Use correct names for bits in the R3k cp0.status register.
[linux-2.6/suspend2-2.6.18.git] / arch / mips / kernel / traps.c
blob46636a2fe98240bab1adc22fb9a6b0f7e6316f29
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 1994 - 1999, 2000, 01 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12 * Copyright (C) 2002, 2003, 2004, 2005 Maciej W. Rozycki
14 #include <linux/config.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/sched.h>
19 #include <linux/smp.h>
20 #include <linux/smp_lock.h>
21 #include <linux/spinlock.h>
22 #include <linux/kallsyms.h>
24 #include <asm/bootinfo.h>
25 #include <asm/branch.h>
26 #include <asm/break.h>
27 #include <asm/cpu.h>
28 #include <asm/dsp.h>
29 #include <asm/fpu.h>
30 #include <asm/module.h>
31 #include <asm/pgtable.h>
32 #include <asm/ptrace.h>
33 #include <asm/sections.h>
34 #include <asm/system.h>
35 #include <asm/tlbdebug.h>
36 #include <asm/traps.h>
37 #include <asm/uaccess.h>
38 #include <asm/mmu_context.h>
39 #include <asm/watch.h>
40 #include <asm/types.h>
42 extern asmlinkage void handle_tlbm(void);
43 extern asmlinkage void handle_tlbl(void);
44 extern asmlinkage void handle_tlbs(void);
45 extern asmlinkage void handle_adel(void);
46 extern asmlinkage void handle_ades(void);
47 extern asmlinkage void handle_ibe(void);
48 extern asmlinkage void handle_dbe(void);
49 extern asmlinkage void handle_sys(void);
50 extern asmlinkage void handle_bp(void);
51 extern asmlinkage void handle_ri(void);
52 extern asmlinkage void handle_cpu(void);
53 extern asmlinkage void handle_ov(void);
54 extern asmlinkage void handle_tr(void);
55 extern asmlinkage void handle_fpe(void);
56 extern asmlinkage void handle_mdmx(void);
57 extern asmlinkage void handle_watch(void);
58 extern asmlinkage void handle_dsp(void);
59 extern asmlinkage void handle_mcheck(void);
60 extern asmlinkage void handle_reserved(void);
62 extern int fpu_emulator_cop1Handler(int xcptno, struct pt_regs *xcp,
63 struct mips_fpu_soft_struct *ctx);
65 void (*board_be_init)(void);
66 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
69 * These constant is for searching for possible module text segments.
70 * MODULE_RANGE is a guess of how much space is likely to be vmalloced.
72 #define MODULE_RANGE (8*1024*1024)
75 * This routine abuses get_user()/put_user() to reference pointers
76 * with at least a bit of error checking ...
78 void show_stack(struct task_struct *task, unsigned long *sp)
80 const int field = 2 * sizeof(unsigned long);
81 long stackdata;
82 int i;
84 if (!sp) {
85 if (task && task != current)
86 sp = (unsigned long *) task->thread.reg29;
87 else
88 sp = (unsigned long *) &sp;
91 printk("Stack :");
92 i = 0;
93 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
94 if (i && ((i % (64 / field)) == 0))
95 printk("\n ");
96 if (i > 39) {
97 printk(" ...");
98 break;
101 if (__get_user(stackdata, sp++)) {
102 printk(" (Bad stack address)");
103 break;
106 printk(" %0*lx", field, stackdata);
107 i++;
109 printk("\n");
112 void show_trace(struct task_struct *task, unsigned long *stack)
114 const int field = 2 * sizeof(unsigned long);
115 unsigned long addr;
117 if (!stack) {
118 if (task && task != current)
119 stack = (unsigned long *) task->thread.reg29;
120 else
121 stack = (unsigned long *) &stack;
124 printk("Call Trace:");
125 #ifdef CONFIG_KALLSYMS
126 printk("\n");
127 #endif
128 while (!kstack_end(stack)) {
129 addr = *stack++;
130 if (__kernel_text_address(addr)) {
131 printk(" [<%0*lx>] ", field, addr);
132 print_symbol("%s\n", addr);
135 printk("\n");
139 * The architecture-independent dump_stack generator
141 void dump_stack(void)
143 unsigned long stack;
145 show_trace(current, &stack);
148 EXPORT_SYMBOL(dump_stack);
150 void show_code(unsigned int *pc)
152 long i;
154 printk("\nCode:");
156 for(i = -3 ; i < 6 ; i++) {
157 unsigned int insn;
158 if (__get_user(insn, pc + i)) {
159 printk(" (Bad address in epc)\n");
160 break;
162 printk("%c%08x%c", (i?' ':'<'), insn, (i?' ':'>'));
166 void show_regs(struct pt_regs *regs)
168 const int field = 2 * sizeof(unsigned long);
169 unsigned int cause = regs->cp0_cause;
170 int i;
172 printk("Cpu %d\n", smp_processor_id());
175 * Saved main processor registers
177 for (i = 0; i < 32; ) {
178 if ((i % 4) == 0)
179 printk("$%2d :", i);
180 if (i == 0)
181 printk(" %0*lx", field, 0UL);
182 else if (i == 26 || i == 27)
183 printk(" %*s", field, "");
184 else
185 printk(" %0*lx", field, regs->regs[i]);
187 i++;
188 if ((i % 4) == 0)
189 printk("\n");
192 printk("Hi : %0*lx\n", field, regs->hi);
193 printk("Lo : %0*lx\n", field, regs->lo);
196 * Saved cp0 registers
198 printk("epc : %0*lx ", field, regs->cp0_epc);
199 print_symbol("%s ", regs->cp0_epc);
200 printk(" %s\n", print_tainted());
201 printk("ra : %0*lx ", field, regs->regs[31]);
202 print_symbol("%s\n", regs->regs[31]);
204 printk("Status: %08x ", (uint32_t) regs->cp0_status);
206 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
207 if (regs->cp0_status & ST0_KUO)
208 printk("KUo ");
209 if (regs->cp0_status & ST0_IEO)
210 printk("IEo ");
211 if (regs->cp0_status & ST0_KUP)
212 printk("KUp ");
213 if (regs->cp0_status & ST0_IEP)
214 printk("IEp ");
215 if (regs->cp0_status & ST0_KUC)
216 printk("KUc ");
217 if (regs->cp0_status & ST0_IEC)
218 printk("IEc ");
219 } else {
220 if (regs->cp0_status & ST0_KX)
221 printk("KX ");
222 if (regs->cp0_status & ST0_SX)
223 printk("SX ");
224 if (regs->cp0_status & ST0_UX)
225 printk("UX ");
226 switch (regs->cp0_status & ST0_KSU) {
227 case KSU_USER:
228 printk("USER ");
229 break;
230 case KSU_SUPERVISOR:
231 printk("SUPERVISOR ");
232 break;
233 case KSU_KERNEL:
234 printk("KERNEL ");
235 break;
236 default:
237 printk("BAD_MODE ");
238 break;
240 if (regs->cp0_status & ST0_ERL)
241 printk("ERL ");
242 if (regs->cp0_status & ST0_EXL)
243 printk("EXL ");
244 if (regs->cp0_status & ST0_IE)
245 printk("IE ");
247 printk("\n");
249 printk("Cause : %08x\n", cause);
251 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
252 if (1 <= cause && cause <= 5)
253 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
255 printk("PrId : %08x\n", read_c0_prid());
258 void show_registers(struct pt_regs *regs)
260 show_regs(regs);
261 print_modules();
262 printk("Process %s (pid: %d, threadinfo=%p, task=%p)\n",
263 current->comm, current->pid, current_thread_info(), current);
264 show_stack(current, (long *) regs->regs[29]);
265 show_trace(current, (long *) regs->regs[29]);
266 show_code((unsigned int *) regs->cp0_epc);
267 printk("\n");
270 static DEFINE_SPINLOCK(die_lock);
272 NORET_TYPE void ATTRIB_NORET __die(const char * str, struct pt_regs * regs,
273 const char * file, const char * func,
274 unsigned long line)
276 static int die_counter;
278 console_verbose();
279 spin_lock_irq(&die_lock);
280 printk("%s", str);
281 if (file && func)
282 printk(" in %s:%s, line %ld", file, func, line);
283 printk("[#%d]:\n", ++die_counter);
284 show_registers(regs);
285 spin_unlock_irq(&die_lock);
286 do_exit(SIGSEGV);
289 void __die_if_kernel(const char * str, struct pt_regs * regs,
290 const char * file, const char * func, unsigned long line)
292 if (!user_mode(regs))
293 __die(str, regs, file, func, line);
296 extern const struct exception_table_entry __start___dbe_table[];
297 extern const struct exception_table_entry __stop___dbe_table[];
299 void __declare_dbe_table(void)
301 __asm__ __volatile__(
302 ".section\t__dbe_table,\"a\"\n\t"
303 ".previous"
307 /* Given an address, look for it in the exception tables. */
308 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
310 const struct exception_table_entry *e;
312 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
313 if (!e)
314 e = search_module_dbetables(addr);
315 return e;
318 asmlinkage void do_be(struct pt_regs *regs)
320 const int field = 2 * sizeof(unsigned long);
321 const struct exception_table_entry *fixup = NULL;
322 int data = regs->cp0_cause & 4;
323 int action = MIPS_BE_FATAL;
325 /* XXX For now. Fixme, this searches the wrong table ... */
326 if (data && !user_mode(regs))
327 fixup = search_dbe_tables(exception_epc(regs));
329 if (fixup)
330 action = MIPS_BE_FIXUP;
332 if (board_be_handler)
333 action = board_be_handler(regs, fixup != 0);
335 switch (action) {
336 case MIPS_BE_DISCARD:
337 return;
338 case MIPS_BE_FIXUP:
339 if (fixup) {
340 regs->cp0_epc = fixup->nextinsn;
341 return;
343 break;
344 default:
345 break;
349 * Assume it would be too dangerous to continue ...
351 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
352 data ? "Data" : "Instruction",
353 field, regs->cp0_epc, field, regs->regs[31]);
354 die_if_kernel("Oops", regs);
355 force_sig(SIGBUS, current);
358 static inline int get_insn_opcode(struct pt_regs *regs, unsigned int *opcode)
360 unsigned int __user *epc;
362 epc = (unsigned int __user *) regs->cp0_epc +
363 ((regs->cp0_cause & CAUSEF_BD) != 0);
364 if (!get_user(*opcode, epc))
365 return 0;
367 force_sig(SIGSEGV, current);
368 return 1;
372 * ll/sc emulation
375 #define OPCODE 0xfc000000
376 #define BASE 0x03e00000
377 #define RT 0x001f0000
378 #define OFFSET 0x0000ffff
379 #define LL 0xc0000000
380 #define SC 0xe0000000
381 #define SPEC3 0x7c000000
382 #define RD 0x0000f800
383 #define FUNC 0x0000003f
384 #define RDHWR 0x0000003b
387 * The ll_bit is cleared by r*_switch.S
390 unsigned long ll_bit;
392 static struct task_struct *ll_task = NULL;
394 static inline void simulate_ll(struct pt_regs *regs, unsigned int opcode)
396 unsigned long value, __user *vaddr;
397 long offset;
398 int signal = 0;
401 * analyse the ll instruction that just caused a ri exception
402 * and put the referenced address to addr.
405 /* sign extend offset */
406 offset = opcode & OFFSET;
407 offset <<= 16;
408 offset >>= 16;
410 vaddr = (unsigned long __user *)
411 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
413 if ((unsigned long)vaddr & 3) {
414 signal = SIGBUS;
415 goto sig;
417 if (get_user(value, vaddr)) {
418 signal = SIGSEGV;
419 goto sig;
422 preempt_disable();
424 if (ll_task == NULL || ll_task == current) {
425 ll_bit = 1;
426 } else {
427 ll_bit = 0;
429 ll_task = current;
431 preempt_enable();
433 compute_return_epc(regs);
435 regs->regs[(opcode & RT) >> 16] = value;
437 return;
439 sig:
440 force_sig(signal, current);
443 static inline void simulate_sc(struct pt_regs *regs, unsigned int opcode)
445 unsigned long __user *vaddr;
446 unsigned long reg;
447 long offset;
448 int signal = 0;
451 * analyse the sc instruction that just caused a ri exception
452 * and put the referenced address to addr.
455 /* sign extend offset */
456 offset = opcode & OFFSET;
457 offset <<= 16;
458 offset >>= 16;
460 vaddr = (unsigned long __user *)
461 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
462 reg = (opcode & RT) >> 16;
464 if ((unsigned long)vaddr & 3) {
465 signal = SIGBUS;
466 goto sig;
469 preempt_disable();
471 if (ll_bit == 0 || ll_task != current) {
472 compute_return_epc(regs);
473 regs->regs[reg] = 0;
474 preempt_enable();
475 return;
478 preempt_enable();
480 if (put_user(regs->regs[reg], vaddr)) {
481 signal = SIGSEGV;
482 goto sig;
485 compute_return_epc(regs);
486 regs->regs[reg] = 1;
488 return;
490 sig:
491 force_sig(signal, current);
495 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
496 * opcodes are supposed to result in coprocessor unusable exceptions if
497 * executed on ll/sc-less processors. That's the theory. In practice a
498 * few processors such as NEC's VR4100 throw reserved instruction exceptions
499 * instead, so we're doing the emulation thing in both exception handlers.
501 static inline int simulate_llsc(struct pt_regs *regs)
503 unsigned int opcode;
505 if (unlikely(get_insn_opcode(regs, &opcode)))
506 return -EFAULT;
508 if ((opcode & OPCODE) == LL) {
509 simulate_ll(regs, opcode);
510 return 0;
512 if ((opcode & OPCODE) == SC) {
513 simulate_sc(regs, opcode);
514 return 0;
517 return -EFAULT; /* Strange things going on ... */
521 * Simulate trapping 'rdhwr' instructions to provide user accessible
522 * registers not implemented in hardware. The only current use of this
523 * is the thread area pointer.
525 static inline int simulate_rdhwr(struct pt_regs *regs)
527 struct thread_info *ti = current->thread_info;
528 unsigned int opcode;
530 if (unlikely(get_insn_opcode(regs, &opcode)))
531 return -EFAULT;
533 if (unlikely(compute_return_epc(regs)))
534 return -EFAULT;
536 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
537 int rd = (opcode & RD) >> 11;
538 int rt = (opcode & RT) >> 16;
539 switch (rd) {
540 case 29:
541 regs->regs[rt] = ti->tp_value;
542 break;
543 default:
544 return -EFAULT;
548 return 0;
551 asmlinkage void do_ov(struct pt_regs *regs)
553 siginfo_t info;
555 info.si_code = FPE_INTOVF;
556 info.si_signo = SIGFPE;
557 info.si_errno = 0;
558 info.si_addr = (void __user *) regs->cp0_epc;
559 force_sig_info(SIGFPE, &info, current);
563 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
565 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
567 if (fcr31 & FPU_CSR_UNI_X) {
568 int sig;
570 preempt_disable();
572 #ifdef CONFIG_PREEMPT
573 if (!is_fpu_owner()) {
574 /* We might lose fpu before disabling preempt... */
575 own_fpu();
576 BUG_ON(!used_math());
577 restore_fp(current);
579 #endif
581 * Unimplemented operation exception. If we've got the full
582 * software emulator on-board, let's use it...
584 * Force FPU to dump state into task/thread context. We're
585 * moving a lot of data here for what is probably a single
586 * instruction, but the alternative is to pre-decode the FP
587 * register operands before invoking the emulator, which seems
588 * a bit extreme for what should be an infrequent event.
590 save_fp(current);
591 /* Ensure 'resume' not overwrite saved fp context again. */
592 lose_fpu();
594 preempt_enable();
596 /* Run the emulator */
597 sig = fpu_emulator_cop1Handler (0, regs,
598 &current->thread.fpu.soft);
600 preempt_disable();
602 own_fpu(); /* Using the FPU again. */
604 * We can't allow the emulated instruction to leave any of
605 * the cause bit set in $fcr31.
607 current->thread.fpu.soft.fcr31 &= ~FPU_CSR_ALL_X;
609 /* Restore the hardware register state */
610 restore_fp(current);
612 preempt_enable();
614 /* If something went wrong, signal */
615 if (sig)
616 force_sig(sig, current);
618 return;
621 force_sig(SIGFPE, current);
624 asmlinkage void do_bp(struct pt_regs *regs)
626 unsigned int opcode, bcode;
627 siginfo_t info;
629 die_if_kernel("Break instruction in kernel code", regs);
631 if (get_insn_opcode(regs, &opcode))
632 return;
635 * There is the ancient bug in the MIPS assemblers that the break
636 * code starts left to bit 16 instead to bit 6 in the opcode.
637 * Gas is bug-compatible, but not always, grrr...
638 * We handle both cases with a simple heuristics. --macro
640 bcode = ((opcode >> 6) & ((1 << 20) - 1));
641 if (bcode < (1 << 10))
642 bcode <<= 10;
645 * (A short test says that IRIX 5.3 sends SIGTRAP for all break
646 * insns, even for break codes that indicate arithmetic failures.
647 * Weird ...)
648 * But should we continue the brokenness??? --macro
650 switch (bcode) {
651 case BRK_OVERFLOW << 10:
652 case BRK_DIVZERO << 10:
653 if (bcode == (BRK_DIVZERO << 10))
654 info.si_code = FPE_INTDIV;
655 else
656 info.si_code = FPE_INTOVF;
657 info.si_signo = SIGFPE;
658 info.si_errno = 0;
659 info.si_addr = (void __user *) regs->cp0_epc;
660 force_sig_info(SIGFPE, &info, current);
661 break;
662 default:
663 force_sig(SIGTRAP, current);
667 asmlinkage void do_tr(struct pt_regs *regs)
669 unsigned int opcode, tcode = 0;
670 siginfo_t info;
672 die_if_kernel("Trap instruction in kernel code", regs);
674 if (get_insn_opcode(regs, &opcode))
675 return;
677 /* Immediate versions don't provide a code. */
678 if (!(opcode & OPCODE))
679 tcode = ((opcode >> 6) & ((1 << 10) - 1));
682 * (A short test says that IRIX 5.3 sends SIGTRAP for all trap
683 * insns, even for trap codes that indicate arithmetic failures.
684 * Weird ...)
685 * But should we continue the brokenness??? --macro
687 switch (tcode) {
688 case BRK_OVERFLOW:
689 case BRK_DIVZERO:
690 if (tcode == BRK_DIVZERO)
691 info.si_code = FPE_INTDIV;
692 else
693 info.si_code = FPE_INTOVF;
694 info.si_signo = SIGFPE;
695 info.si_errno = 0;
696 info.si_addr = (void __user *) regs->cp0_epc;
697 force_sig_info(SIGFPE, &info, current);
698 break;
699 default:
700 force_sig(SIGTRAP, current);
704 asmlinkage void do_ri(struct pt_regs *regs)
706 die_if_kernel("Reserved instruction in kernel code", regs);
708 if (!cpu_has_llsc)
709 if (!simulate_llsc(regs))
710 return;
712 if (!simulate_rdhwr(regs))
713 return;
715 force_sig(SIGILL, current);
718 asmlinkage void do_cpu(struct pt_regs *regs)
720 unsigned int cpid;
722 die_if_kernel("do_cpu invoked from kernel context!", regs);
724 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
726 switch (cpid) {
727 case 0:
728 if (!cpu_has_llsc)
729 if (!simulate_llsc(regs))
730 return;
732 if (!simulate_rdhwr(regs))
733 return;
735 break;
737 case 1:
738 preempt_disable();
740 own_fpu();
741 if (used_math()) { /* Using the FPU again. */
742 restore_fp(current);
743 } else { /* First time FPU user. */
744 init_fpu();
745 set_used_math();
748 preempt_enable();
750 if (!cpu_has_fpu) {
751 int sig = fpu_emulator_cop1Handler(0, regs,
752 &current->thread.fpu.soft);
753 if (sig)
754 force_sig(sig, current);
757 return;
759 case 2:
760 case 3:
761 break;
764 force_sig(SIGILL, current);
767 asmlinkage void do_mdmx(struct pt_regs *regs)
769 force_sig(SIGILL, current);
772 asmlinkage void do_watch(struct pt_regs *regs)
775 * We use the watch exception where available to detect stack
776 * overflows.
778 dump_tlb_all();
779 show_regs(regs);
780 panic("Caught WATCH exception - probably caused by stack overflow.");
783 asmlinkage void do_mcheck(struct pt_regs *regs)
785 show_regs(regs);
786 dump_tlb_all();
788 * Some chips may have other causes of machine check (e.g. SB1
789 * graduation timer)
791 panic("Caught Machine Check exception - %scaused by multiple "
792 "matching entries in the TLB.",
793 (regs->cp0_status & ST0_TS) ? "" : "not ");
796 asmlinkage void do_dsp(struct pt_regs *regs)
798 if (cpu_has_dsp)
799 panic("Unexpected DSP exception\n");
801 force_sig(SIGILL, current);
804 asmlinkage void do_reserved(struct pt_regs *regs)
807 * Game over - no way to handle this if it ever occurs. Most probably
808 * caused by a new unknown cpu type or after another deadly
809 * hard/software error.
811 show_regs(regs);
812 panic("Caught reserved exception %ld - should not happen.",
813 (regs->cp0_cause & 0x7f) >> 2);
817 * Some MIPS CPUs can enable/disable for cache parity detection, but do
818 * it different ways.
820 static inline void parity_protection_init(void)
822 switch (current_cpu_data.cputype) {
823 case CPU_24K:
824 case CPU_5KC:
825 write_c0_ecc(0x80000000);
826 back_to_back_c0_hazard();
827 /* Set the PE bit (bit 31) in the c0_errctl register. */
828 printk(KERN_INFO "Cache parity protection %sabled\n",
829 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
830 break;
831 case CPU_20KC:
832 case CPU_25KF:
833 /* Clear the DE bit (bit 16) in the c0_status register. */
834 printk(KERN_INFO "Enable cache parity protection for "
835 "MIPS 20KC/25KF CPUs.\n");
836 clear_c0_status(ST0_DE);
837 break;
838 default:
839 break;
843 asmlinkage void cache_parity_error(void)
845 const int field = 2 * sizeof(unsigned long);
846 unsigned int reg_val;
848 /* For the moment, report the problem and hang. */
849 printk("Cache error exception:\n");
850 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
851 reg_val = read_c0_cacheerr();
852 printk("c0_cacheerr == %08x\n", reg_val);
854 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
855 reg_val & (1<<30) ? "secondary" : "primary",
856 reg_val & (1<<31) ? "data" : "insn");
857 printk("Error bits: %s%s%s%s%s%s%s\n",
858 reg_val & (1<<29) ? "ED " : "",
859 reg_val & (1<<28) ? "ET " : "",
860 reg_val & (1<<26) ? "EE " : "",
861 reg_val & (1<<25) ? "EB " : "",
862 reg_val & (1<<24) ? "EI " : "",
863 reg_val & (1<<23) ? "E1 " : "",
864 reg_val & (1<<22) ? "E0 " : "");
865 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
867 #if defined(CONFIG_CPU_MIPS32) || defined (CONFIG_CPU_MIPS64)
868 if (reg_val & (1<<22))
869 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
871 if (reg_val & (1<<23))
872 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
873 #endif
875 panic("Can't handle the cache error!");
879 * SDBBP EJTAG debug exception handler.
880 * We skip the instruction and return to the next instruction.
882 void ejtag_exception_handler(struct pt_regs *regs)
884 const int field = 2 * sizeof(unsigned long);
885 unsigned long depc, old_epc;
886 unsigned int debug;
888 printk("SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
889 depc = read_c0_depc();
890 debug = read_c0_debug();
891 printk("c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
892 if (debug & 0x80000000) {
894 * In branch delay slot.
895 * We cheat a little bit here and use EPC to calculate the
896 * debug return address (DEPC). EPC is restored after the
897 * calculation.
899 old_epc = regs->cp0_epc;
900 regs->cp0_epc = depc;
901 __compute_return_epc(regs);
902 depc = regs->cp0_epc;
903 regs->cp0_epc = old_epc;
904 } else
905 depc += 4;
906 write_c0_depc(depc);
908 #if 0
909 printk("\n\n----- Enable EJTAG single stepping ----\n\n");
910 write_c0_debug(debug | 0x100);
911 #endif
915 * NMI exception handler.
917 void nmi_exception_handler(struct pt_regs *regs)
919 printk("NMI taken!!!!\n");
920 die("NMI", regs);
921 while(1) ;
924 unsigned long exception_handlers[32];
927 * As a side effect of the way this is implemented we're limited
928 * to interrupt handlers in the address range from
929 * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ...
931 void *set_except_vector(int n, void *addr)
933 unsigned long handler = (unsigned long) addr;
934 unsigned long old_handler = exception_handlers[n];
936 exception_handlers[n] = handler;
937 if (n == 0 && cpu_has_divec) {
938 *(volatile u32 *)(CAC_BASE + 0x200) = 0x08000000 |
939 (0x03ffffff & (handler >> 2));
940 flush_icache_range(CAC_BASE + 0x200, CAC_BASE + 0x204);
942 return (void *)old_handler;
946 * This is used by native signal handling
948 asmlinkage int (*save_fp_context)(struct sigcontext *sc);
949 asmlinkage int (*restore_fp_context)(struct sigcontext *sc);
951 extern asmlinkage int _save_fp_context(struct sigcontext *sc);
952 extern asmlinkage int _restore_fp_context(struct sigcontext *sc);
954 extern asmlinkage int fpu_emulator_save_context(struct sigcontext *sc);
955 extern asmlinkage int fpu_emulator_restore_context(struct sigcontext *sc);
957 static inline void signal_init(void)
959 if (cpu_has_fpu) {
960 save_fp_context = _save_fp_context;
961 restore_fp_context = _restore_fp_context;
962 } else {
963 save_fp_context = fpu_emulator_save_context;
964 restore_fp_context = fpu_emulator_restore_context;
968 #ifdef CONFIG_MIPS32_COMPAT
971 * This is used by 32-bit signal stuff on the 64-bit kernel
973 asmlinkage int (*save_fp_context32)(struct sigcontext32 *sc);
974 asmlinkage int (*restore_fp_context32)(struct sigcontext32 *sc);
976 extern asmlinkage int _save_fp_context32(struct sigcontext32 *sc);
977 extern asmlinkage int _restore_fp_context32(struct sigcontext32 *sc);
979 extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 *sc);
980 extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 *sc);
982 static inline void signal32_init(void)
984 if (cpu_has_fpu) {
985 save_fp_context32 = _save_fp_context32;
986 restore_fp_context32 = _restore_fp_context32;
987 } else {
988 save_fp_context32 = fpu_emulator_save_context32;
989 restore_fp_context32 = fpu_emulator_restore_context32;
992 #endif
994 extern void cpu_cache_init(void);
995 extern void tlb_init(void);
997 void __init per_cpu_trap_init(void)
999 unsigned int cpu = smp_processor_id();
1000 unsigned int status_set = ST0_CU0;
1003 * Disable coprocessors and select 32-bit or 64-bit addressing
1004 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1005 * flag that some firmware may have left set and the TS bit (for
1006 * IP27). Set XX for ISA IV code to work.
1008 #ifdef CONFIG_64BIT
1009 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1010 #endif
1011 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1012 status_set |= ST0_XX;
1013 change_c0_status(ST0_CU|ST0_MX|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1014 status_set);
1016 if (cpu_has_dsp)
1017 set_c0_status(ST0_MX);
1020 * Some MIPS CPUs have a dedicated interrupt vector which reduces the
1021 * interrupt processing overhead. Use it where available.
1023 if (cpu_has_divec)
1024 set_c0_cause(CAUSEF_IV);
1026 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1027 TLBMISS_HANDLER_SETUP();
1029 atomic_inc(&init_mm.mm_count);
1030 current->active_mm = &init_mm;
1031 BUG_ON(current->mm);
1032 enter_lazy_tlb(&init_mm, current);
1034 cpu_cache_init();
1035 tlb_init();
1038 void __init trap_init(void)
1040 extern char except_vec3_generic, except_vec3_r4000;
1041 extern char except_vec_ejtag_debug;
1042 extern char except_vec4;
1043 unsigned long i;
1045 per_cpu_trap_init();
1048 * Copy the generic exception handlers to their final destination.
1049 * This will be overriden later as suitable for a particular
1050 * configuration.
1052 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80);
1055 * Setup default vectors
1057 for (i = 0; i <= 31; i++)
1058 set_except_vector(i, handle_reserved);
1061 * Copy the EJTAG debug exception vector handler code to it's final
1062 * destination.
1064 if (cpu_has_ejtag)
1065 memcpy((void *)(CAC_BASE + 0x300), &except_vec_ejtag_debug, 0x80);
1068 * Only some CPUs have the watch exceptions.
1070 if (cpu_has_watch)
1071 set_except_vector(23, handle_watch);
1074 * Some MIPS CPUs have a dedicated interrupt vector which reduces the
1075 * interrupt processing overhead. Use it where available.
1077 if (cpu_has_divec)
1078 memcpy((void *)(CAC_BASE + 0x200), &except_vec4, 0x8);
1081 * Some CPUs can enable/disable for cache parity detection, but does
1082 * it different ways.
1084 parity_protection_init();
1087 * The Data Bus Errors / Instruction Bus Errors are signaled
1088 * by external hardware. Therefore these two exceptions
1089 * may have board specific handlers.
1091 if (board_be_init)
1092 board_be_init();
1094 set_except_vector(1, handle_tlbm);
1095 set_except_vector(2, handle_tlbl);
1096 set_except_vector(3, handle_tlbs);
1098 set_except_vector(4, handle_adel);
1099 set_except_vector(5, handle_ades);
1101 set_except_vector(6, handle_ibe);
1102 set_except_vector(7, handle_dbe);
1104 set_except_vector(8, handle_sys);
1105 set_except_vector(9, handle_bp);
1106 set_except_vector(10, handle_ri);
1107 set_except_vector(11, handle_cpu);
1108 set_except_vector(12, handle_ov);
1109 set_except_vector(13, handle_tr);
1111 if (current_cpu_data.cputype == CPU_R6000 ||
1112 current_cpu_data.cputype == CPU_R6000A) {
1114 * The R6000 is the only R-series CPU that features a machine
1115 * check exception (similar to the R4000 cache error) and
1116 * unaligned ldc1/sdc1 exception. The handlers have not been
1117 * written yet. Well, anyway there is no R6000 machine on the
1118 * current list of targets for Linux/MIPS.
1119 * (Duh, crap, there is someone with a triple R6k machine)
1121 //set_except_vector(14, handle_mc);
1122 //set_except_vector(15, handle_ndc);
1125 if (cpu_has_fpu && !cpu_has_nofpuex)
1126 set_except_vector(15, handle_fpe);
1128 set_except_vector(22, handle_mdmx);
1130 if (cpu_has_mcheck)
1131 set_except_vector(24, handle_mcheck);
1133 if (cpu_has_dsp)
1134 set_except_vector(26, handle_dsp);
1136 if (cpu_has_vce)
1137 /* Special exception: R4[04]00 uses also the divec space. */
1138 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_r4000, 0x100);
1139 else if (cpu_has_4kex)
1140 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80);
1141 else
1142 memcpy((void *)(CAC_BASE + 0x080), &except_vec3_generic, 0x80);
1144 signal_init();
1145 #ifdef CONFIG_MIPS32_COMPAT
1146 signal32_init();
1147 #endif
1149 flush_icache_range(CAC_BASE, CAC_BASE + 0x400);