[PATCH] mm/swap.c: unexport vm_acct_memory
[linux-2.6/suspend2-2.6.18.git] / mm / hugetlb.c
blob728e9bda12ea9971c1cf0212184b1ca2c2d94020
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <asm/page.h>
15 #include <asm/pgtable.h>
17 #include <linux/hugetlb.h>
19 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
20 static unsigned long nr_huge_pages, free_huge_pages;
21 unsigned long max_huge_pages;
22 static struct list_head hugepage_freelists[MAX_NUMNODES];
23 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
24 static unsigned int free_huge_pages_node[MAX_NUMNODES];
25 static DEFINE_SPINLOCK(hugetlb_lock);
27 static void enqueue_huge_page(struct page *page)
29 int nid = page_to_nid(page);
30 list_add(&page->lru, &hugepage_freelists[nid]);
31 free_huge_pages++;
32 free_huge_pages_node[nid]++;
35 static struct page *dequeue_huge_page(void)
37 int nid = numa_node_id();
38 struct page *page = NULL;
40 if (list_empty(&hugepage_freelists[nid])) {
41 for (nid = 0; nid < MAX_NUMNODES; ++nid)
42 if (!list_empty(&hugepage_freelists[nid]))
43 break;
45 if (nid >= 0 && nid < MAX_NUMNODES &&
46 !list_empty(&hugepage_freelists[nid])) {
47 page = list_entry(hugepage_freelists[nid].next,
48 struct page, lru);
49 list_del(&page->lru);
50 free_huge_pages--;
51 free_huge_pages_node[nid]--;
53 return page;
56 static struct page *alloc_fresh_huge_page(void)
58 static int nid = 0;
59 struct page *page;
60 page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
61 HUGETLB_PAGE_ORDER);
62 nid = (nid + 1) % num_online_nodes();
63 if (page) {
64 nr_huge_pages++;
65 nr_huge_pages_node[page_to_nid(page)]++;
67 return page;
70 void free_huge_page(struct page *page)
72 BUG_ON(page_count(page));
74 INIT_LIST_HEAD(&page->lru);
75 page[1].mapping = NULL;
77 spin_lock(&hugetlb_lock);
78 enqueue_huge_page(page);
79 spin_unlock(&hugetlb_lock);
82 struct page *alloc_huge_page(void)
84 struct page *page;
85 int i;
87 spin_lock(&hugetlb_lock);
88 page = dequeue_huge_page();
89 if (!page) {
90 spin_unlock(&hugetlb_lock);
91 return NULL;
93 spin_unlock(&hugetlb_lock);
94 set_page_count(page, 1);
95 page[1].mapping = (void *)free_huge_page;
96 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); ++i)
97 clear_highpage(&page[i]);
98 return page;
101 static int __init hugetlb_init(void)
103 unsigned long i;
104 struct page *page;
106 if (HPAGE_SHIFT == 0)
107 return 0;
109 for (i = 0; i < MAX_NUMNODES; ++i)
110 INIT_LIST_HEAD(&hugepage_freelists[i]);
112 for (i = 0; i < max_huge_pages; ++i) {
113 page = alloc_fresh_huge_page();
114 if (!page)
115 break;
116 spin_lock(&hugetlb_lock);
117 enqueue_huge_page(page);
118 spin_unlock(&hugetlb_lock);
120 max_huge_pages = free_huge_pages = nr_huge_pages = i;
121 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
122 return 0;
124 module_init(hugetlb_init);
126 static int __init hugetlb_setup(char *s)
128 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
129 max_huge_pages = 0;
130 return 1;
132 __setup("hugepages=", hugetlb_setup);
134 #ifdef CONFIG_SYSCTL
135 static void update_and_free_page(struct page *page)
137 int i;
138 nr_huge_pages--;
139 nr_huge_pages_node[page_zone(page)->zone_pgdat->node_id]--;
140 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
141 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
142 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
143 1 << PG_private | 1<< PG_writeback);
144 set_page_count(&page[i], 0);
146 set_page_count(page, 1);
147 __free_pages(page, HUGETLB_PAGE_ORDER);
150 #ifdef CONFIG_HIGHMEM
151 static void try_to_free_low(unsigned long count)
153 int i, nid;
154 for (i = 0; i < MAX_NUMNODES; ++i) {
155 struct page *page, *next;
156 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
157 if (PageHighMem(page))
158 continue;
159 list_del(&page->lru);
160 update_and_free_page(page);
161 nid = page_zone(page)->zone_pgdat->node_id;
162 free_huge_pages--;
163 free_huge_pages_node[nid]--;
164 if (count >= nr_huge_pages)
165 return;
169 #else
170 static inline void try_to_free_low(unsigned long count)
173 #endif
175 static unsigned long set_max_huge_pages(unsigned long count)
177 while (count > nr_huge_pages) {
178 struct page *page = alloc_fresh_huge_page();
179 if (!page)
180 return nr_huge_pages;
181 spin_lock(&hugetlb_lock);
182 enqueue_huge_page(page);
183 spin_unlock(&hugetlb_lock);
185 if (count >= nr_huge_pages)
186 return nr_huge_pages;
188 spin_lock(&hugetlb_lock);
189 try_to_free_low(count);
190 while (count < nr_huge_pages) {
191 struct page *page = dequeue_huge_page();
192 if (!page)
193 break;
194 update_and_free_page(page);
196 spin_unlock(&hugetlb_lock);
197 return nr_huge_pages;
200 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
201 struct file *file, void __user *buffer,
202 size_t *length, loff_t *ppos)
204 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
205 max_huge_pages = set_max_huge_pages(max_huge_pages);
206 return 0;
208 #endif /* CONFIG_SYSCTL */
210 int hugetlb_report_meminfo(char *buf)
212 return sprintf(buf,
213 "HugePages_Total: %5lu\n"
214 "HugePages_Free: %5lu\n"
215 "Hugepagesize: %5lu kB\n",
216 nr_huge_pages,
217 free_huge_pages,
218 HPAGE_SIZE/1024);
221 int hugetlb_report_node_meminfo(int nid, char *buf)
223 return sprintf(buf,
224 "Node %d HugePages_Total: %5u\n"
225 "Node %d HugePages_Free: %5u\n",
226 nid, nr_huge_pages_node[nid],
227 nid, free_huge_pages_node[nid]);
230 int is_hugepage_mem_enough(size_t size)
232 return (size + ~HPAGE_MASK)/HPAGE_SIZE <= free_huge_pages;
235 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
236 unsigned long hugetlb_total_pages(void)
238 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
242 * We cannot handle pagefaults against hugetlb pages at all. They cause
243 * handle_mm_fault() to try to instantiate regular-sized pages in the
244 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
245 * this far.
247 static struct page *hugetlb_nopage(struct vm_area_struct *vma,
248 unsigned long address, int *unused)
250 BUG();
251 return NULL;
254 struct vm_operations_struct hugetlb_vm_ops = {
255 .nopage = hugetlb_nopage,
258 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page)
260 pte_t entry;
262 if (vma->vm_flags & VM_WRITE) {
263 entry =
264 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
265 } else {
266 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
268 entry = pte_mkyoung(entry);
269 entry = pte_mkhuge(entry);
271 return entry;
274 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
275 struct vm_area_struct *vma)
277 pte_t *src_pte, *dst_pte, entry;
278 struct page *ptepage;
279 unsigned long addr;
281 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
282 src_pte = huge_pte_offset(src, addr);
283 if (!src_pte)
284 continue;
285 dst_pte = huge_pte_alloc(dst, addr);
286 if (!dst_pte)
287 goto nomem;
288 spin_lock(&dst->page_table_lock);
289 spin_lock(&src->page_table_lock);
290 if (!pte_none(*src_pte)) {
291 entry = *src_pte;
292 ptepage = pte_page(entry);
293 get_page(ptepage);
294 add_mm_counter(dst, file_rss, HPAGE_SIZE / PAGE_SIZE);
295 set_huge_pte_at(dst, addr, dst_pte, entry);
297 spin_unlock(&src->page_table_lock);
298 spin_unlock(&dst->page_table_lock);
300 return 0;
302 nomem:
303 return -ENOMEM;
306 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
307 unsigned long end)
309 struct mm_struct *mm = vma->vm_mm;
310 unsigned long address;
311 pte_t *ptep;
312 pte_t pte;
313 struct page *page;
315 WARN_ON(!is_vm_hugetlb_page(vma));
316 BUG_ON(start & ~HPAGE_MASK);
317 BUG_ON(end & ~HPAGE_MASK);
319 spin_lock(&mm->page_table_lock);
321 /* Update high watermark before we lower rss */
322 update_hiwater_rss(mm);
324 for (address = start; address < end; address += HPAGE_SIZE) {
325 ptep = huge_pte_offset(mm, address);
326 if (!ptep)
327 continue;
329 pte = huge_ptep_get_and_clear(mm, address, ptep);
330 if (pte_none(pte))
331 continue;
333 page = pte_page(pte);
334 put_page(page);
335 add_mm_counter(mm, file_rss, (int) -(HPAGE_SIZE / PAGE_SIZE));
338 spin_unlock(&mm->page_table_lock);
339 flush_tlb_range(vma, start, end);
342 static struct page *find_lock_huge_page(struct address_space *mapping,
343 unsigned long idx)
345 struct page *page;
346 int err;
347 struct inode *inode = mapping->host;
348 unsigned long size;
350 retry:
351 page = find_lock_page(mapping, idx);
352 if (page)
353 goto out;
355 /* Check to make sure the mapping hasn't been truncated */
356 size = i_size_read(inode) >> HPAGE_SHIFT;
357 if (idx >= size)
358 goto out;
360 if (hugetlb_get_quota(mapping))
361 goto out;
362 page = alloc_huge_page();
363 if (!page) {
364 hugetlb_put_quota(mapping);
365 goto out;
368 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
369 if (err) {
370 put_page(page);
371 hugetlb_put_quota(mapping);
372 if (err == -EEXIST)
373 goto retry;
374 page = NULL;
376 out:
377 return page;
380 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
381 unsigned long address, int write_access)
383 int ret = VM_FAULT_SIGBUS;
384 unsigned long idx;
385 unsigned long size;
386 pte_t *pte;
387 struct page *page;
388 struct address_space *mapping;
390 pte = huge_pte_alloc(mm, address);
391 if (!pte)
392 goto out;
394 mapping = vma->vm_file->f_mapping;
395 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
396 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
399 * Use page lock to guard against racing truncation
400 * before we get page_table_lock.
402 page = find_lock_huge_page(mapping, idx);
403 if (!page)
404 goto out;
406 spin_lock(&mm->page_table_lock);
407 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
408 if (idx >= size)
409 goto backout;
411 ret = VM_FAULT_MINOR;
412 if (!pte_none(*pte))
413 goto backout;
415 add_mm_counter(mm, file_rss, HPAGE_SIZE / PAGE_SIZE);
416 set_huge_pte_at(mm, address, pte, make_huge_pte(vma, page));
417 spin_unlock(&mm->page_table_lock);
418 unlock_page(page);
419 out:
420 return ret;
422 backout:
423 spin_unlock(&mm->page_table_lock);
424 hugetlb_put_quota(mapping);
425 unlock_page(page);
426 put_page(page);
427 goto out;
430 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
431 struct page **pages, struct vm_area_struct **vmas,
432 unsigned long *position, int *length, int i)
434 unsigned long vpfn, vaddr = *position;
435 int remainder = *length;
437 vpfn = vaddr/PAGE_SIZE;
438 spin_lock(&mm->page_table_lock);
439 while (vaddr < vma->vm_end && remainder) {
440 pte_t *pte;
441 struct page *page;
444 * Some archs (sparc64, sh*) have multiple pte_ts to
445 * each hugepage. We have to make * sure we get the
446 * first, for the page indexing below to work.
448 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
450 if (!pte || pte_none(*pte)) {
451 int ret;
453 spin_unlock(&mm->page_table_lock);
454 ret = hugetlb_fault(mm, vma, vaddr, 0);
455 spin_lock(&mm->page_table_lock);
456 if (ret == VM_FAULT_MINOR)
457 continue;
459 remainder = 0;
460 if (!i)
461 i = -EFAULT;
462 break;
465 if (pages) {
466 page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
467 get_page(page);
468 pages[i] = page;
471 if (vmas)
472 vmas[i] = vma;
474 vaddr += PAGE_SIZE;
475 ++vpfn;
476 --remainder;
477 ++i;
479 spin_unlock(&mm->page_table_lock);
480 *length = remainder;
481 *position = vaddr;
483 return i;