[ARM] 3581/1: AT91RM9200 Internal SRAM
[linux-2.6/suspend2-2.6.18.git] / lib / reed_solomon / reed_solomon.c
blobf8ac9fa95de12cde5f786c46aca67ffdb343b0bb
1 /*
2 * lib/reed_solomon/rslib.c
4 * Overview:
5 * Generic Reed Solomon encoder / decoder library
7 * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de)
9 * Reed Solomon code lifted from reed solomon library written by Phil Karn
10 * Copyright 2002 Phil Karn, KA9Q
12 * $Id: rslib.c,v 1.7 2005/11/07 11:14:59 gleixner Exp $
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
18 * Description:
20 * The generic Reed Solomon library provides runtime configurable
21 * encoding / decoding of RS codes.
22 * Each user must call init_rs to get a pointer to a rs_control
23 * structure for the given rs parameters. This structure is either
24 * generated or a already available matching control structure is used.
25 * If a structure is generated then the polynomial arrays for
26 * fast encoding / decoding are built. This can take some time so
27 * make sure not to call this function from a time critical path.
28 * Usually a module / driver should initialize the necessary
29 * rs_control structure on module / driver init and release it
30 * on exit.
31 * The encoding puts the calculated syndrome into a given syndrome
32 * buffer.
33 * The decoding is a two step process. The first step calculates
34 * the syndrome over the received (data + syndrome) and calls the
35 * second stage, which does the decoding / error correction itself.
36 * Many hw encoders provide a syndrome calculation over the received
37 * data + syndrome and can call the second stage directly.
41 #include <linux/errno.h>
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/module.h>
45 #include <linux/rslib.h>
46 #include <linux/slab.h>
47 #include <linux/mutex.h>
48 #include <asm/semaphore.h>
50 /* This list holds all currently allocated rs control structures */
51 static LIST_HEAD (rslist);
52 /* Protection for the list */
53 static DEFINE_MUTEX(rslistlock);
55 /**
56 * rs_init - Initialize a Reed-Solomon codec
58 * @symsize: symbol size, bits (1-8)
59 * @gfpoly: Field generator polynomial coefficients
60 * @fcr: first root of RS code generator polynomial, index form
61 * @prim: primitive element to generate polynomial roots
62 * @nroots: RS code generator polynomial degree (number of roots)
64 * Allocate a control structure and the polynom arrays for faster
65 * en/decoding. Fill the arrays according to the given parameters
67 static struct rs_control *rs_init(int symsize, int gfpoly, int fcr,
68 int prim, int nroots)
70 struct rs_control *rs;
71 int i, j, sr, root, iprim;
73 /* Allocate the control structure */
74 rs = kmalloc(sizeof (struct rs_control), GFP_KERNEL);
75 if (rs == NULL)
76 return NULL;
78 INIT_LIST_HEAD(&rs->list);
80 rs->mm = symsize;
81 rs->nn = (1 << symsize) - 1;
82 rs->fcr = fcr;
83 rs->prim = prim;
84 rs->nroots = nroots;
85 rs->gfpoly = gfpoly;
87 /* Allocate the arrays */
88 rs->alpha_to = kmalloc(sizeof(uint16_t) * (rs->nn + 1), GFP_KERNEL);
89 if (rs->alpha_to == NULL)
90 goto errrs;
92 rs->index_of = kmalloc(sizeof(uint16_t) * (rs->nn + 1), GFP_KERNEL);
93 if (rs->index_of == NULL)
94 goto erralp;
96 rs->genpoly = kmalloc(sizeof(uint16_t) * (rs->nroots + 1), GFP_KERNEL);
97 if(rs->genpoly == NULL)
98 goto erridx;
100 /* Generate Galois field lookup tables */
101 rs->index_of[0] = rs->nn; /* log(zero) = -inf */
102 rs->alpha_to[rs->nn] = 0; /* alpha**-inf = 0 */
103 sr = 1;
104 for (i = 0; i < rs->nn; i++) {
105 rs->index_of[sr] = i;
106 rs->alpha_to[i] = sr;
107 sr <<= 1;
108 if (sr & (1 << symsize))
109 sr ^= gfpoly;
110 sr &= rs->nn;
112 /* If it's not primitive, exit */
113 if(sr != 1)
114 goto errpol;
116 /* Find prim-th root of 1, used in decoding */
117 for(iprim = 1; (iprim % prim) != 0; iprim += rs->nn);
118 /* prim-th root of 1, index form */
119 rs->iprim = iprim / prim;
121 /* Form RS code generator polynomial from its roots */
122 rs->genpoly[0] = 1;
123 for (i = 0, root = fcr * prim; i < nroots; i++, root += prim) {
124 rs->genpoly[i + 1] = 1;
125 /* Multiply rs->genpoly[] by @**(root + x) */
126 for (j = i; j > 0; j--) {
127 if (rs->genpoly[j] != 0) {
128 rs->genpoly[j] = rs->genpoly[j -1] ^
129 rs->alpha_to[rs_modnn(rs,
130 rs->index_of[rs->genpoly[j]] + root)];
131 } else
132 rs->genpoly[j] = rs->genpoly[j - 1];
134 /* rs->genpoly[0] can never be zero */
135 rs->genpoly[0] =
136 rs->alpha_to[rs_modnn(rs,
137 rs->index_of[rs->genpoly[0]] + root)];
139 /* convert rs->genpoly[] to index form for quicker encoding */
140 for (i = 0; i <= nroots; i++)
141 rs->genpoly[i] = rs->index_of[rs->genpoly[i]];
142 return rs;
144 /* Error exit */
145 errpol:
146 kfree(rs->genpoly);
147 erridx:
148 kfree(rs->index_of);
149 erralp:
150 kfree(rs->alpha_to);
151 errrs:
152 kfree(rs);
153 return NULL;
158 * free_rs - Free the rs control structure, if its not longer used
160 * @rs: the control structure which is not longer used by the
161 * caller
163 void free_rs(struct rs_control *rs)
165 mutex_lock(&rslistlock);
166 rs->users--;
167 if(!rs->users) {
168 list_del(&rs->list);
169 kfree(rs->alpha_to);
170 kfree(rs->index_of);
171 kfree(rs->genpoly);
172 kfree(rs);
174 mutex_unlock(&rslistlock);
178 * init_rs - Find a matching or allocate a new rs control structure
180 * @symsize: the symbol size (number of bits)
181 * @gfpoly: the extended Galois field generator polynomial coefficients,
182 * with the 0th coefficient in the low order bit. The polynomial
183 * must be primitive;
184 * @fcr: the first consecutive root of the rs code generator polynomial
185 * in index form
186 * @prim: primitive element to generate polynomial roots
187 * @nroots: RS code generator polynomial degree (number of roots)
189 struct rs_control *init_rs(int symsize, int gfpoly, int fcr, int prim,
190 int nroots)
192 struct list_head *tmp;
193 struct rs_control *rs;
195 /* Sanity checks */
196 if (symsize < 1)
197 return NULL;
198 if (fcr < 0 || fcr >= (1<<symsize))
199 return NULL;
200 if (prim <= 0 || prim >= (1<<symsize))
201 return NULL;
202 if (nroots < 0 || nroots >= (1<<symsize))
203 return NULL;
205 mutex_lock(&rslistlock);
207 /* Walk through the list and look for a matching entry */
208 list_for_each(tmp, &rslist) {
209 rs = list_entry(tmp, struct rs_control, list);
210 if (symsize != rs->mm)
211 continue;
212 if (gfpoly != rs->gfpoly)
213 continue;
214 if (fcr != rs->fcr)
215 continue;
216 if (prim != rs->prim)
217 continue;
218 if (nroots != rs->nroots)
219 continue;
220 /* We have a matching one already */
221 rs->users++;
222 goto out;
225 /* Create a new one */
226 rs = rs_init(symsize, gfpoly, fcr, prim, nroots);
227 if (rs) {
228 rs->users = 1;
229 list_add(&rs->list, &rslist);
231 out:
232 mutex_unlock(&rslistlock);
233 return rs;
236 #ifdef CONFIG_REED_SOLOMON_ENC8
238 * encode_rs8 - Calculate the parity for data values (8bit data width)
240 * @rs: the rs control structure
241 * @data: data field of a given type
242 * @len: data length
243 * @par: parity data, must be initialized by caller (usually all 0)
244 * @invmsk: invert data mask (will be xored on data)
246 * The parity uses a uint16_t data type to enable
247 * symbol size > 8. The calling code must take care of encoding of the
248 * syndrome result for storage itself.
250 int encode_rs8(struct rs_control *rs, uint8_t *data, int len, uint16_t *par,
251 uint16_t invmsk)
253 #include "encode_rs.c"
255 EXPORT_SYMBOL_GPL(encode_rs8);
256 #endif
258 #ifdef CONFIG_REED_SOLOMON_DEC8
260 * decode_rs8 - Decode codeword (8bit data width)
262 * @rs: the rs control structure
263 * @data: data field of a given type
264 * @par: received parity data field
265 * @len: data length
266 * @s: syndrome data field (if NULL, syndrome is calculated)
267 * @no_eras: number of erasures
268 * @eras_pos: position of erasures, can be NULL
269 * @invmsk: invert data mask (will be xored on data, not on parity!)
270 * @corr: buffer to store correction bitmask on eras_pos
272 * The syndrome and parity uses a uint16_t data type to enable
273 * symbol size > 8. The calling code must take care of decoding of the
274 * syndrome result and the received parity before calling this code.
276 int decode_rs8(struct rs_control *rs, uint8_t *data, uint16_t *par, int len,
277 uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk,
278 uint16_t *corr)
280 #include "decode_rs.c"
282 EXPORT_SYMBOL_GPL(decode_rs8);
283 #endif
285 #ifdef CONFIG_REED_SOLOMON_ENC16
287 * encode_rs16 - Calculate the parity for data values (16bit data width)
289 * @rs: the rs control structure
290 * @data: data field of a given type
291 * @len: data length
292 * @par: parity data, must be initialized by caller (usually all 0)
293 * @invmsk: invert data mask (will be xored on data, not on parity!)
295 * Each field in the data array contains up to symbol size bits of valid data.
297 int encode_rs16(struct rs_control *rs, uint16_t *data, int len, uint16_t *par,
298 uint16_t invmsk)
300 #include "encode_rs.c"
302 EXPORT_SYMBOL_GPL(encode_rs16);
303 #endif
305 #ifdef CONFIG_REED_SOLOMON_DEC16
307 * decode_rs16 - Decode codeword (16bit data width)
309 * @rs: the rs control structure
310 * @data: data field of a given type
311 * @par: received parity data field
312 * @len: data length
313 * @s: syndrome data field (if NULL, syndrome is calculated)
314 * @no_eras: number of erasures
315 * @eras_pos: position of erasures, can be NULL
316 * @invmsk: invert data mask (will be xored on data, not on parity!)
317 * @corr: buffer to store correction bitmask on eras_pos
319 * Each field in the data array contains up to symbol size bits of valid data.
321 int decode_rs16(struct rs_control *rs, uint16_t *data, uint16_t *par, int len,
322 uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk,
323 uint16_t *corr)
325 #include "decode_rs.c"
327 EXPORT_SYMBOL_GPL(decode_rs16);
328 #endif
330 EXPORT_SYMBOL_GPL(init_rs);
331 EXPORT_SYMBOL_GPL(free_rs);
333 MODULE_LICENSE("GPL");
334 MODULE_DESCRIPTION("Reed Solomon encoder/decoder");
335 MODULE_AUTHOR("Phil Karn, Thomas Gleixner");