[PATCH] init call cleanup
[linux-2.6/suspend2-2.6.18.git] / arch / i386 / kernel / process.c
blobe06f2dc7123dffc8a7f5decb662543c4603a2831
1 /*
2 * linux/arch/i386/kernel/process.c
4 * Copyright (C) 1995 Linus Torvalds
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
11 * This file handles the architecture-dependent parts of process handling..
14 #include <stdarg.h>
16 #include <linux/cpu.h>
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/fs.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/elfcore.h>
23 #include <linux/smp.h>
24 #include <linux/smp_lock.h>
25 #include <linux/stddef.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/user.h>
29 #include <linux/a.out.h>
30 #include <linux/interrupt.h>
31 #include <linux/config.h>
32 #include <linux/utsname.h>
33 #include <linux/delay.h>
34 #include <linux/reboot.h>
35 #include <linux/init.h>
36 #include <linux/mc146818rtc.h>
37 #include <linux/module.h>
38 #include <linux/kallsyms.h>
39 #include <linux/ptrace.h>
40 #include <linux/random.h>
41 #include <linux/kprobes.h>
43 #include <asm/uaccess.h>
44 #include <asm/pgtable.h>
45 #include <asm/system.h>
46 #include <asm/io.h>
47 #include <asm/ldt.h>
48 #include <asm/processor.h>
49 #include <asm/i387.h>
50 #include <asm/irq.h>
51 #include <asm/desc.h>
52 #ifdef CONFIG_MATH_EMULATION
53 #include <asm/math_emu.h>
54 #endif
56 #include <linux/irq.h>
57 #include <linux/err.h>
59 #include <asm/tlbflush.h>
60 #include <asm/cpu.h>
62 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
64 static int hlt_counter;
66 unsigned long boot_option_idle_override = 0;
67 EXPORT_SYMBOL(boot_option_idle_override);
70 * Return saved PC of a blocked thread.
72 unsigned long thread_saved_pc(struct task_struct *tsk)
74 return ((unsigned long *)tsk->thread.esp)[3];
78 * Powermanagement idle function, if any..
80 void (*pm_idle)(void);
81 EXPORT_SYMBOL(pm_idle);
82 static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
84 void disable_hlt(void)
86 hlt_counter++;
89 EXPORT_SYMBOL(disable_hlt);
91 void enable_hlt(void)
93 hlt_counter--;
96 EXPORT_SYMBOL(enable_hlt);
99 * We use this if we don't have any better
100 * idle routine..
102 void default_idle(void)
104 if (!hlt_counter && boot_cpu_data.hlt_works_ok) {
105 local_irq_disable();
106 if (!need_resched())
107 safe_halt();
108 else
109 local_irq_enable();
110 } else {
111 cpu_relax();
114 #ifdef CONFIG_APM_MODULE
115 EXPORT_SYMBOL(default_idle);
116 #endif
119 * On SMP it's slightly faster (but much more power-consuming!)
120 * to poll the ->work.need_resched flag instead of waiting for the
121 * cross-CPU IPI to arrive. Use this option with caution.
123 static void poll_idle (void)
125 int oldval;
127 local_irq_enable();
130 * Deal with another CPU just having chosen a thread to
131 * run here:
133 oldval = test_and_clear_thread_flag(TIF_NEED_RESCHED);
135 if (!oldval) {
136 set_thread_flag(TIF_POLLING_NRFLAG);
137 asm volatile(
138 "2:"
139 "testl %0, %1;"
140 "rep; nop;"
141 "je 2b;"
142 : : "i"(_TIF_NEED_RESCHED), "m" (current_thread_info()->flags));
144 clear_thread_flag(TIF_POLLING_NRFLAG);
145 } else {
146 set_need_resched();
150 #ifdef CONFIG_HOTPLUG_CPU
151 #include <asm/nmi.h>
152 /* We don't actually take CPU down, just spin without interrupts. */
153 static inline void play_dead(void)
155 /* Ack it */
156 __get_cpu_var(cpu_state) = CPU_DEAD;
158 /* We shouldn't have to disable interrupts while dead, but
159 * some interrupts just don't seem to go away, and this makes
160 * it "work" for testing purposes. */
161 /* Death loop */
162 while (__get_cpu_var(cpu_state) != CPU_UP_PREPARE)
163 cpu_relax();
165 local_irq_disable();
166 __flush_tlb_all();
167 cpu_set(smp_processor_id(), cpu_online_map);
168 enable_APIC_timer();
169 local_irq_enable();
171 #else
172 static inline void play_dead(void)
174 BUG();
176 #endif /* CONFIG_HOTPLUG_CPU */
179 * The idle thread. There's no useful work to be
180 * done, so just try to conserve power and have a
181 * low exit latency (ie sit in a loop waiting for
182 * somebody to say that they'd like to reschedule)
184 void cpu_idle(void)
186 int cpu = raw_smp_processor_id();
188 /* endless idle loop with no priority at all */
189 while (1) {
190 while (!need_resched()) {
191 void (*idle)(void);
193 if (__get_cpu_var(cpu_idle_state))
194 __get_cpu_var(cpu_idle_state) = 0;
196 rmb();
197 idle = pm_idle;
199 if (!idle)
200 idle = default_idle;
202 if (cpu_is_offline(cpu))
203 play_dead();
205 __get_cpu_var(irq_stat).idle_timestamp = jiffies;
206 idle();
208 schedule();
212 void cpu_idle_wait(void)
214 unsigned int cpu, this_cpu = get_cpu();
215 cpumask_t map;
217 set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
218 put_cpu();
220 cpus_clear(map);
221 for_each_online_cpu(cpu) {
222 per_cpu(cpu_idle_state, cpu) = 1;
223 cpu_set(cpu, map);
226 __get_cpu_var(cpu_idle_state) = 0;
228 wmb();
229 do {
230 ssleep(1);
231 for_each_online_cpu(cpu) {
232 if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
233 cpu_clear(cpu, map);
235 cpus_and(map, map, cpu_online_map);
236 } while (!cpus_empty(map));
238 EXPORT_SYMBOL_GPL(cpu_idle_wait);
241 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
242 * which can obviate IPI to trigger checking of need_resched.
243 * We execute MONITOR against need_resched and enter optimized wait state
244 * through MWAIT. Whenever someone changes need_resched, we would be woken
245 * up from MWAIT (without an IPI).
247 static void mwait_idle(void)
249 local_irq_enable();
251 if (!need_resched()) {
252 set_thread_flag(TIF_POLLING_NRFLAG);
253 do {
254 __monitor((void *)&current_thread_info()->flags, 0, 0);
255 if (need_resched())
256 break;
257 __mwait(0, 0);
258 } while (!need_resched());
259 clear_thread_flag(TIF_POLLING_NRFLAG);
263 void __devinit select_idle_routine(const struct cpuinfo_x86 *c)
265 if (cpu_has(c, X86_FEATURE_MWAIT)) {
266 printk("monitor/mwait feature present.\n");
268 * Skip, if setup has overridden idle.
269 * One CPU supports mwait => All CPUs supports mwait
271 if (!pm_idle) {
272 printk("using mwait in idle threads.\n");
273 pm_idle = mwait_idle;
278 static int __init idle_setup (char *str)
280 if (!strncmp(str, "poll", 4)) {
281 printk("using polling idle threads.\n");
282 pm_idle = poll_idle;
283 #ifdef CONFIG_X86_SMP
284 if (smp_num_siblings > 1)
285 printk("WARNING: polling idle and HT enabled, performance may degrade.\n");
286 #endif
287 } else if (!strncmp(str, "halt", 4)) {
288 printk("using halt in idle threads.\n");
289 pm_idle = default_idle;
292 boot_option_idle_override = 1;
293 return 1;
296 __setup("idle=", idle_setup);
298 void show_regs(struct pt_regs * regs)
300 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
302 printk("\n");
303 printk("Pid: %d, comm: %20s\n", current->pid, current->comm);
304 printk("EIP: %04x:[<%08lx>] CPU: %d\n",0xffff & regs->xcs,regs->eip, smp_processor_id());
305 print_symbol("EIP is at %s\n", regs->eip);
307 if (user_mode(regs))
308 printk(" ESP: %04x:%08lx",0xffff & regs->xss,regs->esp);
309 printk(" EFLAGS: %08lx %s (%s)\n",
310 regs->eflags, print_tainted(), system_utsname.release);
311 printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
312 regs->eax,regs->ebx,regs->ecx,regs->edx);
313 printk("ESI: %08lx EDI: %08lx EBP: %08lx",
314 regs->esi, regs->edi, regs->ebp);
315 printk(" DS: %04x ES: %04x\n",
316 0xffff & regs->xds,0xffff & regs->xes);
318 __asm__("movl %%cr0, %0": "=r" (cr0));
319 __asm__("movl %%cr2, %0": "=r" (cr2));
320 __asm__("movl %%cr3, %0": "=r" (cr3));
321 /* This could fault if %cr4 does not exist */
322 __asm__("1: movl %%cr4, %0 \n"
323 "2: \n"
324 ".section __ex_table,\"a\" \n"
325 ".long 1b,2b \n"
326 ".previous \n"
327 : "=r" (cr4): "0" (0));
328 printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n", cr0, cr2, cr3, cr4);
329 show_trace(NULL, &regs->esp);
333 * This gets run with %ebx containing the
334 * function to call, and %edx containing
335 * the "args".
337 extern void kernel_thread_helper(void);
338 __asm__(".section .text\n"
339 ".align 4\n"
340 "kernel_thread_helper:\n\t"
341 "movl %edx,%eax\n\t"
342 "pushl %edx\n\t"
343 "call *%ebx\n\t"
344 "pushl %eax\n\t"
345 "call do_exit\n"
346 ".previous");
349 * Create a kernel thread
351 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
353 struct pt_regs regs;
355 memset(&regs, 0, sizeof(regs));
357 regs.ebx = (unsigned long) fn;
358 regs.edx = (unsigned long) arg;
360 regs.xds = __USER_DS;
361 regs.xes = __USER_DS;
362 regs.orig_eax = -1;
363 regs.eip = (unsigned long) kernel_thread_helper;
364 regs.xcs = __KERNEL_CS;
365 regs.eflags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
367 /* Ok, create the new process.. */
368 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
370 EXPORT_SYMBOL(kernel_thread);
373 * Free current thread data structures etc..
375 void exit_thread(void)
377 struct task_struct *tsk = current;
378 struct thread_struct *t = &tsk->thread;
381 * Remove function-return probe instances associated with this task
382 * and put them back on the free list. Do not insert an exit probe for
383 * this function, it will be disabled by kprobe_flush_task if you do.
385 kprobe_flush_task(tsk);
387 /* The process may have allocated an io port bitmap... nuke it. */
388 if (unlikely(NULL != t->io_bitmap_ptr)) {
389 int cpu = get_cpu();
390 struct tss_struct *tss = &per_cpu(init_tss, cpu);
392 kfree(t->io_bitmap_ptr);
393 t->io_bitmap_ptr = NULL;
395 * Careful, clear this in the TSS too:
397 memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
398 t->io_bitmap_max = 0;
399 tss->io_bitmap_owner = NULL;
400 tss->io_bitmap_max = 0;
401 tss->io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
402 put_cpu();
406 void flush_thread(void)
408 struct task_struct *tsk = current;
411 * Remove function-return probe instances associated with this task
412 * and put them back on the free list. Do not insert an exit probe for
413 * this function, it will be disabled by kprobe_flush_task if you do.
415 kprobe_flush_task(tsk);
417 memset(tsk->thread.debugreg, 0, sizeof(unsigned long)*8);
418 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
420 * Forget coprocessor state..
422 clear_fpu(tsk);
423 clear_used_math();
426 void release_thread(struct task_struct *dead_task)
428 if (dead_task->mm) {
429 // temporary debugging check
430 if (dead_task->mm->context.size) {
431 printk("WARNING: dead process %8s still has LDT? <%p/%d>\n",
432 dead_task->comm,
433 dead_task->mm->context.ldt,
434 dead_task->mm->context.size);
435 BUG();
439 release_vm86_irqs(dead_task);
443 * This gets called before we allocate a new thread and copy
444 * the current task into it.
446 void prepare_to_copy(struct task_struct *tsk)
448 unlazy_fpu(tsk);
451 int copy_thread(int nr, unsigned long clone_flags, unsigned long esp,
452 unsigned long unused,
453 struct task_struct * p, struct pt_regs * regs)
455 struct pt_regs * childregs;
456 struct task_struct *tsk;
457 int err;
459 childregs = ((struct pt_regs *) (THREAD_SIZE + (unsigned long) p->thread_info)) - 1;
461 * The below -8 is to reserve 8 bytes on top of the ring0 stack.
462 * This is necessary to guarantee that the entire "struct pt_regs"
463 * is accessable even if the CPU haven't stored the SS/ESP registers
464 * on the stack (interrupt gate does not save these registers
465 * when switching to the same priv ring).
466 * Therefore beware: accessing the xss/esp fields of the
467 * "struct pt_regs" is possible, but they may contain the
468 * completely wrong values.
470 childregs = (struct pt_regs *) ((unsigned long) childregs - 8);
471 *childregs = *regs;
472 childregs->eax = 0;
473 childregs->esp = esp;
475 p->thread.esp = (unsigned long) childregs;
476 p->thread.esp0 = (unsigned long) (childregs+1);
478 p->thread.eip = (unsigned long) ret_from_fork;
480 savesegment(fs,p->thread.fs);
481 savesegment(gs,p->thread.gs);
483 tsk = current;
484 if (unlikely(NULL != tsk->thread.io_bitmap_ptr)) {
485 p->thread.io_bitmap_ptr = kmalloc(IO_BITMAP_BYTES, GFP_KERNEL);
486 if (!p->thread.io_bitmap_ptr) {
487 p->thread.io_bitmap_max = 0;
488 return -ENOMEM;
490 memcpy(p->thread.io_bitmap_ptr, tsk->thread.io_bitmap_ptr,
491 IO_BITMAP_BYTES);
495 * Set a new TLS for the child thread?
497 if (clone_flags & CLONE_SETTLS) {
498 struct desc_struct *desc;
499 struct user_desc info;
500 int idx;
502 err = -EFAULT;
503 if (copy_from_user(&info, (void __user *)childregs->esi, sizeof(info)))
504 goto out;
505 err = -EINVAL;
506 if (LDT_empty(&info))
507 goto out;
509 idx = info.entry_number;
510 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
511 goto out;
513 desc = p->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
514 desc->a = LDT_entry_a(&info);
515 desc->b = LDT_entry_b(&info);
518 err = 0;
519 out:
520 if (err && p->thread.io_bitmap_ptr) {
521 kfree(p->thread.io_bitmap_ptr);
522 p->thread.io_bitmap_max = 0;
524 return err;
528 * fill in the user structure for a core dump..
530 void dump_thread(struct pt_regs * regs, struct user * dump)
532 int i;
534 /* changed the size calculations - should hopefully work better. lbt */
535 dump->magic = CMAGIC;
536 dump->start_code = 0;
537 dump->start_stack = regs->esp & ~(PAGE_SIZE - 1);
538 dump->u_tsize = ((unsigned long) current->mm->end_code) >> PAGE_SHIFT;
539 dump->u_dsize = ((unsigned long) (current->mm->brk + (PAGE_SIZE-1))) >> PAGE_SHIFT;
540 dump->u_dsize -= dump->u_tsize;
541 dump->u_ssize = 0;
542 for (i = 0; i < 8; i++)
543 dump->u_debugreg[i] = current->thread.debugreg[i];
545 if (dump->start_stack < TASK_SIZE)
546 dump->u_ssize = ((unsigned long) (TASK_SIZE - dump->start_stack)) >> PAGE_SHIFT;
548 dump->regs.ebx = regs->ebx;
549 dump->regs.ecx = regs->ecx;
550 dump->regs.edx = regs->edx;
551 dump->regs.esi = regs->esi;
552 dump->regs.edi = regs->edi;
553 dump->regs.ebp = regs->ebp;
554 dump->regs.eax = regs->eax;
555 dump->regs.ds = regs->xds;
556 dump->regs.es = regs->xes;
557 savesegment(fs,dump->regs.fs);
558 savesegment(gs,dump->regs.gs);
559 dump->regs.orig_eax = regs->orig_eax;
560 dump->regs.eip = regs->eip;
561 dump->regs.cs = regs->xcs;
562 dump->regs.eflags = regs->eflags;
563 dump->regs.esp = regs->esp;
564 dump->regs.ss = regs->xss;
566 dump->u_fpvalid = dump_fpu (regs, &dump->i387);
568 EXPORT_SYMBOL(dump_thread);
571 * Capture the user space registers if the task is not running (in user space)
573 int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
575 struct pt_regs ptregs;
577 ptregs = *(struct pt_regs *)
578 ((unsigned long)tsk->thread_info+THREAD_SIZE - sizeof(ptregs));
579 ptregs.xcs &= 0xffff;
580 ptregs.xds &= 0xffff;
581 ptregs.xes &= 0xffff;
582 ptregs.xss &= 0xffff;
584 elf_core_copy_regs(regs, &ptregs);
586 return 1;
589 static inline void
590 handle_io_bitmap(struct thread_struct *next, struct tss_struct *tss)
592 if (!next->io_bitmap_ptr) {
594 * Disable the bitmap via an invalid offset. We still cache
595 * the previous bitmap owner and the IO bitmap contents:
597 tss->io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
598 return;
600 if (likely(next == tss->io_bitmap_owner)) {
602 * Previous owner of the bitmap (hence the bitmap content)
603 * matches the next task, we dont have to do anything but
604 * to set a valid offset in the TSS:
606 tss->io_bitmap_base = IO_BITMAP_OFFSET;
607 return;
610 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
611 * and we let the task to get a GPF in case an I/O instruction
612 * is performed. The handler of the GPF will verify that the
613 * faulting task has a valid I/O bitmap and, it true, does the
614 * real copy and restart the instruction. This will save us
615 * redundant copies when the currently switched task does not
616 * perform any I/O during its timeslice.
618 tss->io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
622 * switch_to(x,yn) should switch tasks from x to y.
624 * We fsave/fwait so that an exception goes off at the right time
625 * (as a call from the fsave or fwait in effect) rather than to
626 * the wrong process. Lazy FP saving no longer makes any sense
627 * with modern CPU's, and this simplifies a lot of things (SMP
628 * and UP become the same).
630 * NOTE! We used to use the x86 hardware context switching. The
631 * reason for not using it any more becomes apparent when you
632 * try to recover gracefully from saved state that is no longer
633 * valid (stale segment register values in particular). With the
634 * hardware task-switch, there is no way to fix up bad state in
635 * a reasonable manner.
637 * The fact that Intel documents the hardware task-switching to
638 * be slow is a fairly red herring - this code is not noticeably
639 * faster. However, there _is_ some room for improvement here,
640 * so the performance issues may eventually be a valid point.
641 * More important, however, is the fact that this allows us much
642 * more flexibility.
644 * The return value (in %eax) will be the "prev" task after
645 * the task-switch, and shows up in ret_from_fork in entry.S,
646 * for example.
648 struct task_struct fastcall * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
650 struct thread_struct *prev = &prev_p->thread,
651 *next = &next_p->thread;
652 int cpu = smp_processor_id();
653 struct tss_struct *tss = &per_cpu(init_tss, cpu);
655 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
657 __unlazy_fpu(prev_p);
660 * Reload esp0, LDT and the page table pointer:
662 load_esp0(tss, next);
665 * Load the per-thread Thread-Local Storage descriptor.
667 load_TLS(next, cpu);
670 * Save away %fs and %gs. No need to save %es and %ds, as
671 * those are always kernel segments while inside the kernel.
673 asm volatile("mov %%fs,%0":"=m" (prev->fs));
674 asm volatile("mov %%gs,%0":"=m" (prev->gs));
677 * Restore %fs and %gs if needed.
679 if (unlikely(prev->fs | prev->gs | next->fs | next->gs)) {
680 loadsegment(fs, next->fs);
681 loadsegment(gs, next->gs);
685 * Now maybe reload the debug registers
687 if (unlikely(next->debugreg[7])) {
688 set_debugreg(current->thread.debugreg[0], 0);
689 set_debugreg(current->thread.debugreg[1], 1);
690 set_debugreg(current->thread.debugreg[2], 2);
691 set_debugreg(current->thread.debugreg[3], 3);
692 /* no 4 and 5 */
693 set_debugreg(current->thread.debugreg[6], 6);
694 set_debugreg(current->thread.debugreg[7], 7);
697 if (unlikely(prev->io_bitmap_ptr || next->io_bitmap_ptr))
698 handle_io_bitmap(next, tss);
700 return prev_p;
703 asmlinkage int sys_fork(struct pt_regs regs)
705 return do_fork(SIGCHLD, regs.esp, &regs, 0, NULL, NULL);
708 asmlinkage int sys_clone(struct pt_regs regs)
710 unsigned long clone_flags;
711 unsigned long newsp;
712 int __user *parent_tidptr, *child_tidptr;
714 clone_flags = regs.ebx;
715 newsp = regs.ecx;
716 parent_tidptr = (int __user *)regs.edx;
717 child_tidptr = (int __user *)regs.edi;
718 if (!newsp)
719 newsp = regs.esp;
720 return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
724 * This is trivial, and on the face of it looks like it
725 * could equally well be done in user mode.
727 * Not so, for quite unobvious reasons - register pressure.
728 * In user mode vfork() cannot have a stack frame, and if
729 * done by calling the "clone()" system call directly, you
730 * do not have enough call-clobbered registers to hold all
731 * the information you need.
733 asmlinkage int sys_vfork(struct pt_regs regs)
735 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.esp, &regs, 0, NULL, NULL);
739 * sys_execve() executes a new program.
741 asmlinkage int sys_execve(struct pt_regs regs)
743 int error;
744 char * filename;
746 filename = getname((char __user *) regs.ebx);
747 error = PTR_ERR(filename);
748 if (IS_ERR(filename))
749 goto out;
750 error = do_execve(filename,
751 (char __user * __user *) regs.ecx,
752 (char __user * __user *) regs.edx,
753 &regs);
754 if (error == 0) {
755 task_lock(current);
756 current->ptrace &= ~PT_DTRACE;
757 task_unlock(current);
758 /* Make sure we don't return using sysenter.. */
759 set_thread_flag(TIF_IRET);
761 putname(filename);
762 out:
763 return error;
766 #define top_esp (THREAD_SIZE - sizeof(unsigned long))
767 #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
769 unsigned long get_wchan(struct task_struct *p)
771 unsigned long ebp, esp, eip;
772 unsigned long stack_page;
773 int count = 0;
774 if (!p || p == current || p->state == TASK_RUNNING)
775 return 0;
776 stack_page = (unsigned long)p->thread_info;
777 esp = p->thread.esp;
778 if (!stack_page || esp < stack_page || esp > top_esp+stack_page)
779 return 0;
780 /* include/asm-i386/system.h:switch_to() pushes ebp last. */
781 ebp = *(unsigned long *) esp;
782 do {
783 if (ebp < stack_page || ebp > top_ebp+stack_page)
784 return 0;
785 eip = *(unsigned long *) (ebp+4);
786 if (!in_sched_functions(eip))
787 return eip;
788 ebp = *(unsigned long *) ebp;
789 } while (count++ < 16);
790 return 0;
792 EXPORT_SYMBOL(get_wchan);
795 * sys_alloc_thread_area: get a yet unused TLS descriptor index.
797 static int get_free_idx(void)
799 struct thread_struct *t = &current->thread;
800 int idx;
802 for (idx = 0; idx < GDT_ENTRY_TLS_ENTRIES; idx++)
803 if (desc_empty(t->tls_array + idx))
804 return idx + GDT_ENTRY_TLS_MIN;
805 return -ESRCH;
809 * Set a given TLS descriptor:
811 asmlinkage int sys_set_thread_area(struct user_desc __user *u_info)
813 struct thread_struct *t = &current->thread;
814 struct user_desc info;
815 struct desc_struct *desc;
816 int cpu, idx;
818 if (copy_from_user(&info, u_info, sizeof(info)))
819 return -EFAULT;
820 idx = info.entry_number;
823 * index -1 means the kernel should try to find and
824 * allocate an empty descriptor:
826 if (idx == -1) {
827 idx = get_free_idx();
828 if (idx < 0)
829 return idx;
830 if (put_user(idx, &u_info->entry_number))
831 return -EFAULT;
834 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
835 return -EINVAL;
837 desc = t->tls_array + idx - GDT_ENTRY_TLS_MIN;
840 * We must not get preempted while modifying the TLS.
842 cpu = get_cpu();
844 if (LDT_empty(&info)) {
845 desc->a = 0;
846 desc->b = 0;
847 } else {
848 desc->a = LDT_entry_a(&info);
849 desc->b = LDT_entry_b(&info);
851 load_TLS(t, cpu);
853 put_cpu();
855 return 0;
859 * Get the current Thread-Local Storage area:
862 #define GET_BASE(desc) ( \
863 (((desc)->a >> 16) & 0x0000ffff) | \
864 (((desc)->b << 16) & 0x00ff0000) | \
865 ( (desc)->b & 0xff000000) )
867 #define GET_LIMIT(desc) ( \
868 ((desc)->a & 0x0ffff) | \
869 ((desc)->b & 0xf0000) )
871 #define GET_32BIT(desc) (((desc)->b >> 22) & 1)
872 #define GET_CONTENTS(desc) (((desc)->b >> 10) & 3)
873 #define GET_WRITABLE(desc) (((desc)->b >> 9) & 1)
874 #define GET_LIMIT_PAGES(desc) (((desc)->b >> 23) & 1)
875 #define GET_PRESENT(desc) (((desc)->b >> 15) & 1)
876 #define GET_USEABLE(desc) (((desc)->b >> 20) & 1)
878 asmlinkage int sys_get_thread_area(struct user_desc __user *u_info)
880 struct user_desc info;
881 struct desc_struct *desc;
882 int idx;
884 if (get_user(idx, &u_info->entry_number))
885 return -EFAULT;
886 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
887 return -EINVAL;
889 desc = current->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
891 info.entry_number = idx;
892 info.base_addr = GET_BASE(desc);
893 info.limit = GET_LIMIT(desc);
894 info.seg_32bit = GET_32BIT(desc);
895 info.contents = GET_CONTENTS(desc);
896 info.read_exec_only = !GET_WRITABLE(desc);
897 info.limit_in_pages = GET_LIMIT_PAGES(desc);
898 info.seg_not_present = !GET_PRESENT(desc);
899 info.useable = GET_USEABLE(desc);
901 if (copy_to_user(u_info, &info, sizeof(info)))
902 return -EFAULT;
903 return 0;
906 unsigned long arch_align_stack(unsigned long sp)
908 if (randomize_va_space)
909 sp -= get_random_int() % 8192;
910 return sp & ~0xf;