[PATCH] libata: implement ATA_EHI_NO_AUTOPSY and QUIET
[linux-2.6/suspend2-2.6.18.git] / drivers / scsi / libata-core.c
blobf368536f8e9187dfd3148c9b642c72becce94e1b
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include "scsi_priv.h"
54 #include <scsi/scsi_cmnd.h>
55 #include <scsi/scsi_host.h>
56 #include <linux/libata.h>
57 #include <asm/io.h>
58 #include <asm/semaphore.h>
59 #include <asm/byteorder.h>
61 #include "libata.h"
63 /* debounce timing parameters in msecs { interval, duration, timeout } */
64 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
65 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
66 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
68 static unsigned int ata_dev_init_params(struct ata_device *dev,
69 u16 heads, u16 sectors);
70 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
71 static void ata_dev_xfermask(struct ata_device *dev);
73 static unsigned int ata_unique_id = 1;
74 static struct workqueue_struct *ata_wq;
76 struct workqueue_struct *ata_aux_wq;
78 int atapi_enabled = 1;
79 module_param(atapi_enabled, int, 0444);
80 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
82 int atapi_dmadir = 0;
83 module_param(atapi_dmadir, int, 0444);
84 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
86 int libata_fua = 0;
87 module_param_named(fua, libata_fua, int, 0444);
88 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
90 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
91 module_param(ata_probe_timeout, int, 0444);
92 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
94 MODULE_AUTHOR("Jeff Garzik");
95 MODULE_DESCRIPTION("Library module for ATA devices");
96 MODULE_LICENSE("GPL");
97 MODULE_VERSION(DRV_VERSION);
101 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
102 * @tf: Taskfile to convert
103 * @fis: Buffer into which data will output
104 * @pmp: Port multiplier port
106 * Converts a standard ATA taskfile to a Serial ATA
107 * FIS structure (Register - Host to Device).
109 * LOCKING:
110 * Inherited from caller.
113 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
115 fis[0] = 0x27; /* Register - Host to Device FIS */
116 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
117 bit 7 indicates Command FIS */
118 fis[2] = tf->command;
119 fis[3] = tf->feature;
121 fis[4] = tf->lbal;
122 fis[5] = tf->lbam;
123 fis[6] = tf->lbah;
124 fis[7] = tf->device;
126 fis[8] = tf->hob_lbal;
127 fis[9] = tf->hob_lbam;
128 fis[10] = tf->hob_lbah;
129 fis[11] = tf->hob_feature;
131 fis[12] = tf->nsect;
132 fis[13] = tf->hob_nsect;
133 fis[14] = 0;
134 fis[15] = tf->ctl;
136 fis[16] = 0;
137 fis[17] = 0;
138 fis[18] = 0;
139 fis[19] = 0;
143 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
144 * @fis: Buffer from which data will be input
145 * @tf: Taskfile to output
147 * Converts a serial ATA FIS structure to a standard ATA taskfile.
149 * LOCKING:
150 * Inherited from caller.
153 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
155 tf->command = fis[2]; /* status */
156 tf->feature = fis[3]; /* error */
158 tf->lbal = fis[4];
159 tf->lbam = fis[5];
160 tf->lbah = fis[6];
161 tf->device = fis[7];
163 tf->hob_lbal = fis[8];
164 tf->hob_lbam = fis[9];
165 tf->hob_lbah = fis[10];
167 tf->nsect = fis[12];
168 tf->hob_nsect = fis[13];
171 static const u8 ata_rw_cmds[] = {
172 /* pio multi */
173 ATA_CMD_READ_MULTI,
174 ATA_CMD_WRITE_MULTI,
175 ATA_CMD_READ_MULTI_EXT,
176 ATA_CMD_WRITE_MULTI_EXT,
180 ATA_CMD_WRITE_MULTI_FUA_EXT,
181 /* pio */
182 ATA_CMD_PIO_READ,
183 ATA_CMD_PIO_WRITE,
184 ATA_CMD_PIO_READ_EXT,
185 ATA_CMD_PIO_WRITE_EXT,
190 /* dma */
191 ATA_CMD_READ,
192 ATA_CMD_WRITE,
193 ATA_CMD_READ_EXT,
194 ATA_CMD_WRITE_EXT,
198 ATA_CMD_WRITE_FUA_EXT
202 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
203 * @qc: command to examine and configure
205 * Examine the device configuration and tf->flags to calculate
206 * the proper read/write commands and protocol to use.
208 * LOCKING:
209 * caller.
211 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
213 struct ata_taskfile *tf = &qc->tf;
214 struct ata_device *dev = qc->dev;
215 u8 cmd;
217 int index, fua, lba48, write;
219 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
220 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
221 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
223 if (dev->flags & ATA_DFLAG_PIO) {
224 tf->protocol = ATA_PROT_PIO;
225 index = dev->multi_count ? 0 : 8;
226 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
227 /* Unable to use DMA due to host limitation */
228 tf->protocol = ATA_PROT_PIO;
229 index = dev->multi_count ? 0 : 8;
230 } else {
231 tf->protocol = ATA_PROT_DMA;
232 index = 16;
235 cmd = ata_rw_cmds[index + fua + lba48 + write];
236 if (cmd) {
237 tf->command = cmd;
238 return 0;
240 return -1;
244 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
245 * @pio_mask: pio_mask
246 * @mwdma_mask: mwdma_mask
247 * @udma_mask: udma_mask
249 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
250 * unsigned int xfer_mask.
252 * LOCKING:
253 * None.
255 * RETURNS:
256 * Packed xfer_mask.
258 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
259 unsigned int mwdma_mask,
260 unsigned int udma_mask)
262 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
263 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
264 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
268 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
269 * @xfer_mask: xfer_mask to unpack
270 * @pio_mask: resulting pio_mask
271 * @mwdma_mask: resulting mwdma_mask
272 * @udma_mask: resulting udma_mask
274 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
275 * Any NULL distination masks will be ignored.
277 static void ata_unpack_xfermask(unsigned int xfer_mask,
278 unsigned int *pio_mask,
279 unsigned int *mwdma_mask,
280 unsigned int *udma_mask)
282 if (pio_mask)
283 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
284 if (mwdma_mask)
285 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
286 if (udma_mask)
287 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
290 static const struct ata_xfer_ent {
291 int shift, bits;
292 u8 base;
293 } ata_xfer_tbl[] = {
294 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
295 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
296 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
297 { -1, },
301 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
302 * @xfer_mask: xfer_mask of interest
304 * Return matching XFER_* value for @xfer_mask. Only the highest
305 * bit of @xfer_mask is considered.
307 * LOCKING:
308 * None.
310 * RETURNS:
311 * Matching XFER_* value, 0 if no match found.
313 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
315 int highbit = fls(xfer_mask) - 1;
316 const struct ata_xfer_ent *ent;
318 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
319 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
320 return ent->base + highbit - ent->shift;
321 return 0;
325 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
326 * @xfer_mode: XFER_* of interest
328 * Return matching xfer_mask for @xfer_mode.
330 * LOCKING:
331 * None.
333 * RETURNS:
334 * Matching xfer_mask, 0 if no match found.
336 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
338 const struct ata_xfer_ent *ent;
340 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
341 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
342 return 1 << (ent->shift + xfer_mode - ent->base);
343 return 0;
347 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
348 * @xfer_mode: XFER_* of interest
350 * Return matching xfer_shift for @xfer_mode.
352 * LOCKING:
353 * None.
355 * RETURNS:
356 * Matching xfer_shift, -1 if no match found.
358 static int ata_xfer_mode2shift(unsigned int xfer_mode)
360 const struct ata_xfer_ent *ent;
362 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
363 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
364 return ent->shift;
365 return -1;
369 * ata_mode_string - convert xfer_mask to string
370 * @xfer_mask: mask of bits supported; only highest bit counts.
372 * Determine string which represents the highest speed
373 * (highest bit in @modemask).
375 * LOCKING:
376 * None.
378 * RETURNS:
379 * Constant C string representing highest speed listed in
380 * @mode_mask, or the constant C string "<n/a>".
382 static const char *ata_mode_string(unsigned int xfer_mask)
384 static const char * const xfer_mode_str[] = {
385 "PIO0",
386 "PIO1",
387 "PIO2",
388 "PIO3",
389 "PIO4",
390 "MWDMA0",
391 "MWDMA1",
392 "MWDMA2",
393 "UDMA/16",
394 "UDMA/25",
395 "UDMA/33",
396 "UDMA/44",
397 "UDMA/66",
398 "UDMA/100",
399 "UDMA/133",
400 "UDMA7",
402 int highbit;
404 highbit = fls(xfer_mask) - 1;
405 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
406 return xfer_mode_str[highbit];
407 return "<n/a>";
410 static const char *sata_spd_string(unsigned int spd)
412 static const char * const spd_str[] = {
413 "1.5 Gbps",
414 "3.0 Gbps",
417 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
418 return "<unknown>";
419 return spd_str[spd - 1];
422 void ata_dev_disable(struct ata_device *dev)
424 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
425 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
426 dev->class++;
431 * ata_pio_devchk - PATA device presence detection
432 * @ap: ATA channel to examine
433 * @device: Device to examine (starting at zero)
435 * This technique was originally described in
436 * Hale Landis's ATADRVR (www.ata-atapi.com), and
437 * later found its way into the ATA/ATAPI spec.
439 * Write a pattern to the ATA shadow registers,
440 * and if a device is present, it will respond by
441 * correctly storing and echoing back the
442 * ATA shadow register contents.
444 * LOCKING:
445 * caller.
448 static unsigned int ata_pio_devchk(struct ata_port *ap,
449 unsigned int device)
451 struct ata_ioports *ioaddr = &ap->ioaddr;
452 u8 nsect, lbal;
454 ap->ops->dev_select(ap, device);
456 outb(0x55, ioaddr->nsect_addr);
457 outb(0xaa, ioaddr->lbal_addr);
459 outb(0xaa, ioaddr->nsect_addr);
460 outb(0x55, ioaddr->lbal_addr);
462 outb(0x55, ioaddr->nsect_addr);
463 outb(0xaa, ioaddr->lbal_addr);
465 nsect = inb(ioaddr->nsect_addr);
466 lbal = inb(ioaddr->lbal_addr);
468 if ((nsect == 0x55) && (lbal == 0xaa))
469 return 1; /* we found a device */
471 return 0; /* nothing found */
475 * ata_mmio_devchk - PATA device presence detection
476 * @ap: ATA channel to examine
477 * @device: Device to examine (starting at zero)
479 * This technique was originally described in
480 * Hale Landis's ATADRVR (www.ata-atapi.com), and
481 * later found its way into the ATA/ATAPI spec.
483 * Write a pattern to the ATA shadow registers,
484 * and if a device is present, it will respond by
485 * correctly storing and echoing back the
486 * ATA shadow register contents.
488 * LOCKING:
489 * caller.
492 static unsigned int ata_mmio_devchk(struct ata_port *ap,
493 unsigned int device)
495 struct ata_ioports *ioaddr = &ap->ioaddr;
496 u8 nsect, lbal;
498 ap->ops->dev_select(ap, device);
500 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
501 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
503 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
504 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
506 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
507 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
509 nsect = readb((void __iomem *) ioaddr->nsect_addr);
510 lbal = readb((void __iomem *) ioaddr->lbal_addr);
512 if ((nsect == 0x55) && (lbal == 0xaa))
513 return 1; /* we found a device */
515 return 0; /* nothing found */
519 * ata_devchk - PATA device presence detection
520 * @ap: ATA channel to examine
521 * @device: Device to examine (starting at zero)
523 * Dispatch ATA device presence detection, depending
524 * on whether we are using PIO or MMIO to talk to the
525 * ATA shadow registers.
527 * LOCKING:
528 * caller.
531 static unsigned int ata_devchk(struct ata_port *ap,
532 unsigned int device)
534 if (ap->flags & ATA_FLAG_MMIO)
535 return ata_mmio_devchk(ap, device);
536 return ata_pio_devchk(ap, device);
540 * ata_dev_classify - determine device type based on ATA-spec signature
541 * @tf: ATA taskfile register set for device to be identified
543 * Determine from taskfile register contents whether a device is
544 * ATA or ATAPI, as per "Signature and persistence" section
545 * of ATA/PI spec (volume 1, sect 5.14).
547 * LOCKING:
548 * None.
550 * RETURNS:
551 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
552 * the event of failure.
555 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
557 /* Apple's open source Darwin code hints that some devices only
558 * put a proper signature into the LBA mid/high registers,
559 * So, we only check those. It's sufficient for uniqueness.
562 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
563 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
564 DPRINTK("found ATA device by sig\n");
565 return ATA_DEV_ATA;
568 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
569 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
570 DPRINTK("found ATAPI device by sig\n");
571 return ATA_DEV_ATAPI;
574 DPRINTK("unknown device\n");
575 return ATA_DEV_UNKNOWN;
579 * ata_dev_try_classify - Parse returned ATA device signature
580 * @ap: ATA channel to examine
581 * @device: Device to examine (starting at zero)
582 * @r_err: Value of error register on completion
584 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
585 * an ATA/ATAPI-defined set of values is placed in the ATA
586 * shadow registers, indicating the results of device detection
587 * and diagnostics.
589 * Select the ATA device, and read the values from the ATA shadow
590 * registers. Then parse according to the Error register value,
591 * and the spec-defined values examined by ata_dev_classify().
593 * LOCKING:
594 * caller.
596 * RETURNS:
597 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
600 static unsigned int
601 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
603 struct ata_taskfile tf;
604 unsigned int class;
605 u8 err;
607 ap->ops->dev_select(ap, device);
609 memset(&tf, 0, sizeof(tf));
611 ap->ops->tf_read(ap, &tf);
612 err = tf.feature;
613 if (r_err)
614 *r_err = err;
616 /* see if device passed diags */
617 if (err == 1)
618 /* do nothing */ ;
619 else if ((device == 0) && (err == 0x81))
620 /* do nothing */ ;
621 else
622 return ATA_DEV_NONE;
624 /* determine if device is ATA or ATAPI */
625 class = ata_dev_classify(&tf);
627 if (class == ATA_DEV_UNKNOWN)
628 return ATA_DEV_NONE;
629 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
630 return ATA_DEV_NONE;
631 return class;
635 * ata_id_string - Convert IDENTIFY DEVICE page into string
636 * @id: IDENTIFY DEVICE results we will examine
637 * @s: string into which data is output
638 * @ofs: offset into identify device page
639 * @len: length of string to return. must be an even number.
641 * The strings in the IDENTIFY DEVICE page are broken up into
642 * 16-bit chunks. Run through the string, and output each
643 * 8-bit chunk linearly, regardless of platform.
645 * LOCKING:
646 * caller.
649 void ata_id_string(const u16 *id, unsigned char *s,
650 unsigned int ofs, unsigned int len)
652 unsigned int c;
654 while (len > 0) {
655 c = id[ofs] >> 8;
656 *s = c;
657 s++;
659 c = id[ofs] & 0xff;
660 *s = c;
661 s++;
663 ofs++;
664 len -= 2;
669 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
670 * @id: IDENTIFY DEVICE results we will examine
671 * @s: string into which data is output
672 * @ofs: offset into identify device page
673 * @len: length of string to return. must be an odd number.
675 * This function is identical to ata_id_string except that it
676 * trims trailing spaces and terminates the resulting string with
677 * null. @len must be actual maximum length (even number) + 1.
679 * LOCKING:
680 * caller.
682 void ata_id_c_string(const u16 *id, unsigned char *s,
683 unsigned int ofs, unsigned int len)
685 unsigned char *p;
687 WARN_ON(!(len & 1));
689 ata_id_string(id, s, ofs, len - 1);
691 p = s + strnlen(s, len - 1);
692 while (p > s && p[-1] == ' ')
693 p--;
694 *p = '\0';
697 static u64 ata_id_n_sectors(const u16 *id)
699 if (ata_id_has_lba(id)) {
700 if (ata_id_has_lba48(id))
701 return ata_id_u64(id, 100);
702 else
703 return ata_id_u32(id, 60);
704 } else {
705 if (ata_id_current_chs_valid(id))
706 return ata_id_u32(id, 57);
707 else
708 return id[1] * id[3] * id[6];
713 * ata_noop_dev_select - Select device 0/1 on ATA bus
714 * @ap: ATA channel to manipulate
715 * @device: ATA device (numbered from zero) to select
717 * This function performs no actual function.
719 * May be used as the dev_select() entry in ata_port_operations.
721 * LOCKING:
722 * caller.
724 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
730 * ata_std_dev_select - Select device 0/1 on ATA bus
731 * @ap: ATA channel to manipulate
732 * @device: ATA device (numbered from zero) to select
734 * Use the method defined in the ATA specification to
735 * make either device 0, or device 1, active on the
736 * ATA channel. Works with both PIO and MMIO.
738 * May be used as the dev_select() entry in ata_port_operations.
740 * LOCKING:
741 * caller.
744 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
746 u8 tmp;
748 if (device == 0)
749 tmp = ATA_DEVICE_OBS;
750 else
751 tmp = ATA_DEVICE_OBS | ATA_DEV1;
753 if (ap->flags & ATA_FLAG_MMIO) {
754 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
755 } else {
756 outb(tmp, ap->ioaddr.device_addr);
758 ata_pause(ap); /* needed; also flushes, for mmio */
762 * ata_dev_select - Select device 0/1 on ATA bus
763 * @ap: ATA channel to manipulate
764 * @device: ATA device (numbered from zero) to select
765 * @wait: non-zero to wait for Status register BSY bit to clear
766 * @can_sleep: non-zero if context allows sleeping
768 * Use the method defined in the ATA specification to
769 * make either device 0, or device 1, active on the
770 * ATA channel.
772 * This is a high-level version of ata_std_dev_select(),
773 * which additionally provides the services of inserting
774 * the proper pauses and status polling, where needed.
776 * LOCKING:
777 * caller.
780 void ata_dev_select(struct ata_port *ap, unsigned int device,
781 unsigned int wait, unsigned int can_sleep)
783 if (ata_msg_probe(ap))
784 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
785 "device %u, wait %u\n", ap->id, device, wait);
787 if (wait)
788 ata_wait_idle(ap);
790 ap->ops->dev_select(ap, device);
792 if (wait) {
793 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
794 msleep(150);
795 ata_wait_idle(ap);
800 * ata_dump_id - IDENTIFY DEVICE info debugging output
801 * @id: IDENTIFY DEVICE page to dump
803 * Dump selected 16-bit words from the given IDENTIFY DEVICE
804 * page.
806 * LOCKING:
807 * caller.
810 static inline void ata_dump_id(const u16 *id)
812 DPRINTK("49==0x%04x "
813 "53==0x%04x "
814 "63==0x%04x "
815 "64==0x%04x "
816 "75==0x%04x \n",
817 id[49],
818 id[53],
819 id[63],
820 id[64],
821 id[75]);
822 DPRINTK("80==0x%04x "
823 "81==0x%04x "
824 "82==0x%04x "
825 "83==0x%04x "
826 "84==0x%04x \n",
827 id[80],
828 id[81],
829 id[82],
830 id[83],
831 id[84]);
832 DPRINTK("88==0x%04x "
833 "93==0x%04x\n",
834 id[88],
835 id[93]);
839 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
840 * @id: IDENTIFY data to compute xfer mask from
842 * Compute the xfermask for this device. This is not as trivial
843 * as it seems if we must consider early devices correctly.
845 * FIXME: pre IDE drive timing (do we care ?).
847 * LOCKING:
848 * None.
850 * RETURNS:
851 * Computed xfermask
853 static unsigned int ata_id_xfermask(const u16 *id)
855 unsigned int pio_mask, mwdma_mask, udma_mask;
857 /* Usual case. Word 53 indicates word 64 is valid */
858 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
859 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
860 pio_mask <<= 3;
861 pio_mask |= 0x7;
862 } else {
863 /* If word 64 isn't valid then Word 51 high byte holds
864 * the PIO timing number for the maximum. Turn it into
865 * a mask.
867 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
869 /* But wait.. there's more. Design your standards by
870 * committee and you too can get a free iordy field to
871 * process. However its the speeds not the modes that
872 * are supported... Note drivers using the timing API
873 * will get this right anyway
877 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
879 udma_mask = 0;
880 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
881 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
883 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
887 * ata_port_queue_task - Queue port_task
888 * @ap: The ata_port to queue port_task for
889 * @fn: workqueue function to be scheduled
890 * @data: data value to pass to workqueue function
891 * @delay: delay time for workqueue function
893 * Schedule @fn(@data) for execution after @delay jiffies using
894 * port_task. There is one port_task per port and it's the
895 * user(low level driver)'s responsibility to make sure that only
896 * one task is active at any given time.
898 * libata core layer takes care of synchronization between
899 * port_task and EH. ata_port_queue_task() may be ignored for EH
900 * synchronization.
902 * LOCKING:
903 * Inherited from caller.
905 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
906 unsigned long delay)
908 int rc;
910 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
911 return;
913 PREPARE_WORK(&ap->port_task, fn, data);
915 if (!delay)
916 rc = queue_work(ata_wq, &ap->port_task);
917 else
918 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
920 /* rc == 0 means that another user is using port task */
921 WARN_ON(rc == 0);
925 * ata_port_flush_task - Flush port_task
926 * @ap: The ata_port to flush port_task for
928 * After this function completes, port_task is guranteed not to
929 * be running or scheduled.
931 * LOCKING:
932 * Kernel thread context (may sleep)
934 void ata_port_flush_task(struct ata_port *ap)
936 unsigned long flags;
938 DPRINTK("ENTER\n");
940 spin_lock_irqsave(ap->lock, flags);
941 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
942 spin_unlock_irqrestore(ap->lock, flags);
944 DPRINTK("flush #1\n");
945 flush_workqueue(ata_wq);
948 * At this point, if a task is running, it's guaranteed to see
949 * the FLUSH flag; thus, it will never queue pio tasks again.
950 * Cancel and flush.
952 if (!cancel_delayed_work(&ap->port_task)) {
953 if (ata_msg_ctl(ap))
954 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
955 __FUNCTION__);
956 flush_workqueue(ata_wq);
959 spin_lock_irqsave(ap->lock, flags);
960 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
961 spin_unlock_irqrestore(ap->lock, flags);
963 if (ata_msg_ctl(ap))
964 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
967 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
969 struct completion *waiting = qc->private_data;
971 complete(waiting);
975 * ata_exec_internal - execute libata internal command
976 * @dev: Device to which the command is sent
977 * @tf: Taskfile registers for the command and the result
978 * @cdb: CDB for packet command
979 * @dma_dir: Data tranfer direction of the command
980 * @buf: Data buffer of the command
981 * @buflen: Length of data buffer
983 * Executes libata internal command with timeout. @tf contains
984 * command on entry and result on return. Timeout and error
985 * conditions are reported via return value. No recovery action
986 * is taken after a command times out. It's caller's duty to
987 * clean up after timeout.
989 * LOCKING:
990 * None. Should be called with kernel context, might sleep.
992 * RETURNS:
993 * Zero on success, AC_ERR_* mask on failure
995 unsigned ata_exec_internal(struct ata_device *dev,
996 struct ata_taskfile *tf, const u8 *cdb,
997 int dma_dir, void *buf, unsigned int buflen)
999 struct ata_port *ap = dev->ap;
1000 u8 command = tf->command;
1001 struct ata_queued_cmd *qc;
1002 unsigned int tag, preempted_tag;
1003 u32 preempted_sactive, preempted_qc_active;
1004 DECLARE_COMPLETION_ONSTACK(wait);
1005 unsigned long flags;
1006 unsigned int err_mask;
1007 int rc;
1009 spin_lock_irqsave(ap->lock, flags);
1011 /* no internal command while frozen */
1012 if (ap->pflags & ATA_PFLAG_FROZEN) {
1013 spin_unlock_irqrestore(ap->lock, flags);
1014 return AC_ERR_SYSTEM;
1017 /* initialize internal qc */
1019 /* XXX: Tag 0 is used for drivers with legacy EH as some
1020 * drivers choke if any other tag is given. This breaks
1021 * ata_tag_internal() test for those drivers. Don't use new
1022 * EH stuff without converting to it.
1024 if (ap->ops->error_handler)
1025 tag = ATA_TAG_INTERNAL;
1026 else
1027 tag = 0;
1029 if (test_and_set_bit(tag, &ap->qc_allocated))
1030 BUG();
1031 qc = __ata_qc_from_tag(ap, tag);
1033 qc->tag = tag;
1034 qc->scsicmd = NULL;
1035 qc->ap = ap;
1036 qc->dev = dev;
1037 ata_qc_reinit(qc);
1039 preempted_tag = ap->active_tag;
1040 preempted_sactive = ap->sactive;
1041 preempted_qc_active = ap->qc_active;
1042 ap->active_tag = ATA_TAG_POISON;
1043 ap->sactive = 0;
1044 ap->qc_active = 0;
1046 /* prepare & issue qc */
1047 qc->tf = *tf;
1048 if (cdb)
1049 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1050 qc->flags |= ATA_QCFLAG_RESULT_TF;
1051 qc->dma_dir = dma_dir;
1052 if (dma_dir != DMA_NONE) {
1053 ata_sg_init_one(qc, buf, buflen);
1054 qc->nsect = buflen / ATA_SECT_SIZE;
1057 qc->private_data = &wait;
1058 qc->complete_fn = ata_qc_complete_internal;
1060 ata_qc_issue(qc);
1062 spin_unlock_irqrestore(ap->lock, flags);
1064 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1066 ata_port_flush_task(ap);
1068 if (!rc) {
1069 spin_lock_irqsave(ap->lock, flags);
1071 /* We're racing with irq here. If we lose, the
1072 * following test prevents us from completing the qc
1073 * twice. If we win, the port is frozen and will be
1074 * cleaned up by ->post_internal_cmd().
1076 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1077 qc->err_mask |= AC_ERR_TIMEOUT;
1079 if (ap->ops->error_handler)
1080 ata_port_freeze(ap);
1081 else
1082 ata_qc_complete(qc);
1084 if (ata_msg_warn(ap))
1085 ata_dev_printk(dev, KERN_WARNING,
1086 "qc timeout (cmd 0x%x)\n", command);
1089 spin_unlock_irqrestore(ap->lock, flags);
1092 /* do post_internal_cmd */
1093 if (ap->ops->post_internal_cmd)
1094 ap->ops->post_internal_cmd(qc);
1096 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1097 if (ata_msg_warn(ap))
1098 ata_dev_printk(dev, KERN_WARNING,
1099 "zero err_mask for failed "
1100 "internal command, assuming AC_ERR_OTHER\n");
1101 qc->err_mask |= AC_ERR_OTHER;
1104 /* finish up */
1105 spin_lock_irqsave(ap->lock, flags);
1107 *tf = qc->result_tf;
1108 err_mask = qc->err_mask;
1110 ata_qc_free(qc);
1111 ap->active_tag = preempted_tag;
1112 ap->sactive = preempted_sactive;
1113 ap->qc_active = preempted_qc_active;
1115 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1116 * Until those drivers are fixed, we detect the condition
1117 * here, fail the command with AC_ERR_SYSTEM and reenable the
1118 * port.
1120 * Note that this doesn't change any behavior as internal
1121 * command failure results in disabling the device in the
1122 * higher layer for LLDDs without new reset/EH callbacks.
1124 * Kill the following code as soon as those drivers are fixed.
1126 if (ap->flags & ATA_FLAG_DISABLED) {
1127 err_mask |= AC_ERR_SYSTEM;
1128 ata_port_probe(ap);
1131 spin_unlock_irqrestore(ap->lock, flags);
1133 return err_mask;
1137 * ata_do_simple_cmd - execute simple internal command
1138 * @dev: Device to which the command is sent
1139 * @cmd: Opcode to execute
1141 * Execute a 'simple' command, that only consists of the opcode
1142 * 'cmd' itself, without filling any other registers
1144 * LOCKING:
1145 * Kernel thread context (may sleep).
1147 * RETURNS:
1148 * Zero on success, AC_ERR_* mask on failure
1150 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1152 struct ata_taskfile tf;
1154 ata_tf_init(dev, &tf);
1156 tf.command = cmd;
1157 tf.flags |= ATA_TFLAG_DEVICE;
1158 tf.protocol = ATA_PROT_NODATA;
1160 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1164 * ata_pio_need_iordy - check if iordy needed
1165 * @adev: ATA device
1167 * Check if the current speed of the device requires IORDY. Used
1168 * by various controllers for chip configuration.
1171 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1173 int pio;
1174 int speed = adev->pio_mode - XFER_PIO_0;
1176 if (speed < 2)
1177 return 0;
1178 if (speed > 2)
1179 return 1;
1181 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1183 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1184 pio = adev->id[ATA_ID_EIDE_PIO];
1185 /* Is the speed faster than the drive allows non IORDY ? */
1186 if (pio) {
1187 /* This is cycle times not frequency - watch the logic! */
1188 if (pio > 240) /* PIO2 is 240nS per cycle */
1189 return 1;
1190 return 0;
1193 return 0;
1197 * ata_dev_read_id - Read ID data from the specified device
1198 * @dev: target device
1199 * @p_class: pointer to class of the target device (may be changed)
1200 * @post_reset: is this read ID post-reset?
1201 * @id: buffer to read IDENTIFY data into
1203 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1204 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1205 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1206 * for pre-ATA4 drives.
1208 * LOCKING:
1209 * Kernel thread context (may sleep)
1211 * RETURNS:
1212 * 0 on success, -errno otherwise.
1214 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1215 int post_reset, u16 *id)
1217 struct ata_port *ap = dev->ap;
1218 unsigned int class = *p_class;
1219 struct ata_taskfile tf;
1220 unsigned int err_mask = 0;
1221 const char *reason;
1222 int rc;
1224 if (ata_msg_ctl(ap))
1225 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1226 __FUNCTION__, ap->id, dev->devno);
1228 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1230 retry:
1231 ata_tf_init(dev, &tf);
1233 switch (class) {
1234 case ATA_DEV_ATA:
1235 tf.command = ATA_CMD_ID_ATA;
1236 break;
1237 case ATA_DEV_ATAPI:
1238 tf.command = ATA_CMD_ID_ATAPI;
1239 break;
1240 default:
1241 rc = -ENODEV;
1242 reason = "unsupported class";
1243 goto err_out;
1246 tf.protocol = ATA_PROT_PIO;
1248 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1249 id, sizeof(id[0]) * ATA_ID_WORDS);
1250 if (err_mask) {
1251 rc = -EIO;
1252 reason = "I/O error";
1253 goto err_out;
1256 swap_buf_le16(id, ATA_ID_WORDS);
1258 /* sanity check */
1259 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
1260 rc = -EINVAL;
1261 reason = "device reports illegal type";
1262 goto err_out;
1265 if (post_reset && class == ATA_DEV_ATA) {
1267 * The exact sequence expected by certain pre-ATA4 drives is:
1268 * SRST RESET
1269 * IDENTIFY
1270 * INITIALIZE DEVICE PARAMETERS
1271 * anything else..
1272 * Some drives were very specific about that exact sequence.
1274 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1275 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1276 if (err_mask) {
1277 rc = -EIO;
1278 reason = "INIT_DEV_PARAMS failed";
1279 goto err_out;
1282 /* current CHS translation info (id[53-58]) might be
1283 * changed. reread the identify device info.
1285 post_reset = 0;
1286 goto retry;
1290 *p_class = class;
1292 return 0;
1294 err_out:
1295 if (ata_msg_warn(ap))
1296 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1297 "(%s, err_mask=0x%x)\n", reason, err_mask);
1298 return rc;
1301 static inline u8 ata_dev_knobble(struct ata_device *dev)
1303 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1306 static void ata_dev_config_ncq(struct ata_device *dev,
1307 char *desc, size_t desc_sz)
1309 struct ata_port *ap = dev->ap;
1310 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1312 if (!ata_id_has_ncq(dev->id)) {
1313 desc[0] = '\0';
1314 return;
1317 if (ap->flags & ATA_FLAG_NCQ) {
1318 hdepth = min(ap->host->can_queue, ATA_MAX_QUEUE - 1);
1319 dev->flags |= ATA_DFLAG_NCQ;
1322 if (hdepth >= ddepth)
1323 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1324 else
1325 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1328 static void ata_set_port_max_cmd_len(struct ata_port *ap)
1330 int i;
1332 if (ap->host) {
1333 ap->host->max_cmd_len = 0;
1334 for (i = 0; i < ATA_MAX_DEVICES; i++)
1335 ap->host->max_cmd_len = max_t(unsigned int,
1336 ap->host->max_cmd_len,
1337 ap->device[i].cdb_len);
1342 * ata_dev_configure - Configure the specified ATA/ATAPI device
1343 * @dev: Target device to configure
1344 * @print_info: Enable device info printout
1346 * Configure @dev according to @dev->id. Generic and low-level
1347 * driver specific fixups are also applied.
1349 * LOCKING:
1350 * Kernel thread context (may sleep)
1352 * RETURNS:
1353 * 0 on success, -errno otherwise
1355 int ata_dev_configure(struct ata_device *dev, int print_info)
1357 struct ata_port *ap = dev->ap;
1358 const u16 *id = dev->id;
1359 unsigned int xfer_mask;
1360 int rc;
1362 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1363 ata_dev_printk(dev, KERN_INFO,
1364 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1365 __FUNCTION__, ap->id, dev->devno);
1366 return 0;
1369 if (ata_msg_probe(ap))
1370 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1371 __FUNCTION__, ap->id, dev->devno);
1373 /* print device capabilities */
1374 if (ata_msg_probe(ap))
1375 ata_dev_printk(dev, KERN_DEBUG,
1376 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1377 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1378 __FUNCTION__,
1379 id[49], id[82], id[83], id[84],
1380 id[85], id[86], id[87], id[88]);
1382 /* initialize to-be-configured parameters */
1383 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1384 dev->max_sectors = 0;
1385 dev->cdb_len = 0;
1386 dev->n_sectors = 0;
1387 dev->cylinders = 0;
1388 dev->heads = 0;
1389 dev->sectors = 0;
1392 * common ATA, ATAPI feature tests
1395 /* find max transfer mode; for printk only */
1396 xfer_mask = ata_id_xfermask(id);
1398 if (ata_msg_probe(ap))
1399 ata_dump_id(id);
1401 /* ATA-specific feature tests */
1402 if (dev->class == ATA_DEV_ATA) {
1403 dev->n_sectors = ata_id_n_sectors(id);
1405 if (ata_id_has_lba(id)) {
1406 const char *lba_desc;
1407 char ncq_desc[20];
1409 lba_desc = "LBA";
1410 dev->flags |= ATA_DFLAG_LBA;
1411 if (ata_id_has_lba48(id)) {
1412 dev->flags |= ATA_DFLAG_LBA48;
1413 lba_desc = "LBA48";
1416 /* config NCQ */
1417 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1419 /* print device info to dmesg */
1420 if (ata_msg_info(ap))
1421 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1422 "max %s, %Lu sectors: %s %s\n",
1423 ata_id_major_version(id),
1424 ata_mode_string(xfer_mask),
1425 (unsigned long long)dev->n_sectors,
1426 lba_desc, ncq_desc);
1427 } else {
1428 /* CHS */
1430 /* Default translation */
1431 dev->cylinders = id[1];
1432 dev->heads = id[3];
1433 dev->sectors = id[6];
1435 if (ata_id_current_chs_valid(id)) {
1436 /* Current CHS translation is valid. */
1437 dev->cylinders = id[54];
1438 dev->heads = id[55];
1439 dev->sectors = id[56];
1442 /* print device info to dmesg */
1443 if (ata_msg_info(ap))
1444 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1445 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1446 ata_id_major_version(id),
1447 ata_mode_string(xfer_mask),
1448 (unsigned long long)dev->n_sectors,
1449 dev->cylinders, dev->heads,
1450 dev->sectors);
1453 if (dev->id[59] & 0x100) {
1454 dev->multi_count = dev->id[59] & 0xff;
1455 if (ata_msg_info(ap))
1456 ata_dev_printk(dev, KERN_INFO,
1457 "ata%u: dev %u multi count %u\n",
1458 ap->id, dev->devno, dev->multi_count);
1461 dev->cdb_len = 16;
1464 /* ATAPI-specific feature tests */
1465 else if (dev->class == ATA_DEV_ATAPI) {
1466 char *cdb_intr_string = "";
1468 rc = atapi_cdb_len(id);
1469 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1470 if (ata_msg_warn(ap))
1471 ata_dev_printk(dev, KERN_WARNING,
1472 "unsupported CDB len\n");
1473 rc = -EINVAL;
1474 goto err_out_nosup;
1476 dev->cdb_len = (unsigned int) rc;
1478 if (ata_id_cdb_intr(dev->id)) {
1479 dev->flags |= ATA_DFLAG_CDB_INTR;
1480 cdb_intr_string = ", CDB intr";
1483 /* print device info to dmesg */
1484 if (ata_msg_info(ap))
1485 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1486 ata_mode_string(xfer_mask),
1487 cdb_intr_string);
1490 ata_set_port_max_cmd_len(ap);
1492 /* limit bridge transfers to udma5, 200 sectors */
1493 if (ata_dev_knobble(dev)) {
1494 if (ata_msg_info(ap))
1495 ata_dev_printk(dev, KERN_INFO,
1496 "applying bridge limits\n");
1497 dev->udma_mask &= ATA_UDMA5;
1498 dev->max_sectors = ATA_MAX_SECTORS;
1501 if (ap->ops->dev_config)
1502 ap->ops->dev_config(ap, dev);
1504 if (ata_msg_probe(ap))
1505 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1506 __FUNCTION__, ata_chk_status(ap));
1507 return 0;
1509 err_out_nosup:
1510 if (ata_msg_probe(ap))
1511 ata_dev_printk(dev, KERN_DEBUG,
1512 "%s: EXIT, err\n", __FUNCTION__);
1513 return rc;
1517 * ata_bus_probe - Reset and probe ATA bus
1518 * @ap: Bus to probe
1520 * Master ATA bus probing function. Initiates a hardware-dependent
1521 * bus reset, then attempts to identify any devices found on
1522 * the bus.
1524 * LOCKING:
1525 * PCI/etc. bus probe sem.
1527 * RETURNS:
1528 * Zero on success, negative errno otherwise.
1531 static int ata_bus_probe(struct ata_port *ap)
1533 unsigned int classes[ATA_MAX_DEVICES];
1534 int tries[ATA_MAX_DEVICES];
1535 int i, rc, down_xfermask;
1536 struct ata_device *dev;
1538 ata_port_probe(ap);
1540 for (i = 0; i < ATA_MAX_DEVICES; i++)
1541 tries[i] = ATA_PROBE_MAX_TRIES;
1543 retry:
1544 down_xfermask = 0;
1546 /* reset and determine device classes */
1547 ap->ops->phy_reset(ap);
1549 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1550 dev = &ap->device[i];
1552 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1553 dev->class != ATA_DEV_UNKNOWN)
1554 classes[dev->devno] = dev->class;
1555 else
1556 classes[dev->devno] = ATA_DEV_NONE;
1558 dev->class = ATA_DEV_UNKNOWN;
1561 ata_port_probe(ap);
1563 /* after the reset the device state is PIO 0 and the controller
1564 state is undefined. Record the mode */
1566 for (i = 0; i < ATA_MAX_DEVICES; i++)
1567 ap->device[i].pio_mode = XFER_PIO_0;
1569 /* read IDENTIFY page and configure devices */
1570 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1571 dev = &ap->device[i];
1573 if (tries[i])
1574 dev->class = classes[i];
1576 if (!ata_dev_enabled(dev))
1577 continue;
1579 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
1580 if (rc)
1581 goto fail;
1583 rc = ata_dev_configure(dev, 1);
1584 if (rc)
1585 goto fail;
1588 /* configure transfer mode */
1589 rc = ata_set_mode(ap, &dev);
1590 if (rc) {
1591 down_xfermask = 1;
1592 goto fail;
1595 for (i = 0; i < ATA_MAX_DEVICES; i++)
1596 if (ata_dev_enabled(&ap->device[i]))
1597 return 0;
1599 /* no device present, disable port */
1600 ata_port_disable(ap);
1601 ap->ops->port_disable(ap);
1602 return -ENODEV;
1604 fail:
1605 switch (rc) {
1606 case -EINVAL:
1607 case -ENODEV:
1608 tries[dev->devno] = 0;
1609 break;
1610 case -EIO:
1611 sata_down_spd_limit(ap);
1612 /* fall through */
1613 default:
1614 tries[dev->devno]--;
1615 if (down_xfermask &&
1616 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1617 tries[dev->devno] = 0;
1620 if (!tries[dev->devno]) {
1621 ata_down_xfermask_limit(dev, 1);
1622 ata_dev_disable(dev);
1625 goto retry;
1629 * ata_port_probe - Mark port as enabled
1630 * @ap: Port for which we indicate enablement
1632 * Modify @ap data structure such that the system
1633 * thinks that the entire port is enabled.
1635 * LOCKING: host_set lock, or some other form of
1636 * serialization.
1639 void ata_port_probe(struct ata_port *ap)
1641 ap->flags &= ~ATA_FLAG_DISABLED;
1645 * sata_print_link_status - Print SATA link status
1646 * @ap: SATA port to printk link status about
1648 * This function prints link speed and status of a SATA link.
1650 * LOCKING:
1651 * None.
1653 static void sata_print_link_status(struct ata_port *ap)
1655 u32 sstatus, scontrol, tmp;
1657 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1658 return;
1659 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1661 if (ata_port_online(ap)) {
1662 tmp = (sstatus >> 4) & 0xf;
1663 ata_port_printk(ap, KERN_INFO,
1664 "SATA link up %s (SStatus %X SControl %X)\n",
1665 sata_spd_string(tmp), sstatus, scontrol);
1666 } else {
1667 ata_port_printk(ap, KERN_INFO,
1668 "SATA link down (SStatus %X SControl %X)\n",
1669 sstatus, scontrol);
1674 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1675 * @ap: SATA port associated with target SATA PHY.
1677 * This function issues commands to standard SATA Sxxx
1678 * PHY registers, to wake up the phy (and device), and
1679 * clear any reset condition.
1681 * LOCKING:
1682 * PCI/etc. bus probe sem.
1685 void __sata_phy_reset(struct ata_port *ap)
1687 u32 sstatus;
1688 unsigned long timeout = jiffies + (HZ * 5);
1690 if (ap->flags & ATA_FLAG_SATA_RESET) {
1691 /* issue phy wake/reset */
1692 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1693 /* Couldn't find anything in SATA I/II specs, but
1694 * AHCI-1.1 10.4.2 says at least 1 ms. */
1695 mdelay(1);
1697 /* phy wake/clear reset */
1698 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1700 /* wait for phy to become ready, if necessary */
1701 do {
1702 msleep(200);
1703 sata_scr_read(ap, SCR_STATUS, &sstatus);
1704 if ((sstatus & 0xf) != 1)
1705 break;
1706 } while (time_before(jiffies, timeout));
1708 /* print link status */
1709 sata_print_link_status(ap);
1711 /* TODO: phy layer with polling, timeouts, etc. */
1712 if (!ata_port_offline(ap))
1713 ata_port_probe(ap);
1714 else
1715 ata_port_disable(ap);
1717 if (ap->flags & ATA_FLAG_DISABLED)
1718 return;
1720 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1721 ata_port_disable(ap);
1722 return;
1725 ap->cbl = ATA_CBL_SATA;
1729 * sata_phy_reset - Reset SATA bus.
1730 * @ap: SATA port associated with target SATA PHY.
1732 * This function resets the SATA bus, and then probes
1733 * the bus for devices.
1735 * LOCKING:
1736 * PCI/etc. bus probe sem.
1739 void sata_phy_reset(struct ata_port *ap)
1741 __sata_phy_reset(ap);
1742 if (ap->flags & ATA_FLAG_DISABLED)
1743 return;
1744 ata_bus_reset(ap);
1748 * ata_dev_pair - return other device on cable
1749 * @adev: device
1751 * Obtain the other device on the same cable, or if none is
1752 * present NULL is returned
1755 struct ata_device *ata_dev_pair(struct ata_device *adev)
1757 struct ata_port *ap = adev->ap;
1758 struct ata_device *pair = &ap->device[1 - adev->devno];
1759 if (!ata_dev_enabled(pair))
1760 return NULL;
1761 return pair;
1765 * ata_port_disable - Disable port.
1766 * @ap: Port to be disabled.
1768 * Modify @ap data structure such that the system
1769 * thinks that the entire port is disabled, and should
1770 * never attempt to probe or communicate with devices
1771 * on this port.
1773 * LOCKING: host_set lock, or some other form of
1774 * serialization.
1777 void ata_port_disable(struct ata_port *ap)
1779 ap->device[0].class = ATA_DEV_NONE;
1780 ap->device[1].class = ATA_DEV_NONE;
1781 ap->flags |= ATA_FLAG_DISABLED;
1785 * sata_down_spd_limit - adjust SATA spd limit downward
1786 * @ap: Port to adjust SATA spd limit for
1788 * Adjust SATA spd limit of @ap downward. Note that this
1789 * function only adjusts the limit. The change must be applied
1790 * using sata_set_spd().
1792 * LOCKING:
1793 * Inherited from caller.
1795 * RETURNS:
1796 * 0 on success, negative errno on failure
1798 int sata_down_spd_limit(struct ata_port *ap)
1800 u32 sstatus, spd, mask;
1801 int rc, highbit;
1803 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1804 if (rc)
1805 return rc;
1807 mask = ap->sata_spd_limit;
1808 if (mask <= 1)
1809 return -EINVAL;
1810 highbit = fls(mask) - 1;
1811 mask &= ~(1 << highbit);
1813 spd = (sstatus >> 4) & 0xf;
1814 if (spd <= 1)
1815 return -EINVAL;
1816 spd--;
1817 mask &= (1 << spd) - 1;
1818 if (!mask)
1819 return -EINVAL;
1821 ap->sata_spd_limit = mask;
1823 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1824 sata_spd_string(fls(mask)));
1826 return 0;
1829 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1831 u32 spd, limit;
1833 if (ap->sata_spd_limit == UINT_MAX)
1834 limit = 0;
1835 else
1836 limit = fls(ap->sata_spd_limit);
1838 spd = (*scontrol >> 4) & 0xf;
1839 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1841 return spd != limit;
1845 * sata_set_spd_needed - is SATA spd configuration needed
1846 * @ap: Port in question
1848 * Test whether the spd limit in SControl matches
1849 * @ap->sata_spd_limit. This function is used to determine
1850 * whether hardreset is necessary to apply SATA spd
1851 * configuration.
1853 * LOCKING:
1854 * Inherited from caller.
1856 * RETURNS:
1857 * 1 if SATA spd configuration is needed, 0 otherwise.
1859 int sata_set_spd_needed(struct ata_port *ap)
1861 u32 scontrol;
1863 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1864 return 0;
1866 return __sata_set_spd_needed(ap, &scontrol);
1870 * sata_set_spd - set SATA spd according to spd limit
1871 * @ap: Port to set SATA spd for
1873 * Set SATA spd of @ap according to sata_spd_limit.
1875 * LOCKING:
1876 * Inherited from caller.
1878 * RETURNS:
1879 * 0 if spd doesn't need to be changed, 1 if spd has been
1880 * changed. Negative errno if SCR registers are inaccessible.
1882 int sata_set_spd(struct ata_port *ap)
1884 u32 scontrol;
1885 int rc;
1887 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1888 return rc;
1890 if (!__sata_set_spd_needed(ap, &scontrol))
1891 return 0;
1893 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1894 return rc;
1896 return 1;
1900 * This mode timing computation functionality is ported over from
1901 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1904 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1905 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1906 * for PIO 5, which is a nonstandard extension and UDMA6, which
1907 * is currently supported only by Maxtor drives.
1910 static const struct ata_timing ata_timing[] = {
1912 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1913 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1914 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1915 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1917 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1918 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1919 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1921 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1923 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1924 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1925 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1927 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1928 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1929 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1931 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1932 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1933 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1935 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1936 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1937 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1939 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1941 { 0xFF }
1944 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1945 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1947 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1949 q->setup = EZ(t->setup * 1000, T);
1950 q->act8b = EZ(t->act8b * 1000, T);
1951 q->rec8b = EZ(t->rec8b * 1000, T);
1952 q->cyc8b = EZ(t->cyc8b * 1000, T);
1953 q->active = EZ(t->active * 1000, T);
1954 q->recover = EZ(t->recover * 1000, T);
1955 q->cycle = EZ(t->cycle * 1000, T);
1956 q->udma = EZ(t->udma * 1000, UT);
1959 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1960 struct ata_timing *m, unsigned int what)
1962 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1963 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1964 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1965 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1966 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1967 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1968 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1969 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1972 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1974 const struct ata_timing *t;
1976 for (t = ata_timing; t->mode != speed; t++)
1977 if (t->mode == 0xFF)
1978 return NULL;
1979 return t;
1982 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1983 struct ata_timing *t, int T, int UT)
1985 const struct ata_timing *s;
1986 struct ata_timing p;
1989 * Find the mode.
1992 if (!(s = ata_timing_find_mode(speed)))
1993 return -EINVAL;
1995 memcpy(t, s, sizeof(*s));
1998 * If the drive is an EIDE drive, it can tell us it needs extended
1999 * PIO/MW_DMA cycle timing.
2002 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2003 memset(&p, 0, sizeof(p));
2004 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2005 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2006 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2007 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2008 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2010 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2014 * Convert the timing to bus clock counts.
2017 ata_timing_quantize(t, t, T, UT);
2020 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2021 * S.M.A.R.T * and some other commands. We have to ensure that the
2022 * DMA cycle timing is slower/equal than the fastest PIO timing.
2025 if (speed > XFER_PIO_4) {
2026 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2027 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2031 * Lengthen active & recovery time so that cycle time is correct.
2034 if (t->act8b + t->rec8b < t->cyc8b) {
2035 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2036 t->rec8b = t->cyc8b - t->act8b;
2039 if (t->active + t->recover < t->cycle) {
2040 t->active += (t->cycle - (t->active + t->recover)) / 2;
2041 t->recover = t->cycle - t->active;
2044 return 0;
2048 * ata_down_xfermask_limit - adjust dev xfer masks downward
2049 * @dev: Device to adjust xfer masks
2050 * @force_pio0: Force PIO0
2052 * Adjust xfer masks of @dev downward. Note that this function
2053 * does not apply the change. Invoking ata_set_mode() afterwards
2054 * will apply the limit.
2056 * LOCKING:
2057 * Inherited from caller.
2059 * RETURNS:
2060 * 0 on success, negative errno on failure
2062 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
2064 unsigned long xfer_mask;
2065 int highbit;
2067 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2068 dev->udma_mask);
2070 if (!xfer_mask)
2071 goto fail;
2072 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2073 if (xfer_mask & ATA_MASK_UDMA)
2074 xfer_mask &= ~ATA_MASK_MWDMA;
2076 highbit = fls(xfer_mask) - 1;
2077 xfer_mask &= ~(1 << highbit);
2078 if (force_pio0)
2079 xfer_mask &= 1 << ATA_SHIFT_PIO;
2080 if (!xfer_mask)
2081 goto fail;
2083 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2084 &dev->udma_mask);
2086 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2087 ata_mode_string(xfer_mask));
2089 return 0;
2091 fail:
2092 return -EINVAL;
2095 static int ata_dev_set_mode(struct ata_device *dev)
2097 unsigned int err_mask;
2098 int rc;
2100 dev->flags &= ~ATA_DFLAG_PIO;
2101 if (dev->xfer_shift == ATA_SHIFT_PIO)
2102 dev->flags |= ATA_DFLAG_PIO;
2104 err_mask = ata_dev_set_xfermode(dev);
2105 if (err_mask) {
2106 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2107 "(err_mask=0x%x)\n", err_mask);
2108 return -EIO;
2111 rc = ata_dev_revalidate(dev, 0);
2112 if (rc)
2113 return rc;
2115 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2116 dev->xfer_shift, (int)dev->xfer_mode);
2118 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2119 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2120 return 0;
2124 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2125 * @ap: port on which timings will be programmed
2126 * @r_failed_dev: out paramter for failed device
2128 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2129 * ata_set_mode() fails, pointer to the failing device is
2130 * returned in @r_failed_dev.
2132 * LOCKING:
2133 * PCI/etc. bus probe sem.
2135 * RETURNS:
2136 * 0 on success, negative errno otherwise
2138 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2140 struct ata_device *dev;
2141 int i, rc = 0, used_dma = 0, found = 0;
2143 /* has private set_mode? */
2144 if (ap->ops->set_mode) {
2145 /* FIXME: make ->set_mode handle no device case and
2146 * return error code and failing device on failure.
2148 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2149 if (ata_dev_enabled(&ap->device[i])) {
2150 ap->ops->set_mode(ap);
2151 break;
2154 return 0;
2157 /* step 1: calculate xfer_mask */
2158 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2159 unsigned int pio_mask, dma_mask;
2161 dev = &ap->device[i];
2163 if (!ata_dev_enabled(dev))
2164 continue;
2166 ata_dev_xfermask(dev);
2168 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2169 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2170 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2171 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2173 found = 1;
2174 if (dev->dma_mode)
2175 used_dma = 1;
2177 if (!found)
2178 goto out;
2180 /* step 2: always set host PIO timings */
2181 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2182 dev = &ap->device[i];
2183 if (!ata_dev_enabled(dev))
2184 continue;
2186 if (!dev->pio_mode) {
2187 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2188 rc = -EINVAL;
2189 goto out;
2192 dev->xfer_mode = dev->pio_mode;
2193 dev->xfer_shift = ATA_SHIFT_PIO;
2194 if (ap->ops->set_piomode)
2195 ap->ops->set_piomode(ap, dev);
2198 /* step 3: set host DMA timings */
2199 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2200 dev = &ap->device[i];
2202 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2203 continue;
2205 dev->xfer_mode = dev->dma_mode;
2206 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2207 if (ap->ops->set_dmamode)
2208 ap->ops->set_dmamode(ap, dev);
2211 /* step 4: update devices' xfer mode */
2212 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2213 dev = &ap->device[i];
2215 if (!ata_dev_enabled(dev))
2216 continue;
2218 rc = ata_dev_set_mode(dev);
2219 if (rc)
2220 goto out;
2223 /* Record simplex status. If we selected DMA then the other
2224 * host channels are not permitted to do so.
2226 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2227 ap->host_set->simplex_claimed = 1;
2229 /* step5: chip specific finalisation */
2230 if (ap->ops->post_set_mode)
2231 ap->ops->post_set_mode(ap);
2233 out:
2234 if (rc)
2235 *r_failed_dev = dev;
2236 return rc;
2240 * ata_tf_to_host - issue ATA taskfile to host controller
2241 * @ap: port to which command is being issued
2242 * @tf: ATA taskfile register set
2244 * Issues ATA taskfile register set to ATA host controller,
2245 * with proper synchronization with interrupt handler and
2246 * other threads.
2248 * LOCKING:
2249 * spin_lock_irqsave(host_set lock)
2252 static inline void ata_tf_to_host(struct ata_port *ap,
2253 const struct ata_taskfile *tf)
2255 ap->ops->tf_load(ap, tf);
2256 ap->ops->exec_command(ap, tf);
2260 * ata_busy_sleep - sleep until BSY clears, or timeout
2261 * @ap: port containing status register to be polled
2262 * @tmout_pat: impatience timeout
2263 * @tmout: overall timeout
2265 * Sleep until ATA Status register bit BSY clears,
2266 * or a timeout occurs.
2268 * LOCKING: None.
2271 unsigned int ata_busy_sleep (struct ata_port *ap,
2272 unsigned long tmout_pat, unsigned long tmout)
2274 unsigned long timer_start, timeout;
2275 u8 status;
2277 status = ata_busy_wait(ap, ATA_BUSY, 300);
2278 timer_start = jiffies;
2279 timeout = timer_start + tmout_pat;
2280 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2281 msleep(50);
2282 status = ata_busy_wait(ap, ATA_BUSY, 3);
2285 if (status & ATA_BUSY)
2286 ata_port_printk(ap, KERN_WARNING,
2287 "port is slow to respond, please be patient\n");
2289 timeout = timer_start + tmout;
2290 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2291 msleep(50);
2292 status = ata_chk_status(ap);
2295 if (status & ATA_BUSY) {
2296 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2297 "(%lu secs)\n", tmout / HZ);
2298 return 1;
2301 return 0;
2304 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2306 struct ata_ioports *ioaddr = &ap->ioaddr;
2307 unsigned int dev0 = devmask & (1 << 0);
2308 unsigned int dev1 = devmask & (1 << 1);
2309 unsigned long timeout;
2311 /* if device 0 was found in ata_devchk, wait for its
2312 * BSY bit to clear
2314 if (dev0)
2315 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2317 /* if device 1 was found in ata_devchk, wait for
2318 * register access, then wait for BSY to clear
2320 timeout = jiffies + ATA_TMOUT_BOOT;
2321 while (dev1) {
2322 u8 nsect, lbal;
2324 ap->ops->dev_select(ap, 1);
2325 if (ap->flags & ATA_FLAG_MMIO) {
2326 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2327 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2328 } else {
2329 nsect = inb(ioaddr->nsect_addr);
2330 lbal = inb(ioaddr->lbal_addr);
2332 if ((nsect == 1) && (lbal == 1))
2333 break;
2334 if (time_after(jiffies, timeout)) {
2335 dev1 = 0;
2336 break;
2338 msleep(50); /* give drive a breather */
2340 if (dev1)
2341 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2343 /* is all this really necessary? */
2344 ap->ops->dev_select(ap, 0);
2345 if (dev1)
2346 ap->ops->dev_select(ap, 1);
2347 if (dev0)
2348 ap->ops->dev_select(ap, 0);
2351 static unsigned int ata_bus_softreset(struct ata_port *ap,
2352 unsigned int devmask)
2354 struct ata_ioports *ioaddr = &ap->ioaddr;
2356 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2358 /* software reset. causes dev0 to be selected */
2359 if (ap->flags & ATA_FLAG_MMIO) {
2360 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2361 udelay(20); /* FIXME: flush */
2362 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2363 udelay(20); /* FIXME: flush */
2364 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2365 } else {
2366 outb(ap->ctl, ioaddr->ctl_addr);
2367 udelay(10);
2368 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2369 udelay(10);
2370 outb(ap->ctl, ioaddr->ctl_addr);
2373 /* spec mandates ">= 2ms" before checking status.
2374 * We wait 150ms, because that was the magic delay used for
2375 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2376 * between when the ATA command register is written, and then
2377 * status is checked. Because waiting for "a while" before
2378 * checking status is fine, post SRST, we perform this magic
2379 * delay here as well.
2381 * Old drivers/ide uses the 2mS rule and then waits for ready
2383 msleep(150);
2385 /* Before we perform post reset processing we want to see if
2386 * the bus shows 0xFF because the odd clown forgets the D7
2387 * pulldown resistor.
2389 if (ata_check_status(ap) == 0xFF) {
2390 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
2391 return AC_ERR_OTHER;
2394 ata_bus_post_reset(ap, devmask);
2396 return 0;
2400 * ata_bus_reset - reset host port and associated ATA channel
2401 * @ap: port to reset
2403 * This is typically the first time we actually start issuing
2404 * commands to the ATA channel. We wait for BSY to clear, then
2405 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2406 * result. Determine what devices, if any, are on the channel
2407 * by looking at the device 0/1 error register. Look at the signature
2408 * stored in each device's taskfile registers, to determine if
2409 * the device is ATA or ATAPI.
2411 * LOCKING:
2412 * PCI/etc. bus probe sem.
2413 * Obtains host_set lock.
2415 * SIDE EFFECTS:
2416 * Sets ATA_FLAG_DISABLED if bus reset fails.
2419 void ata_bus_reset(struct ata_port *ap)
2421 struct ata_ioports *ioaddr = &ap->ioaddr;
2422 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2423 u8 err;
2424 unsigned int dev0, dev1 = 0, devmask = 0;
2426 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2428 /* determine if device 0/1 are present */
2429 if (ap->flags & ATA_FLAG_SATA_RESET)
2430 dev0 = 1;
2431 else {
2432 dev0 = ata_devchk(ap, 0);
2433 if (slave_possible)
2434 dev1 = ata_devchk(ap, 1);
2437 if (dev0)
2438 devmask |= (1 << 0);
2439 if (dev1)
2440 devmask |= (1 << 1);
2442 /* select device 0 again */
2443 ap->ops->dev_select(ap, 0);
2445 /* issue bus reset */
2446 if (ap->flags & ATA_FLAG_SRST)
2447 if (ata_bus_softreset(ap, devmask))
2448 goto err_out;
2451 * determine by signature whether we have ATA or ATAPI devices
2453 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2454 if ((slave_possible) && (err != 0x81))
2455 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2457 /* re-enable interrupts */
2458 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2459 ata_irq_on(ap);
2461 /* is double-select really necessary? */
2462 if (ap->device[1].class != ATA_DEV_NONE)
2463 ap->ops->dev_select(ap, 1);
2464 if (ap->device[0].class != ATA_DEV_NONE)
2465 ap->ops->dev_select(ap, 0);
2467 /* if no devices were detected, disable this port */
2468 if ((ap->device[0].class == ATA_DEV_NONE) &&
2469 (ap->device[1].class == ATA_DEV_NONE))
2470 goto err_out;
2472 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2473 /* set up device control for ATA_FLAG_SATA_RESET */
2474 if (ap->flags & ATA_FLAG_MMIO)
2475 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2476 else
2477 outb(ap->ctl, ioaddr->ctl_addr);
2480 DPRINTK("EXIT\n");
2481 return;
2483 err_out:
2484 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2485 ap->ops->port_disable(ap);
2487 DPRINTK("EXIT\n");
2491 * sata_phy_debounce - debounce SATA phy status
2492 * @ap: ATA port to debounce SATA phy status for
2493 * @params: timing parameters { interval, duratinon, timeout } in msec
2495 * Make sure SStatus of @ap reaches stable state, determined by
2496 * holding the same value where DET is not 1 for @duration polled
2497 * every @interval, before @timeout. Timeout constraints the
2498 * beginning of the stable state. Because, after hot unplugging,
2499 * DET gets stuck at 1 on some controllers, this functions waits
2500 * until timeout then returns 0 if DET is stable at 1.
2502 * LOCKING:
2503 * Kernel thread context (may sleep)
2505 * RETURNS:
2506 * 0 on success, -errno on failure.
2508 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2510 unsigned long interval_msec = params[0];
2511 unsigned long duration = params[1] * HZ / 1000;
2512 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2513 unsigned long last_jiffies;
2514 u32 last, cur;
2515 int rc;
2517 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2518 return rc;
2519 cur &= 0xf;
2521 last = cur;
2522 last_jiffies = jiffies;
2524 while (1) {
2525 msleep(interval_msec);
2526 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2527 return rc;
2528 cur &= 0xf;
2530 /* DET stable? */
2531 if (cur == last) {
2532 if (cur == 1 && time_before(jiffies, timeout))
2533 continue;
2534 if (time_after(jiffies, last_jiffies + duration))
2535 return 0;
2536 continue;
2539 /* unstable, start over */
2540 last = cur;
2541 last_jiffies = jiffies;
2543 /* check timeout */
2544 if (time_after(jiffies, timeout))
2545 return -EBUSY;
2550 * sata_phy_resume - resume SATA phy
2551 * @ap: ATA port to resume SATA phy for
2552 * @params: timing parameters { interval, duratinon, timeout } in msec
2554 * Resume SATA phy of @ap and debounce it.
2556 * LOCKING:
2557 * Kernel thread context (may sleep)
2559 * RETURNS:
2560 * 0 on success, -errno on failure.
2562 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2564 u32 scontrol;
2565 int rc;
2567 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2568 return rc;
2570 scontrol = (scontrol & 0x0f0) | 0x300;
2572 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2573 return rc;
2575 /* Some PHYs react badly if SStatus is pounded immediately
2576 * after resuming. Delay 200ms before debouncing.
2578 msleep(200);
2580 return sata_phy_debounce(ap, params);
2583 static void ata_wait_spinup(struct ata_port *ap)
2585 struct ata_eh_context *ehc = &ap->eh_context;
2586 unsigned long end, secs;
2587 int rc;
2589 /* first, debounce phy if SATA */
2590 if (ap->cbl == ATA_CBL_SATA) {
2591 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
2593 /* if debounced successfully and offline, no need to wait */
2594 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2595 return;
2598 /* okay, let's give the drive time to spin up */
2599 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2600 secs = ((end - jiffies) + HZ - 1) / HZ;
2602 if (time_after(jiffies, end))
2603 return;
2605 if (secs > 5)
2606 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2607 "(%lu secs)\n", secs);
2609 schedule_timeout_uninterruptible(end - jiffies);
2613 * ata_std_prereset - prepare for reset
2614 * @ap: ATA port to be reset
2616 * @ap is about to be reset. Initialize it.
2618 * LOCKING:
2619 * Kernel thread context (may sleep)
2621 * RETURNS:
2622 * 0 on success, -errno otherwise.
2624 int ata_std_prereset(struct ata_port *ap)
2626 struct ata_eh_context *ehc = &ap->eh_context;
2627 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2628 int rc;
2630 /* handle link resume & hotplug spinup */
2631 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2632 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2633 ehc->i.action |= ATA_EH_HARDRESET;
2635 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2636 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2637 ata_wait_spinup(ap);
2639 /* if we're about to do hardreset, nothing more to do */
2640 if (ehc->i.action & ATA_EH_HARDRESET)
2641 return 0;
2643 /* if SATA, resume phy */
2644 if (ap->cbl == ATA_CBL_SATA) {
2645 rc = sata_phy_resume(ap, timing);
2646 if (rc && rc != -EOPNOTSUPP) {
2647 /* phy resume failed */
2648 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2649 "link for reset (errno=%d)\n", rc);
2650 return rc;
2654 /* Wait for !BSY if the controller can wait for the first D2H
2655 * Reg FIS and we don't know that no device is attached.
2657 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2658 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2660 return 0;
2664 * ata_std_softreset - reset host port via ATA SRST
2665 * @ap: port to reset
2666 * @classes: resulting classes of attached devices
2668 * Reset host port using ATA SRST.
2670 * LOCKING:
2671 * Kernel thread context (may sleep)
2673 * RETURNS:
2674 * 0 on success, -errno otherwise.
2676 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2678 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2679 unsigned int devmask = 0, err_mask;
2680 u8 err;
2682 DPRINTK("ENTER\n");
2684 if (ata_port_offline(ap)) {
2685 classes[0] = ATA_DEV_NONE;
2686 goto out;
2689 /* determine if device 0/1 are present */
2690 if (ata_devchk(ap, 0))
2691 devmask |= (1 << 0);
2692 if (slave_possible && ata_devchk(ap, 1))
2693 devmask |= (1 << 1);
2695 /* select device 0 again */
2696 ap->ops->dev_select(ap, 0);
2698 /* issue bus reset */
2699 DPRINTK("about to softreset, devmask=%x\n", devmask);
2700 err_mask = ata_bus_softreset(ap, devmask);
2701 if (err_mask) {
2702 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2703 err_mask);
2704 return -EIO;
2707 /* determine by signature whether we have ATA or ATAPI devices */
2708 classes[0] = ata_dev_try_classify(ap, 0, &err);
2709 if (slave_possible && err != 0x81)
2710 classes[1] = ata_dev_try_classify(ap, 1, &err);
2712 out:
2713 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2714 return 0;
2718 * sata_std_hardreset - reset host port via SATA phy reset
2719 * @ap: port to reset
2720 * @class: resulting class of attached device
2722 * SATA phy-reset host port using DET bits of SControl register.
2724 * LOCKING:
2725 * Kernel thread context (may sleep)
2727 * RETURNS:
2728 * 0 on success, -errno otherwise.
2730 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2732 struct ata_eh_context *ehc = &ap->eh_context;
2733 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2734 u32 scontrol;
2735 int rc;
2737 DPRINTK("ENTER\n");
2739 if (sata_set_spd_needed(ap)) {
2740 /* SATA spec says nothing about how to reconfigure
2741 * spd. To be on the safe side, turn off phy during
2742 * reconfiguration. This works for at least ICH7 AHCI
2743 * and Sil3124.
2745 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2746 return rc;
2748 scontrol = (scontrol & 0x0f0) | 0x302;
2750 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2751 return rc;
2753 sata_set_spd(ap);
2756 /* issue phy wake/reset */
2757 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2758 return rc;
2760 scontrol = (scontrol & 0x0f0) | 0x301;
2762 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2763 return rc;
2765 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2766 * 10.4.2 says at least 1 ms.
2768 msleep(1);
2770 /* bring phy back */
2771 sata_phy_resume(ap, timing);
2773 /* TODO: phy layer with polling, timeouts, etc. */
2774 if (ata_port_offline(ap)) {
2775 *class = ATA_DEV_NONE;
2776 DPRINTK("EXIT, link offline\n");
2777 return 0;
2780 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2781 ata_port_printk(ap, KERN_ERR,
2782 "COMRESET failed (device not ready)\n");
2783 return -EIO;
2786 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2788 *class = ata_dev_try_classify(ap, 0, NULL);
2790 DPRINTK("EXIT, class=%u\n", *class);
2791 return 0;
2795 * ata_std_postreset - standard postreset callback
2796 * @ap: the target ata_port
2797 * @classes: classes of attached devices
2799 * This function is invoked after a successful reset. Note that
2800 * the device might have been reset more than once using
2801 * different reset methods before postreset is invoked.
2803 * LOCKING:
2804 * Kernel thread context (may sleep)
2806 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2808 u32 serror;
2810 DPRINTK("ENTER\n");
2812 /* print link status */
2813 sata_print_link_status(ap);
2815 /* clear SError */
2816 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2817 sata_scr_write(ap, SCR_ERROR, serror);
2819 /* re-enable interrupts */
2820 if (!ap->ops->error_handler) {
2821 /* FIXME: hack. create a hook instead */
2822 if (ap->ioaddr.ctl_addr)
2823 ata_irq_on(ap);
2826 /* is double-select really necessary? */
2827 if (classes[0] != ATA_DEV_NONE)
2828 ap->ops->dev_select(ap, 1);
2829 if (classes[1] != ATA_DEV_NONE)
2830 ap->ops->dev_select(ap, 0);
2832 /* bail out if no device is present */
2833 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2834 DPRINTK("EXIT, no device\n");
2835 return;
2838 /* set up device control */
2839 if (ap->ioaddr.ctl_addr) {
2840 if (ap->flags & ATA_FLAG_MMIO)
2841 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2842 else
2843 outb(ap->ctl, ap->ioaddr.ctl_addr);
2846 DPRINTK("EXIT\n");
2850 * ata_dev_same_device - Determine whether new ID matches configured device
2851 * @dev: device to compare against
2852 * @new_class: class of the new device
2853 * @new_id: IDENTIFY page of the new device
2855 * Compare @new_class and @new_id against @dev and determine
2856 * whether @dev is the device indicated by @new_class and
2857 * @new_id.
2859 * LOCKING:
2860 * None.
2862 * RETURNS:
2863 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2865 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2866 const u16 *new_id)
2868 const u16 *old_id = dev->id;
2869 unsigned char model[2][41], serial[2][21];
2870 u64 new_n_sectors;
2872 if (dev->class != new_class) {
2873 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2874 dev->class, new_class);
2875 return 0;
2878 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2879 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2880 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2881 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2882 new_n_sectors = ata_id_n_sectors(new_id);
2884 if (strcmp(model[0], model[1])) {
2885 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2886 "'%s' != '%s'\n", model[0], model[1]);
2887 return 0;
2890 if (strcmp(serial[0], serial[1])) {
2891 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2892 "'%s' != '%s'\n", serial[0], serial[1]);
2893 return 0;
2896 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2897 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2898 "%llu != %llu\n",
2899 (unsigned long long)dev->n_sectors,
2900 (unsigned long long)new_n_sectors);
2901 return 0;
2904 return 1;
2908 * ata_dev_revalidate - Revalidate ATA device
2909 * @dev: device to revalidate
2910 * @post_reset: is this revalidation after reset?
2912 * Re-read IDENTIFY page and make sure @dev is still attached to
2913 * the port.
2915 * LOCKING:
2916 * Kernel thread context (may sleep)
2918 * RETURNS:
2919 * 0 on success, negative errno otherwise
2921 int ata_dev_revalidate(struct ata_device *dev, int post_reset)
2923 unsigned int class = dev->class;
2924 u16 *id = (void *)dev->ap->sector_buf;
2925 int rc;
2927 if (!ata_dev_enabled(dev)) {
2928 rc = -ENODEV;
2929 goto fail;
2932 /* read ID data */
2933 rc = ata_dev_read_id(dev, &class, post_reset, id);
2934 if (rc)
2935 goto fail;
2937 /* is the device still there? */
2938 if (!ata_dev_same_device(dev, class, id)) {
2939 rc = -ENODEV;
2940 goto fail;
2943 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
2945 /* configure device according to the new ID */
2946 rc = ata_dev_configure(dev, 0);
2947 if (rc == 0)
2948 return 0;
2950 fail:
2951 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
2952 return rc;
2955 static const char * const ata_dma_blacklist [] = {
2956 "WDC AC11000H", NULL,
2957 "WDC AC22100H", NULL,
2958 "WDC AC32500H", NULL,
2959 "WDC AC33100H", NULL,
2960 "WDC AC31600H", NULL,
2961 "WDC AC32100H", "24.09P07",
2962 "WDC AC23200L", "21.10N21",
2963 "Compaq CRD-8241B", NULL,
2964 "CRD-8400B", NULL,
2965 "CRD-8480B", NULL,
2966 "CRD-8482B", NULL,
2967 "CRD-84", NULL,
2968 "SanDisk SDP3B", NULL,
2969 "SanDisk SDP3B-64", NULL,
2970 "SANYO CD-ROM CRD", NULL,
2971 "HITACHI CDR-8", NULL,
2972 "HITACHI CDR-8335", NULL,
2973 "HITACHI CDR-8435", NULL,
2974 "Toshiba CD-ROM XM-6202B", NULL,
2975 "TOSHIBA CD-ROM XM-1702BC", NULL,
2976 "CD-532E-A", NULL,
2977 "E-IDE CD-ROM CR-840", NULL,
2978 "CD-ROM Drive/F5A", NULL,
2979 "WPI CDD-820", NULL,
2980 "SAMSUNG CD-ROM SC-148C", NULL,
2981 "SAMSUNG CD-ROM SC", NULL,
2982 "SanDisk SDP3B-64", NULL,
2983 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2984 "_NEC DV5800A", NULL,
2985 "SAMSUNG CD-ROM SN-124", "N001"
2988 static int ata_strim(char *s, size_t len)
2990 len = strnlen(s, len);
2992 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2993 while ((len > 0) && (s[len - 1] == ' ')) {
2994 len--;
2995 s[len] = 0;
2997 return len;
3000 static int ata_dma_blacklisted(const struct ata_device *dev)
3002 unsigned char model_num[40];
3003 unsigned char model_rev[16];
3004 unsigned int nlen, rlen;
3005 int i;
3007 /* We don't support polling DMA.
3008 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3009 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3011 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3012 (dev->flags & ATA_DFLAG_CDB_INTR))
3013 return 1;
3015 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3016 sizeof(model_num));
3017 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3018 sizeof(model_rev));
3019 nlen = ata_strim(model_num, sizeof(model_num));
3020 rlen = ata_strim(model_rev, sizeof(model_rev));
3022 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
3023 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
3024 if (ata_dma_blacklist[i+1] == NULL)
3025 return 1;
3026 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
3027 return 1;
3030 return 0;
3034 * ata_dev_xfermask - Compute supported xfermask of the given device
3035 * @dev: Device to compute xfermask for
3037 * Compute supported xfermask of @dev and store it in
3038 * dev->*_mask. This function is responsible for applying all
3039 * known limits including host controller limits, device
3040 * blacklist, etc...
3042 * FIXME: The current implementation limits all transfer modes to
3043 * the fastest of the lowested device on the port. This is not
3044 * required on most controllers.
3046 * LOCKING:
3047 * None.
3049 static void ata_dev_xfermask(struct ata_device *dev)
3051 struct ata_port *ap = dev->ap;
3052 struct ata_host_set *hs = ap->host_set;
3053 unsigned long xfer_mask;
3054 int i;
3056 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3057 ap->mwdma_mask, ap->udma_mask);
3059 /* Apply cable rule here. Don't apply it early because when
3060 * we handle hot plug the cable type can itself change.
3062 if (ap->cbl == ATA_CBL_PATA40)
3063 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3065 /* FIXME: Use port-wide xfermask for now */
3066 for (i = 0; i < ATA_MAX_DEVICES; i++) {
3067 struct ata_device *d = &ap->device[i];
3069 if (ata_dev_absent(d))
3070 continue;
3072 if (ata_dev_disabled(d)) {
3073 /* to avoid violating device selection timing */
3074 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3075 UINT_MAX, UINT_MAX);
3076 continue;
3079 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3080 d->mwdma_mask, d->udma_mask);
3081 xfer_mask &= ata_id_xfermask(d->id);
3082 if (ata_dma_blacklisted(d))
3083 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3086 if (ata_dma_blacklisted(dev))
3087 ata_dev_printk(dev, KERN_WARNING,
3088 "device is on DMA blacklist, disabling DMA\n");
3090 if (hs->flags & ATA_HOST_SIMPLEX) {
3091 if (hs->simplex_claimed)
3092 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3095 if (ap->ops->mode_filter)
3096 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3098 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3099 &dev->mwdma_mask, &dev->udma_mask);
3103 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3104 * @dev: Device to which command will be sent
3106 * Issue SET FEATURES - XFER MODE command to device @dev
3107 * on port @ap.
3109 * LOCKING:
3110 * PCI/etc. bus probe sem.
3112 * RETURNS:
3113 * 0 on success, AC_ERR_* mask otherwise.
3116 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3118 struct ata_taskfile tf;
3119 unsigned int err_mask;
3121 /* set up set-features taskfile */
3122 DPRINTK("set features - xfer mode\n");
3124 ata_tf_init(dev, &tf);
3125 tf.command = ATA_CMD_SET_FEATURES;
3126 tf.feature = SETFEATURES_XFER;
3127 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3128 tf.protocol = ATA_PROT_NODATA;
3129 tf.nsect = dev->xfer_mode;
3131 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3133 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3134 return err_mask;
3138 * ata_dev_init_params - Issue INIT DEV PARAMS command
3139 * @dev: Device to which command will be sent
3140 * @heads: Number of heads (taskfile parameter)
3141 * @sectors: Number of sectors (taskfile parameter)
3143 * LOCKING:
3144 * Kernel thread context (may sleep)
3146 * RETURNS:
3147 * 0 on success, AC_ERR_* mask otherwise.
3149 static unsigned int ata_dev_init_params(struct ata_device *dev,
3150 u16 heads, u16 sectors)
3152 struct ata_taskfile tf;
3153 unsigned int err_mask;
3155 /* Number of sectors per track 1-255. Number of heads 1-16 */
3156 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3157 return AC_ERR_INVALID;
3159 /* set up init dev params taskfile */
3160 DPRINTK("init dev params \n");
3162 ata_tf_init(dev, &tf);
3163 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3164 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3165 tf.protocol = ATA_PROT_NODATA;
3166 tf.nsect = sectors;
3167 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3169 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3171 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3172 return err_mask;
3176 * ata_sg_clean - Unmap DMA memory associated with command
3177 * @qc: Command containing DMA memory to be released
3179 * Unmap all mapped DMA memory associated with this command.
3181 * LOCKING:
3182 * spin_lock_irqsave(host_set lock)
3185 static void ata_sg_clean(struct ata_queued_cmd *qc)
3187 struct ata_port *ap = qc->ap;
3188 struct scatterlist *sg = qc->__sg;
3189 int dir = qc->dma_dir;
3190 void *pad_buf = NULL;
3192 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3193 WARN_ON(sg == NULL);
3195 if (qc->flags & ATA_QCFLAG_SINGLE)
3196 WARN_ON(qc->n_elem > 1);
3198 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3200 /* if we padded the buffer out to 32-bit bound, and data
3201 * xfer direction is from-device, we must copy from the
3202 * pad buffer back into the supplied buffer
3204 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3205 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3207 if (qc->flags & ATA_QCFLAG_SG) {
3208 if (qc->n_elem)
3209 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3210 /* restore last sg */
3211 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3212 if (pad_buf) {
3213 struct scatterlist *psg = &qc->pad_sgent;
3214 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3215 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3216 kunmap_atomic(addr, KM_IRQ0);
3218 } else {
3219 if (qc->n_elem)
3220 dma_unmap_single(ap->dev,
3221 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3222 dir);
3223 /* restore sg */
3224 sg->length += qc->pad_len;
3225 if (pad_buf)
3226 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3227 pad_buf, qc->pad_len);
3230 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3231 qc->__sg = NULL;
3235 * ata_fill_sg - Fill PCI IDE PRD table
3236 * @qc: Metadata associated with taskfile to be transferred
3238 * Fill PCI IDE PRD (scatter-gather) table with segments
3239 * associated with the current disk command.
3241 * LOCKING:
3242 * spin_lock_irqsave(host_set lock)
3245 static void ata_fill_sg(struct ata_queued_cmd *qc)
3247 struct ata_port *ap = qc->ap;
3248 struct scatterlist *sg;
3249 unsigned int idx;
3251 WARN_ON(qc->__sg == NULL);
3252 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3254 idx = 0;
3255 ata_for_each_sg(sg, qc) {
3256 u32 addr, offset;
3257 u32 sg_len, len;
3259 /* determine if physical DMA addr spans 64K boundary.
3260 * Note h/w doesn't support 64-bit, so we unconditionally
3261 * truncate dma_addr_t to u32.
3263 addr = (u32) sg_dma_address(sg);
3264 sg_len = sg_dma_len(sg);
3266 while (sg_len) {
3267 offset = addr & 0xffff;
3268 len = sg_len;
3269 if ((offset + sg_len) > 0x10000)
3270 len = 0x10000 - offset;
3272 ap->prd[idx].addr = cpu_to_le32(addr);
3273 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3274 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3276 idx++;
3277 sg_len -= len;
3278 addr += len;
3282 if (idx)
3283 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3286 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3287 * @qc: Metadata associated with taskfile to check
3289 * Allow low-level driver to filter ATA PACKET commands, returning
3290 * a status indicating whether or not it is OK to use DMA for the
3291 * supplied PACKET command.
3293 * LOCKING:
3294 * spin_lock_irqsave(host_set lock)
3296 * RETURNS: 0 when ATAPI DMA can be used
3297 * nonzero otherwise
3299 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3301 struct ata_port *ap = qc->ap;
3302 int rc = 0; /* Assume ATAPI DMA is OK by default */
3304 if (ap->ops->check_atapi_dma)
3305 rc = ap->ops->check_atapi_dma(qc);
3307 return rc;
3310 * ata_qc_prep - Prepare taskfile for submission
3311 * @qc: Metadata associated with taskfile to be prepared
3313 * Prepare ATA taskfile for submission.
3315 * LOCKING:
3316 * spin_lock_irqsave(host_set lock)
3318 void ata_qc_prep(struct ata_queued_cmd *qc)
3320 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3321 return;
3323 ata_fill_sg(qc);
3326 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3329 * ata_sg_init_one - Associate command with memory buffer
3330 * @qc: Command to be associated
3331 * @buf: Memory buffer
3332 * @buflen: Length of memory buffer, in bytes.
3334 * Initialize the data-related elements of queued_cmd @qc
3335 * to point to a single memory buffer, @buf of byte length @buflen.
3337 * LOCKING:
3338 * spin_lock_irqsave(host_set lock)
3341 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3343 struct scatterlist *sg;
3345 qc->flags |= ATA_QCFLAG_SINGLE;
3347 memset(&qc->sgent, 0, sizeof(qc->sgent));
3348 qc->__sg = &qc->sgent;
3349 qc->n_elem = 1;
3350 qc->orig_n_elem = 1;
3351 qc->buf_virt = buf;
3352 qc->nbytes = buflen;
3354 sg = qc->__sg;
3355 sg_init_one(sg, buf, buflen);
3359 * ata_sg_init - Associate command with scatter-gather table.
3360 * @qc: Command to be associated
3361 * @sg: Scatter-gather table.
3362 * @n_elem: Number of elements in s/g table.
3364 * Initialize the data-related elements of queued_cmd @qc
3365 * to point to a scatter-gather table @sg, containing @n_elem
3366 * elements.
3368 * LOCKING:
3369 * spin_lock_irqsave(host_set lock)
3372 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3373 unsigned int n_elem)
3375 qc->flags |= ATA_QCFLAG_SG;
3376 qc->__sg = sg;
3377 qc->n_elem = n_elem;
3378 qc->orig_n_elem = n_elem;
3382 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3383 * @qc: Command with memory buffer to be mapped.
3385 * DMA-map the memory buffer associated with queued_cmd @qc.
3387 * LOCKING:
3388 * spin_lock_irqsave(host_set lock)
3390 * RETURNS:
3391 * Zero on success, negative on error.
3394 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3396 struct ata_port *ap = qc->ap;
3397 int dir = qc->dma_dir;
3398 struct scatterlist *sg = qc->__sg;
3399 dma_addr_t dma_address;
3400 int trim_sg = 0;
3402 /* we must lengthen transfers to end on a 32-bit boundary */
3403 qc->pad_len = sg->length & 3;
3404 if (qc->pad_len) {
3405 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3406 struct scatterlist *psg = &qc->pad_sgent;
3408 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3410 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3412 if (qc->tf.flags & ATA_TFLAG_WRITE)
3413 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3414 qc->pad_len);
3416 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3417 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3418 /* trim sg */
3419 sg->length -= qc->pad_len;
3420 if (sg->length == 0)
3421 trim_sg = 1;
3423 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3424 sg->length, qc->pad_len);
3427 if (trim_sg) {
3428 qc->n_elem--;
3429 goto skip_map;
3432 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3433 sg->length, dir);
3434 if (dma_mapping_error(dma_address)) {
3435 /* restore sg */
3436 sg->length += qc->pad_len;
3437 return -1;
3440 sg_dma_address(sg) = dma_address;
3441 sg_dma_len(sg) = sg->length;
3443 skip_map:
3444 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3445 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3447 return 0;
3451 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3452 * @qc: Command with scatter-gather table to be mapped.
3454 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3456 * LOCKING:
3457 * spin_lock_irqsave(host_set lock)
3459 * RETURNS:
3460 * Zero on success, negative on error.
3464 static int ata_sg_setup(struct ata_queued_cmd *qc)
3466 struct ata_port *ap = qc->ap;
3467 struct scatterlist *sg = qc->__sg;
3468 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3469 int n_elem, pre_n_elem, dir, trim_sg = 0;
3471 VPRINTK("ENTER, ata%u\n", ap->id);
3472 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3474 /* we must lengthen transfers to end on a 32-bit boundary */
3475 qc->pad_len = lsg->length & 3;
3476 if (qc->pad_len) {
3477 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3478 struct scatterlist *psg = &qc->pad_sgent;
3479 unsigned int offset;
3481 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3483 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3486 * psg->page/offset are used to copy to-be-written
3487 * data in this function or read data in ata_sg_clean.
3489 offset = lsg->offset + lsg->length - qc->pad_len;
3490 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3491 psg->offset = offset_in_page(offset);
3493 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3494 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3495 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3496 kunmap_atomic(addr, KM_IRQ0);
3499 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3500 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3501 /* trim last sg */
3502 lsg->length -= qc->pad_len;
3503 if (lsg->length == 0)
3504 trim_sg = 1;
3506 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3507 qc->n_elem - 1, lsg->length, qc->pad_len);
3510 pre_n_elem = qc->n_elem;
3511 if (trim_sg && pre_n_elem)
3512 pre_n_elem--;
3514 if (!pre_n_elem) {
3515 n_elem = 0;
3516 goto skip_map;
3519 dir = qc->dma_dir;
3520 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3521 if (n_elem < 1) {
3522 /* restore last sg */
3523 lsg->length += qc->pad_len;
3524 return -1;
3527 DPRINTK("%d sg elements mapped\n", n_elem);
3529 skip_map:
3530 qc->n_elem = n_elem;
3532 return 0;
3536 * swap_buf_le16 - swap halves of 16-bit words in place
3537 * @buf: Buffer to swap
3538 * @buf_words: Number of 16-bit words in buffer.
3540 * Swap halves of 16-bit words if needed to convert from
3541 * little-endian byte order to native cpu byte order, or
3542 * vice-versa.
3544 * LOCKING:
3545 * Inherited from caller.
3547 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3549 #ifdef __BIG_ENDIAN
3550 unsigned int i;
3552 for (i = 0; i < buf_words; i++)
3553 buf[i] = le16_to_cpu(buf[i]);
3554 #endif /* __BIG_ENDIAN */
3558 * ata_mmio_data_xfer - Transfer data by MMIO
3559 * @adev: device for this I/O
3560 * @buf: data buffer
3561 * @buflen: buffer length
3562 * @write_data: read/write
3564 * Transfer data from/to the device data register by MMIO.
3566 * LOCKING:
3567 * Inherited from caller.
3570 void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3571 unsigned int buflen, int write_data)
3573 struct ata_port *ap = adev->ap;
3574 unsigned int i;
3575 unsigned int words = buflen >> 1;
3576 u16 *buf16 = (u16 *) buf;
3577 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3579 /* Transfer multiple of 2 bytes */
3580 if (write_data) {
3581 for (i = 0; i < words; i++)
3582 writew(le16_to_cpu(buf16[i]), mmio);
3583 } else {
3584 for (i = 0; i < words; i++)
3585 buf16[i] = cpu_to_le16(readw(mmio));
3588 /* Transfer trailing 1 byte, if any. */
3589 if (unlikely(buflen & 0x01)) {
3590 u16 align_buf[1] = { 0 };
3591 unsigned char *trailing_buf = buf + buflen - 1;
3593 if (write_data) {
3594 memcpy(align_buf, trailing_buf, 1);
3595 writew(le16_to_cpu(align_buf[0]), mmio);
3596 } else {
3597 align_buf[0] = cpu_to_le16(readw(mmio));
3598 memcpy(trailing_buf, align_buf, 1);
3604 * ata_pio_data_xfer - Transfer data by PIO
3605 * @adev: device to target
3606 * @buf: data buffer
3607 * @buflen: buffer length
3608 * @write_data: read/write
3610 * Transfer data from/to the device data register by PIO.
3612 * LOCKING:
3613 * Inherited from caller.
3616 void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3617 unsigned int buflen, int write_data)
3619 struct ata_port *ap = adev->ap;
3620 unsigned int words = buflen >> 1;
3622 /* Transfer multiple of 2 bytes */
3623 if (write_data)
3624 outsw(ap->ioaddr.data_addr, buf, words);
3625 else
3626 insw(ap->ioaddr.data_addr, buf, words);
3628 /* Transfer trailing 1 byte, if any. */
3629 if (unlikely(buflen & 0x01)) {
3630 u16 align_buf[1] = { 0 };
3631 unsigned char *trailing_buf = buf + buflen - 1;
3633 if (write_data) {
3634 memcpy(align_buf, trailing_buf, 1);
3635 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3636 } else {
3637 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3638 memcpy(trailing_buf, align_buf, 1);
3644 * ata_pio_data_xfer_noirq - Transfer data by PIO
3645 * @adev: device to target
3646 * @buf: data buffer
3647 * @buflen: buffer length
3648 * @write_data: read/write
3650 * Transfer data from/to the device data register by PIO. Do the
3651 * transfer with interrupts disabled.
3653 * LOCKING:
3654 * Inherited from caller.
3657 void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3658 unsigned int buflen, int write_data)
3660 unsigned long flags;
3661 local_irq_save(flags);
3662 ata_pio_data_xfer(adev, buf, buflen, write_data);
3663 local_irq_restore(flags);
3668 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3669 * @qc: Command on going
3671 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3673 * LOCKING:
3674 * Inherited from caller.
3677 static void ata_pio_sector(struct ata_queued_cmd *qc)
3679 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3680 struct scatterlist *sg = qc->__sg;
3681 struct ata_port *ap = qc->ap;
3682 struct page *page;
3683 unsigned int offset;
3684 unsigned char *buf;
3686 if (qc->cursect == (qc->nsect - 1))
3687 ap->hsm_task_state = HSM_ST_LAST;
3689 page = sg[qc->cursg].page;
3690 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3692 /* get the current page and offset */
3693 page = nth_page(page, (offset >> PAGE_SHIFT));
3694 offset %= PAGE_SIZE;
3696 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3698 if (PageHighMem(page)) {
3699 unsigned long flags;
3701 /* FIXME: use a bounce buffer */
3702 local_irq_save(flags);
3703 buf = kmap_atomic(page, KM_IRQ0);
3705 /* do the actual data transfer */
3706 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3708 kunmap_atomic(buf, KM_IRQ0);
3709 local_irq_restore(flags);
3710 } else {
3711 buf = page_address(page);
3712 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3715 qc->cursect++;
3716 qc->cursg_ofs++;
3718 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3719 qc->cursg++;
3720 qc->cursg_ofs = 0;
3725 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3726 * @qc: Command on going
3728 * Transfer one or many ATA_SECT_SIZE of data from/to the
3729 * ATA device for the DRQ request.
3731 * LOCKING:
3732 * Inherited from caller.
3735 static void ata_pio_sectors(struct ata_queued_cmd *qc)
3737 if (is_multi_taskfile(&qc->tf)) {
3738 /* READ/WRITE MULTIPLE */
3739 unsigned int nsect;
3741 WARN_ON(qc->dev->multi_count == 0);
3743 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3744 while (nsect--)
3745 ata_pio_sector(qc);
3746 } else
3747 ata_pio_sector(qc);
3751 * atapi_send_cdb - Write CDB bytes to hardware
3752 * @ap: Port to which ATAPI device is attached.
3753 * @qc: Taskfile currently active
3755 * When device has indicated its readiness to accept
3756 * a CDB, this function is called. Send the CDB.
3758 * LOCKING:
3759 * caller.
3762 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3764 /* send SCSI cdb */
3765 DPRINTK("send cdb\n");
3766 WARN_ON(qc->dev->cdb_len < 12);
3768 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
3769 ata_altstatus(ap); /* flush */
3771 switch (qc->tf.protocol) {
3772 case ATA_PROT_ATAPI:
3773 ap->hsm_task_state = HSM_ST;
3774 break;
3775 case ATA_PROT_ATAPI_NODATA:
3776 ap->hsm_task_state = HSM_ST_LAST;
3777 break;
3778 case ATA_PROT_ATAPI_DMA:
3779 ap->hsm_task_state = HSM_ST_LAST;
3780 /* initiate bmdma */
3781 ap->ops->bmdma_start(qc);
3782 break;
3787 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3788 * @qc: Command on going
3789 * @bytes: number of bytes
3791 * Transfer Transfer data from/to the ATAPI device.
3793 * LOCKING:
3794 * Inherited from caller.
3798 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3800 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3801 struct scatterlist *sg = qc->__sg;
3802 struct ata_port *ap = qc->ap;
3803 struct page *page;
3804 unsigned char *buf;
3805 unsigned int offset, count;
3807 if (qc->curbytes + bytes >= qc->nbytes)
3808 ap->hsm_task_state = HSM_ST_LAST;
3810 next_sg:
3811 if (unlikely(qc->cursg >= qc->n_elem)) {
3813 * The end of qc->sg is reached and the device expects
3814 * more data to transfer. In order not to overrun qc->sg
3815 * and fulfill length specified in the byte count register,
3816 * - for read case, discard trailing data from the device
3817 * - for write case, padding zero data to the device
3819 u16 pad_buf[1] = { 0 };
3820 unsigned int words = bytes >> 1;
3821 unsigned int i;
3823 if (words) /* warning if bytes > 1 */
3824 ata_dev_printk(qc->dev, KERN_WARNING,
3825 "%u bytes trailing data\n", bytes);
3827 for (i = 0; i < words; i++)
3828 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
3830 ap->hsm_task_state = HSM_ST_LAST;
3831 return;
3834 sg = &qc->__sg[qc->cursg];
3836 page = sg->page;
3837 offset = sg->offset + qc->cursg_ofs;
3839 /* get the current page and offset */
3840 page = nth_page(page, (offset >> PAGE_SHIFT));
3841 offset %= PAGE_SIZE;
3843 /* don't overrun current sg */
3844 count = min(sg->length - qc->cursg_ofs, bytes);
3846 /* don't cross page boundaries */
3847 count = min(count, (unsigned int)PAGE_SIZE - offset);
3849 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3851 if (PageHighMem(page)) {
3852 unsigned long flags;
3854 /* FIXME: use bounce buffer */
3855 local_irq_save(flags);
3856 buf = kmap_atomic(page, KM_IRQ0);
3858 /* do the actual data transfer */
3859 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3861 kunmap_atomic(buf, KM_IRQ0);
3862 local_irq_restore(flags);
3863 } else {
3864 buf = page_address(page);
3865 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3868 bytes -= count;
3869 qc->curbytes += count;
3870 qc->cursg_ofs += count;
3872 if (qc->cursg_ofs == sg->length) {
3873 qc->cursg++;
3874 qc->cursg_ofs = 0;
3877 if (bytes)
3878 goto next_sg;
3882 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3883 * @qc: Command on going
3885 * Transfer Transfer data from/to the ATAPI device.
3887 * LOCKING:
3888 * Inherited from caller.
3891 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3893 struct ata_port *ap = qc->ap;
3894 struct ata_device *dev = qc->dev;
3895 unsigned int ireason, bc_lo, bc_hi, bytes;
3896 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3898 /* Abuse qc->result_tf for temp storage of intermediate TF
3899 * here to save some kernel stack usage.
3900 * For normal completion, qc->result_tf is not relevant. For
3901 * error, qc->result_tf is later overwritten by ata_qc_complete().
3902 * So, the correctness of qc->result_tf is not affected.
3904 ap->ops->tf_read(ap, &qc->result_tf);
3905 ireason = qc->result_tf.nsect;
3906 bc_lo = qc->result_tf.lbam;
3907 bc_hi = qc->result_tf.lbah;
3908 bytes = (bc_hi << 8) | bc_lo;
3910 /* shall be cleared to zero, indicating xfer of data */
3911 if (ireason & (1 << 0))
3912 goto err_out;
3914 /* make sure transfer direction matches expected */
3915 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3916 if (do_write != i_write)
3917 goto err_out;
3919 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3921 __atapi_pio_bytes(qc, bytes);
3923 return;
3925 err_out:
3926 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
3927 qc->err_mask |= AC_ERR_HSM;
3928 ap->hsm_task_state = HSM_ST_ERR;
3932 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3933 * @ap: the target ata_port
3934 * @qc: qc on going
3936 * RETURNS:
3937 * 1 if ok in workqueue, 0 otherwise.
3940 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
3942 if (qc->tf.flags & ATA_TFLAG_POLLING)
3943 return 1;
3945 if (ap->hsm_task_state == HSM_ST_FIRST) {
3946 if (qc->tf.protocol == ATA_PROT_PIO &&
3947 (qc->tf.flags & ATA_TFLAG_WRITE))
3948 return 1;
3950 if (is_atapi_taskfile(&qc->tf) &&
3951 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
3952 return 1;
3955 return 0;
3959 * ata_hsm_qc_complete - finish a qc running on standard HSM
3960 * @qc: Command to complete
3961 * @in_wq: 1 if called from workqueue, 0 otherwise
3963 * Finish @qc which is running on standard HSM.
3965 * LOCKING:
3966 * If @in_wq is zero, spin_lock_irqsave(host_set lock).
3967 * Otherwise, none on entry and grabs host lock.
3969 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
3971 struct ata_port *ap = qc->ap;
3972 unsigned long flags;
3974 if (ap->ops->error_handler) {
3975 if (in_wq) {
3976 spin_lock_irqsave(ap->lock, flags);
3978 /* EH might have kicked in while host_set lock
3979 * is released.
3981 qc = ata_qc_from_tag(ap, qc->tag);
3982 if (qc) {
3983 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
3984 ata_irq_on(ap);
3985 ata_qc_complete(qc);
3986 } else
3987 ata_port_freeze(ap);
3990 spin_unlock_irqrestore(ap->lock, flags);
3991 } else {
3992 if (likely(!(qc->err_mask & AC_ERR_HSM)))
3993 ata_qc_complete(qc);
3994 else
3995 ata_port_freeze(ap);
3997 } else {
3998 if (in_wq) {
3999 spin_lock_irqsave(ap->lock, flags);
4000 ata_irq_on(ap);
4001 ata_qc_complete(qc);
4002 spin_unlock_irqrestore(ap->lock, flags);
4003 } else
4004 ata_qc_complete(qc);
4007 ata_altstatus(ap); /* flush */
4011 * ata_hsm_move - move the HSM to the next state.
4012 * @ap: the target ata_port
4013 * @qc: qc on going
4014 * @status: current device status
4015 * @in_wq: 1 if called from workqueue, 0 otherwise
4017 * RETURNS:
4018 * 1 when poll next status needed, 0 otherwise.
4020 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4021 u8 status, int in_wq)
4023 unsigned long flags = 0;
4024 int poll_next;
4026 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4028 /* Make sure ata_qc_issue_prot() does not throw things
4029 * like DMA polling into the workqueue. Notice that
4030 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4032 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4034 fsm_start:
4035 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4036 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4038 switch (ap->hsm_task_state) {
4039 case HSM_ST_FIRST:
4040 /* Send first data block or PACKET CDB */
4042 /* If polling, we will stay in the work queue after
4043 * sending the data. Otherwise, interrupt handler
4044 * takes over after sending the data.
4046 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4048 /* check device status */
4049 if (unlikely((status & ATA_DRQ) == 0)) {
4050 /* handle BSY=0, DRQ=0 as error */
4051 if (likely(status & (ATA_ERR | ATA_DF)))
4052 /* device stops HSM for abort/error */
4053 qc->err_mask |= AC_ERR_DEV;
4054 else
4055 /* HSM violation. Let EH handle this */
4056 qc->err_mask |= AC_ERR_HSM;
4058 ap->hsm_task_state = HSM_ST_ERR;
4059 goto fsm_start;
4062 /* Device should not ask for data transfer (DRQ=1)
4063 * when it finds something wrong.
4064 * We ignore DRQ here and stop the HSM by
4065 * changing hsm_task_state to HSM_ST_ERR and
4066 * let the EH abort the command or reset the device.
4068 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4069 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4070 ap->id, status);
4071 qc->err_mask |= AC_ERR_HSM;
4072 ap->hsm_task_state = HSM_ST_ERR;
4073 goto fsm_start;
4076 /* Send the CDB (atapi) or the first data block (ata pio out).
4077 * During the state transition, interrupt handler shouldn't
4078 * be invoked before the data transfer is complete and
4079 * hsm_task_state is changed. Hence, the following locking.
4081 if (in_wq)
4082 spin_lock_irqsave(ap->lock, flags);
4084 if (qc->tf.protocol == ATA_PROT_PIO) {
4085 /* PIO data out protocol.
4086 * send first data block.
4089 /* ata_pio_sectors() might change the state
4090 * to HSM_ST_LAST. so, the state is changed here
4091 * before ata_pio_sectors().
4093 ap->hsm_task_state = HSM_ST;
4094 ata_pio_sectors(qc);
4095 ata_altstatus(ap); /* flush */
4096 } else
4097 /* send CDB */
4098 atapi_send_cdb(ap, qc);
4100 if (in_wq)
4101 spin_unlock_irqrestore(ap->lock, flags);
4103 /* if polling, ata_pio_task() handles the rest.
4104 * otherwise, interrupt handler takes over from here.
4106 break;
4108 case HSM_ST:
4109 /* complete command or read/write the data register */
4110 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4111 /* ATAPI PIO protocol */
4112 if ((status & ATA_DRQ) == 0) {
4113 /* No more data to transfer or device error.
4114 * Device error will be tagged in HSM_ST_LAST.
4116 ap->hsm_task_state = HSM_ST_LAST;
4117 goto fsm_start;
4120 /* Device should not ask for data transfer (DRQ=1)
4121 * when it finds something wrong.
4122 * We ignore DRQ here and stop the HSM by
4123 * changing hsm_task_state to HSM_ST_ERR and
4124 * let the EH abort the command or reset the device.
4126 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4127 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4128 ap->id, status);
4129 qc->err_mask |= AC_ERR_HSM;
4130 ap->hsm_task_state = HSM_ST_ERR;
4131 goto fsm_start;
4134 atapi_pio_bytes(qc);
4136 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4137 /* bad ireason reported by device */
4138 goto fsm_start;
4140 } else {
4141 /* ATA PIO protocol */
4142 if (unlikely((status & ATA_DRQ) == 0)) {
4143 /* handle BSY=0, DRQ=0 as error */
4144 if (likely(status & (ATA_ERR | ATA_DF)))
4145 /* device stops HSM for abort/error */
4146 qc->err_mask |= AC_ERR_DEV;
4147 else
4148 /* HSM violation. Let EH handle this */
4149 qc->err_mask |= AC_ERR_HSM;
4151 ap->hsm_task_state = HSM_ST_ERR;
4152 goto fsm_start;
4155 /* For PIO reads, some devices may ask for
4156 * data transfer (DRQ=1) alone with ERR=1.
4157 * We respect DRQ here and transfer one
4158 * block of junk data before changing the
4159 * hsm_task_state to HSM_ST_ERR.
4161 * For PIO writes, ERR=1 DRQ=1 doesn't make
4162 * sense since the data block has been
4163 * transferred to the device.
4165 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4166 /* data might be corrputed */
4167 qc->err_mask |= AC_ERR_DEV;
4169 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4170 ata_pio_sectors(qc);
4171 ata_altstatus(ap);
4172 status = ata_wait_idle(ap);
4175 if (status & (ATA_BUSY | ATA_DRQ))
4176 qc->err_mask |= AC_ERR_HSM;
4178 /* ata_pio_sectors() might change the
4179 * state to HSM_ST_LAST. so, the state
4180 * is changed after ata_pio_sectors().
4182 ap->hsm_task_state = HSM_ST_ERR;
4183 goto fsm_start;
4186 ata_pio_sectors(qc);
4188 if (ap->hsm_task_state == HSM_ST_LAST &&
4189 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4190 /* all data read */
4191 ata_altstatus(ap);
4192 status = ata_wait_idle(ap);
4193 goto fsm_start;
4197 ata_altstatus(ap); /* flush */
4198 poll_next = 1;
4199 break;
4201 case HSM_ST_LAST:
4202 if (unlikely(!ata_ok(status))) {
4203 qc->err_mask |= __ac_err_mask(status);
4204 ap->hsm_task_state = HSM_ST_ERR;
4205 goto fsm_start;
4208 /* no more data to transfer */
4209 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4210 ap->id, qc->dev->devno, status);
4212 WARN_ON(qc->err_mask);
4214 ap->hsm_task_state = HSM_ST_IDLE;
4216 /* complete taskfile transaction */
4217 ata_hsm_qc_complete(qc, in_wq);
4219 poll_next = 0;
4220 break;
4222 case HSM_ST_ERR:
4223 /* make sure qc->err_mask is available to
4224 * know what's wrong and recover
4226 WARN_ON(qc->err_mask == 0);
4228 ap->hsm_task_state = HSM_ST_IDLE;
4230 /* complete taskfile transaction */
4231 ata_hsm_qc_complete(qc, in_wq);
4233 poll_next = 0;
4234 break;
4235 default:
4236 poll_next = 0;
4237 BUG();
4240 return poll_next;
4243 static void ata_pio_task(void *_data)
4245 struct ata_queued_cmd *qc = _data;
4246 struct ata_port *ap = qc->ap;
4247 u8 status;
4248 int poll_next;
4250 fsm_start:
4251 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4254 * This is purely heuristic. This is a fast path.
4255 * Sometimes when we enter, BSY will be cleared in
4256 * a chk-status or two. If not, the drive is probably seeking
4257 * or something. Snooze for a couple msecs, then
4258 * chk-status again. If still busy, queue delayed work.
4260 status = ata_busy_wait(ap, ATA_BUSY, 5);
4261 if (status & ATA_BUSY) {
4262 msleep(2);
4263 status = ata_busy_wait(ap, ATA_BUSY, 10);
4264 if (status & ATA_BUSY) {
4265 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4266 return;
4270 /* move the HSM */
4271 poll_next = ata_hsm_move(ap, qc, status, 1);
4273 /* another command or interrupt handler
4274 * may be running at this point.
4276 if (poll_next)
4277 goto fsm_start;
4281 * ata_qc_new - Request an available ATA command, for queueing
4282 * @ap: Port associated with device @dev
4283 * @dev: Device from whom we request an available command structure
4285 * LOCKING:
4286 * None.
4289 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4291 struct ata_queued_cmd *qc = NULL;
4292 unsigned int i;
4294 /* no command while frozen */
4295 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4296 return NULL;
4298 /* the last tag is reserved for internal command. */
4299 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4300 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4301 qc = __ata_qc_from_tag(ap, i);
4302 break;
4305 if (qc)
4306 qc->tag = i;
4308 return qc;
4312 * ata_qc_new_init - Request an available ATA command, and initialize it
4313 * @dev: Device from whom we request an available command structure
4315 * LOCKING:
4316 * None.
4319 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4321 struct ata_port *ap = dev->ap;
4322 struct ata_queued_cmd *qc;
4324 qc = ata_qc_new(ap);
4325 if (qc) {
4326 qc->scsicmd = NULL;
4327 qc->ap = ap;
4328 qc->dev = dev;
4330 ata_qc_reinit(qc);
4333 return qc;
4337 * ata_qc_free - free unused ata_queued_cmd
4338 * @qc: Command to complete
4340 * Designed to free unused ata_queued_cmd object
4341 * in case something prevents using it.
4343 * LOCKING:
4344 * spin_lock_irqsave(host_set lock)
4346 void ata_qc_free(struct ata_queued_cmd *qc)
4348 struct ata_port *ap = qc->ap;
4349 unsigned int tag;
4351 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4353 qc->flags = 0;
4354 tag = qc->tag;
4355 if (likely(ata_tag_valid(tag))) {
4356 qc->tag = ATA_TAG_POISON;
4357 clear_bit(tag, &ap->qc_allocated);
4361 void __ata_qc_complete(struct ata_queued_cmd *qc)
4363 struct ata_port *ap = qc->ap;
4365 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4366 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4368 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4369 ata_sg_clean(qc);
4371 /* command should be marked inactive atomically with qc completion */
4372 if (qc->tf.protocol == ATA_PROT_NCQ)
4373 ap->sactive &= ~(1 << qc->tag);
4374 else
4375 ap->active_tag = ATA_TAG_POISON;
4377 /* atapi: mark qc as inactive to prevent the interrupt handler
4378 * from completing the command twice later, before the error handler
4379 * is called. (when rc != 0 and atapi request sense is needed)
4381 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4382 ap->qc_active &= ~(1 << qc->tag);
4384 /* call completion callback */
4385 qc->complete_fn(qc);
4389 * ata_qc_complete - Complete an active ATA command
4390 * @qc: Command to complete
4391 * @err_mask: ATA Status register contents
4393 * Indicate to the mid and upper layers that an ATA
4394 * command has completed, with either an ok or not-ok status.
4396 * LOCKING:
4397 * spin_lock_irqsave(host_set lock)
4399 void ata_qc_complete(struct ata_queued_cmd *qc)
4401 struct ata_port *ap = qc->ap;
4403 /* XXX: New EH and old EH use different mechanisms to
4404 * synchronize EH with regular execution path.
4406 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4407 * Normal execution path is responsible for not accessing a
4408 * failed qc. libata core enforces the rule by returning NULL
4409 * from ata_qc_from_tag() for failed qcs.
4411 * Old EH depends on ata_qc_complete() nullifying completion
4412 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4413 * not synchronize with interrupt handler. Only PIO task is
4414 * taken care of.
4416 if (ap->ops->error_handler) {
4417 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4419 if (unlikely(qc->err_mask))
4420 qc->flags |= ATA_QCFLAG_FAILED;
4422 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4423 if (!ata_tag_internal(qc->tag)) {
4424 /* always fill result TF for failed qc */
4425 ap->ops->tf_read(ap, &qc->result_tf);
4426 ata_qc_schedule_eh(qc);
4427 return;
4431 /* read result TF if requested */
4432 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4433 ap->ops->tf_read(ap, &qc->result_tf);
4435 __ata_qc_complete(qc);
4436 } else {
4437 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4438 return;
4440 /* read result TF if failed or requested */
4441 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4442 ap->ops->tf_read(ap, &qc->result_tf);
4444 __ata_qc_complete(qc);
4449 * ata_qc_complete_multiple - Complete multiple qcs successfully
4450 * @ap: port in question
4451 * @qc_active: new qc_active mask
4452 * @finish_qc: LLDD callback invoked before completing a qc
4454 * Complete in-flight commands. This functions is meant to be
4455 * called from low-level driver's interrupt routine to complete
4456 * requests normally. ap->qc_active and @qc_active is compared
4457 * and commands are completed accordingly.
4459 * LOCKING:
4460 * spin_lock_irqsave(host_set lock)
4462 * RETURNS:
4463 * Number of completed commands on success, -errno otherwise.
4465 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4466 void (*finish_qc)(struct ata_queued_cmd *))
4468 int nr_done = 0;
4469 u32 done_mask;
4470 int i;
4472 done_mask = ap->qc_active ^ qc_active;
4474 if (unlikely(done_mask & qc_active)) {
4475 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4476 "(%08x->%08x)\n", ap->qc_active, qc_active);
4477 return -EINVAL;
4480 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4481 struct ata_queued_cmd *qc;
4483 if (!(done_mask & (1 << i)))
4484 continue;
4486 if ((qc = ata_qc_from_tag(ap, i))) {
4487 if (finish_qc)
4488 finish_qc(qc);
4489 ata_qc_complete(qc);
4490 nr_done++;
4494 return nr_done;
4497 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4499 struct ata_port *ap = qc->ap;
4501 switch (qc->tf.protocol) {
4502 case ATA_PROT_NCQ:
4503 case ATA_PROT_DMA:
4504 case ATA_PROT_ATAPI_DMA:
4505 return 1;
4507 case ATA_PROT_ATAPI:
4508 case ATA_PROT_PIO:
4509 if (ap->flags & ATA_FLAG_PIO_DMA)
4510 return 1;
4512 /* fall through */
4514 default:
4515 return 0;
4518 /* never reached */
4522 * ata_qc_issue - issue taskfile to device
4523 * @qc: command to issue to device
4525 * Prepare an ATA command to submission to device.
4526 * This includes mapping the data into a DMA-able
4527 * area, filling in the S/G table, and finally
4528 * writing the taskfile to hardware, starting the command.
4530 * LOCKING:
4531 * spin_lock_irqsave(host_set lock)
4533 void ata_qc_issue(struct ata_queued_cmd *qc)
4535 struct ata_port *ap = qc->ap;
4537 /* Make sure only one non-NCQ command is outstanding. The
4538 * check is skipped for old EH because it reuses active qc to
4539 * request ATAPI sense.
4541 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4543 if (qc->tf.protocol == ATA_PROT_NCQ) {
4544 WARN_ON(ap->sactive & (1 << qc->tag));
4545 ap->sactive |= 1 << qc->tag;
4546 } else {
4547 WARN_ON(ap->sactive);
4548 ap->active_tag = qc->tag;
4551 qc->flags |= ATA_QCFLAG_ACTIVE;
4552 ap->qc_active |= 1 << qc->tag;
4554 if (ata_should_dma_map(qc)) {
4555 if (qc->flags & ATA_QCFLAG_SG) {
4556 if (ata_sg_setup(qc))
4557 goto sg_err;
4558 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4559 if (ata_sg_setup_one(qc))
4560 goto sg_err;
4562 } else {
4563 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4566 ap->ops->qc_prep(qc);
4568 qc->err_mask |= ap->ops->qc_issue(qc);
4569 if (unlikely(qc->err_mask))
4570 goto err;
4571 return;
4573 sg_err:
4574 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4575 qc->err_mask |= AC_ERR_SYSTEM;
4576 err:
4577 ata_qc_complete(qc);
4581 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4582 * @qc: command to issue to device
4584 * Using various libata functions and hooks, this function
4585 * starts an ATA command. ATA commands are grouped into
4586 * classes called "protocols", and issuing each type of protocol
4587 * is slightly different.
4589 * May be used as the qc_issue() entry in ata_port_operations.
4591 * LOCKING:
4592 * spin_lock_irqsave(host_set lock)
4594 * RETURNS:
4595 * Zero on success, AC_ERR_* mask on failure
4598 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4600 struct ata_port *ap = qc->ap;
4602 /* Use polling pio if the LLD doesn't handle
4603 * interrupt driven pio and atapi CDB interrupt.
4605 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4606 switch (qc->tf.protocol) {
4607 case ATA_PROT_PIO:
4608 case ATA_PROT_ATAPI:
4609 case ATA_PROT_ATAPI_NODATA:
4610 qc->tf.flags |= ATA_TFLAG_POLLING;
4611 break;
4612 case ATA_PROT_ATAPI_DMA:
4613 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4614 /* see ata_dma_blacklisted() */
4615 BUG();
4616 break;
4617 default:
4618 break;
4622 /* select the device */
4623 ata_dev_select(ap, qc->dev->devno, 1, 0);
4625 /* start the command */
4626 switch (qc->tf.protocol) {
4627 case ATA_PROT_NODATA:
4628 if (qc->tf.flags & ATA_TFLAG_POLLING)
4629 ata_qc_set_polling(qc);
4631 ata_tf_to_host(ap, &qc->tf);
4632 ap->hsm_task_state = HSM_ST_LAST;
4634 if (qc->tf.flags & ATA_TFLAG_POLLING)
4635 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4637 break;
4639 case ATA_PROT_DMA:
4640 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4642 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4643 ap->ops->bmdma_setup(qc); /* set up bmdma */
4644 ap->ops->bmdma_start(qc); /* initiate bmdma */
4645 ap->hsm_task_state = HSM_ST_LAST;
4646 break;
4648 case ATA_PROT_PIO:
4649 if (qc->tf.flags & ATA_TFLAG_POLLING)
4650 ata_qc_set_polling(qc);
4652 ata_tf_to_host(ap, &qc->tf);
4654 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4655 /* PIO data out protocol */
4656 ap->hsm_task_state = HSM_ST_FIRST;
4657 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4659 /* always send first data block using
4660 * the ata_pio_task() codepath.
4662 } else {
4663 /* PIO data in protocol */
4664 ap->hsm_task_state = HSM_ST;
4666 if (qc->tf.flags & ATA_TFLAG_POLLING)
4667 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4669 /* if polling, ata_pio_task() handles the rest.
4670 * otherwise, interrupt handler takes over from here.
4674 break;
4676 case ATA_PROT_ATAPI:
4677 case ATA_PROT_ATAPI_NODATA:
4678 if (qc->tf.flags & ATA_TFLAG_POLLING)
4679 ata_qc_set_polling(qc);
4681 ata_tf_to_host(ap, &qc->tf);
4683 ap->hsm_task_state = HSM_ST_FIRST;
4685 /* send cdb by polling if no cdb interrupt */
4686 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4687 (qc->tf.flags & ATA_TFLAG_POLLING))
4688 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4689 break;
4691 case ATA_PROT_ATAPI_DMA:
4692 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4694 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4695 ap->ops->bmdma_setup(qc); /* set up bmdma */
4696 ap->hsm_task_state = HSM_ST_FIRST;
4698 /* send cdb by polling if no cdb interrupt */
4699 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4700 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4701 break;
4703 default:
4704 WARN_ON(1);
4705 return AC_ERR_SYSTEM;
4708 return 0;
4712 * ata_host_intr - Handle host interrupt for given (port, task)
4713 * @ap: Port on which interrupt arrived (possibly...)
4714 * @qc: Taskfile currently active in engine
4716 * Handle host interrupt for given queued command. Currently,
4717 * only DMA interrupts are handled. All other commands are
4718 * handled via polling with interrupts disabled (nIEN bit).
4720 * LOCKING:
4721 * spin_lock_irqsave(host_set lock)
4723 * RETURNS:
4724 * One if interrupt was handled, zero if not (shared irq).
4727 inline unsigned int ata_host_intr (struct ata_port *ap,
4728 struct ata_queued_cmd *qc)
4730 u8 status, host_stat = 0;
4732 VPRINTK("ata%u: protocol %d task_state %d\n",
4733 ap->id, qc->tf.protocol, ap->hsm_task_state);
4735 /* Check whether we are expecting interrupt in this state */
4736 switch (ap->hsm_task_state) {
4737 case HSM_ST_FIRST:
4738 /* Some pre-ATAPI-4 devices assert INTRQ
4739 * at this state when ready to receive CDB.
4742 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4743 * The flag was turned on only for atapi devices.
4744 * No need to check is_atapi_taskfile(&qc->tf) again.
4746 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4747 goto idle_irq;
4748 break;
4749 case HSM_ST_LAST:
4750 if (qc->tf.protocol == ATA_PROT_DMA ||
4751 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4752 /* check status of DMA engine */
4753 host_stat = ap->ops->bmdma_status(ap);
4754 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4756 /* if it's not our irq... */
4757 if (!(host_stat & ATA_DMA_INTR))
4758 goto idle_irq;
4760 /* before we do anything else, clear DMA-Start bit */
4761 ap->ops->bmdma_stop(qc);
4763 if (unlikely(host_stat & ATA_DMA_ERR)) {
4764 /* error when transfering data to/from memory */
4765 qc->err_mask |= AC_ERR_HOST_BUS;
4766 ap->hsm_task_state = HSM_ST_ERR;
4769 break;
4770 case HSM_ST:
4771 break;
4772 default:
4773 goto idle_irq;
4776 /* check altstatus */
4777 status = ata_altstatus(ap);
4778 if (status & ATA_BUSY)
4779 goto idle_irq;
4781 /* check main status, clearing INTRQ */
4782 status = ata_chk_status(ap);
4783 if (unlikely(status & ATA_BUSY))
4784 goto idle_irq;
4786 /* ack bmdma irq events */
4787 ap->ops->irq_clear(ap);
4789 ata_hsm_move(ap, qc, status, 0);
4790 return 1; /* irq handled */
4792 idle_irq:
4793 ap->stats.idle_irq++;
4795 #ifdef ATA_IRQ_TRAP
4796 if ((ap->stats.idle_irq % 1000) == 0) {
4797 ata_irq_ack(ap, 0); /* debug trap */
4798 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
4799 return 1;
4801 #endif
4802 return 0; /* irq not handled */
4806 * ata_interrupt - Default ATA host interrupt handler
4807 * @irq: irq line (unused)
4808 * @dev_instance: pointer to our ata_host_set information structure
4809 * @regs: unused
4811 * Default interrupt handler for PCI IDE devices. Calls
4812 * ata_host_intr() for each port that is not disabled.
4814 * LOCKING:
4815 * Obtains host_set lock during operation.
4817 * RETURNS:
4818 * IRQ_NONE or IRQ_HANDLED.
4821 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4823 struct ata_host_set *host_set = dev_instance;
4824 unsigned int i;
4825 unsigned int handled = 0;
4826 unsigned long flags;
4828 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4829 spin_lock_irqsave(&host_set->lock, flags);
4831 for (i = 0; i < host_set->n_ports; i++) {
4832 struct ata_port *ap;
4834 ap = host_set->ports[i];
4835 if (ap &&
4836 !(ap->flags & ATA_FLAG_DISABLED)) {
4837 struct ata_queued_cmd *qc;
4839 qc = ata_qc_from_tag(ap, ap->active_tag);
4840 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
4841 (qc->flags & ATA_QCFLAG_ACTIVE))
4842 handled |= ata_host_intr(ap, qc);
4846 spin_unlock_irqrestore(&host_set->lock, flags);
4848 return IRQ_RETVAL(handled);
4852 * sata_scr_valid - test whether SCRs are accessible
4853 * @ap: ATA port to test SCR accessibility for
4855 * Test whether SCRs are accessible for @ap.
4857 * LOCKING:
4858 * None.
4860 * RETURNS:
4861 * 1 if SCRs are accessible, 0 otherwise.
4863 int sata_scr_valid(struct ata_port *ap)
4865 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4869 * sata_scr_read - read SCR register of the specified port
4870 * @ap: ATA port to read SCR for
4871 * @reg: SCR to read
4872 * @val: Place to store read value
4874 * Read SCR register @reg of @ap into *@val. This function is
4875 * guaranteed to succeed if the cable type of the port is SATA
4876 * and the port implements ->scr_read.
4878 * LOCKING:
4879 * None.
4881 * RETURNS:
4882 * 0 on success, negative errno on failure.
4884 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4886 if (sata_scr_valid(ap)) {
4887 *val = ap->ops->scr_read(ap, reg);
4888 return 0;
4890 return -EOPNOTSUPP;
4894 * sata_scr_write - write SCR register of the specified port
4895 * @ap: ATA port to write SCR for
4896 * @reg: SCR to write
4897 * @val: value to write
4899 * Write @val to SCR register @reg of @ap. This function is
4900 * guaranteed to succeed if the cable type of the port is SATA
4901 * and the port implements ->scr_read.
4903 * LOCKING:
4904 * None.
4906 * RETURNS:
4907 * 0 on success, negative errno on failure.
4909 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4911 if (sata_scr_valid(ap)) {
4912 ap->ops->scr_write(ap, reg, val);
4913 return 0;
4915 return -EOPNOTSUPP;
4919 * sata_scr_write_flush - write SCR register of the specified port and flush
4920 * @ap: ATA port to write SCR for
4921 * @reg: SCR to write
4922 * @val: value to write
4924 * This function is identical to sata_scr_write() except that this
4925 * function performs flush after writing to the register.
4927 * LOCKING:
4928 * None.
4930 * RETURNS:
4931 * 0 on success, negative errno on failure.
4933 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4935 if (sata_scr_valid(ap)) {
4936 ap->ops->scr_write(ap, reg, val);
4937 ap->ops->scr_read(ap, reg);
4938 return 0;
4940 return -EOPNOTSUPP;
4944 * ata_port_online - test whether the given port is online
4945 * @ap: ATA port to test
4947 * Test whether @ap is online. Note that this function returns 0
4948 * if online status of @ap cannot be obtained, so
4949 * ata_port_online(ap) != !ata_port_offline(ap).
4951 * LOCKING:
4952 * None.
4954 * RETURNS:
4955 * 1 if the port online status is available and online.
4957 int ata_port_online(struct ata_port *ap)
4959 u32 sstatus;
4961 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
4962 return 1;
4963 return 0;
4967 * ata_port_offline - test whether the given port is offline
4968 * @ap: ATA port to test
4970 * Test whether @ap is offline. Note that this function returns
4971 * 0 if offline status of @ap cannot be obtained, so
4972 * ata_port_online(ap) != !ata_port_offline(ap).
4974 * LOCKING:
4975 * None.
4977 * RETURNS:
4978 * 1 if the port offline status is available and offline.
4980 int ata_port_offline(struct ata_port *ap)
4982 u32 sstatus;
4984 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
4985 return 1;
4986 return 0;
4989 int ata_flush_cache(struct ata_device *dev)
4991 unsigned int err_mask;
4992 u8 cmd;
4994 if (!ata_try_flush_cache(dev))
4995 return 0;
4997 if (ata_id_has_flush_ext(dev->id))
4998 cmd = ATA_CMD_FLUSH_EXT;
4999 else
5000 cmd = ATA_CMD_FLUSH;
5002 err_mask = ata_do_simple_cmd(dev, cmd);
5003 if (err_mask) {
5004 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5005 return -EIO;
5008 return 0;
5011 static int ata_standby_drive(struct ata_device *dev)
5013 unsigned int err_mask;
5015 err_mask = ata_do_simple_cmd(dev, ATA_CMD_STANDBYNOW1);
5016 if (err_mask) {
5017 ata_dev_printk(dev, KERN_ERR, "failed to standby drive "
5018 "(err_mask=0x%x)\n", err_mask);
5019 return -EIO;
5022 return 0;
5025 static int ata_start_drive(struct ata_device *dev)
5027 unsigned int err_mask;
5029 err_mask = ata_do_simple_cmd(dev, ATA_CMD_IDLEIMMEDIATE);
5030 if (err_mask) {
5031 ata_dev_printk(dev, KERN_ERR, "failed to start drive "
5032 "(err_mask=0x%x)\n", err_mask);
5033 return -EIO;
5036 return 0;
5040 * ata_device_resume - wakeup a previously suspended devices
5041 * @dev: the device to resume
5043 * Kick the drive back into action, by sending it an idle immediate
5044 * command and making sure its transfer mode matches between drive
5045 * and host.
5048 int ata_device_resume(struct ata_device *dev)
5050 struct ata_port *ap = dev->ap;
5052 if (ap->pflags & ATA_PFLAG_SUSPENDED) {
5053 struct ata_device *failed_dev;
5055 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
5056 ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 200000);
5058 ap->pflags &= ~ATA_PFLAG_SUSPENDED;
5059 while (ata_set_mode(ap, &failed_dev))
5060 ata_dev_disable(failed_dev);
5062 if (!ata_dev_enabled(dev))
5063 return 0;
5064 if (dev->class == ATA_DEV_ATA)
5065 ata_start_drive(dev);
5067 return 0;
5071 * ata_device_suspend - prepare a device for suspend
5072 * @dev: the device to suspend
5073 * @state: target power management state
5075 * Flush the cache on the drive, if appropriate, then issue a
5076 * standbynow command.
5078 int ata_device_suspend(struct ata_device *dev, pm_message_t state)
5080 struct ata_port *ap = dev->ap;
5082 if (!ata_dev_enabled(dev))
5083 return 0;
5084 if (dev->class == ATA_DEV_ATA)
5085 ata_flush_cache(dev);
5087 if (state.event != PM_EVENT_FREEZE)
5088 ata_standby_drive(dev);
5089 ap->pflags |= ATA_PFLAG_SUSPENDED;
5090 return 0;
5094 * ata_port_start - Set port up for dma.
5095 * @ap: Port to initialize
5097 * Called just after data structures for each port are
5098 * initialized. Allocates space for PRD table.
5100 * May be used as the port_start() entry in ata_port_operations.
5102 * LOCKING:
5103 * Inherited from caller.
5106 int ata_port_start (struct ata_port *ap)
5108 struct device *dev = ap->dev;
5109 int rc;
5111 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5112 if (!ap->prd)
5113 return -ENOMEM;
5115 rc = ata_pad_alloc(ap, dev);
5116 if (rc) {
5117 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5118 return rc;
5121 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5123 return 0;
5128 * ata_port_stop - Undo ata_port_start()
5129 * @ap: Port to shut down
5131 * Frees the PRD table.
5133 * May be used as the port_stop() entry in ata_port_operations.
5135 * LOCKING:
5136 * Inherited from caller.
5139 void ata_port_stop (struct ata_port *ap)
5141 struct device *dev = ap->dev;
5143 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5144 ata_pad_free(ap, dev);
5147 void ata_host_stop (struct ata_host_set *host_set)
5149 if (host_set->mmio_base)
5150 iounmap(host_set->mmio_base);
5155 * ata_host_remove - Unregister SCSI host structure with upper layers
5156 * @ap: Port to unregister
5157 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
5159 * LOCKING:
5160 * Inherited from caller.
5163 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
5165 struct Scsi_Host *sh = ap->host;
5167 DPRINTK("ENTER\n");
5169 if (do_unregister)
5170 scsi_remove_host(sh);
5172 ap->ops->port_stop(ap);
5176 * ata_dev_init - Initialize an ata_device structure
5177 * @dev: Device structure to initialize
5179 * Initialize @dev in preparation for probing.
5181 * LOCKING:
5182 * Inherited from caller.
5184 void ata_dev_init(struct ata_device *dev)
5186 struct ata_port *ap = dev->ap;
5187 unsigned long flags;
5189 /* SATA spd limit is bound to the first device */
5190 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5192 /* High bits of dev->flags are used to record warm plug
5193 * requests which occur asynchronously. Synchronize using
5194 * host_set lock.
5196 spin_lock_irqsave(ap->lock, flags);
5197 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5198 spin_unlock_irqrestore(ap->lock, flags);
5200 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5201 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5202 dev->pio_mask = UINT_MAX;
5203 dev->mwdma_mask = UINT_MAX;
5204 dev->udma_mask = UINT_MAX;
5208 * ata_host_init - Initialize an ata_port structure
5209 * @ap: Structure to initialize
5210 * @host: associated SCSI mid-layer structure
5211 * @host_set: Collection of hosts to which @ap belongs
5212 * @ent: Probe information provided by low-level driver
5213 * @port_no: Port number associated with this ata_port
5215 * Initialize a new ata_port structure, and its associated
5216 * scsi_host.
5218 * LOCKING:
5219 * Inherited from caller.
5221 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
5222 struct ata_host_set *host_set,
5223 const struct ata_probe_ent *ent, unsigned int port_no)
5225 unsigned int i;
5227 host->max_id = 16;
5228 host->max_lun = 1;
5229 host->max_channel = 1;
5230 host->unique_id = ata_unique_id++;
5231 host->max_cmd_len = 12;
5233 ap->lock = &host_set->lock;
5234 ap->flags = ATA_FLAG_DISABLED;
5235 ap->id = host->unique_id;
5236 ap->host = host;
5237 ap->ctl = ATA_DEVCTL_OBS;
5238 ap->host_set = host_set;
5239 ap->dev = ent->dev;
5240 ap->port_no = port_no;
5241 ap->hard_port_no =
5242 ent->legacy_mode ? ent->hard_port_no : port_no;
5243 ap->pio_mask = ent->pio_mask;
5244 ap->mwdma_mask = ent->mwdma_mask;
5245 ap->udma_mask = ent->udma_mask;
5246 ap->flags |= ent->host_flags;
5247 ap->ops = ent->port_ops;
5248 ap->hw_sata_spd_limit = UINT_MAX;
5249 ap->active_tag = ATA_TAG_POISON;
5250 ap->last_ctl = 0xFF;
5252 #if defined(ATA_VERBOSE_DEBUG)
5253 /* turn on all debugging levels */
5254 ap->msg_enable = 0x00FF;
5255 #elif defined(ATA_DEBUG)
5256 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5257 #else
5258 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5259 #endif
5261 INIT_WORK(&ap->port_task, NULL, NULL);
5262 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
5263 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
5264 INIT_LIST_HEAD(&ap->eh_done_q);
5265 init_waitqueue_head(&ap->eh_wait_q);
5267 /* set cable type */
5268 ap->cbl = ATA_CBL_NONE;
5269 if (ap->flags & ATA_FLAG_SATA)
5270 ap->cbl = ATA_CBL_SATA;
5272 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5273 struct ata_device *dev = &ap->device[i];
5274 dev->ap = ap;
5275 dev->devno = i;
5276 ata_dev_init(dev);
5279 #ifdef ATA_IRQ_TRAP
5280 ap->stats.unhandled_irq = 1;
5281 ap->stats.idle_irq = 1;
5282 #endif
5284 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5288 * ata_host_add - Attach low-level ATA driver to system
5289 * @ent: Information provided by low-level driver
5290 * @host_set: Collections of ports to which we add
5291 * @port_no: Port number associated with this host
5293 * Attach low-level ATA driver to system.
5295 * LOCKING:
5296 * PCI/etc. bus probe sem.
5298 * RETURNS:
5299 * New ata_port on success, for NULL on error.
5302 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
5303 struct ata_host_set *host_set,
5304 unsigned int port_no)
5306 struct Scsi_Host *host;
5307 struct ata_port *ap;
5308 int rc;
5310 DPRINTK("ENTER\n");
5312 if (!ent->port_ops->error_handler &&
5313 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5314 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5315 port_no);
5316 return NULL;
5319 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5320 if (!host)
5321 return NULL;
5323 host->transportt = &ata_scsi_transport_template;
5325 ap = ata_shost_to_port(host);
5327 ata_host_init(ap, host, host_set, ent, port_no);
5329 rc = ap->ops->port_start(ap);
5330 if (rc)
5331 goto err_out;
5333 return ap;
5335 err_out:
5336 scsi_host_put(host);
5337 return NULL;
5341 * ata_device_add - Register hardware device with ATA and SCSI layers
5342 * @ent: Probe information describing hardware device to be registered
5344 * This function processes the information provided in the probe
5345 * information struct @ent, allocates the necessary ATA and SCSI
5346 * host information structures, initializes them, and registers
5347 * everything with requisite kernel subsystems.
5349 * This function requests irqs, probes the ATA bus, and probes
5350 * the SCSI bus.
5352 * LOCKING:
5353 * PCI/etc. bus probe sem.
5355 * RETURNS:
5356 * Number of ports registered. Zero on error (no ports registered).
5358 int ata_device_add(const struct ata_probe_ent *ent)
5360 unsigned int count = 0, i;
5361 struct device *dev = ent->dev;
5362 struct ata_host_set *host_set;
5363 int rc;
5365 DPRINTK("ENTER\n");
5366 /* alloc a container for our list of ATA ports (buses) */
5367 host_set = kzalloc(sizeof(struct ata_host_set) +
5368 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5369 if (!host_set)
5370 return 0;
5371 spin_lock_init(&host_set->lock);
5373 host_set->dev = dev;
5374 host_set->n_ports = ent->n_ports;
5375 host_set->irq = ent->irq;
5376 host_set->mmio_base = ent->mmio_base;
5377 host_set->private_data = ent->private_data;
5378 host_set->ops = ent->port_ops;
5379 host_set->flags = ent->host_set_flags;
5381 /* register each port bound to this device */
5382 for (i = 0; i < ent->n_ports; i++) {
5383 struct ata_port *ap;
5384 unsigned long xfer_mode_mask;
5386 ap = ata_host_add(ent, host_set, i);
5387 if (!ap)
5388 goto err_out;
5390 host_set->ports[i] = ap;
5391 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5392 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5393 (ap->pio_mask << ATA_SHIFT_PIO);
5395 /* print per-port info to dmesg */
5396 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5397 "ctl 0x%lX bmdma 0x%lX irq %lu\n",
5398 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5399 ata_mode_string(xfer_mode_mask),
5400 ap->ioaddr.cmd_addr,
5401 ap->ioaddr.ctl_addr,
5402 ap->ioaddr.bmdma_addr,
5403 ent->irq);
5405 ata_chk_status(ap);
5406 host_set->ops->irq_clear(ap);
5407 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
5408 count++;
5411 if (!count)
5412 goto err_free_ret;
5414 /* obtain irq, that is shared between channels */
5415 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5416 DRV_NAME, host_set);
5417 if (rc) {
5418 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5419 ent->irq, rc);
5420 goto err_out;
5423 /* perform each probe synchronously */
5424 DPRINTK("probe begin\n");
5425 for (i = 0; i < count; i++) {
5426 struct ata_port *ap;
5427 u32 scontrol;
5428 int rc;
5430 ap = host_set->ports[i];
5432 /* init sata_spd_limit to the current value */
5433 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5434 int spd = (scontrol >> 4) & 0xf;
5435 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5437 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5439 rc = scsi_add_host(ap->host, dev);
5440 if (rc) {
5441 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5442 /* FIXME: do something useful here */
5443 /* FIXME: handle unconditional calls to
5444 * scsi_scan_host and ata_host_remove, below,
5445 * at the very least
5449 if (ap->ops->error_handler) {
5450 struct ata_eh_info *ehi = &ap->eh_info;
5451 unsigned long flags;
5453 ata_port_probe(ap);
5455 /* kick EH for boot probing */
5456 spin_lock_irqsave(ap->lock, flags);
5458 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5459 ehi->action |= ATA_EH_SOFTRESET;
5460 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5462 ap->pflags |= ATA_PFLAG_LOADING;
5463 ata_port_schedule_eh(ap);
5465 spin_unlock_irqrestore(ap->lock, flags);
5467 /* wait for EH to finish */
5468 ata_port_wait_eh(ap);
5469 } else {
5470 DPRINTK("ata%u: bus probe begin\n", ap->id);
5471 rc = ata_bus_probe(ap);
5472 DPRINTK("ata%u: bus probe end\n", ap->id);
5474 if (rc) {
5475 /* FIXME: do something useful here?
5476 * Current libata behavior will
5477 * tear down everything when
5478 * the module is removed
5479 * or the h/w is unplugged.
5485 /* probes are done, now scan each port's disk(s) */
5486 DPRINTK("host probe begin\n");
5487 for (i = 0; i < count; i++) {
5488 struct ata_port *ap = host_set->ports[i];
5490 ata_scsi_scan_host(ap);
5493 dev_set_drvdata(dev, host_set);
5495 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5496 return ent->n_ports; /* success */
5498 err_out:
5499 for (i = 0; i < count; i++) {
5500 ata_host_remove(host_set->ports[i], 1);
5501 scsi_host_put(host_set->ports[i]->host);
5503 err_free_ret:
5504 kfree(host_set);
5505 VPRINTK("EXIT, returning 0\n");
5506 return 0;
5510 * ata_port_detach - Detach ATA port in prepration of device removal
5511 * @ap: ATA port to be detached
5513 * Detach all ATA devices and the associated SCSI devices of @ap;
5514 * then, remove the associated SCSI host. @ap is guaranteed to
5515 * be quiescent on return from this function.
5517 * LOCKING:
5518 * Kernel thread context (may sleep).
5520 void ata_port_detach(struct ata_port *ap)
5522 unsigned long flags;
5523 int i;
5525 if (!ap->ops->error_handler)
5526 return;
5528 /* tell EH we're leaving & flush EH */
5529 spin_lock_irqsave(ap->lock, flags);
5530 ap->pflags |= ATA_PFLAG_UNLOADING;
5531 spin_unlock_irqrestore(ap->lock, flags);
5533 ata_port_wait_eh(ap);
5535 /* EH is now guaranteed to see UNLOADING, so no new device
5536 * will be attached. Disable all existing devices.
5538 spin_lock_irqsave(ap->lock, flags);
5540 for (i = 0; i < ATA_MAX_DEVICES; i++)
5541 ata_dev_disable(&ap->device[i]);
5543 spin_unlock_irqrestore(ap->lock, flags);
5545 /* Final freeze & EH. All in-flight commands are aborted. EH
5546 * will be skipped and retrials will be terminated with bad
5547 * target.
5549 spin_lock_irqsave(ap->lock, flags);
5550 ata_port_freeze(ap); /* won't be thawed */
5551 spin_unlock_irqrestore(ap->lock, flags);
5553 ata_port_wait_eh(ap);
5555 /* Flush hotplug task. The sequence is similar to
5556 * ata_port_flush_task().
5558 flush_workqueue(ata_aux_wq);
5559 cancel_delayed_work(&ap->hotplug_task);
5560 flush_workqueue(ata_aux_wq);
5562 /* remove the associated SCSI host */
5563 scsi_remove_host(ap->host);
5567 * ata_host_set_remove - PCI layer callback for device removal
5568 * @host_set: ATA host set that was removed
5570 * Unregister all objects associated with this host set. Free those
5571 * objects.
5573 * LOCKING:
5574 * Inherited from calling layer (may sleep).
5577 void ata_host_set_remove(struct ata_host_set *host_set)
5579 unsigned int i;
5581 for (i = 0; i < host_set->n_ports; i++)
5582 ata_port_detach(host_set->ports[i]);
5584 free_irq(host_set->irq, host_set);
5586 for (i = 0; i < host_set->n_ports; i++) {
5587 struct ata_port *ap = host_set->ports[i];
5589 ata_scsi_release(ap->host);
5591 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5592 struct ata_ioports *ioaddr = &ap->ioaddr;
5594 if (ioaddr->cmd_addr == 0x1f0)
5595 release_region(0x1f0, 8);
5596 else if (ioaddr->cmd_addr == 0x170)
5597 release_region(0x170, 8);
5600 scsi_host_put(ap->host);
5603 if (host_set->ops->host_stop)
5604 host_set->ops->host_stop(host_set);
5606 kfree(host_set);
5610 * ata_scsi_release - SCSI layer callback hook for host unload
5611 * @host: libata host to be unloaded
5613 * Performs all duties necessary to shut down a libata port...
5614 * Kill port kthread, disable port, and release resources.
5616 * LOCKING:
5617 * Inherited from SCSI layer.
5619 * RETURNS:
5620 * One.
5623 int ata_scsi_release(struct Scsi_Host *host)
5625 struct ata_port *ap = ata_shost_to_port(host);
5627 DPRINTK("ENTER\n");
5629 ap->ops->port_disable(ap);
5630 ata_host_remove(ap, 0);
5632 DPRINTK("EXIT\n");
5633 return 1;
5637 * ata_std_ports - initialize ioaddr with standard port offsets.
5638 * @ioaddr: IO address structure to be initialized
5640 * Utility function which initializes data_addr, error_addr,
5641 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5642 * device_addr, status_addr, and command_addr to standard offsets
5643 * relative to cmd_addr.
5645 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5648 void ata_std_ports(struct ata_ioports *ioaddr)
5650 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5651 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5652 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5653 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5654 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5655 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5656 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5657 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5658 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5659 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5663 #ifdef CONFIG_PCI
5665 void ata_pci_host_stop (struct ata_host_set *host_set)
5667 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5669 pci_iounmap(pdev, host_set->mmio_base);
5673 * ata_pci_remove_one - PCI layer callback for device removal
5674 * @pdev: PCI device that was removed
5676 * PCI layer indicates to libata via this hook that
5677 * hot-unplug or module unload event has occurred.
5678 * Handle this by unregistering all objects associated
5679 * with this PCI device. Free those objects. Then finally
5680 * release PCI resources and disable device.
5682 * LOCKING:
5683 * Inherited from PCI layer (may sleep).
5686 void ata_pci_remove_one (struct pci_dev *pdev)
5688 struct device *dev = pci_dev_to_dev(pdev);
5689 struct ata_host_set *host_set = dev_get_drvdata(dev);
5690 struct ata_host_set *host_set2 = host_set->next;
5692 ata_host_set_remove(host_set);
5693 if (host_set2)
5694 ata_host_set_remove(host_set2);
5696 pci_release_regions(pdev);
5697 pci_disable_device(pdev);
5698 dev_set_drvdata(dev, NULL);
5701 /* move to PCI subsystem */
5702 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5704 unsigned long tmp = 0;
5706 switch (bits->width) {
5707 case 1: {
5708 u8 tmp8 = 0;
5709 pci_read_config_byte(pdev, bits->reg, &tmp8);
5710 tmp = tmp8;
5711 break;
5713 case 2: {
5714 u16 tmp16 = 0;
5715 pci_read_config_word(pdev, bits->reg, &tmp16);
5716 tmp = tmp16;
5717 break;
5719 case 4: {
5720 u32 tmp32 = 0;
5721 pci_read_config_dword(pdev, bits->reg, &tmp32);
5722 tmp = tmp32;
5723 break;
5726 default:
5727 return -EINVAL;
5730 tmp &= bits->mask;
5732 return (tmp == bits->val) ? 1 : 0;
5735 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5737 pci_save_state(pdev);
5738 pci_disable_device(pdev);
5739 pci_set_power_state(pdev, PCI_D3hot);
5740 return 0;
5743 int ata_pci_device_resume(struct pci_dev *pdev)
5745 pci_set_power_state(pdev, PCI_D0);
5746 pci_restore_state(pdev);
5747 pci_enable_device(pdev);
5748 pci_set_master(pdev);
5749 return 0;
5751 #endif /* CONFIG_PCI */
5754 static int __init ata_init(void)
5756 ata_probe_timeout *= HZ;
5757 ata_wq = create_workqueue("ata");
5758 if (!ata_wq)
5759 return -ENOMEM;
5761 ata_aux_wq = create_singlethread_workqueue("ata_aux");
5762 if (!ata_aux_wq) {
5763 destroy_workqueue(ata_wq);
5764 return -ENOMEM;
5767 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5768 return 0;
5771 static void __exit ata_exit(void)
5773 destroy_workqueue(ata_wq);
5774 destroy_workqueue(ata_aux_wq);
5777 module_init(ata_init);
5778 module_exit(ata_exit);
5780 static unsigned long ratelimit_time;
5781 static DEFINE_SPINLOCK(ata_ratelimit_lock);
5783 int ata_ratelimit(void)
5785 int rc;
5786 unsigned long flags;
5788 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5790 if (time_after(jiffies, ratelimit_time)) {
5791 rc = 1;
5792 ratelimit_time = jiffies + (HZ/5);
5793 } else
5794 rc = 0;
5796 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5798 return rc;
5802 * ata_wait_register - wait until register value changes
5803 * @reg: IO-mapped register
5804 * @mask: Mask to apply to read register value
5805 * @val: Wait condition
5806 * @interval_msec: polling interval in milliseconds
5807 * @timeout_msec: timeout in milliseconds
5809 * Waiting for some bits of register to change is a common
5810 * operation for ATA controllers. This function reads 32bit LE
5811 * IO-mapped register @reg and tests for the following condition.
5813 * (*@reg & mask) != val
5815 * If the condition is met, it returns; otherwise, the process is
5816 * repeated after @interval_msec until timeout.
5818 * LOCKING:
5819 * Kernel thread context (may sleep)
5821 * RETURNS:
5822 * The final register value.
5824 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5825 unsigned long interval_msec,
5826 unsigned long timeout_msec)
5828 unsigned long timeout;
5829 u32 tmp;
5831 tmp = ioread32(reg);
5833 /* Calculate timeout _after_ the first read to make sure
5834 * preceding writes reach the controller before starting to
5835 * eat away the timeout.
5837 timeout = jiffies + (timeout_msec * HZ) / 1000;
5839 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5840 msleep(interval_msec);
5841 tmp = ioread32(reg);
5844 return tmp;
5848 * libata is essentially a library of internal helper functions for
5849 * low-level ATA host controller drivers. As such, the API/ABI is
5850 * likely to change as new drivers are added and updated.
5851 * Do not depend on ABI/API stability.
5854 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
5855 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
5856 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
5857 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5858 EXPORT_SYMBOL_GPL(ata_std_ports);
5859 EXPORT_SYMBOL_GPL(ata_device_add);
5860 EXPORT_SYMBOL_GPL(ata_port_detach);
5861 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5862 EXPORT_SYMBOL_GPL(ata_sg_init);
5863 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5864 EXPORT_SYMBOL_GPL(ata_hsm_move);
5865 EXPORT_SYMBOL_GPL(ata_qc_complete);
5866 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
5867 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5868 EXPORT_SYMBOL_GPL(ata_tf_load);
5869 EXPORT_SYMBOL_GPL(ata_tf_read);
5870 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5871 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5872 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5873 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5874 EXPORT_SYMBOL_GPL(ata_check_status);
5875 EXPORT_SYMBOL_GPL(ata_altstatus);
5876 EXPORT_SYMBOL_GPL(ata_exec_command);
5877 EXPORT_SYMBOL_GPL(ata_port_start);
5878 EXPORT_SYMBOL_GPL(ata_port_stop);
5879 EXPORT_SYMBOL_GPL(ata_host_stop);
5880 EXPORT_SYMBOL_GPL(ata_interrupt);
5881 EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
5882 EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
5883 EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
5884 EXPORT_SYMBOL_GPL(ata_qc_prep);
5885 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
5886 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5887 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5888 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5889 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5890 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5891 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
5892 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
5893 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
5894 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
5895 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
5896 EXPORT_SYMBOL_GPL(ata_port_probe);
5897 EXPORT_SYMBOL_GPL(sata_set_spd);
5898 EXPORT_SYMBOL_GPL(sata_phy_debounce);
5899 EXPORT_SYMBOL_GPL(sata_phy_resume);
5900 EXPORT_SYMBOL_GPL(sata_phy_reset);
5901 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5902 EXPORT_SYMBOL_GPL(ata_bus_reset);
5903 EXPORT_SYMBOL_GPL(ata_std_prereset);
5904 EXPORT_SYMBOL_GPL(ata_std_softreset);
5905 EXPORT_SYMBOL_GPL(sata_std_hardreset);
5906 EXPORT_SYMBOL_GPL(ata_std_postreset);
5907 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
5908 EXPORT_SYMBOL_GPL(ata_dev_classify);
5909 EXPORT_SYMBOL_GPL(ata_dev_pair);
5910 EXPORT_SYMBOL_GPL(ata_port_disable);
5911 EXPORT_SYMBOL_GPL(ata_ratelimit);
5912 EXPORT_SYMBOL_GPL(ata_wait_register);
5913 EXPORT_SYMBOL_GPL(ata_busy_sleep);
5914 EXPORT_SYMBOL_GPL(ata_port_queue_task);
5915 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5916 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5917 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5918 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
5919 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
5920 EXPORT_SYMBOL_GPL(ata_scsi_release);
5921 EXPORT_SYMBOL_GPL(ata_host_intr);
5922 EXPORT_SYMBOL_GPL(sata_scr_valid);
5923 EXPORT_SYMBOL_GPL(sata_scr_read);
5924 EXPORT_SYMBOL_GPL(sata_scr_write);
5925 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
5926 EXPORT_SYMBOL_GPL(ata_port_online);
5927 EXPORT_SYMBOL_GPL(ata_port_offline);
5928 EXPORT_SYMBOL_GPL(ata_id_string);
5929 EXPORT_SYMBOL_GPL(ata_id_c_string);
5930 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5932 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5933 EXPORT_SYMBOL_GPL(ata_timing_compute);
5934 EXPORT_SYMBOL_GPL(ata_timing_merge);
5936 #ifdef CONFIG_PCI
5937 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5938 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5939 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5940 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5941 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5942 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5943 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5944 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5945 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
5946 #endif /* CONFIG_PCI */
5948 EXPORT_SYMBOL_GPL(ata_device_suspend);
5949 EXPORT_SYMBOL_GPL(ata_device_resume);
5950 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5951 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
5953 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5954 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
5955 EXPORT_SYMBOL_GPL(ata_port_abort);
5956 EXPORT_SYMBOL_GPL(ata_port_freeze);
5957 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
5958 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
5959 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5960 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
5961 EXPORT_SYMBOL_GPL(ata_do_eh);