2 * drivers/cpufreq/cpufreq_conservative.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 * (C) 2004 Alexander Clouter <alex-kernel@digriz.org.uk>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/smp.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/ctype.h>
20 #include <linux/cpufreq.h>
21 #include <linux/sysctl.h>
22 #include <linux/types.h>
24 #include <linux/sysfs.h>
25 #include <linux/sched.h>
26 #include <linux/kmod.h>
27 #include <linux/workqueue.h>
28 #include <linux/jiffies.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/percpu.h>
31 #include <linux/mutex.h>
33 * dbs is used in this file as a shortform for demandbased switching
34 * It helps to keep variable names smaller, simpler
37 #define DEF_FREQUENCY_UP_THRESHOLD (80)
38 #define MIN_FREQUENCY_UP_THRESHOLD (0)
39 #define MAX_FREQUENCY_UP_THRESHOLD (100)
41 #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
42 #define MIN_FREQUENCY_DOWN_THRESHOLD (0)
43 #define MAX_FREQUENCY_DOWN_THRESHOLD (100)
46 * The polling frequency of this governor depends on the capability of
47 * the processor. Default polling frequency is 1000 times the transition
48 * latency of the processor. The governor will work on any processor with
49 * transition latency <= 10mS, using appropriate sampling
51 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
52 * this governor will not work.
53 * All times here are in uS.
55 static unsigned int def_sampling_rate
;
56 #define MIN_SAMPLING_RATE (def_sampling_rate / 2)
57 #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
58 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (100000)
59 #define DEF_SAMPLING_DOWN_FACTOR (5)
60 #define TRANSITION_LATENCY_LIMIT (10 * 1000)
62 static void do_dbs_timer(void *data
);
64 struct cpu_dbs_info_s
{
65 struct cpufreq_policy
*cur_policy
;
66 unsigned int prev_cpu_idle_up
;
67 unsigned int prev_cpu_idle_down
;
70 static DEFINE_PER_CPU(struct cpu_dbs_info_s
, cpu_dbs_info
);
72 static unsigned int dbs_enable
; /* number of CPUs using this policy */
74 static DEFINE_MUTEX (dbs_mutex
);
75 static DECLARE_WORK (dbs_work
, do_dbs_timer
, NULL
);
78 unsigned int sampling_rate
;
79 unsigned int sampling_down_factor
;
80 unsigned int up_threshold
;
81 unsigned int down_threshold
;
82 unsigned int ignore_nice
;
83 unsigned int freq_step
;
86 static struct dbs_tuners dbs_tuners_ins
= {
87 .up_threshold
= DEF_FREQUENCY_UP_THRESHOLD
,
88 .down_threshold
= DEF_FREQUENCY_DOWN_THRESHOLD
,
89 .sampling_down_factor
= DEF_SAMPLING_DOWN_FACTOR
,
92 static inline unsigned int get_cpu_idle_time(unsigned int cpu
)
94 return kstat_cpu(cpu
).cpustat
.idle
+
95 kstat_cpu(cpu
).cpustat
.iowait
+
96 ( dbs_tuners_ins
.ignore_nice
?
97 kstat_cpu(cpu
).cpustat
.nice
:
101 /************************** sysfs interface ************************/
102 static ssize_t
show_sampling_rate_max(struct cpufreq_policy
*policy
, char *buf
)
104 return sprintf (buf
, "%u\n", MAX_SAMPLING_RATE
);
107 static ssize_t
show_sampling_rate_min(struct cpufreq_policy
*policy
, char *buf
)
109 return sprintf (buf
, "%u\n", MIN_SAMPLING_RATE
);
112 #define define_one_ro(_name) \
113 static struct freq_attr _name = \
114 __ATTR(_name, 0444, show_##_name, NULL)
116 define_one_ro(sampling_rate_max
);
117 define_one_ro(sampling_rate_min
);
119 /* cpufreq_conservative Governor Tunables */
120 #define show_one(file_name, object) \
121 static ssize_t show_##file_name \
122 (struct cpufreq_policy *unused, char *buf) \
124 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
126 show_one(sampling_rate
, sampling_rate
);
127 show_one(sampling_down_factor
, sampling_down_factor
);
128 show_one(up_threshold
, up_threshold
);
129 show_one(down_threshold
, down_threshold
);
130 show_one(ignore_nice_load
, ignore_nice
);
131 show_one(freq_step
, freq_step
);
133 static ssize_t
store_sampling_down_factor(struct cpufreq_policy
*unused
,
134 const char *buf
, size_t count
)
138 ret
= sscanf (buf
, "%u", &input
);
142 mutex_lock(&dbs_mutex
);
143 dbs_tuners_ins
.sampling_down_factor
= input
;
144 mutex_unlock(&dbs_mutex
);
149 static ssize_t
store_sampling_rate(struct cpufreq_policy
*unused
,
150 const char *buf
, size_t count
)
154 ret
= sscanf (buf
, "%u", &input
);
156 mutex_lock(&dbs_mutex
);
157 if (ret
!= 1 || input
> MAX_SAMPLING_RATE
|| input
< MIN_SAMPLING_RATE
) {
158 mutex_unlock(&dbs_mutex
);
162 dbs_tuners_ins
.sampling_rate
= input
;
163 mutex_unlock(&dbs_mutex
);
168 static ssize_t
store_up_threshold(struct cpufreq_policy
*unused
,
169 const char *buf
, size_t count
)
173 ret
= sscanf (buf
, "%u", &input
);
175 mutex_lock(&dbs_mutex
);
176 if (ret
!= 1 || input
> MAX_FREQUENCY_UP_THRESHOLD
||
177 input
< MIN_FREQUENCY_UP_THRESHOLD
||
178 input
<= dbs_tuners_ins
.down_threshold
) {
179 mutex_unlock(&dbs_mutex
);
183 dbs_tuners_ins
.up_threshold
= input
;
184 mutex_unlock(&dbs_mutex
);
189 static ssize_t
store_down_threshold(struct cpufreq_policy
*unused
,
190 const char *buf
, size_t count
)
194 ret
= sscanf (buf
, "%u", &input
);
196 mutex_lock(&dbs_mutex
);
197 if (ret
!= 1 || input
> MAX_FREQUENCY_DOWN_THRESHOLD
||
198 input
< MIN_FREQUENCY_DOWN_THRESHOLD
||
199 input
>= dbs_tuners_ins
.up_threshold
) {
200 mutex_unlock(&dbs_mutex
);
204 dbs_tuners_ins
.down_threshold
= input
;
205 mutex_unlock(&dbs_mutex
);
210 static ssize_t
store_ignore_nice_load(struct cpufreq_policy
*policy
,
211 const char *buf
, size_t count
)
218 ret
= sscanf (buf
, "%u", &input
);
225 mutex_lock(&dbs_mutex
);
226 if ( input
== dbs_tuners_ins
.ignore_nice
) { /* nothing to do */
227 mutex_unlock(&dbs_mutex
);
230 dbs_tuners_ins
.ignore_nice
= input
;
232 /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
233 for_each_online_cpu(j
) {
234 struct cpu_dbs_info_s
*j_dbs_info
;
235 j_dbs_info
= &per_cpu(cpu_dbs_info
, j
);
236 j_dbs_info
->prev_cpu_idle_up
= get_cpu_idle_time(j
);
237 j_dbs_info
->prev_cpu_idle_down
= j_dbs_info
->prev_cpu_idle_up
;
239 mutex_unlock(&dbs_mutex
);
244 static ssize_t
store_freq_step(struct cpufreq_policy
*policy
,
245 const char *buf
, size_t count
)
250 ret
= sscanf (buf
, "%u", &input
);
258 /* no need to test here if freq_step is zero as the user might actually
259 * want this, they would be crazy though :) */
260 mutex_lock(&dbs_mutex
);
261 dbs_tuners_ins
.freq_step
= input
;
262 mutex_unlock(&dbs_mutex
);
267 #define define_one_rw(_name) \
268 static struct freq_attr _name = \
269 __ATTR(_name, 0644, show_##_name, store_##_name)
271 define_one_rw(sampling_rate
);
272 define_one_rw(sampling_down_factor
);
273 define_one_rw(up_threshold
);
274 define_one_rw(down_threshold
);
275 define_one_rw(ignore_nice_load
);
276 define_one_rw(freq_step
);
278 static struct attribute
* dbs_attributes
[] = {
279 &sampling_rate_max
.attr
,
280 &sampling_rate_min
.attr
,
282 &sampling_down_factor
.attr
,
284 &down_threshold
.attr
,
285 &ignore_nice_load
.attr
,
290 static struct attribute_group dbs_attr_group
= {
291 .attrs
= dbs_attributes
,
292 .name
= "conservative",
295 /************************** sysfs end ************************/
297 static void dbs_check_cpu(int cpu
)
299 unsigned int idle_ticks
, up_idle_ticks
, down_idle_ticks
;
300 unsigned int freq_step
;
301 unsigned int freq_down_sampling_rate
;
302 static int down_skip
[NR_CPUS
];
303 static int requested_freq
[NR_CPUS
];
304 static unsigned short init_flag
= 0;
305 struct cpu_dbs_info_s
*this_dbs_info
;
306 struct cpu_dbs_info_s
*dbs_info
;
308 struct cpufreq_policy
*policy
;
311 this_dbs_info
= &per_cpu(cpu_dbs_info
, cpu
);
312 if (!this_dbs_info
->enable
)
315 policy
= this_dbs_info
->cur_policy
;
317 if ( init_flag
== 0 ) {
318 for_each_online_cpu(j
) {
319 dbs_info
= &per_cpu(cpu_dbs_info
, j
);
320 requested_freq
[j
] = dbs_info
->cur_policy
->cur
;
326 * The default safe range is 20% to 80%
327 * Every sampling_rate, we check
328 * - If current idle time is less than 20%, then we try to
330 * Every sampling_rate*sampling_down_factor, we check
331 * - If current idle time is more than 80%, then we try to
334 * Any frequency increase takes it to the maximum frequency.
335 * Frequency reduction happens at minimum steps of
336 * 5% (default) of max_frequency
339 /* Check for frequency increase */
341 idle_ticks
= UINT_MAX
;
342 for_each_cpu_mask(j
, policy
->cpus
) {
343 unsigned int tmp_idle_ticks
, total_idle_ticks
;
344 struct cpu_dbs_info_s
*j_dbs_info
;
346 j_dbs_info
= &per_cpu(cpu_dbs_info
, j
);
347 /* Check for frequency increase */
348 total_idle_ticks
= get_cpu_idle_time(j
);
349 tmp_idle_ticks
= total_idle_ticks
-
350 j_dbs_info
->prev_cpu_idle_up
;
351 j_dbs_info
->prev_cpu_idle_up
= total_idle_ticks
;
353 if (tmp_idle_ticks
< idle_ticks
)
354 idle_ticks
= tmp_idle_ticks
;
357 /* Scale idle ticks by 100 and compare with up and down ticks */
359 up_idle_ticks
= (100 - dbs_tuners_ins
.up_threshold
) *
360 usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
362 if (idle_ticks
< up_idle_ticks
) {
364 for_each_cpu_mask(j
, policy
->cpus
) {
365 struct cpu_dbs_info_s
*j_dbs_info
;
367 j_dbs_info
= &per_cpu(cpu_dbs_info
, j
);
368 j_dbs_info
->prev_cpu_idle_down
=
369 j_dbs_info
->prev_cpu_idle_up
;
371 /* if we are already at full speed then break out early */
372 if (requested_freq
[cpu
] == policy
->max
)
375 freq_step
= (dbs_tuners_ins
.freq_step
* policy
->max
) / 100;
377 /* max freq cannot be less than 100. But who knows.... */
378 if (unlikely(freq_step
== 0))
381 requested_freq
[cpu
] += freq_step
;
382 if (requested_freq
[cpu
] > policy
->max
)
383 requested_freq
[cpu
] = policy
->max
;
385 __cpufreq_driver_target(policy
, requested_freq
[cpu
],
390 /* Check for frequency decrease */
392 if (down_skip
[cpu
] < dbs_tuners_ins
.sampling_down_factor
)
395 idle_ticks
= UINT_MAX
;
396 for_each_cpu_mask(j
, policy
->cpus
) {
397 unsigned int tmp_idle_ticks
, total_idle_ticks
;
398 struct cpu_dbs_info_s
*j_dbs_info
;
400 j_dbs_info
= &per_cpu(cpu_dbs_info
, j
);
401 total_idle_ticks
= j_dbs_info
->prev_cpu_idle_up
;
402 tmp_idle_ticks
= total_idle_ticks
-
403 j_dbs_info
->prev_cpu_idle_down
;
404 j_dbs_info
->prev_cpu_idle_down
= total_idle_ticks
;
406 if (tmp_idle_ticks
< idle_ticks
)
407 idle_ticks
= tmp_idle_ticks
;
410 /* Scale idle ticks by 100 and compare with up and down ticks */
414 freq_down_sampling_rate
= dbs_tuners_ins
.sampling_rate
*
415 dbs_tuners_ins
.sampling_down_factor
;
416 down_idle_ticks
= (100 - dbs_tuners_ins
.down_threshold
) *
417 usecs_to_jiffies(freq_down_sampling_rate
);
419 if (idle_ticks
> down_idle_ticks
) {
420 /* if we are already at the lowest speed then break out early
421 * or if we 'cannot' reduce the speed as the user might want
422 * freq_step to be zero */
423 if (requested_freq
[cpu
] == policy
->min
424 || dbs_tuners_ins
.freq_step
== 0)
427 freq_step
= (dbs_tuners_ins
.freq_step
* policy
->max
) / 100;
429 /* max freq cannot be less than 100. But who knows.... */
430 if (unlikely(freq_step
== 0))
433 requested_freq
[cpu
] -= freq_step
;
434 if (requested_freq
[cpu
] < policy
->min
)
435 requested_freq
[cpu
] = policy
->min
;
437 __cpufreq_driver_target(policy
,
444 static void do_dbs_timer(void *data
)
447 mutex_lock(&dbs_mutex
);
448 for_each_online_cpu(i
)
450 schedule_delayed_work(&dbs_work
,
451 usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
));
452 mutex_unlock(&dbs_mutex
);
455 static inline void dbs_timer_init(void)
457 INIT_WORK(&dbs_work
, do_dbs_timer
, NULL
);
458 schedule_delayed_work(&dbs_work
,
459 usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
));
463 static inline void dbs_timer_exit(void)
465 cancel_delayed_work(&dbs_work
);
469 static int cpufreq_governor_dbs(struct cpufreq_policy
*policy
,
472 unsigned int cpu
= policy
->cpu
;
473 struct cpu_dbs_info_s
*this_dbs_info
;
476 this_dbs_info
= &per_cpu(cpu_dbs_info
, cpu
);
479 case CPUFREQ_GOV_START
:
480 if ((!cpu_online(cpu
)) ||
484 if (policy
->cpuinfo
.transition_latency
>
485 (TRANSITION_LATENCY_LIMIT
* 1000))
487 if (this_dbs_info
->enable
) /* Already enabled */
490 mutex_lock(&dbs_mutex
);
491 for_each_cpu_mask(j
, policy
->cpus
) {
492 struct cpu_dbs_info_s
*j_dbs_info
;
493 j_dbs_info
= &per_cpu(cpu_dbs_info
, j
);
494 j_dbs_info
->cur_policy
= policy
;
496 j_dbs_info
->prev_cpu_idle_up
= get_cpu_idle_time(j
);
497 j_dbs_info
->prev_cpu_idle_down
498 = j_dbs_info
->prev_cpu_idle_up
;
500 this_dbs_info
->enable
= 1;
501 sysfs_create_group(&policy
->kobj
, &dbs_attr_group
);
504 * Start the timerschedule work, when this governor
505 * is used for first time
507 if (dbs_enable
== 1) {
508 unsigned int latency
;
509 /* policy latency is in nS. Convert it to uS first */
511 latency
= policy
->cpuinfo
.transition_latency
;
515 def_sampling_rate
= (latency
/ 1000) *
516 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER
;
517 dbs_tuners_ins
.sampling_rate
= def_sampling_rate
;
518 dbs_tuners_ins
.ignore_nice
= 0;
519 dbs_tuners_ins
.freq_step
= 5;
524 mutex_unlock(&dbs_mutex
);
527 case CPUFREQ_GOV_STOP
:
528 mutex_lock(&dbs_mutex
);
529 this_dbs_info
->enable
= 0;
530 sysfs_remove_group(&policy
->kobj
, &dbs_attr_group
);
533 * Stop the timerschedule work, when this governor
534 * is used for first time
539 mutex_unlock(&dbs_mutex
);
543 case CPUFREQ_GOV_LIMITS
:
544 mutex_lock(&dbs_mutex
);
545 if (policy
->max
< this_dbs_info
->cur_policy
->cur
)
546 __cpufreq_driver_target(
547 this_dbs_info
->cur_policy
,
548 policy
->max
, CPUFREQ_RELATION_H
);
549 else if (policy
->min
> this_dbs_info
->cur_policy
->cur
)
550 __cpufreq_driver_target(
551 this_dbs_info
->cur_policy
,
552 policy
->min
, CPUFREQ_RELATION_L
);
553 mutex_unlock(&dbs_mutex
);
559 static struct cpufreq_governor cpufreq_gov_dbs
= {
560 .name
= "conservative",
561 .governor
= cpufreq_governor_dbs
,
562 .owner
= THIS_MODULE
,
565 static int __init
cpufreq_gov_dbs_init(void)
567 return cpufreq_register_governor(&cpufreq_gov_dbs
);
570 static void __exit
cpufreq_gov_dbs_exit(void)
572 /* Make sure that the scheduled work is indeed not running */
573 flush_scheduled_work();
575 cpufreq_unregister_governor(&cpufreq_gov_dbs
);
579 MODULE_AUTHOR ("Alexander Clouter <alex-kernel@digriz.org.uk>");
580 MODULE_DESCRIPTION ("'cpufreq_conservative' - A dynamic cpufreq governor for "
581 "Low Latency Frequency Transition capable processors "
582 "optimised for use in a battery environment");
583 MODULE_LICENSE ("GPL");
585 module_init(cpufreq_gov_dbs_init
);
586 module_exit(cpufreq_gov_dbs_exit
);