Convert the timing to bus clock counts.
1711 ata_timing_quantize(t, t, T, UT);
1714 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, S.M.A.R.T
1715 * and some other commands. We have to ensure that the DMA cycle timing is
1716 * slower/equal than the fastest PIO timing.
1719 if (speed > XFER_PIO_4) {
1720 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1721 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1725 * Lenghten active & recovery time so that cycle time is correct.
1728 if (t->act8b + t->rec8b < t->cyc8b) {
1729 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1730 t->rec8b = t->cyc8b - t->act8b;
1733 if (t->active + t->recover < t->cycle) {
1734 t->active += (t->cycle - (t->active + t->recover)) / 2;
1735 t->recover = t->cycle - t->active;
1738 return 0;
1741 static const struct {
1742 unsigned int shift;
1743 u8 base;
1744 } xfer_mode_classes[] = {
1745 { ATA_SHIFT_UDMA, XFER_UDMA_0 },
1746 { ATA_SHIFT_MWDMA, XFER_MW_DMA_0 },
1747 { ATA_SHIFT_PIO, XFER_PIO_0 },
1750 static inline u8 base_from_shift(unsigned int shift)
1752 int i;
1754 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++)
1755 if (xfer_mode_classes[i].shift == shift)
1756 return xfer_mode_classes[i].base;
1758 return 0xff;
1761 static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1763 int ofs, idx;
1764 u8 base;
1766 if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1767 return;
1769 if (dev->xfer_shift == ATA_SHIFT_PIO)
1770 dev->flags |= ATA_DFLAG_PIO;
1772 ata_dev_set_xfermode(ap, dev);
1774 base = base_from_shift(dev->xfer_shift);
1775 ofs = dev->xfer_mode - base;
1776 idx = ofs + dev->xfer_shift;
1777 WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str));
1779 DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
1780 idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs);
1782 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1783 ap->id, dev->devno, xfer_mode_str[idx]);
1786 static int ata_host_set_pio(struct ata_port *ap)
1788 unsigned int mask;
1789 int x, i;
1790 u8 base, xfer_mode;
1792 mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO);
1793 x = fgb(mask);
1794 if (x < 0) {
1795 printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
1796 return -1;
1799 base = base_from_shift(ATA_SHIFT_PIO);
1800 xfer_mode = base + x;
1802 DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
1803 (int)base, (int)xfer_mode, mask, x);
1805 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1806 struct ata_device *dev = &ap->device[i];
1807 if (ata_dev_present(dev)) {
1808 dev->pio_mode = xfer_mode;
1809 dev->xfer_mode = xfer_mode;
1810 dev->xfer_shift = ATA_SHIFT_PIO;
1811 if (ap->ops->set_piomode)
1812 ap->ops->set_piomode(ap, dev);
1816 return 0;
1819 static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode,
1820 unsigned int xfer_shift)
1822 int i;
1824 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1825 struct ata_device *dev = &ap->device[i];
1826 if (ata_dev_present(dev)) {
1827 dev->dma_mode = xfer_mode;
1828 dev->xfer_mode = xfer_mode;
1829 dev->xfer_shift = xfer_shift;
1830 if (ap->ops->set_dmamode)
1831 ap->ops->set_dmamode(ap, dev);
1837 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1838 * @ap: port on which timings will be programmed
1840 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1842 * LOCKING:
1843 * PCI/etc. bus probe sem.
1846 static void ata_set_mode(struct ata_port *ap)
1848 unsigned int xfer_shift;
1849 u8 xfer_mode;
1850 int rc;
1852 /* step 1: always set host PIO timings */
1853 rc = ata_host_set_pio(ap);
1854 if (rc)
1855 goto err_out;
1857 /* step 2: choose the best data xfer mode */
1858 xfer_mode = xfer_shift = 0;
1859 rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift);
1860 if (rc)
1861 goto err_out;
1863 /* step 3: if that xfer mode isn't PIO, set host DMA timings */
1864 if (xfer_shift != ATA_SHIFT_PIO)
1865 ata_host_set_dma(ap, xfer_mode, xfer_shift);
1867 /* step 4: update devices' xfer mode */
1868 ata_dev_set_mode(ap, &ap->device[0]);
1869 ata_dev_set_mode(ap, &ap->device[1]);
1871 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1872 return;
1874 if (ap->ops->post_set_mode)
1875 ap->ops->post_set_mode(ap);
1877 return;
1879 err_out:
1880 ata_port_disable(ap);
1884 * ata_busy_sleep - sleep until BSY clears, or timeout
1885 * @ap: port containing status register to be polled
1886 * @tmout_pat: impatience timeout
1887 * @tmout: overall timeout
1889 * Sleep until ATA Status register bit BSY clears,
1890 * or a timeout occurs.
1892 * LOCKING: None.
1896 static unsigned int ata_busy_sleep (struct ata_port *ap,
1897 unsigned long tmout_pat,
1898 unsigned long tmout)
1900 unsigned long timer_start, timeout;
1901 u8 status;
1903 status = ata_busy_wait(ap, ATA_BUSY, 300);
1904 timer_start = jiffies;
1905 timeout = timer_start + tmout_pat;
1906 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1907 msleep(50);
1908 status = ata_busy_wait(ap, ATA_BUSY, 3);
1911 if (status & ATA_BUSY)
1912 printk(KERN_WARNING "ata%u is slow to respond, "
1913 "please be patient\n", ap->id);
1915 timeout = timer_start + tmout;
1916 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1917 msleep(50);
1918 status = ata_chk_status(ap);
1921 if (status & ATA_BUSY) {
1922 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1923 ap->id, tmout / HZ);
1924 return 1;
1927 return 0;
1930 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1932 struct ata_ioports *ioaddr = &ap->ioaddr;
1933 unsigned int dev0 = devmask & (1 << 0);
1934 unsigned int dev1 = devmask & (1 << 1);
1935 unsigned long timeout;
1937 /* if device 0 was found in ata_devchk, wait for its
1938 * BSY bit to clear
1940 if (dev0)
1941 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1943 /* if device 1 was found in ata_devchk, wait for
1944 * register access, then wait for BSY to clear
1946 timeout = jiffies + ATA_TMOUT_BOOT;
1947 while (dev1) {
1948 u8 nsect, lbal;
1950 ap->ops->dev_select(ap, 1);
1951 if (ap->flags & ATA_FLAG_MMIO) {
1952 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1953 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1954 } else {
1955 nsect = inb(ioaddr->nsect_addr);
1956 lbal = inb(ioaddr->lbal_addr);
1958 if ((nsect == 1) && (lbal == 1))
1959 break;
1960 if (time_after(jiffies, timeout)) {
1961 dev1 = 0;
1962 break;
1964 msleep(50); /* give drive a breather */
1966 if (dev1)
1967 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1969 /* is all this really necessary? */
1970 ap->ops->dev_select(ap, 0);
1971 if (dev1)
1972 ap->ops->dev_select(ap, 1);
1973 if (dev0)
1974 ap->ops->dev_select(ap, 0);
1978 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
1979 * @ap: Port to reset and probe
1981 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
1982 * probe the bus. Not often used these days.
1984 * LOCKING:
1985 * PCI/etc. bus probe sem.
1986 * Obtains host_set lock.
1990 static unsigned int ata_bus_edd(struct ata_port *ap)
1992 struct ata_taskfile tf;
1993 unsigned long flags;
1995 /* set up execute-device-diag (bus reset) taskfile */
1996 /* also, take interrupts to a known state (disabled) */
1997 DPRINTK("execute-device-diag\n");
1998 ata_tf_init(ap, &tf, 0);
1999 tf.ctl |= ATA_NIEN;
2000 tf.command = ATA_CMD_EDD;
2001 tf.protocol = ATA_PROT_NODATA;
2003 /* do bus reset */
2004 spin_lock_irqsave(&ap->host_set->lock, flags);
2005 ata_tf_to_host(ap, &tf);
2006 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2008 /* spec says at least 2ms. but who knows with those
2009 * crazy ATAPI devices...
2011 msleep(150);
2013 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2016 static unsigned int ata_bus_softreset(struct ata_port *ap,
2017 unsigned int devmask)
2019 struct ata_ioports *ioaddr = &ap->ioaddr;
2021 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2023 /* software reset. causes dev0 to be selected */
2024 if (ap->flags & ATA_FLAG_MMIO) {
2025 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2026 udelay(20); /* FIXME: flush */
2027 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2028 udelay(20); /* FIXME: flush */
2029 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2030 } else {
2031 outb(ap->ctl, ioaddr->ctl_addr);
2032 udelay(10);
2033 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2034 udelay(10);
2035 outb(ap->ctl, ioaddr->ctl_addr);
2038 /* spec mandates ">= 2ms" before checking status.
2039 * We wait 150ms, because that was the magic delay used for
2040 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2041 * between when the ATA command register is written, and then
2042 * status is checked. Because waiting for "a while" before
2043 * checking status is fine, post SRST, we perform this magic
2044 * delay here as well.
2046 msleep(150);
2048 ata_bus_post_reset(ap, devmask);
2050 return 0;
2054 * ata_bus_reset - reset host port and associated ATA channel
2055 * @ap: port to reset
2057 * This is typically the first time we actually start issuing
2058 * commands to the ATA channel. We wait for BSY to clear, then
2059 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2060 * result. Determine what devices, if any, are on the channel
2061 * by looking at the device 0/1 error register. Look at the signature
2062 * stored in each device's taskfile registers, to determine if
2063 * the device is ATA or ATAPI.
2065 * LOCKING:
2066 * PCI/etc. bus probe sem.
2067 * Obtains host_set lock.
2069 * SIDE EFFECTS:
2070 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
2073 void ata_bus_reset(struct ata_port *ap)
2075 struct ata_ioports *ioaddr = &ap->ioaddr;
2076 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2077 u8 err;
2078 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
2080 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2082 /* determine if device 0/1 are present */
2083 if (ap->flags & ATA_FLAG_SATA_RESET)
2084 dev0 = 1;
2085 else {
2086 dev0 = ata_devchk(ap, 0);
2087 if (slave_possible)
2088 dev1 = ata_devchk(ap, 1);
2091 if (dev0)
2092 devmask |= (1 << 0);
2093 if (dev1)
2094 devmask |= (1 << 1);
2096 /* select device 0 again */
2097 ap->ops->dev_select(ap, 0);
2099 /* issue bus reset */
2100 if (ap->flags & ATA_FLAG_SRST)
2101 rc = ata_bus_softreset(ap, devmask);
2102 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
2103 /* set up device control */
2104 if (ap->flags & ATA_FLAG_MMIO)
2105 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2106 else
2107 outb(ap->ctl, ioaddr->ctl_addr);
2108 rc = ata_bus_edd(ap);
2111 if (rc)
2112 goto err_out;
2115 * determine by signature whether we have ATA or ATAPI devices
2117 err = ata_dev_try_classify(ap, 0);
2118 if ((slave_possible) && (err != 0x81))
2119 ata_dev_try_classify(ap, 1);
2121 /* re-enable interrupts */
2122 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2123 ata_irq_on(ap);
2125 /* is double-select really necessary? */
2126 if (ap->device[1].class != ATA_DEV_NONE)
2127 ap->ops->dev_select(ap, 1);
2128 if (ap->device[0].class != ATA_DEV_NONE)
2129 ap->ops->dev_select(ap, 0);
2131 /* if no devices were detected, disable this port */
2132 if ((ap->device[0].class == ATA_DEV_NONE) &&
2133 (ap->device[1].class == ATA_DEV_NONE))
2134 goto err_out;
2136 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2137 /* set up device control for ATA_FLAG_SATA_RESET */
2138 if (ap->flags & ATA_FLAG_MMIO)
2139 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2140 else
2141 outb(ap->ctl, ioaddr->ctl_addr);
2144 DPRINTK("EXIT\n");
2145 return;
2147 err_out:
2148 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2149 ap->ops->port_disable(ap);
2151 DPRINTK("EXIT\n");
2154 static void ata_pr_blacklisted(const struct ata_port *ap,
2155 const struct ata_device *dev)
2157 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n",
2158 ap->id, dev->devno);
2161 static const char * const ata_dma_blacklist [] = {
2162 "WDC AC11000H",
2163 "WDC AC22100H",
2164 "WDC AC32500H",
2165 "WDC AC33100H",
2166 "WDC AC31600H",
2167 "WDC AC32100H",
2168 "WDC AC23200L",
2169 "Compaq CRD-8241B",
2170 "CRD-8400B",
2171 "CRD-8480B",
2172 "CRD-8482B",
2173 "CRD-84",
2174 "SanDisk SDP3B",
2175 "SanDisk SDP3B-64",
2176 "SANYO CD-ROM CRD",
2177 "HITACHI CDR-8",
2178 "HITACHI CDR-8335",
2179 "HITACHI CDR-8435",
2180 "Toshiba CD-ROM XM-6202B",
2181 "TOSHIBA CD-ROM XM-1702BC",
2182 "CD-532E-A",
2183 "E-IDE CD-ROM CR-840",
2184 "CD-ROM Drive/F5A",
2185 "WPI CDD-820",
2186 "SAMSUNG CD-ROM SC-148C",
2187 "SAMSUNG CD-ROM SC",
2188 "SanDisk SDP3B-64",
2189 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
2190 "_NEC DV5800A",
2193 static int ata_dma_blacklisted(const struct ata_device *dev)
2195 unsigned char model_num[40];
2196 char *s;
2197 unsigned int len;
2198 int i;
2200 ata_dev_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2201 sizeof(model_num));
2202 s = &model_num[0];
2203 len = strnlen(s, sizeof(model_num));
2205 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2206 while ((len > 0) && (s[len - 1] == ' ')) {
2207 len--;
2208 s[len] = 0;
2211 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
2212 if (!strncmp(ata_dma_blacklist[i], s, len))
2213 return 1;
2215 return 0;
2218 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift)
2220 const struct ata_device *master, *slave;
2221 unsigned int mask;
2223 master = &ap->device[0];
2224 slave = &ap->device[1];
2226 assert (ata_dev_present(master) || ata_dev_present(slave));
2228 if (shift == ATA_SHIFT_UDMA) {
2229 mask = ap->udma_mask;
2230 if (ata_dev_present(master)) {
2231 mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff);
2232 if (ata_dma_blacklisted(master)) {
2233 mask = 0;
2234 ata_pr_blacklisted(ap, master);
2237 if (ata_dev_present(slave)) {
2238 mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff);
2239 if (ata_dma_blacklisted(slave)) {
2240 mask = 0;
2241 ata_pr_blacklisted(ap, slave);
2245 else if (shift == ATA_SHIFT_MWDMA) {
2246 mask = ap->mwdma_mask;
2247 if (ata_dev_present(master)) {
2248 mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07);
2249 if (ata_dma_blacklisted(master)) {
2250 mask = 0;
2251 ata_pr_blacklisted(ap, master);
2254 if (ata_dev_present(slave)) {
2255 mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07);
2256 if (ata_dma_blacklisted(slave)) {
2257 mask = 0;
2258 ata_pr_blacklisted(ap, slave);
2262 else if (shift == ATA_SHIFT_PIO) {
2263 mask = ap->pio_mask;
2264 if (ata_dev_present(master)) {
2265 /* spec doesn't return explicit support for
2266 * PIO0-2, so we fake it
2268 u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03;
2269 tmp_mode <<= 3;
2270 tmp_mode |= 0x7;
2271 mask &= tmp_mode;
2273 if (ata_dev_present(slave)) {
2274 /* spec doesn't return explicit support for
2275 * PIO0-2, so we fake it
2277 u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03;
2278 tmp_mode <<= 3;
2279 tmp_mode |= 0x7;
2280 mask &= tmp_mode;
2283 else {
2284 mask = 0xffffffff; /* shut up compiler warning */
2285 BUG();
2288 return mask;
2291 /* find greatest bit */
2292 static int fgb(u32 bitmap)
2294 unsigned int i;
2295 int x = -1;
2297 for (i = 0; i < 32; i++)
2298 if (bitmap & (1 << i))
2299 x = i;
2301 return x;
2305 * ata_choose_xfer_mode - attempt to find best transfer mode
2306 * @ap: Port for which an xfer mode will be selected
2307 * @xfer_mode_out: (output) SET FEATURES - XFER MODE code
2308 * @xfer_shift_out: (output) bit shift that selects this mode
2310 * Based on host and device capabilities, determine the
2311 * maximum transfer mode that is amenable to all.
2313 * LOCKING:
2314 * PCI/etc. bus probe sem.
2316 * RETURNS:
2317 * Zero on success, negative on error.
2320 static int ata_choose_xfer_mode(const struct ata_port *ap,
2321 u8 *xfer_mode_out,
2322 unsigned int *xfer_shift_out)
2324 unsigned int mask, shift;
2325 int x, i;
2327 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) {
2328 shift = xfer_mode_classes[i].shift;
2329 mask = ata_get_mode_mask(ap, shift);
2331 x = fgb(mask);
2332 if (x >= 0) {
2333 *xfer_mode_out = xfer_mode_classes[i].base + x;
2334 *xfer_shift_out = shift;
2335 return 0;
2339 return -1;
2343 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2344 * @ap: Port associated with device @dev
2345 * @dev: Device to which command will be sent
2347 * Issue SET FEATURES - XFER MODE command to device @dev
2348 * on port @ap.
2350 * LOCKING:
2351 * PCI/etc. bus probe sem.
2354 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
2356 struct ata_taskfile tf;
2358 /* set up set-features taskfile */
2359 DPRINTK("set features - xfer mode\n");
2361 ata_tf_init(ap, &tf, dev->devno);
2362 tf.command = ATA_CMD_SET_FEATURES;
2363 tf.feature = SETFEATURES_XFER;
2364 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2365 tf.protocol = ATA_PROT_NODATA;
2366 tf.nsect = dev->xfer_mode;
2368 if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
2369 printk(KERN_ERR "ata%u: failed to set xfermode, disabled\n",
2370 ap->id);
2371 ata_port_disable(ap);
2374 DPRINTK("EXIT\n");
2378 * ata_dev_reread_id - Reread the device identify device info
2379 * @ap: port where the device is
2380 * @dev: device to reread the identify device info
2382 * LOCKING:
2385 static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev)
2387 struct ata_taskfile tf;
2389 ata_tf_init(ap, &tf, dev->devno);
2391 if (dev->class == ATA_DEV_ATA) {
2392 tf.command = ATA_CMD_ID_ATA;
2393 DPRINTK("do ATA identify\n");
2394 } else {
2395 tf.command = ATA_CMD_ID_ATAPI;
2396 DPRINTK("do ATAPI identify\n");
2399 tf.flags |= ATA_TFLAG_DEVICE;
2400 tf.protocol = ATA_PROT_PIO;
2402 if (ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
2403 dev->id, sizeof(dev->id)))
2404 goto err_out;
2406 swap_buf_le16(dev->id, ATA_ID_WORDS);
2408 ata_dump_id(dev);
2410 DPRINTK("EXIT\n");
2412 return;
2413 err_out:
2414 printk(KERN_ERR "ata%u: failed to reread ID, disabled\n", ap->id);
2415 ata_port_disable(ap);
2419 * ata_dev_init_params - Issue INIT DEV PARAMS command
2420 * @ap: Port associated with device @dev
2421 * @dev: Device to which command will be sent
2423 * LOCKING:
2426 static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev)
2428 struct ata_taskfile tf;
2429 u16 sectors = dev->id[6];
2430 u16 heads = dev->id[3];
2432 /* Number of sectors per track 1-255. Number of heads 1-16 */
2433 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
2434 return;
2436 /* set up init dev params taskfile */
2437 DPRINTK("init dev params \n");
2439 ata_tf_init(ap, &tf, dev->devno);
2440 tf.command = ATA_CMD_INIT_DEV_PARAMS;
2441 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2442 tf.protocol = ATA_PROT_NODATA;
2443 tf.nsect = sectors;
2444 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
2446 if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
2447 printk(KERN_ERR "ata%u: failed to init parameters, disabled\n",
2448 ap->id);
2449 ata_port_disable(ap);
2452 DPRINTK("EXIT\n");
2456 * ata_sg_clean - Unmap DMA memory associated with command
2457 * @qc: Command containing DMA memory to be released
2459 * Unmap all mapped DMA memory associated with this command.
2461 * LOCKING:
2462 * spin_lock_irqsave(host_set lock)
2465 static void ata_sg_clean(struct ata_queued_cmd *qc)
2467 struct ata_port *ap = qc->ap;
2468 struct scatterlist *sg = qc->__sg;
2469 int dir = qc->dma_dir;
2470 void *pad_buf = NULL;
2472 assert(qc->flags & ATA_QCFLAG_DMAMAP);
2473 assert(sg != NULL);
2475 if (qc->flags & ATA_QCFLAG_SINGLE)
2476 assert(qc->n_elem == 1);
2478 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
2480 /* if we padded the buffer out to 32-bit bound, and data
2481 * xfer direction is from-device, we must copy from the
2482 * pad buffer back into the supplied buffer
2484 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2485 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2487 if (qc->flags & ATA_QCFLAG_SG) {
2488 if (qc->n_elem)
2489 dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
2490 /* restore last sg */
2491 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2492 if (pad_buf) {
2493 struct scatterlist *psg = &qc->pad_sgent;
2494 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2495 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
2496 kunmap_atomic(addr, KM_IRQ0);
2498 } else {
2499 if (sg_dma_len(&sg[0]) > 0)
2500 dma_unmap_single(ap->host_set->dev,
2501 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2502 dir);
2503 /* restore sg */
2504 sg->length += qc->pad_len;
2505 if (pad_buf)
2506 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2507 pad_buf, qc->pad_len);
2510 qc->flags &= ~ATA_QCFLAG_DMAMAP;
2511 qc->__sg = NULL;
2515 * ata_fill_sg - Fill PCI IDE PRD table
2516 * @qc: Metadata associated with taskfile to be transferred
2518 * Fill PCI IDE PRD (scatter-gather) table with segments
2519 * associated with the current disk command.
2521 * LOCKING:
2522 * spin_lock_irqsave(host_set lock)
2525 static void ata_fill_sg(struct ata_queued_cmd *qc)
2527 struct ata_port *ap = qc->ap;
2528 struct scatterlist *sg;
2529 unsigned int idx;
2531 assert(qc->__sg != NULL);
2532 assert(qc->n_elem > 0);
2534 idx = 0;
2535 ata_for_each_sg(sg, qc) {
2536 u32 addr, offset;
2537 u32 sg_len, len;
2539 /* determine if physical DMA addr spans 64K boundary.
2540 * Note h/w doesn't support 64-bit, so we unconditionally
2541 * truncate dma_addr_t to u32.
2543 addr = (u32) sg_dma_address(sg);
2544 sg_len = sg_dma_len(sg);
2546 while (sg_len) {
2547 offset = addr & 0xffff;
2548 len = sg_len;
2549 if ((offset + sg_len) > 0x10000)
2550 len = 0x10000 - offset;
2552 ap->prd[idx].addr = cpu_to_le32(addr);
2553 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2554 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2556 idx++;
2557 sg_len -= len;
2558 addr += len;
2562 if (idx)
2563 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2566 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2567 * @qc: Metadata associated with taskfile to check
2569 * Allow low-level driver to filter ATA PACKET commands, returning
2570 * a status indicating whether or not it is OK to use DMA for the
2571 * supplied PACKET command.
2573 * LOCKING:
2574 * spin_lock_irqsave(host_set lock)
2576 * RETURNS: 0 when ATAPI DMA can be used
2577 * nonzero otherwise
2579 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2581 struct ata_port *ap = qc->ap;
2582 int rc = 0; /* Assume ATAPI DMA is OK by default */
2584 if (ap->ops->check_atapi_dma)
2585 rc = ap->ops->check_atapi_dma(qc);
2587 return rc;
2590 * ata_qc_prep - Prepare taskfile for submission
2591 * @qc: Metadata associated with taskfile to be prepared
2593 * Prepare ATA taskfile for submission.
2595 * LOCKING:
2596 * spin_lock_irqsave(host_set lock)
2598 void ata_qc_prep(struct ata_queued_cmd *qc)
2600 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2601 return;
2603 ata_fill_sg(qc);
2607 * ata_sg_init_one - Associate command with memory buffer
2608 * @qc: Command to be associated
2609 * @buf: Memory buffer
2610 * @buflen: Length of memory buffer, in bytes.
2612 * Initialize the data-related elements of queued_cmd @qc
2613 * to point to a single memory buffer, @buf of byte length @buflen.
2615 * LOCKING:
2616 * spin_lock_irqsave(host_set lock)
2619 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2621 struct scatterlist *sg;
2623 qc->flags |= ATA_QCFLAG_SINGLE;
2625 memset(&qc->sgent, 0, sizeof(qc->sgent));
2626 qc->__sg = &qc->sgent;
2627 qc->n_elem = 1;
2628 qc->orig_n_elem = 1;
2629 qc->buf_virt = buf;
2631 sg = qc->__sg;
2632 sg_init_one(sg, buf, buflen);
2636 * ata_sg_init - Associate command with scatter-gather table.
2637 * @qc: Command to be associated
2638 * @sg: Scatter-gather table.
2639 * @n_elem: Number of elements in s/g table.
2641 * Initialize the data-related elements of queued_cmd @qc
2642 * to point to a scatter-gather table @sg, containing @n_elem
2643 * elements.
2645 * LOCKING:
2646 * spin_lock_irqsave(host_set lock)
2649 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2650 unsigned int n_elem)
2652 qc->flags |= ATA_QCFLAG_SG;
2653 qc->__sg = sg;
2654 qc->n_elem = n_elem;
2655 qc->orig_n_elem = n_elem;
2659 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2660 * @qc: Command with memory buffer to be mapped.
2662 * DMA-map the memory buffer associated with queued_cmd @qc.
2664 * LOCKING:
2665 * spin_lock_irqsave(host_set lock)
2667 * RETURNS:
2668 * Zero on success, negative on error.
2671 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2673 struct ata_port *ap = qc->ap;
2674 int dir = qc->dma_dir;
2675 struct scatterlist *sg = qc->__sg;
2676 dma_addr_t dma_address;
2678 /* we must lengthen transfers to end on a 32-bit boundary */
2679 qc->pad_len = sg->length & 3;
2680 if (qc->pad_len) {
2681 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2682 struct scatterlist *psg = &qc->pad_sgent;
2684 assert(qc->dev->class == ATA_DEV_ATAPI);
2686 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2688 if (qc->tf.flags & ATA_TFLAG_WRITE)
2689 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
2690 qc->pad_len);
2692 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2693 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2694 /* trim sg */
2695 sg->length -= qc->pad_len;
2697 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
2698 sg->length, qc->pad_len);
2701 if (!sg->length) {
2702 sg_dma_address(sg) = 0;
2703 goto skip_map;
2706 dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
2707 sg->length, dir);
2708 if (dma_mapping_error(dma_address)) {
2709 /* restore sg */
2710 sg->length += qc->pad_len;
2711 return -1;
2714 sg_dma_address(sg) = dma_address;
2715 skip_map:
2716 sg_dma_len(sg) = sg->length;
2718 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
2719 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2721 return 0;
2725 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
2726 * @qc: Command with scatter-gather table to be mapped.
2728 * DMA-map the scatter-gather table associated with queued_cmd @qc.
2730 * LOCKING:
2731 * spin_lock_irqsave(host_set lock)
2733 * RETURNS:
2734 * Zero on success, negative on error.
2738 static int ata_sg_setup(struct ata_queued_cmd *qc)
2740 struct ata_port *ap = qc->ap;
2741 struct scatterlist *sg = qc->__sg;
2742 struct scatterlist *lsg = &sg[qc->n_elem - 1];
2743 int n_elem, pre_n_elem, dir, trim_sg = 0;
2745 VPRINTK("ENTER, ata%u\n", ap->id);
2746 assert(qc->flags & ATA_QCFLAG_SG);
2748 /* we must lengthen transfers to end on a 32-bit boundary */
2749 qc->pad_len = lsg->length & 3;
2750 if (qc->pad_len) {
2751 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2752 struct scatterlist *psg = &qc->pad_sgent;
2753 unsigned int offset;
2755 assert(qc->dev->class == ATA_DEV_ATAPI);
2757 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2760 * psg->page/offset are used to copy to-be-written
2761 * data in this function or read data in ata_sg_clean.
2763 offset = lsg->offset + lsg->length - qc->pad_len;
2764 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
2765 psg->offset = offset_in_page(offset);
2767 if (qc->tf.flags & ATA_TFLAG_WRITE) {
2768 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2769 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
2770 kunmap_atomic(addr, KM_IRQ0);
2773 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2774 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2775 /* trim last sg */
2776 lsg->length -= qc->pad_len;
2777 if (lsg->length == 0)
2778 trim_sg = 1;
2780 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
2781 qc->n_elem - 1, lsg->length, qc->pad_len);
2784 pre_n_elem = qc->n_elem;
2785 if (trim_sg && pre_n_elem)
2786 pre_n_elem--;
2788 if (!pre_n_elem) {
2789 n_elem = 0;
2790 goto skip_map;
2793 dir = qc->dma_dir;
2794 n_elem = dma_map_sg(ap->host_set->dev, sg, pre_n_elem, dir);
2795 if (n_elem < 1) {
2796 /* restore last sg */
2797 lsg->length += qc->pad_len;
2798 return -1;
2801 DPRINTK("%d sg elements mapped\n", n_elem);
2803 skip_map:
2804 qc->n_elem = n_elem;
2806 return 0;
2810 * ata_poll_qc_complete - turn irq back on and finish qc
2811 * @qc: Command to complete
2812 * @err_mask: ATA status register content
2814 * LOCKING:
2815 * None. (grabs host lock)
2818 void ata_poll_qc_complete(struct ata_queued_cmd *qc)
2820 struct ata_port *ap = qc->ap;
2821 unsigned long flags;
2823 spin_lock_irqsave(&ap->host_set->lock, flags);
2824 ap->flags &= ~ATA_FLAG_NOINTR;
2825 ata_irq_on(ap);
2826 ata_qc_complete(qc);
2827 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2831 * ata_pio_poll -
2832 * @ap: the target ata_port
2834 * LOCKING:
2835 * None. (executing in kernel thread context)
2837 * RETURNS:
2838 * timeout value to use
2841 static unsigned long ata_pio_poll(struct ata_port *ap)
2843 struct ata_queued_cmd *qc;
2844 u8 status;
2845 unsigned int poll_state = HSM_ST_UNKNOWN;
2846 unsigned int reg_state = HSM_ST_UNKNOWN;
2848 qc = ata_qc_from_tag(ap, ap->active_tag);
2849 assert(qc != NULL);
2851 switch (ap->hsm_task_state) {
2852 case HSM_ST:
2853 case HSM_ST_POLL:
2854 poll_state = HSM_ST_POLL;
2855 reg_state = HSM_ST;
2856 break;
2857 case HSM_ST_LAST:
2858 case HSM_ST_LAST_POLL:
2859 poll_state = HSM_ST_LAST_POLL;
2860 reg_state = HSM_ST_LAST;
2861 break;
2862 default:
2863 BUG();
2864 break;
2867 status = ata_chk_status(ap);
2868 if (status & ATA_BUSY) {
2869 if (time_after(jiffies, ap->pio_task_timeout)) {
2870 qc->err_mask |= AC_ERR_ATA_BUS;
2871 ap->hsm_task_state = HSM_ST_TMOUT;
2872 return 0;
2874 ap->hsm_task_state = poll_state;
2875 return ATA_SHORT_PAUSE;
2878 ap->hsm_task_state = reg_state;
2879 return 0;
2883 * ata_pio_complete - check if drive is busy or idle
2884 * @ap: the target ata_port
2886 * LOCKING:
2887 * None. (executing in kernel thread context)
2889 * RETURNS:
2890 * Non-zero if qc completed, zero otherwise.
2893 static int ata_pio_complete (struct ata_port *ap)
2895 struct ata_queued_cmd *qc;
2896 u8 drv_stat;
2899 * This is purely heuristic. This is a fast path. Sometimes when
2900 * we enter, BSY will be cleared in a chk-status or two. If not,
2901 * the drive is probably seeking or something. Snooze for a couple
2902 * msecs, then chk-status again. If still busy, fall back to
2903 * HSM_ST_POLL state.
2905 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
2906 if (drv_stat & ATA_BUSY) {
2907 msleep(2);
2908 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
2909 if (drv_stat & ATA_BUSY) {
2910 ap->hsm_task_state = HSM_ST_LAST_POLL;
2911 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
2912 return 0;
2916 qc = ata_qc_from_tag(ap, ap->active_tag);
2917 assert(qc != NULL);
2919 drv_stat = ata_wait_idle(ap);
2920 if (!ata_ok(drv_stat)) {
2921 qc->err_mask |= __ac_err_mask(drv_stat);
2922 ap->hsm_task_state = HSM_ST_ERR;
2923 return 0;
2926 ap->hsm_task_state = HSM_ST_IDLE;
2928 assert(qc->err_mask == 0);
2929 ata_poll_qc_complete(qc);
2931 /* another command may start at this point */
2933 return 1;
2938 * swap_buf_le16 - swap halves of 16-words in place
2939 * @buf: Buffer to swap
2940 * @buf_words: Number of 16-bit words in buffer.
2942 * Swap halves of 16-bit words if needed to convert from
2943 * little-endian byte order to native cpu byte order, or
2944 * vice-versa.
2946 * LOCKING:
2947 * Inherited from caller.
2949 void swap_buf_le16(u16 *buf, unsigned int buf_words)
2951 #ifdef __BIG_ENDIAN
2952 unsigned int i;
2954 for (i = 0; i < buf_words; i++)
2955 buf[i] = le16_to_cpu(buf[i]);
2956 #endif /* __BIG_ENDIAN */
2960 * ata_mmio_data_xfer - Transfer data by MMIO
2961 * @ap: port to read/write
2962 * @buf: data buffer
2963 * @buflen: buffer length
2964 * @write_data: read/write
2966 * Transfer data from/to the device data register by MMIO.
2968 * LOCKING:
2969 * Inherited from caller.
2972 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
2973 unsigned int buflen, int write_data)
2975 unsigned int i;
2976 unsigned int words = buflen >> 1;
2977 u16 *buf16 = (u16 *) buf;
2978 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
2980 /* Transfer multiple of 2 bytes */
2981 if (write_data) {
2982 for (i = 0; i < words; i++)
2983 writew(le16_to_cpu(buf16[i]), mmio);
2984 } else {
2985 for (i = 0; i < words; i++)
2986 buf16[i] = cpu_to_le16(readw(mmio));
2989 /* Transfer trailing 1 byte, if any. */
2990 if (unlikely(buflen & 0x01)) {
2991 u16 align_buf[1] = { 0 };
2992 unsigned char *trailing_buf = buf + buflen - 1;
2994 if (write_data) {
2995 memcpy(align_buf, trailing_buf, 1);
2996 writew(le16_to_cpu(align_buf[0]), mmio);
2997 } else {
2998 align_buf[0] = cpu_to_le16(readw(mmio));
2999 memcpy(trailing_buf, align_buf, 1);
3005 * ata_pio_data_xfer - Transfer data by PIO
3006 * @ap: port to read/write
3007 * @buf: data buffer
3008 * @buflen: buffer length
3009 * @write_data: read/write
3011 * Transfer data from/to the device data register by PIO.
3013 * LOCKING:
3014 * Inherited from caller.
3017 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3018 unsigned int buflen, int write_data)
3020 unsigned int words = buflen >> 1;
3022 /* Transfer multiple of 2 bytes */
3023 if (write_data)
3024 outsw(ap->ioaddr.data_addr, buf, words);
3025 else
3026 insw(ap->ioaddr.data_addr, buf, words);
3028 /* Transfer trailing 1 byte, if any. */
3029 if (unlikely(buflen & 0x01)) {
3030 u16 align_buf[1] = { 0 };
3031 unsigned char *trailing_buf = buf + buflen - 1;
3033 if (write_data) {
3034 memcpy(align_buf, trailing_buf, 1);
3035 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3036 } else {
3037 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3038 memcpy(trailing_buf, align_buf, 1);
3044 * ata_data_xfer - Transfer data from/to the data register.
3045 * @ap: port to read/write
3046 * @buf: data buffer
3047 * @buflen: buffer length
3048 * @do_write: read/write
3050 * Transfer data from/to the device data register.
3052 * LOCKING:
3053 * Inherited from caller.
3056 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3057 unsigned int buflen, int do_write)
3059 if (ap->flags & ATA_FLAG_MMIO)
3060 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3061 else
3062 ata_pio_data_xfer(ap, buf, buflen, do_write);
3066 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3067 * @qc: Command on going
3069 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3071 * LOCKING:
3072 * Inherited from caller.
3075 static void ata_pio_sector(struct ata_queued_cmd *qc)
3077 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3078 struct scatterlist *sg = qc->__sg;
3079 struct ata_port *ap = qc->ap;
3080 struct page *page;
3081 unsigned int offset;
3082 unsigned char *buf;
3084 if (qc->cursect == (qc->nsect - 1))
3085 ap->hsm_task_state = HSM_ST_LAST;
3087 page = sg[qc->cursg].page;
3088 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3090 /* get the current page and offset */
3091 page = nth_page(page, (offset >> PAGE_SHIFT));
3092 offset %= PAGE_SIZE;
3094 buf = kmap(page) + offset;
3096 qc->cursect++;
3097 qc->cursg_ofs++;
3099 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3100 qc->cursg++;
3101 qc->cursg_ofs = 0;
3104 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3106 /* do the actual data transfer */
3107 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3108 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3110 kunmap(page);
3114 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3115 * @qc: Command on going
3116 * @bytes: number of bytes
3118 * Transfer Transfer data from/to the ATAPI device.
3120 * LOCKING:
3121 * Inherited from caller.
3125 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3127 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3128 struct scatterlist *sg = qc->__sg;
3129 struct ata_port *ap = qc->ap;
3130 struct page *page;
3131 unsigned char *buf;
3132 unsigned int offset, count;
3134 if (qc->curbytes + bytes >= qc->nbytes)
3135 ap->hsm_task_state = HSM_ST_LAST;
3137 next_sg:
3138 if (unlikely(qc->cursg >= qc->n_elem)) {
3140 * The end of qc->sg is reached and the device expects
3141 * more data to transfer. In order not to overrun qc->sg
3142 * and fulfill length specified in the byte count register,
3143 * - for read case, discard trailing data from the device
3144 * - for write case, padding zero data to the device
3146 u16 pad_buf[1] = { 0 };
3147 unsigned int words = bytes >> 1;
3148 unsigned int i;
3150 if (words) /* warning if bytes > 1 */
3151 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
3152 ap->id, bytes);
3154 for (i = 0; i < words; i++)
3155 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3157 ap->hsm_task_state = HSM_ST_LAST;
3158 return;
3161 sg = &qc->__sg[qc->cursg];
3163 page = sg->page;
3164 offset = sg->offset + qc->cursg_ofs;
3166 /* get the current page and offset */
3167 page = nth_page(page, (offset >> PAGE_SHIFT));
3168 offset %= PAGE_SIZE;
3170 /* don't overrun current sg */
3171 count = min(sg->length - qc->cursg_ofs, bytes);
3173 /* don't cross page boundaries */
3174 count = min(count, (unsigned int)PAGE_SIZE - offset);
3176 buf = kmap(page) + offset;
3178 bytes -= count;
3179 qc->curbytes += count;
3180 qc->cursg_ofs += count;
3182 if (qc->cursg_ofs == sg->length) {
3183 qc->cursg++;
3184 qc->cursg_ofs = 0;
3187 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3189 /* do the actual data transfer */
3190 ata_data_xfer(ap, buf, count, do_write);
3192 kunmap(page);
3194 if (bytes)
3195 goto next_sg;
3199 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3200 * @qc: Command on going
3202 * Transfer Transfer data from/to the ATAPI device.
3204 * LOCKING:
3205 * Inherited from caller.
3208 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3210 struct ata_port *ap = qc->ap;
3211 struct ata_device *dev = qc->dev;
3212 unsigned int ireason, bc_lo, bc_hi, bytes;
3213 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3215 ap->ops->tf_read(ap, &qc->tf);
3216 ireason = qc->tf.nsect;
3217 bc_lo = qc->tf.lbam;
3218 bc_hi = qc->tf.lbah;
3219 bytes = (bc_hi << 8) | bc_lo;
3221 /* shall be cleared to zero, indicating xfer of data */
3222 if (ireason & (1 << 0))
3223 goto err_out;
3225 /* make sure transfer direction matches expected */
3226 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3227 if (do_write != i_write)
3228 goto err_out;
3230 __atapi_pio_bytes(qc, bytes);
3232 return;
3234 err_out:
3235 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3236 ap->id, dev->devno);
3237 qc->err_mask |= AC_ERR_ATA_BUS;
3238 ap->hsm_task_state = HSM_ST_ERR;
3242 * ata_pio_block - start PIO on a block
3243 * @ap: the target ata_port
3245 * LOCKING:
3246 * None. (executing in kernel thread context)
3249 static void ata_pio_block(struct ata_port *ap)
3251 struct ata_queued_cmd *qc;
3252 u8 status;
3255 * This is purely heuristic. This is a fast path.
3256 * Sometimes when we enter, BSY will be cleared in
3257 * a chk-status or two. If not, the drive is probably seeking
3258 * or something. Snooze for a couple msecs, then
3259 * chk-status again. If still busy, fall back to
3260 * HSM_ST_POLL state.
3262 status = ata_busy_wait(ap, ATA_BUSY, 5);
3263 if (status & ATA_BUSY) {
3264 msleep(2);
3265 status = ata_busy_wait(ap, ATA_BUSY, 10);
3266 if (status & ATA_BUSY) {
3267 ap->hsm_task_state = HSM_ST_POLL;
3268 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3269 return;
3273 qc = ata_qc_from_tag(ap, ap->active_tag);
3274 assert(qc != NULL);
3276 /* check error */
3277 if (status & (ATA_ERR | ATA_DF)) {
3278 qc->err_mask |= AC_ERR_DEV;
3279 ap->hsm_task_state = HSM_ST_ERR;
3280 return;
3283 /* transfer data if any */
3284 if (is_atapi_taskfile(&qc->tf)) {
3285 /* DRQ=0 means no more data to transfer */
3286 if ((status & ATA_DRQ) == 0) {
3287 ap->hsm_task_state = HSM_ST_LAST;
3288 return;
3291 atapi_pio_bytes(qc);
3292 } else {
3293 /* handle BSY=0, DRQ=0 as error */
3294 if ((status & ATA_DRQ) == 0) {
3295 qc->err_mask |= AC_ERR_ATA_BUS;
3296 ap->hsm_task_state = HSM_ST_ERR;
3297 return;
3300 ata_pio_sector(qc);
3304 static void ata_pio_error(struct ata_port *ap)
3306 struct ata_queued_cmd *qc;
3308 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
3310 qc = ata_qc_from_tag(ap, ap->active_tag);
3311 assert(qc != NULL);
3313 /* make sure qc->err_mask is available to
3314 * know what's wrong and recover
3316 assert(qc->err_mask);
3318 ap->hsm_task_state = HSM_ST_IDLE;
3320 ata_poll_qc_complete(qc);
3323 static void ata_pio_task(void *_data)
3325 struct ata_port *ap = _data;
3326 unsigned long timeout;
3327 int qc_completed;
3329 fsm_start:
3330 timeout = 0;
3331 qc_completed = 0;
3333 switch (ap->hsm_task_state) {
3334 case HSM_ST_IDLE:
3335 return;
3337 case HSM_ST:
3338 ata_pio_block(ap);
3339 break;
3341 case HSM_ST_LAST:
3342 qc_completed = ata_pio_complete(ap);
3343 break;
3345 case HSM_ST_POLL:
3346 case HSM_ST_LAST_POLL:
3347 timeout = ata_pio_poll(ap);
3348 break;
3350 case HSM_ST_TMOUT:
3351 case HSM_ST_ERR:
3352 ata_pio_error(ap);
3353 return;
3356 if (timeout)
3357 queue_delayed_work(ata_wq, &ap->pio_task, timeout);
3358 else if (!qc_completed)
3359 goto fsm_start;
3363 * ata_qc_timeout - Handle timeout of queued command
3364 * @qc: Command that timed out
3366 * Some part of the kernel (currently, only the SCSI layer)
3367 * has noticed that the active command on port @ap has not
3368 * completed after a specified length of time. Handle this
3369 * condition by disabling DMA (if necessary) and completing
3370 * transactions, with error if necessary.
3372 * This also handles the case of the "lost interrupt", where
3373 * for some reason (possibly hardware bug, possibly driver bug)
3374 * an interrupt was not delivered to the driver, even though the
3375 * transaction completed successfully.
3377 * LOCKING:
3378 * Inherited from SCSI layer (none, can sleep)
3381 static void ata_qc_timeout(struct ata_queued_cmd *qc)
3383 struct ata_port *ap = qc->ap;
3384 struct ata_host_set *host_set = ap->host_set;
3385 u8 host_stat = 0, drv_stat;
3386 unsigned long flags;
3388 DPRINTK("ENTER\n");
3390 spin_lock_irqsave(&host_set->lock, flags);
3392 /* hack alert! We cannot use the supplied completion
3393 * function from inside the ->eh_strategy_handler() thread.
3394 * libata is the only user of ->eh_strategy_handler() in
3395 * any kernel, so the default scsi_done() assumes it is
3396 * not being called from the SCSI EH.
3398 qc->scsidone = scsi_finish_command;
3400 switch (qc->tf.protocol) {
3402 case ATA_PROT_DMA:
3403 case ATA_PROT_ATAPI_DMA:
3404 host_stat = ap->ops->bmdma_status(ap);
3406 /* before we do anything else, clear DMA-Start bit */
3407 ap->ops->bmdma_stop(qc);
3409 /* fall through */
3411 default:
3412 ata_altstatus(ap);
3413 drv_stat = ata_chk_status(ap);
3415 /* ack bmdma irq events */
3416 ap->ops->irq_clear(ap);
3418 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3419 ap->id, qc->tf.command, drv_stat, host_stat);
3421 /* complete taskfile transaction */
3422 qc->err_mask |= ac_err_mask(drv_stat);
3423 ata_qc_complete(qc);
3424 break;
3427 spin_unlock_irqrestore(&host_set->lock, flags);
3429 DPRINTK("EXIT\n");
3433 * ata_eng_timeout - Handle timeout of queued command
3434 * @ap: Port on which timed-out command is active
3436 * Some part of the kernel (currently, only the SCSI layer)
3437 * has noticed that the active command on port @ap has not
3438 * completed after a specified length of time. Handle this
3439 * condition by disabling DMA (if necessary) and completing
3440 * transactions, with error if necessary.
3442 * This also handles the case of the "lost interrupt", where
3443 * for some reason (possibly hardware bug, possibly driver bug)
3444 * an interrupt was not delivered to the driver, even though the
3445 * transaction completed successfully.
3447 * LOCKING:
3448 * Inherited from SCSI layer (none, can sleep)
3451 void ata_eng_timeout(struct ata_port *ap)
3453 struct ata_queued_cmd *qc;
3455 DPRINTK("ENTER\n");
3457 qc = ata_qc_from_tag(ap, ap->active_tag);
3458 if (qc)
3459 ata_qc_timeout(qc);
3460 else {
3461 printk(KERN_ERR "ata%u: BUG: timeout without command\n",
3462 ap->id);
3463 goto out;
3466 out:
3467 DPRINTK("EXIT\n");
3471 * ata_qc_new - Request an available ATA command, for queueing
3472 * @ap: Port associated with device @dev
3473 * @dev: Device from whom we request an available command structure
3475 * LOCKING:
3476 * None.
3479 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3481 struct ata_queued_cmd *qc = NULL;
3482 unsigned int i;
3484 for (i = 0; i < ATA_MAX_QUEUE; i++)
3485 if (!test_and_set_bit(i, &ap->qactive)) {
3486 qc = ata_qc_from_tag(ap, i);
3487 break;
3490 if (qc)
3491 qc->tag = i;
3493 return qc;
3497 * ata_qc_new_init - Request an available ATA command, and initialize it
3498 * @ap: Port associated with device @dev
3499 * @dev: Device from whom we request an available command structure
3501 * LOCKING:
3502 * None.
3505 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3506 struct ata_device *dev)
3508 struct ata_queued_cmd *qc;
3510 qc = ata_qc_new(ap);
3511 if (qc) {
3512 qc->scsicmd = NULL;
3513 qc->ap = ap;
3514 qc->dev = dev;
3516 ata_qc_reinit(qc);
3519 return qc;
3522 static void __ata_qc_complete(struct ata_queued_cmd *qc)
3524 struct ata_port *ap = qc->ap;
3525 unsigned int tag;
3527 qc->flags = 0;
3528 tag = qc->tag;
3529 if (likely(ata_tag_valid(tag))) {
3530 if (tag == ap->active_tag)
3531 ap->active_tag = ATA_TAG_POISON;
3532 qc->tag = ATA_TAG_POISON;
3533 clear_bit(tag, &ap->qactive);
3538 * ata_qc_free - free unused ata_queued_cmd
3539 * @qc: Command to complete
3541 * Designed to free unused ata_queued_cmd object
3542 * in case something prevents using it.
3544 * LOCKING:
3545 * spin_lock_irqsave(host_set lock)
3547 void ata_qc_free(struct ata_queued_cmd *qc)
3549 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3551 __ata_qc_complete(qc);
3555 * ata_qc_complete - Complete an active ATA command
3556 * @qc: Command to complete
3557 * @err_mask: ATA Status register contents
3559 * Indicate to the mid and upper layers that an ATA
3560 * command has completed, with either an ok or not-ok status.
3562 * LOCKING:
3563 * spin_lock_irqsave(host_set lock)
3566 void ata_qc_complete(struct ata_queued_cmd *qc)
3568 int rc;
3570 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3571 assert(qc->flags & ATA_QCFLAG_ACTIVE);
3573 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3574 ata_sg_clean(qc);
3576 /* atapi: mark qc as inactive to prevent the interrupt handler
3577 * from completing the command twice later, before the error handler
3578 * is called. (when rc != 0 and atapi request sense is needed)
3580 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3582 /* call completion callback */
3583 rc = qc->complete_fn(qc);
3585 /* if callback indicates not to complete command (non-zero),
3586 * return immediately
3588 if (rc != 0)
3589 return;
3591 __ata_qc_complete(qc);
3593 VPRINTK("EXIT\n");
3596 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3598 struct ata_port *ap = qc->ap;
3600 switch (qc->tf.protocol) {
3601 case ATA_PROT_DMA:
3602 case ATA_PROT_ATAPI_DMA:
3603 return 1;
3605 case ATA_PROT_ATAPI:
3606 case ATA_PROT_PIO:
3607 case ATA_PROT_PIO_MULT:
3608 if (ap->flags & ATA_FLAG_PIO_DMA)
3609 return 1;
3611 /* fall through */
3613 default:
3614 return 0;
3617 /* never reached */
3621 * ata_qc_issue - issue taskfile to device
3622 * @qc: command to issue to device
3624 * Prepare an ATA command to submission to device.
3625 * This includes mapping the data into a DMA-able
3626 * area, filling in the S/G table, and finally
3627 * writing the taskfile to hardware, starting the command.
3629 * LOCKING:
3630 * spin_lock_irqsave(host_set lock)
3632 * RETURNS:
3633 * Zero on success, negative on error.
3636 int ata_qc_issue(struct ata_queued_cmd *qc)
3638 struct ata_port *ap = qc->ap;
3640 if (ata_should_dma_map(qc)) {
3641 if (qc->flags & ATA_QCFLAG_SG) {
3642 if (ata_sg_setup(qc))
3643 goto err_out;
3644 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
3645 if (ata_sg_setup_one(qc))
3646 goto err_out;
3648 } else {
3649 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3652 ap->ops->qc_prep(qc);
3654 qc->ap->active_tag = qc->tag;
3655 qc->flags |= ATA_QCFLAG_ACTIVE;
3657 return ap->ops->qc_issue(qc);
3659 err_out:
3660 return -1;
3665 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
3666 * @qc: command to issue to device
3668 * Using various libata functions and hooks, this function
3669 * starts an ATA command. ATA commands are grouped into
3670 * classes called "protocols", and issuing each type of protocol
3671 * is slightly different.
3673 * May be used as the qc_issue() entry in ata_port_operations.
3675 * LOCKING:
3676 * spin_lock_irqsave(host_set lock)
3678 * RETURNS:
3679 * Zero on success, negative on error.
3682 int ata_qc_issue_prot(struct ata_queued_cmd *qc)
3684 struct ata_port *ap = qc->ap;
3686 ata_dev_select(ap, qc->dev->devno, 1, 0);
3688 switch (qc->tf.protocol) {
3689 case ATA_PROT_NODATA:
3690 ata_tf_to_host(ap, &qc->tf);
3691 break;
3693 case ATA_PROT_DMA:
3694 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3695 ap->ops->bmdma_setup(qc); /* set up bmdma */
3696 ap->ops->bmdma_start(qc); /* initiate bmdma */
3697 break;
3699 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
3700 ata_qc_set_polling(qc);
3701 ata_tf_to_host(ap, &qc->tf);
3702 ap->hsm_task_state = HSM_ST;
3703 queue_work(ata_wq, &ap->pio_task);
3704 break;
3706 case ATA_PROT_ATAPI:
3707 ata_qc_set_polling(qc);
3708 ata_tf_to_host(ap, &qc->tf);
3709 queue_work(ata_wq, &ap->packet_task);
3710 break;
3712 case ATA_PROT_ATAPI_NODATA:
3713 ap->flags |= ATA_FLAG_NOINTR;
3714 ata_tf_to_host(ap, &qc->tf);
3715 queue_work(ata_wq, &ap->packet_task);
3716 break;
3718 case ATA_PROT_ATAPI_DMA:
3719 ap->flags |= ATA_FLAG_NOINTR;
3720 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3721 ap->ops->bmdma_setup(qc); /* set up bmdma */
3722 queue_work(ata_wq, &ap->packet_task);
3723 break;
3725 default:
3726 WARN_ON(1);
3727 return -1;
3730 return 0;
3734 * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
3735 * @qc: Info associated with this ATA transaction.
3737 * LOCKING:
3738 * spin_lock_irqsave(host_set lock)
3741 static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc)
3743 struct ata_port *ap = qc->ap;
3744 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3745 u8 dmactl;
3746 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3748 /* load PRD table addr. */
3749 mb(); /* make sure PRD table writes are visible to controller */
3750 writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
3752 /* specify data direction, triple-check start bit is clear */
3753 dmactl = readb(mmio + ATA_DMA_CMD);
3754 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3755 if (!rw)
3756 dmactl |= ATA_DMA_WR;
3757 writeb(dmactl, mmio + ATA_DMA_CMD);
3759 /* issue r/w command */
3760 ap->ops->exec_command(ap, &qc->tf);
3764 * ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction
3765 * @qc: Info associated with this ATA transaction.
3767 * LOCKING:
3768 * spin_lock_irqsave(host_set lock)
3771 static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc)
3773 struct ata_port *ap = qc->ap;
3774 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3775 u8 dmactl;
3777 /* start host DMA transaction */
3778 dmactl = readb(mmio + ATA_DMA_CMD);
3779 writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
3781 /* Strictly, one may wish to issue a readb() here, to
3782 * flush the mmio write. However, control also passes
3783 * to the hardware at this point, and it will interrupt
3784 * us when we are to resume control. So, in effect,
3785 * we don't care when the mmio write flushes.
3786 * Further, a read of the DMA status register _immediately_
3787 * following the write may not be what certain flaky hardware
3788 * is expected, so I think it is best to not add a readb()
3789 * without first all the MMIO ATA cards/mobos.
3790 * Or maybe I'm just being paranoid.
3795 * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
3796 * @qc: Info associated with this ATA transaction.
3798 * LOCKING:
3799 * spin_lock_irqsave(host_set lock)
3802 static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc)
3804 struct ata_port *ap = qc->ap;
3805 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3806 u8 dmactl;
3808 /* load PRD table addr. */
3809 outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3811 /* specify data direction, triple-check start bit is clear */
3812 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3813 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3814 if (!rw)
3815 dmactl |= ATA_DMA_WR;
3816 outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3818 /* issue r/w command */
3819 ap->ops->exec_command(ap, &qc->tf);
3823 * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
3824 * @qc: Info associated with this ATA transaction.
3826 * LOCKING:
3827 * spin_lock_irqsave(host_set lock)
3830 static void ata_bmdma_start_pio (struct ata_queued_cmd *qc)
3832 struct ata_port *ap = qc->ap;
3833 u8 dmactl;
3835 /* start host DMA transaction */
3836 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3837 outb(dmactl | ATA_DMA_START,
3838 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3843 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3844 * @qc: Info associated with this ATA transaction.
3846 * Writes the ATA_DMA_START flag to the DMA command register.
3848 * May be used as the bmdma_start() entry in ata_port_operations.
3850 * LOCKING:
3851 * spin_lock_irqsave(host_set lock)
3853 void ata_bmdma_start(struct ata_queued_cmd *qc)
3855 if (qc->ap->flags & ATA_FLAG_MMIO)
3856 ata_bmdma_start_mmio(qc);
3857 else
3858 ata_bmdma_start_pio(qc);
3863 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3864 * @qc: Info associated with this ATA transaction.
3866 * Writes address of PRD table to device's PRD Table Address
3867 * register, sets the DMA control register, and calls
3868 * ops->exec_command() to start the transfer.
3870 * May be used as the bmdma_setup() entry in ata_port_operations.
3872 * LOCKING:
3873 * spin_lock_irqsave(host_set lock)
3875 void ata_bmdma_setup(struct ata_queued_cmd *qc)
3877 if (qc->ap->flags & ATA_FLAG_MMIO)
3878 ata_bmdma_setup_mmio(qc);
3879 else
3880 ata_bmdma_setup_pio(qc);
3885 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
3886 * @ap: Port associated with this ATA transaction.
3888 * Clear interrupt and error flags in DMA status register.
3890 * May be used as the irq_clear() entry in ata_port_operations.
3892 * LOCKING:
3893 * spin_lock_irqsave(host_set lock)
3896 void ata_bmdma_irq_clear(struct ata_port *ap)
3898 if (ap->flags & ATA_FLAG_MMIO) {
3899 void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS;
3900 writeb(readb(mmio), mmio);
3901 } else {
3902 unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS;
3903 outb(inb(addr), addr);
3910 * ata_bmdma_status - Read PCI IDE BMDMA status
3911 * @ap: Port associated with this ATA transaction.
3913 * Read and return BMDMA status register.
3915 * May be used as the bmdma_status() entry in ata_port_operations.
3917 * LOCKING:
3918 * spin_lock_irqsave(host_set lock)
3921 u8 ata_bmdma_status(struct ata_port *ap)
3923 u8 host_stat;
3924 if (ap->flags & ATA_FLAG_MMIO) {
3925 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3926 host_stat = readb(mmio + ATA_DMA_STATUS);
3927 } else
3928 host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3929 return host_stat;
3934 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3935 * @qc: Command we are ending DMA for
3937 * Clears the ATA_DMA_START flag in the dma control register
3939 * May be used as the bmdma_stop() entry in ata_port_operations.
3941 * LOCKING:
3942 * spin_lock_irqsave(host_set lock)
3945 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3947 struct ata_port *ap = qc->ap;
3948 if (ap->flags & ATA_FLAG_MMIO) {
3949 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3951 /* clear start/stop bit */
3952 writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3953 mmio + ATA_DMA_CMD);
3954 } else {
3955 /* clear start/stop bit */
3956 outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START,
3957 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3960 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3961 ata_altstatus(ap); /* dummy read */
3965 * ata_host_intr - Handle host interrupt for given (port, task)
3966 * @ap: Port on which interrupt arrived (possibly...)
3967 * @qc: Taskfile currently active in engine
3969 * Handle host interrupt for given queued command. Currently,
3970 * only DMA interrupts are handled. All other commands are
3971 * handled via polling with interrupts disabled (nIEN bit).
3973 * LOCKING:
3974 * spin_lock_irqsave(host_set lock)
3976 * RETURNS:
3977 * One if interrupt was handled, zero if not (shared irq).
3980 inline unsigned int ata_host_intr (struct ata_port *ap,
3981 struct ata_queued_cmd *qc)
3983 u8 status, host_stat;
3985 switch (qc->tf.protocol) {
3987 case ATA_PROT_DMA:
3988 case ATA_PROT_ATAPI_DMA:
3989 case ATA_PROT_ATAPI:
3990 /* check status of DMA engine */
3991 host_stat = ap->ops->bmdma_status(ap);
3992 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
3994 /* if it's not our irq... */
3995 if (!(host_stat & ATA_DMA_INTR))
3996 goto idle_irq;
3998 /* before we do anything else, clear DMA-Start bit */
3999 ap->ops->bmdma_stop(qc);
4001 /* fall through */
4003 case ATA_PROT_ATAPI_NODATA:
4004 case ATA_PROT_NODATA:
4005 /* check altstatus */
4006 status = ata_altstatus(ap);
4007 if (status & ATA_BUSY)
4008 goto idle_irq;
4010 /* check main status, clearing INTRQ */
4011 status = ata_chk_status(ap);
4012 if (unlikely(status & ATA_BUSY))
4013 goto idle_irq;
4014 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4015 ap->id, qc->tf.protocol, status);
4017 /* ack bmdma irq events */
4018 ap->ops->irq_clear(ap);
4020 /* complete taskfile transaction */
4021 qc->err_mask |= ac_err_mask(status);
4022 ata_qc_complete(qc);
4023 break;
4025 default:
4026 goto idle_irq;
4029 return 1; /* irq handled */
4031 idle_irq:
4032 ap->stats.idle_irq++;
4034 #ifdef ATA_IRQ_TRAP
4035 if ((ap->stats.idle_irq % 1000) == 0) {
4036 handled = 1;
4037 ata_irq_ack(ap, 0); /* debug trap */
4038 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4040 #endif
4041 return 0; /* irq not handled */
4045 * ata_interrupt - Default ATA host interrupt handler
4046 * @irq: irq line (unused)
4047 * @dev_instance: pointer to our ata_host_set information structure
4048 * @regs: unused
4050 * Default interrupt handler for PCI IDE devices. Calls
4051 * ata_host_intr() for each port that is not disabled.
4053 * LOCKING:
4054 * Obtains host_set lock during operation.
4056 * RETURNS:
4057 * IRQ_NONE or IRQ_HANDLED.
4060 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4062 struct ata_host_set *host_set = dev_instance;
4063 unsigned int i;
4064 unsigned int handled = 0;
4065 unsigned long flags;
4067 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4068 spin_lock_irqsave(&host_set->lock, flags);
4070 for (i = 0; i < host_set->n_ports; i++) {
4071 struct ata_port *ap;
4073 ap = host_set->ports[i];
4074 if (ap &&
4075 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
4076 struct ata_queued_cmd *qc;
4078 qc = ata_qc_from_tag(ap, ap->active_tag);
4079 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4080 (qc->flags & ATA_QCFLAG_ACTIVE))
4081 handled |= ata_host_intr(ap, qc);
4085 spin_unlock_irqrestore(&host_set->lock, flags);
4087 return IRQ_RETVAL(handled);
4091 * atapi_packet_task - Write CDB bytes to hardware
4092 * @_data: Port to which ATAPI device is attached.
4094 * When device has indicated its readiness to accept
4095 * a CDB, this function is called. Send the CDB.
4096 * If DMA is to be performed, exit immediately.
4097 * Otherwise, we are in polling mode, so poll
4098 * status under operation succeeds or fails.
4100 * LOCKING:
4101 * Kernel thread context (may sleep)
4104 static void atapi_packet_task(void *_data)
4106 struct ata_port *ap = _data;
4107 struct ata_queued_cmd *qc;
4108 u8 status;
4110 qc = ata_qc_from_tag(ap, ap->active_tag);
4111 assert(qc != NULL);
4112 assert(qc->flags & ATA_QCFLAG_ACTIVE);
4114 /* sleep-wait for BSY to clear */
4115 DPRINTK("busy wait\n");
4116 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
4117 qc->err_mask |= AC_ERR_ATA_BUS;
4118 goto err_out;
4121 /* make sure DRQ is set */
4122 status = ata_chk_status(ap);
4123 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
4124 qc->err_mask |= AC_ERR_ATA_BUS;
4125 goto err_out;
4128 /* send SCSI cdb */
4129 DPRINTK("send cdb\n");
4130 assert(ap->cdb_len >= 12);
4132 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
4133 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
4134 unsigned long flags;
4136 /* Once we're done issuing command and kicking bmdma,
4137 * irq handler takes over. To not lose irq, we need
4138 * to clear NOINTR flag before sending cdb, but
4139 * interrupt handler shouldn't be invoked before we're
4140 * finished. Hence, the following locking.
4142 spin_lock_irqsave(&ap->host_set->lock, flags);
4143 ap->flags &= ~ATA_FLAG_NOINTR;
4144 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
4145 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
4146 ap->ops->bmdma_start(qc); /* initiate bmdma */
4147 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4148 } else {
4149 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
4151 /* PIO commands are handled by polling */
4152 ap->hsm_task_state = HSM_ST;
4153 queue_work(ata_wq, &ap->pio_task);
4156 return;
4158 err_out:
4159 ata_poll_qc_complete(qc);
4164 * ata_port_start - Set port up for dma.
4165 * @ap: Port to initialize
4167 * Called just after data structures for each port are
4168 * initialized. Allocates space for PRD table.
4170 * May be used as the port_start() entry in ata_port_operations.
4172 * LOCKING:
4173 * Inherited from caller.
4177 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4178 * without filling any other registers
4180 static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4181 u8 cmd)
4183 struct ata_taskfile tf;
4184 int err;
4186 ata_tf_init(ap, &tf, dev->devno);
4188 tf.command = cmd;
4189 tf.flags |= ATA_TFLAG_DEVICE;
4190 tf.protocol = ATA_PROT_NODATA;
4192 err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
4193 if (err)
4194 printk(KERN_ERR "%s: ata command failed: %d\n",
4195 __FUNCTION__, err);
4197 return err;
4200 static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4202 u8 cmd;
4204 if (!ata_try_flush_cache(dev))
4205 return 0;
4207 if (ata_id_has_flush_ext(dev->id))
4208 cmd = ATA_CMD_FLUSH_EXT;
4209 else
4210 cmd = ATA_CMD_FLUSH;
4212 return ata_do_simple_cmd(ap, dev, cmd);
4215 static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4217 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4220 static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4222 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4226 * ata_device_resume - wakeup a previously suspended devices
4228 * Kick the drive back into action, by sending it an idle immediate
4229 * command and making sure its transfer mode matches between drive
4230 * and host.
4233 int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4235 if (ap->flags & ATA_FLAG_SUSPENDED) {
4236 ap->flags &= ~ATA_FLAG_SUSPENDED;
4237 ata_set_mode(ap);
4239 if (!ata_dev_present(dev))
4240 return 0;
4241 if (dev->class == ATA_DEV_ATA)
4242 ata_start_drive(ap, dev);
4244 return 0;
4248 * ata_device_suspend - prepare a device for suspend
4250 * Flush the cache on the drive, if appropriate, then issue a
4251 * standbynow command.
4254 int ata_device_suspend(struct ata_port *ap, struct ata_device *dev)
4256 if (!ata_dev_present(dev))
4257 return 0;
4258 if (dev->class == ATA_DEV_ATA)
4259 ata_flush_cache(ap, dev);
4261 ata_standby_drive(ap, dev);
4262 ap->flags |= ATA_FLAG_SUSPENDED;
4263 return 0;
4266 int ata_port_start (struct ata_port *ap)
4268 struct device *dev = ap->host_set->dev;
4269 int rc;
4271 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4272 if (!ap->prd)
4273 return -ENOMEM;
4275 rc = ata_pad_alloc(ap, dev);
4276 if (rc) {
4277 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4278 return rc;
4281 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4283 return 0;
4288 * ata_port_stop - Undo ata_port_start()
4289 * @ap: Port to shut down
4291 * Frees the PRD table.
4293 * May be used as the port_stop() entry in ata_port_operations.
4295 * LOCKING:
4296 * Inherited from caller.
4299 void ata_port_stop (struct ata_port *ap)
4301 struct device *dev = ap->host_set->dev;
4303 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4304 ata_pad_free(ap, dev);
4307 void ata_host_stop (struct ata_host_set *host_set)
4309 if (host_set->mmio_base)
4310 iounmap(host_set->mmio_base);
4315 * ata_host_remove - Unregister SCSI host structure with upper layers
4316 * @ap: Port to unregister
4317 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4319 * LOCKING:
4320 * Inherited from caller.
4323 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4325 struct Scsi_Host *sh = ap->host;
4327 DPRINTK("ENTER\n");
4329 if (do_unregister)
4330 scsi_remove_host(sh);
4332 ap->ops->port_stop(ap);
4336 * ata_host_init - Initialize an ata_port structure
4337 * @ap: Structure to initialize
4338 * @host: associated SCSI mid-layer structure
4339 * @host_set: Collection of hosts to which @ap belongs
4340 * @ent: Probe information provided by low-level driver
4341 * @port_no: Port number associated with this ata_port
4343 * Initialize a new ata_port structure, and its associated
4344 * scsi_host.
4346 * LOCKING:
4347 * Inherited from caller.
4350 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4351 struct ata_host_set *host_set,
4352 const struct ata_probe_ent *ent, unsigned int port_no)
4354 unsigned int i;
4356 host->max_id = 16;
4357 host->max_lun = 1;
4358 host->max_channel = 1;
4359 host->unique_id = ata_unique_id++;
4360 host->max_cmd_len = 12;
4362 ap->flags = ATA_FLAG_PORT_DISABLED;
4363 ap->id = host->unique_id;
4364 ap->host = host;
4365 ap->ctl = ATA_DEVCTL_OBS;
4366 ap->host_set = host_set;
4367 ap->port_no = port_no;
4368 ap->hard_port_no =
4369 ent->legacy_mode ? ent->hard_port_no : port_no;
4370 ap->pio_mask = ent->pio_mask;
4371 ap->mwdma_mask = ent->mwdma_mask;
4372 ap->udma_mask = ent->udma_mask;
4373 ap->flags |= ent->host_flags;
4374 ap->ops = ent->port_ops;
4375 ap->cbl = ATA_CBL_NONE;
4376 ap->active_tag = ATA_TAG_POISON;
4377 ap->last_ctl = 0xFF;
4379 INIT_WORK(&ap->packet_task, atapi_packet_task, ap);
4380 INIT_WORK(&ap->pio_task, ata_pio_task, ap);
4382 for (i = 0; i < ATA_MAX_DEVICES; i++)
4383 ap->device[i].devno = i;
4385 #ifdef ATA_IRQ_TRAP
4386 ap->stats.unhandled_irq = 1;
4387 ap->stats.idle_irq = 1;
4388 #endif
4390 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4394 * ata_host_add - Attach low-level ATA driver to system
4395 * @ent: Information provided by low-level driver
4396 * @host_set: Collections of ports to which we add
4397 * @port_no: Port number associated with this host
4399 * Attach low-level ATA driver to system.
4401 * LOCKING:
4402 * PCI/etc. bus probe sem.
4404 * RETURNS:
4405 * New ata_port on success, for NULL on error.
4408 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
4409 struct ata_host_set *host_set,
4410 unsigned int port_no)
4412 struct Scsi_Host *host;
4413 struct ata_port *ap;
4414 int rc;
4416 DPRINTK("ENTER\n");
4417 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4418 if (!host)
4419 return NULL;
4421 ap = (struct ata_port *) &host->hostdata[0];
4423 ata_host_init(ap, host, host_set, ent, port_no);
4425 rc = ap->ops->port_start(ap);
4426 if (rc)
4427 goto err_out;
4429 return ap;
4431 err_out:
4432 scsi_host_put(host);
4433 return NULL;
4437 * ata_device_add - Register hardware device with ATA and SCSI layers
4438 * @ent: Probe information describing hardware device to be registered
4440 * This function processes the information provided in the probe
4441 * information struct @ent, allocates the necessary ATA and SCSI
4442 * host information structures, initializes them, and registers
4443 * everything with requisite kernel subsystems.
4445 * This function requests irqs, probes the ATA bus, and probes
4446 * the SCSI bus.
4448 * LOCKING:
4449 * PCI/etc. bus probe sem.
4451 * RETURNS:
4452 * Number of ports registered. Zero on error (no ports registered).
4455 int ata_device_add(const struct ata_probe_ent *ent)
4457 unsigned int count = 0, i;
4458 struct device *dev = ent->dev;
4459 struct ata_host_set *host_set;
4461 DPRINTK("ENTER\n");
4462 /* alloc a container for our list of ATA ports (buses) */
4463 host_set = kzalloc(sizeof(struct ata_host_set) +
4464 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4465 if (!host_set)
4466 return 0;
4467 spin_lock_init(&host_set->lock);
4469 host_set->dev = dev;
4470 host_set->n_ports = ent->n_ports;
4471 host_set->irq = ent->irq;
4472 host_set->mmio_base = ent->mmio_base;
4473 host_set->private_data = ent->private_data;
4474 host_set->ops = ent->port_ops;
4476 /* register each port bound to this device */
4477 for (i = 0; i < ent->n_ports; i++) {
4478 struct ata_port *ap;
4479 unsigned long xfer_mode_mask;
4481 ap = ata_host_add(ent, host_set, i);
4482 if (!ap)
4483 goto err_out;
4485 host_set->ports[i] = ap;
4486 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4487 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4488 (ap->pio_mask << ATA_SHIFT_PIO);
4490 /* print per-port info to dmesg */
4491 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4492 "bmdma 0x%lX irq %lu\n",
4493 ap->id,
4494 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4495 ata_mode_string(xfer_mode_mask),
4496 ap->ioaddr.cmd_addr,
4497 ap->ioaddr.ctl_addr,
4498 ap->ioaddr.bmdma_addr,
4499 ent->irq);
4501 ata_chk_status(ap);
4502 host_set->ops->irq_clear(ap);
4503 count++;
4506 if (!count)
4507 goto err_free_ret;
4509 /* obtain irq, that is shared between channels */
4510 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4511 DRV_NAME, host_set))
4512 goto err_out;
4514 /* perform each probe synchronously */
4515 DPRINTK("probe begin\n");
4516 for (i = 0; i < count; i++) {
4517 struct ata_port *ap;
4518 int rc;
4520 ap = host_set->ports[i];
4522 DPRINTK("ata%u: probe begin\n", ap->id);
4523 rc = ata_bus_probe(ap);
4524 DPRINTK("ata%u: probe end\n", ap->id);
4526 if (rc) {
4527 /* FIXME: do something useful here?
4528 * Current libata behavior will
4529 * tear down everything when
4530 * the module is removed
4531 * or the h/w is unplugged.
4535 rc = scsi_add_host(ap->host, dev);
4536 if (rc) {
4537 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4538 ap->id);
4539 /* FIXME: do something useful here */
4540 /* FIXME: handle unconditional calls to
4541 * scsi_scan_host and ata_host_remove, below,
4542 * at the very least
4547 /* probes are done, now scan each port's disk(s) */
4548 DPRINTK("probe begin\n");
4549 for (i = 0; i < count; i++) {
4550 struct ata_port *ap = host_set->ports[i];
4552 ata_scsi_scan_host(ap);
4555 dev_set_drvdata(dev, host_set);
4557 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4558 return ent->n_ports; /* success */
4560 err_out:
4561 for (i = 0; i < count; i++) {
4562 ata_host_remove(host_set->ports[i], 1);
4563 scsi_host_put(host_set->ports[i]->host);
4565 err_free_ret:
4566 kfree(host_set);
4567 VPRINTK("EXIT, returning 0\n");
4568 return 0;
4572 * ata_host_set_remove - PCI layer callback for device removal
4573 * @host_set: ATA host set that was removed
4575 * Unregister all objects associated with this host set. Free those
4576 * objects.
4578 * LOCKING:
4579 * Inherited from calling layer (may sleep).
4582 void ata_host_set_remove(struct ata_host_set *host_set)
4584 struct ata_port *ap;
4585 unsigned int i;
4587 for (i = 0; i < host_set->n_ports; i++) {
4588 ap = host_set->ports[i];
4589 scsi_remove_host(ap->host);
4592 free_irq(host_set->irq, host_set);
4594 for (i = 0; i < host_set->n_ports; i++) {
4595 ap = host_set->ports[i];
4597 ata_scsi_release(ap->host);
4599 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4600 struct ata_ioports *ioaddr = &ap->ioaddr;
4602 if (ioaddr->cmd_addr == 0x1f0)
4603 release_region(0x1f0, 8);
4604 else if (ioaddr->cmd_addr == 0x170)
4605 release_region(0x170, 8);
4608 scsi_host_put(ap->host);
4611 if (host_set->ops->host_stop)
4612 host_set->ops->host_stop(host_set);
4614 kfree(host_set);
4618 * ata_scsi_release - SCSI layer callback hook for host unload
4619 * @host: libata host to be unloaded
4621 * Performs all duties necessary to shut down a libata port...
4622 * Kill port kthread, disable port, and release resources.
4624 * LOCKING:
4625 * Inherited from SCSI layer.
4627 * RETURNS:
4628 * One.
4631 int ata_scsi_release(struct Scsi_Host *host)
4633 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
4635 DPRINTK("ENTER\n");
4637 ap->ops->port_disable(ap);
4638 ata_host_remove(ap, 0);
4640 DPRINTK("EXIT\n");
4641 return 1;
4645 * ata_std_ports - initialize ioaddr with standard port offsets.
4646 * @ioaddr: IO address structure to be initialized
4648 * Utility function which initializes data_addr, error_addr,
4649 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4650 * device_addr, status_addr, and command_addr to standard offsets
4651 * relative to cmd_addr.
4653 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
4656 void ata_std_ports(struct ata_ioports *ioaddr)
4658 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4659 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4660 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4661 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4662 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4663 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4664 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4665 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4666 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4667 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4670 static struct ata_probe_ent *
4671 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
4673 struct ata_probe_ent *probe_ent;
4675 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
4676 if (!probe_ent) {
4677 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
4678 kobject_name(&(dev->kobj)));
4679 return NULL;
4682 INIT_LIST_HEAD(&probe_ent->node);
4683 probe_ent->dev = dev;
4685 probe_ent->sht = port->sht;
4686 probe_ent->host_flags = port->host_flags;
4687 probe_ent->pio_mask = port->pio_mask;
4688 probe_ent->mwdma_mask = port->mwdma_mask;
4689 probe_ent->udma_mask = port->udma_mask;
4690 probe_ent->port_ops = port->port_ops;
4692 return probe_ent;
4697 #ifdef CONFIG_PCI
4699 void ata_pci_host_stop (struct ata_host_set *host_set)
4701 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4703 pci_iounmap(pdev, host_set->mmio_base);
4707 * ata_pci_init_native_mode - Initialize native-mode driver
4708 * @pdev: pci device to be initialized
4709 * @port: array[2] of pointers to port info structures.
4710 * @ports: bitmap of ports present
4712 * Utility function which allocates and initializes an
4713 * ata_probe_ent structure for a standard dual-port
4714 * PIO-based IDE controller. The returned ata_probe_ent
4715 * structure can be passed to ata_device_add(). The returned
4716 * ata_probe_ent structure should then be freed with kfree().
4718 * The caller need only pass the address of the primary port, the
4719 * secondary will be deduced automatically. If the device has non
4720 * standard secondary port mappings this function can be called twice,
4721 * once for each interface.
4724 struct ata_probe_ent *
4725 ata_pci_init_native_mode(struct pci_dev *pdev, struct ata_port_info **port, int ports)
4727 struct ata_probe_ent *probe_ent =
4728 ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]);
4729 int p = 0;
4731 if (!probe_ent)
4732 return NULL;
4734 probe_ent->irq = pdev->irq;
4735 probe_ent->irq_flags = SA_SHIRQ;
4736 probe_ent->private_data = port[0]->private_data;
4738 if (ports & ATA_PORT_PRIMARY) {
4739 probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 0);
4740 probe_ent->port[p].altstatus_addr =
4741 probe_ent->port[p].ctl_addr =
4742 pci_resource_start(pdev, 1) | ATA_PCI_CTL_OFS;
4743 probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4);
4744 ata_std_ports(&probe_ent->port[p]);
4745 p++;
4748 if (ports & ATA_PORT_SECONDARY) {
4749 probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 2);
4750 probe_ent->port[p].altstatus_addr =
4751 probe_ent->port[p].ctl_addr =
4752 pci_resource_start(pdev, 3) | ATA_PCI_CTL_OFS;
4753 probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4) + 8;
4754 ata_std_ports(&probe_ent->port[p]);
4755 p++;
4758 probe_ent->n_ports = p;
4759 return probe_ent;
4762 static struct ata_probe_ent *ata_pci_init_legacy_port(struct pci_dev *pdev, struct ata_port_info *port, int port_num)
4764 struct ata_probe_ent *probe_ent;
4766 probe_ent = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port);
4767 if (!probe_ent)
4768 return NULL;
4770 probe_ent->legacy_mode = 1;
4771 probe_ent->n_ports = 1;
4772 probe_ent->hard_port_no = port_num;
4773 probe_ent->private_data = port->private_data;
4775 switch(port_num)
4777 case 0:
4778 probe_ent->irq = 14;
4779 probe_ent->port[0].cmd_addr = 0x1f0;
4780 probe_ent->port[0].altstatus_addr =
4781 probe_ent->port[0].ctl_addr = 0x3f6;
4782 break;
4783 case 1:
4784 probe_ent->irq = 15;
4785 probe_ent->port[0].cmd_addr = 0x170;
4786 probe_ent->port[0].altstatus_addr =
4787 probe_ent->port[0].ctl_addr = 0x376;
4788 break;
4790 probe_ent->port[0].bmdma_addr = pci_resource_start(pdev, 4) + 8 * port_num;
4791 ata_std_ports(&probe_ent->port[0]);
4792 return probe_ent;
4796 * ata_pci_init_one - Initialize/register PCI IDE host controller
4797 * @pdev: Controller to be initialized
4798 * @port_info: Information from low-level host driver
4799 * @n_ports: Number of ports attached to host controller
4801 * This is a helper function which can be called from a driver's
4802 * xxx_init_one() probe function if the hardware uses traditional
4803 * IDE taskfile registers.
4805 * This function calls pci_enable_device(), reserves its register
4806 * regions, sets the dma mask, enables bus master mode, and calls
4807 * ata_device_add()
4809 * LOCKING:
4810 * Inherited from PCI layer (may sleep).
4812 * RETURNS:
4813 * Zero on success, negative on errno-based value on error.
4816 int ata_pci_init_one (struct pci_dev *pdev, struct ata_port_info **port_info,
4817 unsigned int n_ports)
4819 struct ata_probe_ent *probe_ent = NULL, *probe_ent2 = NULL;
4820 struct ata_port_info *port[2];
4821 u8 tmp8, mask;
4822 unsigned int legacy_mode = 0;
4823 int disable_dev_on_err = 1;
4824 int rc;
4826 DPRINTK("ENTER\n");
4828 port[0] = port_info[0];
4829 if (n_ports > 1)
4830 port[1] = port_info[1];
4831 else
4832 port[1] = port[0];
4834 if ((port[0]->host_flags & ATA_FLAG_NO_LEGACY) == 0
4835 && (pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
4836 /* TODO: What if one channel is in native mode ... */
4837 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
4838 mask = (1 << 2) | (1 << 0);
4839 if ((tmp8 & mask) != mask)
4840 legacy_mode = (1 << 3);
4843 /* FIXME... */
4844 if ((!legacy_mode) && (n_ports > 2)) {
4845 printk(KERN_ERR "ata: BUG: native mode, n_ports > 2\n");
4846 n_ports = 2;
4847 /* For now */
4850 /* FIXME: Really for ATA it isn't safe because the device may be
4851 multi-purpose and we want to leave it alone if it was already
4852 enabled. Secondly for shared use as Arjan says we want refcounting
4854 Checking dev->is_enabled is insufficient as this is not set at
4855 boot for the primary video which is BIOS enabled
4858 rc = pci_enable_device(pdev);
4859 if (rc)
4860 return rc;
4862 rc = pci_request_regions(pdev, DRV_NAME);
4863 if (rc) {
4864 disable_dev_on_err = 0;
4865 goto err_out;
4868 /* FIXME: Should use platform specific mappers for legacy port ranges */
4869 if (legacy_mode) {
4870 if (!request_region(0x1f0, 8, "libata")) {
4871 struct resource *conflict, res;
4872 res.start = 0x1f0;
4873 res.end = 0x1f0 + 8 - 1;
4874 conflict = ____request_resource(&ioport_resource, &res);
4875 if (!strcmp(conflict->name, "libata"))
4876 legacy_mode |= (1 << 0);
4877 else {
4878 disable_dev_on_err = 0;
4879 printk(KERN_WARNING "ata: 0x1f0 IDE port busy\n");
4881 } else
4882 legacy_mode |= (1 << 0);
4884 if (!request_region(0x170, 8, "libata")) {
4885 struct resource *conflict, res;
4886 res.start = 0x170;
4887 res.end = 0x170 + 8 - 1;
4888 conflict = ____request_resource(&ioport_resource, &res);
4889 if (!strcmp(conflict->name, "libata"))
4890 legacy_mode |= (1 << 1);
4891 else {
4892 disable_dev_on_err = 0;
4893 printk(KERN_WARNING "ata: 0x170 IDE port busy\n");
4895 } else
4896 legacy_mode |= (1 << 1);
4899 /* we have legacy mode, but all ports are unavailable */
4900 if (legacy_mode == (1 << 3)) {
4901 rc = -EBUSY;
4902 goto err_out_regions;
4905 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
4906 if (rc)
4907 goto err_out_regions;
4908 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
4909 if (rc)
4910 goto err_out_regions;
4912 if (legacy_mode) {
4913 if (legacy_mode & (1 << 0))
4914 probe_ent = ata_pci_init_legacy_port(pdev, port[0], 0);
4915 if (legacy_mode & (1 << 1))
4916 probe_ent2 = ata_pci_init_legacy_port(pdev, port[1], 1);
4917 } else {
4918 if (n_ports == 2)
4919 probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY | ATA_PORT_SECONDARY);
4920 else
4921 probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY);
4923 if (!probe_ent && !probe_ent2) {
4924 rc = -ENOMEM;
4925 goto err_out_regions;
4928 pci_set_master(pdev);
4930 /* FIXME: check ata_device_add return */
4931 if (legacy_mode) {
4932 if (legacy_mode & (1 << 0))
4933 ata_device_add(probe_ent);
4934 if (legacy_mode & (1 << 1))
4935 ata_device_add(probe_ent2);
4936 } else
4937 ata_device_add(probe_ent);
4939 kfree(probe_ent);
4940 kfree(probe_ent2);
4942 return 0;
4944 err_out_regions:
4945 if (legacy_mode & (1 << 0))
4946 release_region(0x1f0, 8);
4947 if (legacy_mode & (1 << 1))
4948 release_region(0x170, 8);
4949 pci_release_regions(pdev);
4950 err_out:
4951 if (disable_dev_on_err)
4952 pci_disable_device(pdev);
4953 return rc;
4957 * ata_pci_remove_one - PCI layer callback for device removal
4958 * @pdev: PCI device that was removed
4960 * PCI layer indicates to libata via this hook that
4961 * hot-unplug or module unload event has occurred.
4962 * Handle this by unregistering all objects associated
4963 * with this PCI device. Free those objects. Then finally
4964 * release PCI resources and disable device.
4966 * LOCKING:
4967 * Inherited from PCI layer (may sleep).
4970 void ata_pci_remove_one (struct pci_dev *pdev)
4972 struct device *dev = pci_dev_to_dev(pdev);
4973 struct ata_host_set *host_set = dev_get_drvdata(dev);
4975 ata_host_set_remove(host_set);
4976 pci_release_regions(pdev);
4977 pci_disable_device(pdev);
4978 dev_set_drvdata(dev, NULL);
4981 /* move to PCI subsystem */
4982 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
4984 unsigned long tmp = 0;
4986 switch (bits->width) {
4987 case 1: {
4988 u8 tmp8 = 0;
4989 pci_read_config_byte(pdev, bits->reg, &tmp8);
4990 tmp = tmp8;
4991 break;
4993 case 2: {
4994 u16 tmp16 = 0;
4995 pci_read_config_word(pdev, bits->reg, &tmp16);
4996 tmp = tmp16;
4997 break;
4999 case 4: {
5000 u32 tmp32 = 0;
5001 pci_read_config_dword(pdev, bits->reg, &tmp32);
5002 tmp = tmp32;
5003 break;
5006 default:
5007 return -EINVAL;
5010 tmp &= bits->mask;
5012 return (tmp == bits->val) ? 1 : 0;
5015 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5017 pci_save_state(pdev);
5018 pci_disable_device(pdev);
5019 pci_set_power_state(pdev, PCI_D3hot);
5020 return 0;
5023 int ata_pci_device_resume(struct pci_dev *pdev)
5025 pci_set_power_state(pdev, PCI_D0);
5026 pci_restore_state(pdev);
5027 pci_enable_device(pdev);
5028 pci_set_master(pdev);
5029 return 0;
5031 #endif /* CONFIG_PCI */
5034 static int __init ata_init(void)
5036 ata_wq = create_workqueue("ata");
5037 if (!ata_wq)
5038 return -ENOMEM;
5040 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5041 return 0;
5044 static void __exit ata_exit(void)
5046 destroy_workqueue(ata_wq);
5049 module_init(ata_init);
5050 module_exit(ata_exit);
5052 static unsigned long ratelimit_time;
5053 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5055 int ata_ratelimit(void)
5057 int rc;
5058 unsigned long flags;
5060 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5062 if (time_after(jiffies, ratelimit_time)) {
5063 rc = 1;
5064 ratelimit_time = jiffies + (HZ/5);
5065 } else
5066 rc = 0;
5068 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5070 return rc;
5074 * libata is essentially a library of internal helper functions for
5075 * low-level ATA host controller drivers. As such, the API/ABI is
5076 * likely to change as new drivers are added and updated.
5077 * Do not depend on ABI/API stability.
5080 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5081 EXPORT_SYMBOL_GPL(ata_std_ports);
5082 EXPORT_SYMBOL_GPL(ata_device_add);
5083 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5084 EXPORT_SYMBOL_GPL(ata_sg_init);
5085 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5086 EXPORT_SYMBOL_GPL(ata_qc_complete);
5087 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5088 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5089 EXPORT_SYMBOL_GPL(ata_tf_load);
5090 EXPORT_SYMBOL_GPL(ata_tf_read);
5091 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5092 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5093 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5094 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5095 EXPORT_SYMBOL_GPL(ata_check_status);
5096 EXPORT_SYMBOL_GPL(ata_altstatus);
5097 EXPORT_SYMBOL_GPL(ata_exec_command);
5098 EXPORT_SYMBOL_GPL(ata_port_start);
5099 EXPORT_SYMBOL_GPL(ata_port_stop);
5100 EXPORT_SYMBOL_GPL(ata_host_stop);
5101 EXPORT_SYMBOL_GPL(ata_interrupt);
5102 EXPORT_SYMBOL_GPL(ata_qc_prep);
5103 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5104 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5105 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5106 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5107 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5108 EXPORT_SYMBOL_GPL(ata_port_probe);
5109 EXPORT_SYMBOL_GPL(sata_phy_reset);
5110 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5111 EXPORT_SYMBOL_GPL(ata_bus_reset);
5112 EXPORT_SYMBOL_GPL(ata_port_disable);
5113 EXPORT_SYMBOL_GPL(ata_ratelimit);
5114 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5115 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5116 EXPORT_SYMBOL_GPL(ata_scsi_error);
5117 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5118 EXPORT_SYMBOL_GPL(ata_scsi_release);
5119 EXPORT_SYMBOL_GPL(ata_host_intr);
5120 EXPORT_SYMBOL_GPL(ata_dev_classify);
5121 EXPORT_SYMBOL_GPL(ata_dev_id_string);
5122 EXPORT_SYMBOL_GPL(ata_dev_config);
5123 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5125 EXPORT_SYMBOL_GPL(ata_timing_compute);
5126 EXPORT_SYMBOL_GPL(ata_timing_merge);
5128 #ifdef CONFIG_PCI
5129 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5130 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5131 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5132 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5133 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5134 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5135 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5136 #endif /* CONFIG_PCI */
5138 EXPORT_SYMBOL_GPL(ata_device_suspend);
5139 EXPORT_SYMBOL_GPL(ata_device_resume);
5140 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5141 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);