[PATCH] softmac: convert to use global workqueue
[linux-2.6/suspend2-2.6.18.git] / mm / page_alloc.c
blobb7f14a4799a52e3881548d91568908f7ed988eb3
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
41 #include <asm/tlbflush.h>
42 #include "internal.h"
45 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
46 * initializer cleaner
48 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
49 EXPORT_SYMBOL(node_online_map);
50 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
51 EXPORT_SYMBOL(node_possible_map);
52 struct pglist_data *pgdat_list __read_mostly;
53 unsigned long totalram_pages __read_mostly;
54 unsigned long totalhigh_pages __read_mostly;
55 long nr_swap_pages;
56 int percpu_pagelist_fraction;
58 static void __free_pages_ok(struct page *page, unsigned int order);
61 * results with 256, 32 in the lowmem_reserve sysctl:
62 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63 * 1G machine -> (16M dma, 784M normal, 224M high)
64 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
68 * TBD: should special case ZONE_DMA32 machines here - in those we normally
69 * don't need any ZONE_NORMAL reservation
71 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
73 EXPORT_SYMBOL(totalram_pages);
76 * Used by page_zone() to look up the address of the struct zone whose
77 * id is encoded in the upper bits of page->flags
79 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
80 EXPORT_SYMBOL(zone_table);
82 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
83 int min_free_kbytes = 1024;
85 unsigned long __initdata nr_kernel_pages;
86 unsigned long __initdata nr_all_pages;
88 #ifdef CONFIG_DEBUG_VM
89 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
91 int ret = 0;
92 unsigned seq;
93 unsigned long pfn = page_to_pfn(page);
95 do {
96 seq = zone_span_seqbegin(zone);
97 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
98 ret = 1;
99 else if (pfn < zone->zone_start_pfn)
100 ret = 1;
101 } while (zone_span_seqretry(zone, seq));
103 return ret;
106 static int page_is_consistent(struct zone *zone, struct page *page)
108 #ifdef CONFIG_HOLES_IN_ZONE
109 if (!pfn_valid(page_to_pfn(page)))
110 return 0;
111 #endif
112 if (zone != page_zone(page))
113 return 0;
115 return 1;
118 * Temporary debugging check for pages not lying within a given zone.
120 static int bad_range(struct zone *zone, struct page *page)
122 if (page_outside_zone_boundaries(zone, page))
123 return 1;
124 if (!page_is_consistent(zone, page))
125 return 1;
127 return 0;
130 #else
131 static inline int bad_range(struct zone *zone, struct page *page)
133 return 0;
135 #endif
137 static void bad_page(struct page *page)
139 printk(KERN_EMERG "Bad page state in process '%s'\n"
140 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
141 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
142 KERN_EMERG "Backtrace:\n",
143 current->comm, page, (int)(2*sizeof(unsigned long)),
144 (unsigned long)page->flags, page->mapping,
145 page_mapcount(page), page_count(page));
146 dump_stack();
147 page->flags &= ~(1 << PG_lru |
148 1 << PG_private |
149 1 << PG_locked |
150 1 << PG_active |
151 1 << PG_dirty |
152 1 << PG_reclaim |
153 1 << PG_slab |
154 1 << PG_swapcache |
155 1 << PG_writeback );
156 set_page_count(page, 0);
157 reset_page_mapcount(page);
158 page->mapping = NULL;
159 add_taint(TAINT_BAD_PAGE);
163 * Higher-order pages are called "compound pages". They are structured thusly:
165 * The first PAGE_SIZE page is called the "head page".
167 * The remaining PAGE_SIZE pages are called "tail pages".
169 * All pages have PG_compound set. All pages have their ->private pointing at
170 * the head page (even the head page has this).
172 * The first tail page's ->lru.next holds the address of the compound page's
173 * put_page() function. Its ->lru.prev holds the order of allocation.
174 * This usage means that zero-order pages may not be compound.
177 static void free_compound_page(struct page *page)
179 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
182 static void prep_compound_page(struct page *page, unsigned long order)
184 int i;
185 int nr_pages = 1 << order;
187 page[1].lru.next = (void *)free_compound_page; /* set dtor */
188 page[1].lru.prev = (void *)order;
189 for (i = 0; i < nr_pages; i++) {
190 struct page *p = page + i;
192 __SetPageCompound(p);
193 set_page_private(p, (unsigned long)page);
197 static void destroy_compound_page(struct page *page, unsigned long order)
199 int i;
200 int nr_pages = 1 << order;
202 if (unlikely((unsigned long)page[1].lru.prev != order))
203 bad_page(page);
205 for (i = 0; i < nr_pages; i++) {
206 struct page *p = page + i;
208 if (unlikely(!PageCompound(p) |
209 (page_private(p) != (unsigned long)page)))
210 bad_page(page);
211 __ClearPageCompound(p);
215 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
217 int i;
219 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
221 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
222 * and __GFP_HIGHMEM from hard or soft interrupt context.
224 BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
225 for (i = 0; i < (1 << order); i++)
226 clear_highpage(page + i);
230 * function for dealing with page's order in buddy system.
231 * zone->lock is already acquired when we use these.
232 * So, we don't need atomic page->flags operations here.
234 static inline unsigned long page_order(struct page *page) {
235 return page_private(page);
238 static inline void set_page_order(struct page *page, int order) {
239 set_page_private(page, order);
240 __SetPagePrivate(page);
243 static inline void rmv_page_order(struct page *page)
245 __ClearPagePrivate(page);
246 set_page_private(page, 0);
250 * Locate the struct page for both the matching buddy in our
251 * pair (buddy1) and the combined O(n+1) page they form (page).
253 * 1) Any buddy B1 will have an order O twin B2 which satisfies
254 * the following equation:
255 * B2 = B1 ^ (1 << O)
256 * For example, if the starting buddy (buddy2) is #8 its order
257 * 1 buddy is #10:
258 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
260 * 2) Any buddy B will have an order O+1 parent P which
261 * satisfies the following equation:
262 * P = B & ~(1 << O)
264 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
266 static inline struct page *
267 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
269 unsigned long buddy_idx = page_idx ^ (1 << order);
271 return page + (buddy_idx - page_idx);
274 static inline unsigned long
275 __find_combined_index(unsigned long page_idx, unsigned int order)
277 return (page_idx & ~(1 << order));
281 * This function checks whether a page is free && is the buddy
282 * we can do coalesce a page and its buddy if
283 * (a) the buddy is not in a hole &&
284 * (b) the buddy is free &&
285 * (c) the buddy is on the buddy system &&
286 * (d) a page and its buddy have the same order.
287 * for recording page's order, we use page_private(page) and PG_private.
290 static inline int page_is_buddy(struct page *page, int order)
292 #ifdef CONFIG_HOLES_IN_ZONE
293 if (!pfn_valid(page_to_pfn(page)))
294 return 0;
295 #endif
297 if (PagePrivate(page) &&
298 (page_order(page) == order) &&
299 page_count(page) == 0)
300 return 1;
301 return 0;
305 * Freeing function for a buddy system allocator.
307 * The concept of a buddy system is to maintain direct-mapped table
308 * (containing bit values) for memory blocks of various "orders".
309 * The bottom level table contains the map for the smallest allocatable
310 * units of memory (here, pages), and each level above it describes
311 * pairs of units from the levels below, hence, "buddies".
312 * At a high level, all that happens here is marking the table entry
313 * at the bottom level available, and propagating the changes upward
314 * as necessary, plus some accounting needed to play nicely with other
315 * parts of the VM system.
316 * At each level, we keep a list of pages, which are heads of continuous
317 * free pages of length of (1 << order) and marked with PG_Private.Page's
318 * order is recorded in page_private(page) field.
319 * So when we are allocating or freeing one, we can derive the state of the
320 * other. That is, if we allocate a small block, and both were
321 * free, the remainder of the region must be split into blocks.
322 * If a block is freed, and its buddy is also free, then this
323 * triggers coalescing into a block of larger size.
325 * -- wli
328 static inline void __free_one_page(struct page *page,
329 struct zone *zone, unsigned int order)
331 unsigned long page_idx;
332 int order_size = 1 << order;
334 if (unlikely(PageCompound(page)))
335 destroy_compound_page(page, order);
337 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
339 BUG_ON(page_idx & (order_size - 1));
340 BUG_ON(bad_range(zone, page));
342 zone->free_pages += order_size;
343 while (order < MAX_ORDER-1) {
344 unsigned long combined_idx;
345 struct free_area *area;
346 struct page *buddy;
348 buddy = __page_find_buddy(page, page_idx, order);
349 if (!page_is_buddy(buddy, order))
350 break; /* Move the buddy up one level. */
352 list_del(&buddy->lru);
353 area = zone->free_area + order;
354 area->nr_free--;
355 rmv_page_order(buddy);
356 combined_idx = __find_combined_index(page_idx, order);
357 page = page + (combined_idx - page_idx);
358 page_idx = combined_idx;
359 order++;
361 set_page_order(page, order);
362 list_add(&page->lru, &zone->free_area[order].free_list);
363 zone->free_area[order].nr_free++;
366 static inline int free_pages_check(struct page *page)
368 if (unlikely(page_mapcount(page) |
369 (page->mapping != NULL) |
370 (page_count(page) != 0) |
371 (page->flags & (
372 1 << PG_lru |
373 1 << PG_private |
374 1 << PG_locked |
375 1 << PG_active |
376 1 << PG_reclaim |
377 1 << PG_slab |
378 1 << PG_swapcache |
379 1 << PG_writeback |
380 1 << PG_reserved ))))
381 bad_page(page);
382 if (PageDirty(page))
383 __ClearPageDirty(page);
385 * For now, we report if PG_reserved was found set, but do not
386 * clear it, and do not free the page. But we shall soon need
387 * to do more, for when the ZERO_PAGE count wraps negative.
389 return PageReserved(page);
393 * Frees a list of pages.
394 * Assumes all pages on list are in same zone, and of same order.
395 * count is the number of pages to free.
397 * If the zone was previously in an "all pages pinned" state then look to
398 * see if this freeing clears that state.
400 * And clear the zone's pages_scanned counter, to hold off the "all pages are
401 * pinned" detection logic.
403 static void free_pages_bulk(struct zone *zone, int count,
404 struct list_head *list, int order)
406 spin_lock(&zone->lock);
407 zone->all_unreclaimable = 0;
408 zone->pages_scanned = 0;
409 while (count--) {
410 struct page *page;
412 BUG_ON(list_empty(list));
413 page = list_entry(list->prev, struct page, lru);
414 /* have to delete it as __free_one_page list manipulates */
415 list_del(&page->lru);
416 __free_one_page(page, zone, order);
418 spin_unlock(&zone->lock);
421 static void free_one_page(struct zone *zone, struct page *page, int order)
423 LIST_HEAD(list);
424 list_add(&page->lru, &list);
425 free_pages_bulk(zone, 1, &list, order);
428 static void __free_pages_ok(struct page *page, unsigned int order)
430 unsigned long flags;
431 int i;
432 int reserved = 0;
434 arch_free_page(page, order);
435 if (!PageHighMem(page))
436 mutex_debug_check_no_locks_freed(page_address(page),
437 PAGE_SIZE<<order);
439 for (i = 0 ; i < (1 << order) ; ++i)
440 reserved += free_pages_check(page + i);
441 if (reserved)
442 return;
444 kernel_map_pages(page, 1 << order, 0);
445 local_irq_save(flags);
446 __mod_page_state(pgfree, 1 << order);
447 free_one_page(page_zone(page), page, order);
448 local_irq_restore(flags);
452 * permit the bootmem allocator to evade page validation on high-order frees
454 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
456 if (order == 0) {
457 __ClearPageReserved(page);
458 set_page_count(page, 0);
459 set_page_refcounted(page);
460 __free_page(page);
461 } else {
462 int loop;
464 prefetchw(page);
465 for (loop = 0; loop < BITS_PER_LONG; loop++) {
466 struct page *p = &page[loop];
468 if (loop + 1 < BITS_PER_LONG)
469 prefetchw(p + 1);
470 __ClearPageReserved(p);
471 set_page_count(p, 0);
474 set_page_refcounted(page);
475 __free_pages(page, order);
481 * The order of subdivision here is critical for the IO subsystem.
482 * Please do not alter this order without good reasons and regression
483 * testing. Specifically, as large blocks of memory are subdivided,
484 * the order in which smaller blocks are delivered depends on the order
485 * they're subdivided in this function. This is the primary factor
486 * influencing the order in which pages are delivered to the IO
487 * subsystem according to empirical testing, and this is also justified
488 * by considering the behavior of a buddy system containing a single
489 * large block of memory acted on by a series of small allocations.
490 * This behavior is a critical factor in sglist merging's success.
492 * -- wli
494 static inline void expand(struct zone *zone, struct page *page,
495 int low, int high, struct free_area *area)
497 unsigned long size = 1 << high;
499 while (high > low) {
500 area--;
501 high--;
502 size >>= 1;
503 BUG_ON(bad_range(zone, &page[size]));
504 list_add(&page[size].lru, &area->free_list);
505 area->nr_free++;
506 set_page_order(&page[size], high);
511 * This page is about to be returned from the page allocator
513 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
515 if (unlikely(page_mapcount(page) |
516 (page->mapping != NULL) |
517 (page_count(page) != 0) |
518 (page->flags & (
519 1 << PG_lru |
520 1 << PG_private |
521 1 << PG_locked |
522 1 << PG_active |
523 1 << PG_dirty |
524 1 << PG_reclaim |
525 1 << PG_slab |
526 1 << PG_swapcache |
527 1 << PG_writeback |
528 1 << PG_reserved ))))
529 bad_page(page);
532 * For now, we report if PG_reserved was found set, but do not
533 * clear it, and do not allocate the page: as a safety net.
535 if (PageReserved(page))
536 return 1;
538 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
539 1 << PG_referenced | 1 << PG_arch_1 |
540 1 << PG_checked | 1 << PG_mappedtodisk);
541 set_page_private(page, 0);
542 set_page_refcounted(page);
543 kernel_map_pages(page, 1 << order, 1);
545 if (gfp_flags & __GFP_ZERO)
546 prep_zero_page(page, order, gfp_flags);
548 if (order && (gfp_flags & __GFP_COMP))
549 prep_compound_page(page, order);
551 return 0;
555 * Do the hard work of removing an element from the buddy allocator.
556 * Call me with the zone->lock already held.
558 static struct page *__rmqueue(struct zone *zone, unsigned int order)
560 struct free_area * area;
561 unsigned int current_order;
562 struct page *page;
564 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
565 area = zone->free_area + current_order;
566 if (list_empty(&area->free_list))
567 continue;
569 page = list_entry(area->free_list.next, struct page, lru);
570 list_del(&page->lru);
571 rmv_page_order(page);
572 area->nr_free--;
573 zone->free_pages -= 1UL << order;
574 expand(zone, page, order, current_order, area);
575 return page;
578 return NULL;
582 * Obtain a specified number of elements from the buddy allocator, all under
583 * a single hold of the lock, for efficiency. Add them to the supplied list.
584 * Returns the number of new pages which were placed at *list.
586 static int rmqueue_bulk(struct zone *zone, unsigned int order,
587 unsigned long count, struct list_head *list)
589 int i;
591 spin_lock(&zone->lock);
592 for (i = 0; i < count; ++i) {
593 struct page *page = __rmqueue(zone, order);
594 if (unlikely(page == NULL))
595 break;
596 list_add_tail(&page->lru, list);
598 spin_unlock(&zone->lock);
599 return i;
602 #ifdef CONFIG_NUMA
604 * Called from the slab reaper to drain pagesets on a particular node that
605 * belong to the currently executing processor.
606 * Note that this function must be called with the thread pinned to
607 * a single processor.
609 void drain_node_pages(int nodeid)
611 int i, z;
612 unsigned long flags;
614 for (z = 0; z < MAX_NR_ZONES; z++) {
615 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
616 struct per_cpu_pageset *pset;
618 pset = zone_pcp(zone, smp_processor_id());
619 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
620 struct per_cpu_pages *pcp;
622 pcp = &pset->pcp[i];
623 if (pcp->count) {
624 local_irq_save(flags);
625 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
626 pcp->count = 0;
627 local_irq_restore(flags);
632 #endif
634 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
635 static void __drain_pages(unsigned int cpu)
637 unsigned long flags;
638 struct zone *zone;
639 int i;
641 for_each_zone(zone) {
642 struct per_cpu_pageset *pset;
644 pset = zone_pcp(zone, cpu);
645 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
646 struct per_cpu_pages *pcp;
648 pcp = &pset->pcp[i];
649 local_irq_save(flags);
650 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
651 pcp->count = 0;
652 local_irq_restore(flags);
656 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
658 #ifdef CONFIG_PM
660 void mark_free_pages(struct zone *zone)
662 unsigned long zone_pfn, flags;
663 int order;
664 struct list_head *curr;
666 if (!zone->spanned_pages)
667 return;
669 spin_lock_irqsave(&zone->lock, flags);
670 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
671 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
673 for (order = MAX_ORDER - 1; order >= 0; --order)
674 list_for_each(curr, &zone->free_area[order].free_list) {
675 unsigned long start_pfn, i;
677 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
679 for (i=0; i < (1<<order); i++)
680 SetPageNosaveFree(pfn_to_page(start_pfn+i));
682 spin_unlock_irqrestore(&zone->lock, flags);
686 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
688 void drain_local_pages(void)
690 unsigned long flags;
692 local_irq_save(flags);
693 __drain_pages(smp_processor_id());
694 local_irq_restore(flags);
696 #endif /* CONFIG_PM */
698 static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
700 #ifdef CONFIG_NUMA
701 pg_data_t *pg = z->zone_pgdat;
702 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
703 struct per_cpu_pageset *p;
705 p = zone_pcp(z, cpu);
706 if (pg == orig) {
707 p->numa_hit++;
708 } else {
709 p->numa_miss++;
710 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
712 if (pg == NODE_DATA(numa_node_id()))
713 p->local_node++;
714 else
715 p->other_node++;
716 #endif
720 * Free a 0-order page
722 static void fastcall free_hot_cold_page(struct page *page, int cold)
724 struct zone *zone = page_zone(page);
725 struct per_cpu_pages *pcp;
726 unsigned long flags;
728 arch_free_page(page, 0);
730 if (PageAnon(page))
731 page->mapping = NULL;
732 if (free_pages_check(page))
733 return;
735 kernel_map_pages(page, 1, 0);
737 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
738 local_irq_save(flags);
739 __inc_page_state(pgfree);
740 list_add(&page->lru, &pcp->list);
741 pcp->count++;
742 if (pcp->count >= pcp->high) {
743 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
744 pcp->count -= pcp->batch;
746 local_irq_restore(flags);
747 put_cpu();
750 void fastcall free_hot_page(struct page *page)
752 free_hot_cold_page(page, 0);
755 void fastcall free_cold_page(struct page *page)
757 free_hot_cold_page(page, 1);
761 * split_page takes a non-compound higher-order page, and splits it into
762 * n (1<<order) sub-pages: page[0..n]
763 * Each sub-page must be freed individually.
765 * Note: this is probably too low level an operation for use in drivers.
766 * Please consult with lkml before using this in your driver.
768 void split_page(struct page *page, unsigned int order)
770 int i;
772 BUG_ON(PageCompound(page));
773 BUG_ON(!page_count(page));
774 for (i = 1; i < (1 << order); i++)
775 set_page_refcounted(page + i);
779 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
780 * we cheat by calling it from here, in the order > 0 path. Saves a branch
781 * or two.
783 static struct page *buffered_rmqueue(struct zonelist *zonelist,
784 struct zone *zone, int order, gfp_t gfp_flags)
786 unsigned long flags;
787 struct page *page;
788 int cold = !!(gfp_flags & __GFP_COLD);
789 int cpu;
791 again:
792 cpu = get_cpu();
793 if (likely(order == 0)) {
794 struct per_cpu_pages *pcp;
796 pcp = &zone_pcp(zone, cpu)->pcp[cold];
797 local_irq_save(flags);
798 if (!pcp->count) {
799 pcp->count += rmqueue_bulk(zone, 0,
800 pcp->batch, &pcp->list);
801 if (unlikely(!pcp->count))
802 goto failed;
804 page = list_entry(pcp->list.next, struct page, lru);
805 list_del(&page->lru);
806 pcp->count--;
807 } else {
808 spin_lock_irqsave(&zone->lock, flags);
809 page = __rmqueue(zone, order);
810 spin_unlock(&zone->lock);
811 if (!page)
812 goto failed;
815 __mod_page_state_zone(zone, pgalloc, 1 << order);
816 zone_statistics(zonelist, zone, cpu);
817 local_irq_restore(flags);
818 put_cpu();
820 BUG_ON(bad_range(zone, page));
821 if (prep_new_page(page, order, gfp_flags))
822 goto again;
823 return page;
825 failed:
826 local_irq_restore(flags);
827 put_cpu();
828 return NULL;
831 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
832 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
833 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
834 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
835 #define ALLOC_HARDER 0x10 /* try to alloc harder */
836 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
837 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
840 * Return 1 if free pages are above 'mark'. This takes into account the order
841 * of the allocation.
843 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
844 int classzone_idx, int alloc_flags)
846 /* free_pages my go negative - that's OK */
847 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
848 int o;
850 if (alloc_flags & ALLOC_HIGH)
851 min -= min / 2;
852 if (alloc_flags & ALLOC_HARDER)
853 min -= min / 4;
855 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
856 return 0;
857 for (o = 0; o < order; o++) {
858 /* At the next order, this order's pages become unavailable */
859 free_pages -= z->free_area[o].nr_free << o;
861 /* Require fewer higher order pages to be free */
862 min >>= 1;
864 if (free_pages <= min)
865 return 0;
867 return 1;
871 * get_page_from_freeliest goes through the zonelist trying to allocate
872 * a page.
874 static struct page *
875 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
876 struct zonelist *zonelist, int alloc_flags)
878 struct zone **z = zonelist->zones;
879 struct page *page = NULL;
880 int classzone_idx = zone_idx(*z);
883 * Go through the zonelist once, looking for a zone with enough free.
884 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
886 do {
887 if ((alloc_flags & ALLOC_CPUSET) &&
888 !cpuset_zone_allowed(*z, gfp_mask))
889 continue;
891 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
892 unsigned long mark;
893 if (alloc_flags & ALLOC_WMARK_MIN)
894 mark = (*z)->pages_min;
895 else if (alloc_flags & ALLOC_WMARK_LOW)
896 mark = (*z)->pages_low;
897 else
898 mark = (*z)->pages_high;
899 if (!zone_watermark_ok(*z, order, mark,
900 classzone_idx, alloc_flags))
901 if (!zone_reclaim_mode ||
902 !zone_reclaim(*z, gfp_mask, order))
903 continue;
906 page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
907 if (page) {
908 break;
910 } while (*(++z) != NULL);
911 return page;
915 * This is the 'heart' of the zoned buddy allocator.
917 struct page * fastcall
918 __alloc_pages(gfp_t gfp_mask, unsigned int order,
919 struct zonelist *zonelist)
921 const gfp_t wait = gfp_mask & __GFP_WAIT;
922 struct zone **z;
923 struct page *page;
924 struct reclaim_state reclaim_state;
925 struct task_struct *p = current;
926 int do_retry;
927 int alloc_flags;
928 int did_some_progress;
930 might_sleep_if(wait);
932 restart:
933 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
935 if (unlikely(*z == NULL)) {
936 /* Should this ever happen?? */
937 return NULL;
940 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
941 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
942 if (page)
943 goto got_pg;
945 do {
946 wakeup_kswapd(*z, order);
947 } while (*(++z));
950 * OK, we're below the kswapd watermark and have kicked background
951 * reclaim. Now things get more complex, so set up alloc_flags according
952 * to how we want to proceed.
954 * The caller may dip into page reserves a bit more if the caller
955 * cannot run direct reclaim, or if the caller has realtime scheduling
956 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
957 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
959 alloc_flags = ALLOC_WMARK_MIN;
960 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
961 alloc_flags |= ALLOC_HARDER;
962 if (gfp_mask & __GFP_HIGH)
963 alloc_flags |= ALLOC_HIGH;
964 alloc_flags |= ALLOC_CPUSET;
967 * Go through the zonelist again. Let __GFP_HIGH and allocations
968 * coming from realtime tasks go deeper into reserves.
970 * This is the last chance, in general, before the goto nopage.
971 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
972 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
974 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
975 if (page)
976 goto got_pg;
978 /* This allocation should allow future memory freeing. */
980 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
981 && !in_interrupt()) {
982 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
983 nofail_alloc:
984 /* go through the zonelist yet again, ignoring mins */
985 page = get_page_from_freelist(gfp_mask, order,
986 zonelist, ALLOC_NO_WATERMARKS);
987 if (page)
988 goto got_pg;
989 if (gfp_mask & __GFP_NOFAIL) {
990 blk_congestion_wait(WRITE, HZ/50);
991 goto nofail_alloc;
994 goto nopage;
997 /* Atomic allocations - we can't balance anything */
998 if (!wait)
999 goto nopage;
1001 rebalance:
1002 cond_resched();
1004 /* We now go into synchronous reclaim */
1005 cpuset_memory_pressure_bump();
1006 p->flags |= PF_MEMALLOC;
1007 reclaim_state.reclaimed_slab = 0;
1008 p->reclaim_state = &reclaim_state;
1010 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1012 p->reclaim_state = NULL;
1013 p->flags &= ~PF_MEMALLOC;
1015 cond_resched();
1017 if (likely(did_some_progress)) {
1018 page = get_page_from_freelist(gfp_mask, order,
1019 zonelist, alloc_flags);
1020 if (page)
1021 goto got_pg;
1022 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1024 * Go through the zonelist yet one more time, keep
1025 * very high watermark here, this is only to catch
1026 * a parallel oom killing, we must fail if we're still
1027 * under heavy pressure.
1029 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1030 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1031 if (page)
1032 goto got_pg;
1034 out_of_memory(zonelist, gfp_mask, order);
1035 goto restart;
1039 * Don't let big-order allocations loop unless the caller explicitly
1040 * requests that. Wait for some write requests to complete then retry.
1042 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1043 * <= 3, but that may not be true in other implementations.
1045 do_retry = 0;
1046 if (!(gfp_mask & __GFP_NORETRY)) {
1047 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1048 do_retry = 1;
1049 if (gfp_mask & __GFP_NOFAIL)
1050 do_retry = 1;
1052 if (do_retry) {
1053 blk_congestion_wait(WRITE, HZ/50);
1054 goto rebalance;
1057 nopage:
1058 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1059 printk(KERN_WARNING "%s: page allocation failure."
1060 " order:%d, mode:0x%x\n",
1061 p->comm, order, gfp_mask);
1062 dump_stack();
1063 show_mem();
1065 got_pg:
1066 return page;
1069 EXPORT_SYMBOL(__alloc_pages);
1072 * Common helper functions.
1074 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1076 struct page * page;
1077 page = alloc_pages(gfp_mask, order);
1078 if (!page)
1079 return 0;
1080 return (unsigned long) page_address(page);
1083 EXPORT_SYMBOL(__get_free_pages);
1085 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1087 struct page * page;
1090 * get_zeroed_page() returns a 32-bit address, which cannot represent
1091 * a highmem page
1093 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1095 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1096 if (page)
1097 return (unsigned long) page_address(page);
1098 return 0;
1101 EXPORT_SYMBOL(get_zeroed_page);
1103 void __pagevec_free(struct pagevec *pvec)
1105 int i = pagevec_count(pvec);
1107 while (--i >= 0)
1108 free_hot_cold_page(pvec->pages[i], pvec->cold);
1111 fastcall void __free_pages(struct page *page, unsigned int order)
1113 if (put_page_testzero(page)) {
1114 if (order == 0)
1115 free_hot_page(page);
1116 else
1117 __free_pages_ok(page, order);
1121 EXPORT_SYMBOL(__free_pages);
1123 fastcall void free_pages(unsigned long addr, unsigned int order)
1125 if (addr != 0) {
1126 BUG_ON(!virt_addr_valid((void *)addr));
1127 __free_pages(virt_to_page((void *)addr), order);
1131 EXPORT_SYMBOL(free_pages);
1134 * Total amount of free (allocatable) RAM:
1136 unsigned int nr_free_pages(void)
1138 unsigned int sum = 0;
1139 struct zone *zone;
1141 for_each_zone(zone)
1142 sum += zone->free_pages;
1144 return sum;
1147 EXPORT_SYMBOL(nr_free_pages);
1149 #ifdef CONFIG_NUMA
1150 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1152 unsigned int i, sum = 0;
1154 for (i = 0; i < MAX_NR_ZONES; i++)
1155 sum += pgdat->node_zones[i].free_pages;
1157 return sum;
1159 #endif
1161 static unsigned int nr_free_zone_pages(int offset)
1163 /* Just pick one node, since fallback list is circular */
1164 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1165 unsigned int sum = 0;
1167 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1168 struct zone **zonep = zonelist->zones;
1169 struct zone *zone;
1171 for (zone = *zonep++; zone; zone = *zonep++) {
1172 unsigned long size = zone->present_pages;
1173 unsigned long high = zone->pages_high;
1174 if (size > high)
1175 sum += size - high;
1178 return sum;
1182 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1184 unsigned int nr_free_buffer_pages(void)
1186 return nr_free_zone_pages(gfp_zone(GFP_USER));
1190 * Amount of free RAM allocatable within all zones
1192 unsigned int nr_free_pagecache_pages(void)
1194 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1197 #ifdef CONFIG_HIGHMEM
1198 unsigned int nr_free_highpages (void)
1200 pg_data_t *pgdat;
1201 unsigned int pages = 0;
1203 for_each_pgdat(pgdat)
1204 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1206 return pages;
1208 #endif
1210 #ifdef CONFIG_NUMA
1211 static void show_node(struct zone *zone)
1213 printk("Node %d ", zone->zone_pgdat->node_id);
1215 #else
1216 #define show_node(zone) do { } while (0)
1217 #endif
1220 * Accumulate the page_state information across all CPUs.
1221 * The result is unavoidably approximate - it can change
1222 * during and after execution of this function.
1224 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1226 atomic_t nr_pagecache = ATOMIC_INIT(0);
1227 EXPORT_SYMBOL(nr_pagecache);
1228 #ifdef CONFIG_SMP
1229 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1230 #endif
1232 static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1234 unsigned cpu;
1236 memset(ret, 0, nr * sizeof(unsigned long));
1237 cpus_and(*cpumask, *cpumask, cpu_online_map);
1239 for_each_cpu_mask(cpu, *cpumask) {
1240 unsigned long *in;
1241 unsigned long *out;
1242 unsigned off;
1243 unsigned next_cpu;
1245 in = (unsigned long *)&per_cpu(page_states, cpu);
1247 next_cpu = next_cpu(cpu, *cpumask);
1248 if (likely(next_cpu < NR_CPUS))
1249 prefetch(&per_cpu(page_states, next_cpu));
1251 out = (unsigned long *)ret;
1252 for (off = 0; off < nr; off++)
1253 *out++ += *in++;
1257 void get_page_state_node(struct page_state *ret, int node)
1259 int nr;
1260 cpumask_t mask = node_to_cpumask(node);
1262 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1263 nr /= sizeof(unsigned long);
1265 __get_page_state(ret, nr+1, &mask);
1268 void get_page_state(struct page_state *ret)
1270 int nr;
1271 cpumask_t mask = CPU_MASK_ALL;
1273 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1274 nr /= sizeof(unsigned long);
1276 __get_page_state(ret, nr + 1, &mask);
1279 void get_full_page_state(struct page_state *ret)
1281 cpumask_t mask = CPU_MASK_ALL;
1283 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1286 unsigned long read_page_state_offset(unsigned long offset)
1288 unsigned long ret = 0;
1289 int cpu;
1291 for_each_online_cpu(cpu) {
1292 unsigned long in;
1294 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1295 ret += *((unsigned long *)in);
1297 return ret;
1300 void __mod_page_state_offset(unsigned long offset, unsigned long delta)
1302 void *ptr;
1304 ptr = &__get_cpu_var(page_states);
1305 *(unsigned long *)(ptr + offset) += delta;
1307 EXPORT_SYMBOL(__mod_page_state_offset);
1309 void mod_page_state_offset(unsigned long offset, unsigned long delta)
1311 unsigned long flags;
1312 void *ptr;
1314 local_irq_save(flags);
1315 ptr = &__get_cpu_var(page_states);
1316 *(unsigned long *)(ptr + offset) += delta;
1317 local_irq_restore(flags);
1319 EXPORT_SYMBOL(mod_page_state_offset);
1321 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1322 unsigned long *free, struct pglist_data *pgdat)
1324 struct zone *zones = pgdat->node_zones;
1325 int i;
1327 *active = 0;
1328 *inactive = 0;
1329 *free = 0;
1330 for (i = 0; i < MAX_NR_ZONES; i++) {
1331 *active += zones[i].nr_active;
1332 *inactive += zones[i].nr_inactive;
1333 *free += zones[i].free_pages;
1337 void get_zone_counts(unsigned long *active,
1338 unsigned long *inactive, unsigned long *free)
1340 struct pglist_data *pgdat;
1342 *active = 0;
1343 *inactive = 0;
1344 *free = 0;
1345 for_each_pgdat(pgdat) {
1346 unsigned long l, m, n;
1347 __get_zone_counts(&l, &m, &n, pgdat);
1348 *active += l;
1349 *inactive += m;
1350 *free += n;
1354 void si_meminfo(struct sysinfo *val)
1356 val->totalram = totalram_pages;
1357 val->sharedram = 0;
1358 val->freeram = nr_free_pages();
1359 val->bufferram = nr_blockdev_pages();
1360 #ifdef CONFIG_HIGHMEM
1361 val->totalhigh = totalhigh_pages;
1362 val->freehigh = nr_free_highpages();
1363 #else
1364 val->totalhigh = 0;
1365 val->freehigh = 0;
1366 #endif
1367 val->mem_unit = PAGE_SIZE;
1370 EXPORT_SYMBOL(si_meminfo);
1372 #ifdef CONFIG_NUMA
1373 void si_meminfo_node(struct sysinfo *val, int nid)
1375 pg_data_t *pgdat = NODE_DATA(nid);
1377 val->totalram = pgdat->node_present_pages;
1378 val->freeram = nr_free_pages_pgdat(pgdat);
1379 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1380 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1381 val->mem_unit = PAGE_SIZE;
1383 #endif
1385 #define K(x) ((x) << (PAGE_SHIFT-10))
1388 * Show free area list (used inside shift_scroll-lock stuff)
1389 * We also calculate the percentage fragmentation. We do this by counting the
1390 * memory on each free list with the exception of the first item on the list.
1392 void show_free_areas(void)
1394 struct page_state ps;
1395 int cpu, temperature;
1396 unsigned long active;
1397 unsigned long inactive;
1398 unsigned long free;
1399 struct zone *zone;
1401 for_each_zone(zone) {
1402 show_node(zone);
1403 printk("%s per-cpu:", zone->name);
1405 if (!populated_zone(zone)) {
1406 printk(" empty\n");
1407 continue;
1408 } else
1409 printk("\n");
1411 for_each_online_cpu(cpu) {
1412 struct per_cpu_pageset *pageset;
1414 pageset = zone_pcp(zone, cpu);
1416 for (temperature = 0; temperature < 2; temperature++)
1417 printk("cpu %d %s: high %d, batch %d used:%d\n",
1418 cpu,
1419 temperature ? "cold" : "hot",
1420 pageset->pcp[temperature].high,
1421 pageset->pcp[temperature].batch,
1422 pageset->pcp[temperature].count);
1426 get_page_state(&ps);
1427 get_zone_counts(&active, &inactive, &free);
1429 printk("Free pages: %11ukB (%ukB HighMem)\n",
1430 K(nr_free_pages()),
1431 K(nr_free_highpages()));
1433 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1434 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1435 active,
1436 inactive,
1437 ps.nr_dirty,
1438 ps.nr_writeback,
1439 ps.nr_unstable,
1440 nr_free_pages(),
1441 ps.nr_slab,
1442 ps.nr_mapped,
1443 ps.nr_page_table_pages);
1445 for_each_zone(zone) {
1446 int i;
1448 show_node(zone);
1449 printk("%s"
1450 " free:%lukB"
1451 " min:%lukB"
1452 " low:%lukB"
1453 " high:%lukB"
1454 " active:%lukB"
1455 " inactive:%lukB"
1456 " present:%lukB"
1457 " pages_scanned:%lu"
1458 " all_unreclaimable? %s"
1459 "\n",
1460 zone->name,
1461 K(zone->free_pages),
1462 K(zone->pages_min),
1463 K(zone->pages_low),
1464 K(zone->pages_high),
1465 K(zone->nr_active),
1466 K(zone->nr_inactive),
1467 K(zone->present_pages),
1468 zone->pages_scanned,
1469 (zone->all_unreclaimable ? "yes" : "no")
1471 printk("lowmem_reserve[]:");
1472 for (i = 0; i < MAX_NR_ZONES; i++)
1473 printk(" %lu", zone->lowmem_reserve[i]);
1474 printk("\n");
1477 for_each_zone(zone) {
1478 unsigned long nr, flags, order, total = 0;
1480 show_node(zone);
1481 printk("%s: ", zone->name);
1482 if (!populated_zone(zone)) {
1483 printk("empty\n");
1484 continue;
1487 spin_lock_irqsave(&zone->lock, flags);
1488 for (order = 0; order < MAX_ORDER; order++) {
1489 nr = zone->free_area[order].nr_free;
1490 total += nr << order;
1491 printk("%lu*%lukB ", nr, K(1UL) << order);
1493 spin_unlock_irqrestore(&zone->lock, flags);
1494 printk("= %lukB\n", K(total));
1497 show_swap_cache_info();
1501 * Builds allocation fallback zone lists.
1503 * Add all populated zones of a node to the zonelist.
1505 static int __init build_zonelists_node(pg_data_t *pgdat,
1506 struct zonelist *zonelist, int nr_zones, int zone_type)
1508 struct zone *zone;
1510 BUG_ON(zone_type > ZONE_HIGHMEM);
1512 do {
1513 zone = pgdat->node_zones + zone_type;
1514 if (populated_zone(zone)) {
1515 #ifndef CONFIG_HIGHMEM
1516 BUG_ON(zone_type > ZONE_NORMAL);
1517 #endif
1518 zonelist->zones[nr_zones++] = zone;
1519 check_highest_zone(zone_type);
1521 zone_type--;
1523 } while (zone_type >= 0);
1524 return nr_zones;
1527 static inline int highest_zone(int zone_bits)
1529 int res = ZONE_NORMAL;
1530 if (zone_bits & (__force int)__GFP_HIGHMEM)
1531 res = ZONE_HIGHMEM;
1532 if (zone_bits & (__force int)__GFP_DMA32)
1533 res = ZONE_DMA32;
1534 if (zone_bits & (__force int)__GFP_DMA)
1535 res = ZONE_DMA;
1536 return res;
1539 #ifdef CONFIG_NUMA
1540 #define MAX_NODE_LOAD (num_online_nodes())
1541 static int __initdata node_load[MAX_NUMNODES];
1543 * find_next_best_node - find the next node that should appear in a given node's fallback list
1544 * @node: node whose fallback list we're appending
1545 * @used_node_mask: nodemask_t of already used nodes
1547 * We use a number of factors to determine which is the next node that should
1548 * appear on a given node's fallback list. The node should not have appeared
1549 * already in @node's fallback list, and it should be the next closest node
1550 * according to the distance array (which contains arbitrary distance values
1551 * from each node to each node in the system), and should also prefer nodes
1552 * with no CPUs, since presumably they'll have very little allocation pressure
1553 * on them otherwise.
1554 * It returns -1 if no node is found.
1556 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1558 int n, val;
1559 int min_val = INT_MAX;
1560 int best_node = -1;
1562 /* Use the local node if we haven't already */
1563 if (!node_isset(node, *used_node_mask)) {
1564 node_set(node, *used_node_mask);
1565 return node;
1568 for_each_online_node(n) {
1569 cpumask_t tmp;
1571 /* Don't want a node to appear more than once */
1572 if (node_isset(n, *used_node_mask))
1573 continue;
1575 /* Use the distance array to find the distance */
1576 val = node_distance(node, n);
1578 /* Penalize nodes under us ("prefer the next node") */
1579 val += (n < node);
1581 /* Give preference to headless and unused nodes */
1582 tmp = node_to_cpumask(n);
1583 if (!cpus_empty(tmp))
1584 val += PENALTY_FOR_NODE_WITH_CPUS;
1586 /* Slight preference for less loaded node */
1587 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1588 val += node_load[n];
1590 if (val < min_val) {
1591 min_val = val;
1592 best_node = n;
1596 if (best_node >= 0)
1597 node_set(best_node, *used_node_mask);
1599 return best_node;
1602 static void __init build_zonelists(pg_data_t *pgdat)
1604 int i, j, k, node, local_node;
1605 int prev_node, load;
1606 struct zonelist *zonelist;
1607 nodemask_t used_mask;
1609 /* initialize zonelists */
1610 for (i = 0; i < GFP_ZONETYPES; i++) {
1611 zonelist = pgdat->node_zonelists + i;
1612 zonelist->zones[0] = NULL;
1615 /* NUMA-aware ordering of nodes */
1616 local_node = pgdat->node_id;
1617 load = num_online_nodes();
1618 prev_node = local_node;
1619 nodes_clear(used_mask);
1620 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1621 int distance = node_distance(local_node, node);
1624 * If another node is sufficiently far away then it is better
1625 * to reclaim pages in a zone before going off node.
1627 if (distance > RECLAIM_DISTANCE)
1628 zone_reclaim_mode = 1;
1631 * We don't want to pressure a particular node.
1632 * So adding penalty to the first node in same
1633 * distance group to make it round-robin.
1636 if (distance != node_distance(local_node, prev_node))
1637 node_load[node] += load;
1638 prev_node = node;
1639 load--;
1640 for (i = 0; i < GFP_ZONETYPES; i++) {
1641 zonelist = pgdat->node_zonelists + i;
1642 for (j = 0; zonelist->zones[j] != NULL; j++);
1644 k = highest_zone(i);
1646 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1647 zonelist->zones[j] = NULL;
1652 #else /* CONFIG_NUMA */
1654 static void __init build_zonelists(pg_data_t *pgdat)
1656 int i, j, k, node, local_node;
1658 local_node = pgdat->node_id;
1659 for (i = 0; i < GFP_ZONETYPES; i++) {
1660 struct zonelist *zonelist;
1662 zonelist = pgdat->node_zonelists + i;
1664 j = 0;
1665 k = highest_zone(i);
1666 j = build_zonelists_node(pgdat, zonelist, j, k);
1668 * Now we build the zonelist so that it contains the zones
1669 * of all the other nodes.
1670 * We don't want to pressure a particular node, so when
1671 * building the zones for node N, we make sure that the
1672 * zones coming right after the local ones are those from
1673 * node N+1 (modulo N)
1675 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1676 if (!node_online(node))
1677 continue;
1678 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1680 for (node = 0; node < local_node; node++) {
1681 if (!node_online(node))
1682 continue;
1683 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1686 zonelist->zones[j] = NULL;
1690 #endif /* CONFIG_NUMA */
1692 void __init build_all_zonelists(void)
1694 int i;
1696 for_each_online_node(i)
1697 build_zonelists(NODE_DATA(i));
1698 printk("Built %i zonelists\n", num_online_nodes());
1699 cpuset_init_current_mems_allowed();
1703 * Helper functions to size the waitqueue hash table.
1704 * Essentially these want to choose hash table sizes sufficiently
1705 * large so that collisions trying to wait on pages are rare.
1706 * But in fact, the number of active page waitqueues on typical
1707 * systems is ridiculously low, less than 200. So this is even
1708 * conservative, even though it seems large.
1710 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1711 * waitqueues, i.e. the size of the waitq table given the number of pages.
1713 #define PAGES_PER_WAITQUEUE 256
1715 static inline unsigned long wait_table_size(unsigned long pages)
1717 unsigned long size = 1;
1719 pages /= PAGES_PER_WAITQUEUE;
1721 while (size < pages)
1722 size <<= 1;
1725 * Once we have dozens or even hundreds of threads sleeping
1726 * on IO we've got bigger problems than wait queue collision.
1727 * Limit the size of the wait table to a reasonable size.
1729 size = min(size, 4096UL);
1731 return max(size, 4UL);
1735 * This is an integer logarithm so that shifts can be used later
1736 * to extract the more random high bits from the multiplicative
1737 * hash function before the remainder is taken.
1739 static inline unsigned long wait_table_bits(unsigned long size)
1741 return ffz(~size);
1744 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1746 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1747 unsigned long *zones_size, unsigned long *zholes_size)
1749 unsigned long realtotalpages, totalpages = 0;
1750 int i;
1752 for (i = 0; i < MAX_NR_ZONES; i++)
1753 totalpages += zones_size[i];
1754 pgdat->node_spanned_pages = totalpages;
1756 realtotalpages = totalpages;
1757 if (zholes_size)
1758 for (i = 0; i < MAX_NR_ZONES; i++)
1759 realtotalpages -= zholes_size[i];
1760 pgdat->node_present_pages = realtotalpages;
1761 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1766 * Initially all pages are reserved - free ones are freed
1767 * up by free_all_bootmem() once the early boot process is
1768 * done. Non-atomic initialization, single-pass.
1770 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1771 unsigned long start_pfn)
1773 struct page *page;
1774 unsigned long end_pfn = start_pfn + size;
1775 unsigned long pfn;
1777 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1778 if (!early_pfn_valid(pfn))
1779 continue;
1780 page = pfn_to_page(pfn);
1781 set_page_links(page, zone, nid, pfn);
1782 init_page_count(page);
1783 reset_page_mapcount(page);
1784 SetPageReserved(page);
1785 INIT_LIST_HEAD(&page->lru);
1786 #ifdef WANT_PAGE_VIRTUAL
1787 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1788 if (!is_highmem_idx(zone))
1789 set_page_address(page, __va(pfn << PAGE_SHIFT));
1790 #endif
1794 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1795 unsigned long size)
1797 int order;
1798 for (order = 0; order < MAX_ORDER ; order++) {
1799 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1800 zone->free_area[order].nr_free = 0;
1804 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1805 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1806 unsigned long size)
1808 unsigned long snum = pfn_to_section_nr(pfn);
1809 unsigned long end = pfn_to_section_nr(pfn + size);
1811 if (FLAGS_HAS_NODE)
1812 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1813 else
1814 for (; snum <= end; snum++)
1815 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1818 #ifndef __HAVE_ARCH_MEMMAP_INIT
1819 #define memmap_init(size, nid, zone, start_pfn) \
1820 memmap_init_zone((size), (nid), (zone), (start_pfn))
1821 #endif
1823 static int __cpuinit zone_batchsize(struct zone *zone)
1825 int batch;
1828 * The per-cpu-pages pools are set to around 1000th of the
1829 * size of the zone. But no more than 1/2 of a meg.
1831 * OK, so we don't know how big the cache is. So guess.
1833 batch = zone->present_pages / 1024;
1834 if (batch * PAGE_SIZE > 512 * 1024)
1835 batch = (512 * 1024) / PAGE_SIZE;
1836 batch /= 4; /* We effectively *= 4 below */
1837 if (batch < 1)
1838 batch = 1;
1841 * Clamp the batch to a 2^n - 1 value. Having a power
1842 * of 2 value was found to be more likely to have
1843 * suboptimal cache aliasing properties in some cases.
1845 * For example if 2 tasks are alternately allocating
1846 * batches of pages, one task can end up with a lot
1847 * of pages of one half of the possible page colors
1848 * and the other with pages of the other colors.
1850 batch = (1 << (fls(batch + batch/2)-1)) - 1;
1852 return batch;
1855 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1857 struct per_cpu_pages *pcp;
1859 memset(p, 0, sizeof(*p));
1861 pcp = &p->pcp[0]; /* hot */
1862 pcp->count = 0;
1863 pcp->high = 6 * batch;
1864 pcp->batch = max(1UL, 1 * batch);
1865 INIT_LIST_HEAD(&pcp->list);
1867 pcp = &p->pcp[1]; /* cold*/
1868 pcp->count = 0;
1869 pcp->high = 2 * batch;
1870 pcp->batch = max(1UL, batch/2);
1871 INIT_LIST_HEAD(&pcp->list);
1875 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1876 * to the value high for the pageset p.
1879 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1880 unsigned long high)
1882 struct per_cpu_pages *pcp;
1884 pcp = &p->pcp[0]; /* hot list */
1885 pcp->high = high;
1886 pcp->batch = max(1UL, high/4);
1887 if ((high/4) > (PAGE_SHIFT * 8))
1888 pcp->batch = PAGE_SHIFT * 8;
1892 #ifdef CONFIG_NUMA
1894 * Boot pageset table. One per cpu which is going to be used for all
1895 * zones and all nodes. The parameters will be set in such a way
1896 * that an item put on a list will immediately be handed over to
1897 * the buddy list. This is safe since pageset manipulation is done
1898 * with interrupts disabled.
1900 * Some NUMA counter updates may also be caught by the boot pagesets.
1902 * The boot_pagesets must be kept even after bootup is complete for
1903 * unused processors and/or zones. They do play a role for bootstrapping
1904 * hotplugged processors.
1906 * zoneinfo_show() and maybe other functions do
1907 * not check if the processor is online before following the pageset pointer.
1908 * Other parts of the kernel may not check if the zone is available.
1910 static struct per_cpu_pageset boot_pageset[NR_CPUS];
1913 * Dynamically allocate memory for the
1914 * per cpu pageset array in struct zone.
1916 static int __cpuinit process_zones(int cpu)
1918 struct zone *zone, *dzone;
1920 for_each_zone(zone) {
1922 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1923 GFP_KERNEL, cpu_to_node(cpu));
1924 if (!zone_pcp(zone, cpu))
1925 goto bad;
1927 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1929 if (percpu_pagelist_fraction)
1930 setup_pagelist_highmark(zone_pcp(zone, cpu),
1931 (zone->present_pages / percpu_pagelist_fraction));
1934 return 0;
1935 bad:
1936 for_each_zone(dzone) {
1937 if (dzone == zone)
1938 break;
1939 kfree(zone_pcp(dzone, cpu));
1940 zone_pcp(dzone, cpu) = NULL;
1942 return -ENOMEM;
1945 static inline void free_zone_pagesets(int cpu)
1947 struct zone *zone;
1949 for_each_zone(zone) {
1950 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1952 zone_pcp(zone, cpu) = NULL;
1953 kfree(pset);
1957 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
1958 unsigned long action,
1959 void *hcpu)
1961 int cpu = (long)hcpu;
1962 int ret = NOTIFY_OK;
1964 switch (action) {
1965 case CPU_UP_PREPARE:
1966 if (process_zones(cpu))
1967 ret = NOTIFY_BAD;
1968 break;
1969 case CPU_UP_CANCELED:
1970 case CPU_DEAD:
1971 free_zone_pagesets(cpu);
1972 break;
1973 default:
1974 break;
1976 return ret;
1979 static struct notifier_block pageset_notifier =
1980 { &pageset_cpuup_callback, NULL, 0 };
1982 void __init setup_per_cpu_pageset(void)
1984 int err;
1986 /* Initialize per_cpu_pageset for cpu 0.
1987 * A cpuup callback will do this for every cpu
1988 * as it comes online
1990 err = process_zones(smp_processor_id());
1991 BUG_ON(err);
1992 register_cpu_notifier(&pageset_notifier);
1995 #endif
1997 static __meminit
1998 void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2000 int i;
2001 struct pglist_data *pgdat = zone->zone_pgdat;
2004 * The per-page waitqueue mechanism uses hashed waitqueues
2005 * per zone.
2007 zone->wait_table_size = wait_table_size(zone_size_pages);
2008 zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
2009 zone->wait_table = (wait_queue_head_t *)
2010 alloc_bootmem_node(pgdat, zone->wait_table_size
2011 * sizeof(wait_queue_head_t));
2013 for(i = 0; i < zone->wait_table_size; ++i)
2014 init_waitqueue_head(zone->wait_table + i);
2017 static __meminit void zone_pcp_init(struct zone *zone)
2019 int cpu;
2020 unsigned long batch = zone_batchsize(zone);
2022 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2023 #ifdef CONFIG_NUMA
2024 /* Early boot. Slab allocator not functional yet */
2025 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2026 setup_pageset(&boot_pageset[cpu],0);
2027 #else
2028 setup_pageset(zone_pcp(zone,cpu), batch);
2029 #endif
2031 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2032 zone->name, zone->present_pages, batch);
2035 static __meminit void init_currently_empty_zone(struct zone *zone,
2036 unsigned long zone_start_pfn, unsigned long size)
2038 struct pglist_data *pgdat = zone->zone_pgdat;
2040 zone_wait_table_init(zone, size);
2041 pgdat->nr_zones = zone_idx(zone) + 1;
2043 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
2044 zone->zone_start_pfn = zone_start_pfn;
2046 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2048 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2052 * Set up the zone data structures:
2053 * - mark all pages reserved
2054 * - mark all memory queues empty
2055 * - clear the memory bitmaps
2057 static void __init free_area_init_core(struct pglist_data *pgdat,
2058 unsigned long *zones_size, unsigned long *zholes_size)
2060 unsigned long j;
2061 int nid = pgdat->node_id;
2062 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2064 pgdat_resize_init(pgdat);
2065 pgdat->nr_zones = 0;
2066 init_waitqueue_head(&pgdat->kswapd_wait);
2067 pgdat->kswapd_max_order = 0;
2069 for (j = 0; j < MAX_NR_ZONES; j++) {
2070 struct zone *zone = pgdat->node_zones + j;
2071 unsigned long size, realsize;
2073 realsize = size = zones_size[j];
2074 if (zholes_size)
2075 realsize -= zholes_size[j];
2077 if (j < ZONE_HIGHMEM)
2078 nr_kernel_pages += realsize;
2079 nr_all_pages += realsize;
2081 zone->spanned_pages = size;
2082 zone->present_pages = realsize;
2083 zone->name = zone_names[j];
2084 spin_lock_init(&zone->lock);
2085 spin_lock_init(&zone->lru_lock);
2086 zone_seqlock_init(zone);
2087 zone->zone_pgdat = pgdat;
2088 zone->free_pages = 0;
2090 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2092 zone_pcp_init(zone);
2093 INIT_LIST_HEAD(&zone->active_list);
2094 INIT_LIST_HEAD(&zone->inactive_list);
2095 zone->nr_scan_active = 0;
2096 zone->nr_scan_inactive = 0;
2097 zone->nr_active = 0;
2098 zone->nr_inactive = 0;
2099 atomic_set(&zone->reclaim_in_progress, 0);
2100 if (!size)
2101 continue;
2103 zonetable_add(zone, nid, j, zone_start_pfn, size);
2104 init_currently_empty_zone(zone, zone_start_pfn, size);
2105 zone_start_pfn += size;
2109 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2111 /* Skip empty nodes */
2112 if (!pgdat->node_spanned_pages)
2113 return;
2115 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2116 /* ia64 gets its own node_mem_map, before this, without bootmem */
2117 if (!pgdat->node_mem_map) {
2118 unsigned long size;
2119 struct page *map;
2121 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
2122 map = alloc_remap(pgdat->node_id, size);
2123 if (!map)
2124 map = alloc_bootmem_node(pgdat, size);
2125 pgdat->node_mem_map = map;
2127 #ifdef CONFIG_FLATMEM
2129 * With no DISCONTIG, the global mem_map is just set as node 0's
2131 if (pgdat == NODE_DATA(0))
2132 mem_map = NODE_DATA(0)->node_mem_map;
2133 #endif
2134 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2137 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2138 unsigned long *zones_size, unsigned long node_start_pfn,
2139 unsigned long *zholes_size)
2141 pgdat->node_id = nid;
2142 pgdat->node_start_pfn = node_start_pfn;
2143 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2145 alloc_node_mem_map(pgdat);
2147 free_area_init_core(pgdat, zones_size, zholes_size);
2150 #ifndef CONFIG_NEED_MULTIPLE_NODES
2151 static bootmem_data_t contig_bootmem_data;
2152 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2154 EXPORT_SYMBOL(contig_page_data);
2155 #endif
2157 void __init free_area_init(unsigned long *zones_size)
2159 free_area_init_node(0, NODE_DATA(0), zones_size,
2160 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2163 #ifdef CONFIG_PROC_FS
2165 #include <linux/seq_file.h>
2167 static void *frag_start(struct seq_file *m, loff_t *pos)
2169 pg_data_t *pgdat;
2170 loff_t node = *pos;
2172 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2173 --node;
2175 return pgdat;
2178 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2180 pg_data_t *pgdat = (pg_data_t *)arg;
2182 (*pos)++;
2183 return pgdat->pgdat_next;
2186 static void frag_stop(struct seq_file *m, void *arg)
2191 * This walks the free areas for each zone.
2193 static int frag_show(struct seq_file *m, void *arg)
2195 pg_data_t *pgdat = (pg_data_t *)arg;
2196 struct zone *zone;
2197 struct zone *node_zones = pgdat->node_zones;
2198 unsigned long flags;
2199 int order;
2201 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2202 if (!populated_zone(zone))
2203 continue;
2205 spin_lock_irqsave(&zone->lock, flags);
2206 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2207 for (order = 0; order < MAX_ORDER; ++order)
2208 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2209 spin_unlock_irqrestore(&zone->lock, flags);
2210 seq_putc(m, '\n');
2212 return 0;
2215 struct seq_operations fragmentation_op = {
2216 .start = frag_start,
2217 .next = frag_next,
2218 .stop = frag_stop,
2219 .show = frag_show,
2223 * Output information about zones in @pgdat.
2225 static int zoneinfo_show(struct seq_file *m, void *arg)
2227 pg_data_t *pgdat = arg;
2228 struct zone *zone;
2229 struct zone *node_zones = pgdat->node_zones;
2230 unsigned long flags;
2232 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2233 int i;
2235 if (!populated_zone(zone))
2236 continue;
2238 spin_lock_irqsave(&zone->lock, flags);
2239 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2240 seq_printf(m,
2241 "\n pages free %lu"
2242 "\n min %lu"
2243 "\n low %lu"
2244 "\n high %lu"
2245 "\n active %lu"
2246 "\n inactive %lu"
2247 "\n scanned %lu (a: %lu i: %lu)"
2248 "\n spanned %lu"
2249 "\n present %lu",
2250 zone->free_pages,
2251 zone->pages_min,
2252 zone->pages_low,
2253 zone->pages_high,
2254 zone->nr_active,
2255 zone->nr_inactive,
2256 zone->pages_scanned,
2257 zone->nr_scan_active, zone->nr_scan_inactive,
2258 zone->spanned_pages,
2259 zone->present_pages);
2260 seq_printf(m,
2261 "\n protection: (%lu",
2262 zone->lowmem_reserve[0]);
2263 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2264 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2265 seq_printf(m,
2267 "\n pagesets");
2268 for_each_online_cpu(i) {
2269 struct per_cpu_pageset *pageset;
2270 int j;
2272 pageset = zone_pcp(zone, i);
2273 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2274 if (pageset->pcp[j].count)
2275 break;
2277 if (j == ARRAY_SIZE(pageset->pcp))
2278 continue;
2279 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2280 seq_printf(m,
2281 "\n cpu: %i pcp: %i"
2282 "\n count: %i"
2283 "\n high: %i"
2284 "\n batch: %i",
2285 i, j,
2286 pageset->pcp[j].count,
2287 pageset->pcp[j].high,
2288 pageset->pcp[j].batch);
2290 #ifdef CONFIG_NUMA
2291 seq_printf(m,
2292 "\n numa_hit: %lu"
2293 "\n numa_miss: %lu"
2294 "\n numa_foreign: %lu"
2295 "\n interleave_hit: %lu"
2296 "\n local_node: %lu"
2297 "\n other_node: %lu",
2298 pageset->numa_hit,
2299 pageset->numa_miss,
2300 pageset->numa_foreign,
2301 pageset->interleave_hit,
2302 pageset->local_node,
2303 pageset->other_node);
2304 #endif
2306 seq_printf(m,
2307 "\n all_unreclaimable: %u"
2308 "\n prev_priority: %i"
2309 "\n temp_priority: %i"
2310 "\n start_pfn: %lu",
2311 zone->all_unreclaimable,
2312 zone->prev_priority,
2313 zone->temp_priority,
2314 zone->zone_start_pfn);
2315 spin_unlock_irqrestore(&zone->lock, flags);
2316 seq_putc(m, '\n');
2318 return 0;
2321 struct seq_operations zoneinfo_op = {
2322 .start = frag_start, /* iterate over all zones. The same as in
2323 * fragmentation. */
2324 .next = frag_next,
2325 .stop = frag_stop,
2326 .show = zoneinfo_show,
2329 static char *vmstat_text[] = {
2330 "nr_dirty",
2331 "nr_writeback",
2332 "nr_unstable",
2333 "nr_page_table_pages",
2334 "nr_mapped",
2335 "nr_slab",
2337 "pgpgin",
2338 "pgpgout",
2339 "pswpin",
2340 "pswpout",
2342 "pgalloc_high",
2343 "pgalloc_normal",
2344 "pgalloc_dma32",
2345 "pgalloc_dma",
2347 "pgfree",
2348 "pgactivate",
2349 "pgdeactivate",
2351 "pgfault",
2352 "pgmajfault",
2354 "pgrefill_high",
2355 "pgrefill_normal",
2356 "pgrefill_dma32",
2357 "pgrefill_dma",
2359 "pgsteal_high",
2360 "pgsteal_normal",
2361 "pgsteal_dma32",
2362 "pgsteal_dma",
2364 "pgscan_kswapd_high",
2365 "pgscan_kswapd_normal",
2366 "pgscan_kswapd_dma32",
2367 "pgscan_kswapd_dma",
2369 "pgscan_direct_high",
2370 "pgscan_direct_normal",
2371 "pgscan_direct_dma32",
2372 "pgscan_direct_dma",
2374 "pginodesteal",
2375 "slabs_scanned",
2376 "kswapd_steal",
2377 "kswapd_inodesteal",
2378 "pageoutrun",
2379 "allocstall",
2381 "pgrotated",
2382 "nr_bounce",
2385 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2387 struct page_state *ps;
2389 if (*pos >= ARRAY_SIZE(vmstat_text))
2390 return NULL;
2392 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2393 m->private = ps;
2394 if (!ps)
2395 return ERR_PTR(-ENOMEM);
2396 get_full_page_state(ps);
2397 ps->pgpgin /= 2; /* sectors -> kbytes */
2398 ps->pgpgout /= 2;
2399 return (unsigned long *)ps + *pos;
2402 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2404 (*pos)++;
2405 if (*pos >= ARRAY_SIZE(vmstat_text))
2406 return NULL;
2407 return (unsigned long *)m->private + *pos;
2410 static int vmstat_show(struct seq_file *m, void *arg)
2412 unsigned long *l = arg;
2413 unsigned long off = l - (unsigned long *)m->private;
2415 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2416 return 0;
2419 static void vmstat_stop(struct seq_file *m, void *arg)
2421 kfree(m->private);
2422 m->private = NULL;
2425 struct seq_operations vmstat_op = {
2426 .start = vmstat_start,
2427 .next = vmstat_next,
2428 .stop = vmstat_stop,
2429 .show = vmstat_show,
2432 #endif /* CONFIG_PROC_FS */
2434 #ifdef CONFIG_HOTPLUG_CPU
2435 static int page_alloc_cpu_notify(struct notifier_block *self,
2436 unsigned long action, void *hcpu)
2438 int cpu = (unsigned long)hcpu;
2439 long *count;
2440 unsigned long *src, *dest;
2442 if (action == CPU_DEAD) {
2443 int i;
2445 /* Drain local pagecache count. */
2446 count = &per_cpu(nr_pagecache_local, cpu);
2447 atomic_add(*count, &nr_pagecache);
2448 *count = 0;
2449 local_irq_disable();
2450 __drain_pages(cpu);
2452 /* Add dead cpu's page_states to our own. */
2453 dest = (unsigned long *)&__get_cpu_var(page_states);
2454 src = (unsigned long *)&per_cpu(page_states, cpu);
2456 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2457 i++) {
2458 dest[i] += src[i];
2459 src[i] = 0;
2462 local_irq_enable();
2464 return NOTIFY_OK;
2466 #endif /* CONFIG_HOTPLUG_CPU */
2468 void __init page_alloc_init(void)
2470 hotcpu_notifier(page_alloc_cpu_notify, 0);
2474 * setup_per_zone_lowmem_reserve - called whenever
2475 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2476 * has a correct pages reserved value, so an adequate number of
2477 * pages are left in the zone after a successful __alloc_pages().
2479 static void setup_per_zone_lowmem_reserve(void)
2481 struct pglist_data *pgdat;
2482 int j, idx;
2484 for_each_pgdat(pgdat) {
2485 for (j = 0; j < MAX_NR_ZONES; j++) {
2486 struct zone *zone = pgdat->node_zones + j;
2487 unsigned long present_pages = zone->present_pages;
2489 zone->lowmem_reserve[j] = 0;
2491 for (idx = j-1; idx >= 0; idx--) {
2492 struct zone *lower_zone;
2494 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2495 sysctl_lowmem_reserve_ratio[idx] = 1;
2497 lower_zone = pgdat->node_zones + idx;
2498 lower_zone->lowmem_reserve[j] = present_pages /
2499 sysctl_lowmem_reserve_ratio[idx];
2500 present_pages += lower_zone->present_pages;
2507 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2508 * that the pages_{min,low,high} values for each zone are set correctly
2509 * with respect to min_free_kbytes.
2511 void setup_per_zone_pages_min(void)
2513 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2514 unsigned long lowmem_pages = 0;
2515 struct zone *zone;
2516 unsigned long flags;
2518 /* Calculate total number of !ZONE_HIGHMEM pages */
2519 for_each_zone(zone) {
2520 if (!is_highmem(zone))
2521 lowmem_pages += zone->present_pages;
2524 for_each_zone(zone) {
2525 unsigned long tmp;
2526 spin_lock_irqsave(&zone->lru_lock, flags);
2527 tmp = (pages_min * zone->present_pages) / lowmem_pages;
2528 if (is_highmem(zone)) {
2530 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2531 * need highmem pages, so cap pages_min to a small
2532 * value here.
2534 * The (pages_high-pages_low) and (pages_low-pages_min)
2535 * deltas controls asynch page reclaim, and so should
2536 * not be capped for highmem.
2538 int min_pages;
2540 min_pages = zone->present_pages / 1024;
2541 if (min_pages < SWAP_CLUSTER_MAX)
2542 min_pages = SWAP_CLUSTER_MAX;
2543 if (min_pages > 128)
2544 min_pages = 128;
2545 zone->pages_min = min_pages;
2546 } else {
2548 * If it's a lowmem zone, reserve a number of pages
2549 * proportionate to the zone's size.
2551 zone->pages_min = tmp;
2554 zone->pages_low = zone->pages_min + tmp / 4;
2555 zone->pages_high = zone->pages_min + tmp / 2;
2556 spin_unlock_irqrestore(&zone->lru_lock, flags);
2561 * Initialise min_free_kbytes.
2563 * For small machines we want it small (128k min). For large machines
2564 * we want it large (64MB max). But it is not linear, because network
2565 * bandwidth does not increase linearly with machine size. We use
2567 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2568 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2570 * which yields
2572 * 16MB: 512k
2573 * 32MB: 724k
2574 * 64MB: 1024k
2575 * 128MB: 1448k
2576 * 256MB: 2048k
2577 * 512MB: 2896k
2578 * 1024MB: 4096k
2579 * 2048MB: 5792k
2580 * 4096MB: 8192k
2581 * 8192MB: 11584k
2582 * 16384MB: 16384k
2584 static int __init init_per_zone_pages_min(void)
2586 unsigned long lowmem_kbytes;
2588 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2590 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2591 if (min_free_kbytes < 128)
2592 min_free_kbytes = 128;
2593 if (min_free_kbytes > 65536)
2594 min_free_kbytes = 65536;
2595 setup_per_zone_pages_min();
2596 setup_per_zone_lowmem_reserve();
2597 return 0;
2599 module_init(init_per_zone_pages_min)
2602 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2603 * that we can call two helper functions whenever min_free_kbytes
2604 * changes.
2606 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2607 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2609 proc_dointvec(table, write, file, buffer, length, ppos);
2610 setup_per_zone_pages_min();
2611 return 0;
2615 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2616 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2617 * whenever sysctl_lowmem_reserve_ratio changes.
2619 * The reserve ratio obviously has absolutely no relation with the
2620 * pages_min watermarks. The lowmem reserve ratio can only make sense
2621 * if in function of the boot time zone sizes.
2623 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2624 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2626 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2627 setup_per_zone_lowmem_reserve();
2628 return 0;
2632 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2633 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2634 * can have before it gets flushed back to buddy allocator.
2637 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2638 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2640 struct zone *zone;
2641 unsigned int cpu;
2642 int ret;
2644 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2645 if (!write || (ret == -EINVAL))
2646 return ret;
2647 for_each_zone(zone) {
2648 for_each_online_cpu(cpu) {
2649 unsigned long high;
2650 high = zone->present_pages / percpu_pagelist_fraction;
2651 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2654 return 0;
2657 __initdata int hashdist = HASHDIST_DEFAULT;
2659 #ifdef CONFIG_NUMA
2660 static int __init set_hashdist(char *str)
2662 if (!str)
2663 return 0;
2664 hashdist = simple_strtoul(str, &str, 0);
2665 return 1;
2667 __setup("hashdist=", set_hashdist);
2668 #endif
2671 * allocate a large system hash table from bootmem
2672 * - it is assumed that the hash table must contain an exact power-of-2
2673 * quantity of entries
2674 * - limit is the number of hash buckets, not the total allocation size
2676 void *__init alloc_large_system_hash(const char *tablename,
2677 unsigned long bucketsize,
2678 unsigned long numentries,
2679 int scale,
2680 int flags,
2681 unsigned int *_hash_shift,
2682 unsigned int *_hash_mask,
2683 unsigned long limit)
2685 unsigned long long max = limit;
2686 unsigned long log2qty, size;
2687 void *table = NULL;
2689 /* allow the kernel cmdline to have a say */
2690 if (!numentries) {
2691 /* round applicable memory size up to nearest megabyte */
2692 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2693 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2694 numentries >>= 20 - PAGE_SHIFT;
2695 numentries <<= 20 - PAGE_SHIFT;
2697 /* limit to 1 bucket per 2^scale bytes of low memory */
2698 if (scale > PAGE_SHIFT)
2699 numentries >>= (scale - PAGE_SHIFT);
2700 else
2701 numentries <<= (PAGE_SHIFT - scale);
2703 /* rounded up to nearest power of 2 in size */
2704 numentries = 1UL << (long_log2(numentries) + 1);
2706 /* limit allocation size to 1/16 total memory by default */
2707 if (max == 0) {
2708 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2709 do_div(max, bucketsize);
2712 if (numentries > max)
2713 numentries = max;
2715 log2qty = long_log2(numentries);
2717 do {
2718 size = bucketsize << log2qty;
2719 if (flags & HASH_EARLY)
2720 table = alloc_bootmem(size);
2721 else if (hashdist)
2722 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2723 else {
2724 unsigned long order;
2725 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2727 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2729 } while (!table && size > PAGE_SIZE && --log2qty);
2731 if (!table)
2732 panic("Failed to allocate %s hash table\n", tablename);
2734 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2735 tablename,
2736 (1U << log2qty),
2737 long_log2(size) - PAGE_SHIFT,
2738 size);
2740 if (_hash_shift)
2741 *_hash_shift = log2qty;
2742 if (_hash_mask)
2743 *_hash_mask = (1 << log2qty) - 1;
2745 return table;