[PATCH] x86_64: Remove bogus special case in AMD core parsing.
[linux-2.6/suspend2-2.6.18.git] / arch / x86_64 / kernel / setup.c
bloba57eec8311a79a5ac10bdc76622e2dc0627598e0
1 /*
2 * linux/arch/x86-64/kernel/setup.c
4 * Copyright (C) 1995 Linus Torvalds
6 * Nov 2001 Dave Jones <davej@suse.de>
7 * Forked from i386 setup code.
9 * $Id$
13 * This file handles the architecture-dependent parts of initialization
16 #include <linux/errno.h>
17 #include <linux/sched.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/stddef.h>
21 #include <linux/unistd.h>
22 #include <linux/ptrace.h>
23 #include <linux/slab.h>
24 #include <linux/user.h>
25 #include <linux/a.out.h>
26 #include <linux/tty.h>
27 #include <linux/ioport.h>
28 #include <linux/delay.h>
29 #include <linux/config.h>
30 #include <linux/init.h>
31 #include <linux/initrd.h>
32 #include <linux/highmem.h>
33 #include <linux/bootmem.h>
34 #include <linux/module.h>
35 #include <asm/processor.h>
36 #include <linux/console.h>
37 #include <linux/seq_file.h>
38 #include <linux/crash_dump.h>
39 #include <linux/root_dev.h>
40 #include <linux/pci.h>
41 #include <linux/acpi.h>
42 #include <linux/kallsyms.h>
43 #include <linux/edd.h>
44 #include <linux/mmzone.h>
45 #include <linux/kexec.h>
46 #include <linux/cpufreq.h>
47 #include <linux/dmi.h>
48 #include <linux/dma-mapping.h>
49 #include <linux/ctype.h>
51 #include <asm/mtrr.h>
52 #include <asm/uaccess.h>
53 #include <asm/system.h>
54 #include <asm/io.h>
55 #include <asm/smp.h>
56 #include <asm/msr.h>
57 #include <asm/desc.h>
58 #include <video/edid.h>
59 #include <asm/e820.h>
60 #include <asm/dma.h>
61 #include <asm/mpspec.h>
62 #include <asm/mmu_context.h>
63 #include <asm/bootsetup.h>
64 #include <asm/proto.h>
65 #include <asm/setup.h>
66 #include <asm/mach_apic.h>
67 #include <asm/numa.h>
68 #include <asm/swiotlb.h>
69 #include <asm/sections.h>
70 #include <asm/gart-mapping.h>
71 #include <asm/dmi.h>
74 * Machine setup..
77 struct cpuinfo_x86 boot_cpu_data __read_mostly;
79 unsigned long mmu_cr4_features;
81 int acpi_disabled;
82 EXPORT_SYMBOL(acpi_disabled);
83 #ifdef CONFIG_ACPI
84 extern int __initdata acpi_ht;
85 extern acpi_interrupt_flags acpi_sci_flags;
86 int __initdata acpi_force = 0;
87 #endif
89 int acpi_numa __initdata;
91 /* Boot loader ID as an integer, for the benefit of proc_dointvec */
92 int bootloader_type;
94 unsigned long saved_video_mode;
96 /*
97 * Early DMI memory
99 int dmi_alloc_index;
100 char dmi_alloc_data[DMI_MAX_DATA];
103 * Setup options
105 struct screen_info screen_info;
106 struct sys_desc_table_struct {
107 unsigned short length;
108 unsigned char table[0];
111 struct edid_info edid_info;
112 struct e820map e820;
114 extern int root_mountflags;
116 char command_line[COMMAND_LINE_SIZE];
118 struct resource standard_io_resources[] = {
119 { .name = "dma1", .start = 0x00, .end = 0x1f,
120 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
121 { .name = "pic1", .start = 0x20, .end = 0x21,
122 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
123 { .name = "timer0", .start = 0x40, .end = 0x43,
124 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
125 { .name = "timer1", .start = 0x50, .end = 0x53,
126 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
127 { .name = "keyboard", .start = 0x60, .end = 0x6f,
128 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
129 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
130 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
131 { .name = "pic2", .start = 0xa0, .end = 0xa1,
132 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
133 { .name = "dma2", .start = 0xc0, .end = 0xdf,
134 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
135 { .name = "fpu", .start = 0xf0, .end = 0xff,
136 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
139 #define STANDARD_IO_RESOURCES \
140 (sizeof standard_io_resources / sizeof standard_io_resources[0])
142 #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
144 struct resource data_resource = {
145 .name = "Kernel data",
146 .start = 0,
147 .end = 0,
148 .flags = IORESOURCE_RAM,
150 struct resource code_resource = {
151 .name = "Kernel code",
152 .start = 0,
153 .end = 0,
154 .flags = IORESOURCE_RAM,
157 #define IORESOURCE_ROM (IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM)
159 static struct resource system_rom_resource = {
160 .name = "System ROM",
161 .start = 0xf0000,
162 .end = 0xfffff,
163 .flags = IORESOURCE_ROM,
166 static struct resource extension_rom_resource = {
167 .name = "Extension ROM",
168 .start = 0xe0000,
169 .end = 0xeffff,
170 .flags = IORESOURCE_ROM,
173 static struct resource adapter_rom_resources[] = {
174 { .name = "Adapter ROM", .start = 0xc8000, .end = 0,
175 .flags = IORESOURCE_ROM },
176 { .name = "Adapter ROM", .start = 0, .end = 0,
177 .flags = IORESOURCE_ROM },
178 { .name = "Adapter ROM", .start = 0, .end = 0,
179 .flags = IORESOURCE_ROM },
180 { .name = "Adapter ROM", .start = 0, .end = 0,
181 .flags = IORESOURCE_ROM },
182 { .name = "Adapter ROM", .start = 0, .end = 0,
183 .flags = IORESOURCE_ROM },
184 { .name = "Adapter ROM", .start = 0, .end = 0,
185 .flags = IORESOURCE_ROM }
188 #define ADAPTER_ROM_RESOURCES \
189 (sizeof adapter_rom_resources / sizeof adapter_rom_resources[0])
191 static struct resource video_rom_resource = {
192 .name = "Video ROM",
193 .start = 0xc0000,
194 .end = 0xc7fff,
195 .flags = IORESOURCE_ROM,
198 static struct resource video_ram_resource = {
199 .name = "Video RAM area",
200 .start = 0xa0000,
201 .end = 0xbffff,
202 .flags = IORESOURCE_RAM,
205 #define romsignature(x) (*(unsigned short *)(x) == 0xaa55)
207 static int __init romchecksum(unsigned char *rom, unsigned long length)
209 unsigned char *p, sum = 0;
211 for (p = rom; p < rom + length; p++)
212 sum += *p;
213 return sum == 0;
216 static void __init probe_roms(void)
218 unsigned long start, length, upper;
219 unsigned char *rom;
220 int i;
222 /* video rom */
223 upper = adapter_rom_resources[0].start;
224 for (start = video_rom_resource.start; start < upper; start += 2048) {
225 rom = isa_bus_to_virt(start);
226 if (!romsignature(rom))
227 continue;
229 video_rom_resource.start = start;
231 /* 0 < length <= 0x7f * 512, historically */
232 length = rom[2] * 512;
234 /* if checksum okay, trust length byte */
235 if (length && romchecksum(rom, length))
236 video_rom_resource.end = start + length - 1;
238 request_resource(&iomem_resource, &video_rom_resource);
239 break;
242 start = (video_rom_resource.end + 1 + 2047) & ~2047UL;
243 if (start < upper)
244 start = upper;
246 /* system rom */
247 request_resource(&iomem_resource, &system_rom_resource);
248 upper = system_rom_resource.start;
250 /* check for extension rom (ignore length byte!) */
251 rom = isa_bus_to_virt(extension_rom_resource.start);
252 if (romsignature(rom)) {
253 length = extension_rom_resource.end - extension_rom_resource.start + 1;
254 if (romchecksum(rom, length)) {
255 request_resource(&iomem_resource, &extension_rom_resource);
256 upper = extension_rom_resource.start;
260 /* check for adapter roms on 2k boundaries */
261 for (i = 0; i < ADAPTER_ROM_RESOURCES && start < upper; start += 2048) {
262 rom = isa_bus_to_virt(start);
263 if (!romsignature(rom))
264 continue;
266 /* 0 < length <= 0x7f * 512, historically */
267 length = rom[2] * 512;
269 /* but accept any length that fits if checksum okay */
270 if (!length || start + length > upper || !romchecksum(rom, length))
271 continue;
273 adapter_rom_resources[i].start = start;
274 adapter_rom_resources[i].end = start + length - 1;
275 request_resource(&iomem_resource, &adapter_rom_resources[i]);
277 start = adapter_rom_resources[i++].end & ~2047UL;
281 /* Check for full argument with no trailing characters */
282 static int fullarg(char *p, char *arg)
284 int l = strlen(arg);
285 return !memcmp(p, arg, l) && (p[l] == 0 || isspace(p[l]));
288 static __init void parse_cmdline_early (char ** cmdline_p)
290 char c = ' ', *to = command_line, *from = COMMAND_LINE;
291 int len = 0;
292 int userdef = 0;
294 for (;;) {
295 if (c != ' ')
296 goto next_char;
298 #ifdef CONFIG_SMP
300 * If the BIOS enumerates physical processors before logical,
301 * maxcpus=N at enumeration-time can be used to disable HT.
303 else if (!memcmp(from, "maxcpus=", 8)) {
304 extern unsigned int maxcpus;
306 maxcpus = simple_strtoul(from + 8, NULL, 0);
308 #endif
309 #ifdef CONFIG_ACPI
310 /* "acpi=off" disables both ACPI table parsing and interpreter init */
311 if (fullarg(from,"acpi=off"))
312 disable_acpi();
314 if (fullarg(from, "acpi=force")) {
315 /* add later when we do DMI horrors: */
316 acpi_force = 1;
317 acpi_disabled = 0;
320 /* acpi=ht just means: do ACPI MADT parsing
321 at bootup, but don't enable the full ACPI interpreter */
322 if (fullarg(from, "acpi=ht")) {
323 if (!acpi_force)
324 disable_acpi();
325 acpi_ht = 1;
327 else if (fullarg(from, "pci=noacpi"))
328 acpi_disable_pci();
329 else if (fullarg(from, "acpi=noirq"))
330 acpi_noirq_set();
332 else if (fullarg(from, "acpi_sci=edge"))
333 acpi_sci_flags.trigger = 1;
334 else if (fullarg(from, "acpi_sci=level"))
335 acpi_sci_flags.trigger = 3;
336 else if (fullarg(from, "acpi_sci=high"))
337 acpi_sci_flags.polarity = 1;
338 else if (fullarg(from, "acpi_sci=low"))
339 acpi_sci_flags.polarity = 3;
341 /* acpi=strict disables out-of-spec workarounds */
342 else if (fullarg(from, "acpi=strict")) {
343 acpi_strict = 1;
345 #ifdef CONFIG_X86_IO_APIC
346 else if (fullarg(from, "acpi_skip_timer_override"))
347 acpi_skip_timer_override = 1;
348 #endif
349 #endif
351 if (fullarg(from, "disable_timer_pin_1"))
352 disable_timer_pin_1 = 1;
353 if (fullarg(from, "enable_timer_pin_1"))
354 disable_timer_pin_1 = -1;
356 if (fullarg(from, "nolapic") || fullarg(from, "disableapic"))
357 disable_apic = 1;
359 if (fullarg(from, "noapic"))
360 skip_ioapic_setup = 1;
362 if (fullarg(from,"apic")) {
363 skip_ioapic_setup = 0;
364 ioapic_force = 1;
367 if (!memcmp(from, "mem=", 4))
368 parse_memopt(from+4, &from);
370 if (!memcmp(from, "memmap=", 7)) {
371 /* exactmap option is for used defined memory */
372 if (!memcmp(from+7, "exactmap", 8)) {
373 #ifdef CONFIG_CRASH_DUMP
374 /* If we are doing a crash dump, we
375 * still need to know the real mem
376 * size before original memory map is
377 * reset.
379 saved_max_pfn = e820_end_of_ram();
380 #endif
381 from += 8+7;
382 end_pfn_map = 0;
383 e820.nr_map = 0;
384 userdef = 1;
386 else {
387 parse_memmapopt(from+7, &from);
388 userdef = 1;
392 #ifdef CONFIG_NUMA
393 if (!memcmp(from, "numa=", 5))
394 numa_setup(from+5);
395 #endif
397 if (!memcmp(from,"iommu=",6)) {
398 iommu_setup(from+6);
401 if (fullarg(from,"oops=panic"))
402 panic_on_oops = 1;
404 if (!memcmp(from, "noexec=", 7))
405 nonx_setup(from + 7);
407 #ifdef CONFIG_KEXEC
408 /* crashkernel=size@addr specifies the location to reserve for
409 * a crash kernel. By reserving this memory we guarantee
410 * that linux never set's it up as a DMA target.
411 * Useful for holding code to do something appropriate
412 * after a kernel panic.
414 else if (!memcmp(from, "crashkernel=", 12)) {
415 unsigned long size, base;
416 size = memparse(from+12, &from);
417 if (*from == '@') {
418 base = memparse(from+1, &from);
419 /* FIXME: Do I want a sanity check
420 * to validate the memory range?
422 crashk_res.start = base;
423 crashk_res.end = base + size - 1;
426 #endif
428 #ifdef CONFIG_PROC_VMCORE
429 /* elfcorehdr= specifies the location of elf core header
430 * stored by the crashed kernel. This option will be passed
431 * by kexec loader to the capture kernel.
433 else if(!memcmp(from, "elfcorehdr=", 11))
434 elfcorehdr_addr = memparse(from+11, &from);
435 #endif
437 #ifdef CONFIG_HOTPLUG_CPU
438 else if (!memcmp(from, "additional_cpus=", 16))
439 setup_additional_cpus(from+16);
440 #endif
442 next_char:
443 c = *(from++);
444 if (!c)
445 break;
446 if (COMMAND_LINE_SIZE <= ++len)
447 break;
448 *(to++) = c;
450 if (userdef) {
451 printk(KERN_INFO "user-defined physical RAM map:\n");
452 e820_print_map("user");
454 *to = '\0';
455 *cmdline_p = command_line;
458 #ifndef CONFIG_NUMA
459 static void __init
460 contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
462 unsigned long bootmap_size, bootmap;
464 bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
465 bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
466 if (bootmap == -1L)
467 panic("Cannot find bootmem map of size %ld\n",bootmap_size);
468 bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
469 e820_bootmem_free(NODE_DATA(0), 0, end_pfn << PAGE_SHIFT);
470 reserve_bootmem(bootmap, bootmap_size);
472 #endif
474 /* Use inline assembly to define this because the nops are defined
475 as inline assembly strings in the include files and we cannot
476 get them easily into strings. */
477 asm("\t.data\nk8nops: "
478 K8_NOP1 K8_NOP2 K8_NOP3 K8_NOP4 K8_NOP5 K8_NOP6
479 K8_NOP7 K8_NOP8);
481 extern unsigned char k8nops[];
482 static unsigned char *k8_nops[ASM_NOP_MAX+1] = {
483 NULL,
484 k8nops,
485 k8nops + 1,
486 k8nops + 1 + 2,
487 k8nops + 1 + 2 + 3,
488 k8nops + 1 + 2 + 3 + 4,
489 k8nops + 1 + 2 + 3 + 4 + 5,
490 k8nops + 1 + 2 + 3 + 4 + 5 + 6,
491 k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
494 extern char __vsyscall_0;
496 /* Replace instructions with better alternatives for this CPU type.
498 This runs before SMP is initialized to avoid SMP problems with
499 self modifying code. This implies that assymetric systems where
500 APs have less capabilities than the boot processor are not handled.
501 In this case boot with "noreplacement". */
502 void apply_alternatives(void *start, void *end)
504 struct alt_instr *a;
505 int diff, i, k;
506 for (a = start; (void *)a < end; a++) {
507 u8 *instr;
509 if (!boot_cpu_has(a->cpuid))
510 continue;
512 BUG_ON(a->replacementlen > a->instrlen);
513 instr = a->instr;
514 /* vsyscall code is not mapped yet. resolve it manually. */
515 if (instr >= (u8 *)VSYSCALL_START && instr < (u8*)VSYSCALL_END)
516 instr = __va(instr - (u8*)VSYSCALL_START + (u8*)__pa_symbol(&__vsyscall_0));
517 __inline_memcpy(instr, a->replacement, a->replacementlen);
518 diff = a->instrlen - a->replacementlen;
520 /* Pad the rest with nops */
521 for (i = a->replacementlen; diff > 0; diff -= k, i += k) {
522 k = diff;
523 if (k > ASM_NOP_MAX)
524 k = ASM_NOP_MAX;
525 __inline_memcpy(instr + i, k8_nops[k], k);
530 static int no_replacement __initdata = 0;
532 void __init alternative_instructions(void)
534 extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
535 if (no_replacement)
536 return;
537 apply_alternatives(__alt_instructions, __alt_instructions_end);
540 static int __init noreplacement_setup(char *s)
542 no_replacement = 1;
543 return 0;
546 __setup("noreplacement", noreplacement_setup);
548 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
549 struct edd edd;
550 #ifdef CONFIG_EDD_MODULE
551 EXPORT_SYMBOL(edd);
552 #endif
554 * copy_edd() - Copy the BIOS EDD information
555 * from boot_params into a safe place.
558 static inline void copy_edd(void)
560 memcpy(edd.mbr_signature, EDD_MBR_SIGNATURE, sizeof(edd.mbr_signature));
561 memcpy(edd.edd_info, EDD_BUF, sizeof(edd.edd_info));
562 edd.mbr_signature_nr = EDD_MBR_SIG_NR;
563 edd.edd_info_nr = EDD_NR;
565 #else
566 static inline void copy_edd(void)
569 #endif
571 #define EBDA_ADDR_POINTER 0x40E
572 static void __init reserve_ebda_region(void)
574 unsigned int addr;
575 /**
576 * there is a real-mode segmented pointer pointing to the
577 * 4K EBDA area at 0x40E
579 addr = *(unsigned short *)phys_to_virt(EBDA_ADDR_POINTER);
580 addr <<= 4;
581 if (addr)
582 reserve_bootmem_generic(addr, PAGE_SIZE);
585 void __init setup_arch(char **cmdline_p)
587 unsigned long kernel_end;
589 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
590 screen_info = SCREEN_INFO;
591 edid_info = EDID_INFO;
592 saved_video_mode = SAVED_VIDEO_MODE;
593 bootloader_type = LOADER_TYPE;
595 #ifdef CONFIG_BLK_DEV_RAM
596 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
597 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
598 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
599 #endif
600 setup_memory_region();
601 copy_edd();
603 if (!MOUNT_ROOT_RDONLY)
604 root_mountflags &= ~MS_RDONLY;
605 init_mm.start_code = (unsigned long) &_text;
606 init_mm.end_code = (unsigned long) &_etext;
607 init_mm.end_data = (unsigned long) &_edata;
608 init_mm.brk = (unsigned long) &_end;
610 code_resource.start = virt_to_phys(&_text);
611 code_resource.end = virt_to_phys(&_etext)-1;
612 data_resource.start = virt_to_phys(&_etext);
613 data_resource.end = virt_to_phys(&_edata)-1;
615 parse_cmdline_early(cmdline_p);
617 early_identify_cpu(&boot_cpu_data);
620 * partially used pages are not usable - thus
621 * we are rounding upwards:
623 end_pfn = e820_end_of_ram();
624 num_physpages = end_pfn; /* for pfn_valid */
626 check_efer();
628 init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
630 dmi_scan_machine();
632 zap_low_mappings(0);
634 #ifdef CONFIG_ACPI
636 * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
637 * Call this early for SRAT node setup.
639 acpi_boot_table_init();
640 #endif
642 #ifdef CONFIG_ACPI_NUMA
644 * Parse SRAT to discover nodes.
646 acpi_numa_init();
647 #endif
649 #ifdef CONFIG_NUMA
650 numa_initmem_init(0, end_pfn);
651 #else
652 contig_initmem_init(0, end_pfn);
653 #endif
655 /* Reserve direct mapping */
656 reserve_bootmem_generic(table_start << PAGE_SHIFT,
657 (table_end - table_start) << PAGE_SHIFT);
659 /* reserve kernel */
660 kernel_end = round_up(__pa_symbol(&_end),PAGE_SIZE);
661 reserve_bootmem_generic(HIGH_MEMORY, kernel_end - HIGH_MEMORY);
664 * reserve physical page 0 - it's a special BIOS page on many boxes,
665 * enabling clean reboots, SMP operation, laptop functions.
667 reserve_bootmem_generic(0, PAGE_SIZE);
669 /* reserve ebda region */
670 reserve_ebda_region();
672 #ifdef CONFIG_SMP
674 * But first pinch a few for the stack/trampoline stuff
675 * FIXME: Don't need the extra page at 4K, but need to fix
676 * trampoline before removing it. (see the GDT stuff)
678 reserve_bootmem_generic(PAGE_SIZE, PAGE_SIZE);
680 /* Reserve SMP trampoline */
681 reserve_bootmem_generic(SMP_TRAMPOLINE_BASE, PAGE_SIZE);
682 #endif
684 #ifdef CONFIG_ACPI_SLEEP
686 * Reserve low memory region for sleep support.
688 acpi_reserve_bootmem();
689 #endif
690 #ifdef CONFIG_X86_LOCAL_APIC
692 * Find and reserve possible boot-time SMP configuration:
694 find_smp_config();
695 #endif
696 #ifdef CONFIG_BLK_DEV_INITRD
697 if (LOADER_TYPE && INITRD_START) {
698 if (INITRD_START + INITRD_SIZE <= (end_pfn << PAGE_SHIFT)) {
699 reserve_bootmem_generic(INITRD_START, INITRD_SIZE);
700 initrd_start =
701 INITRD_START ? INITRD_START + PAGE_OFFSET : 0;
702 initrd_end = initrd_start+INITRD_SIZE;
704 else {
705 printk(KERN_ERR "initrd extends beyond end of memory "
706 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
707 (unsigned long)(INITRD_START + INITRD_SIZE),
708 (unsigned long)(end_pfn << PAGE_SHIFT));
709 initrd_start = 0;
712 #endif
713 #ifdef CONFIG_KEXEC
714 if (crashk_res.start != crashk_res.end) {
715 reserve_bootmem(crashk_res.start,
716 crashk_res.end - crashk_res.start + 1);
718 #endif
720 paging_init();
722 check_ioapic();
725 * set this early, so we dont allocate cpu0
726 * if MADT list doesnt list BSP first
727 * mpparse.c/MP_processor_info() allocates logical cpu numbers.
729 cpu_set(0, cpu_present_map);
730 #ifdef CONFIG_ACPI
732 * Read APIC and some other early information from ACPI tables.
734 acpi_boot_init();
735 #endif
737 init_cpu_to_node();
739 #ifdef CONFIG_X86_LOCAL_APIC
741 * get boot-time SMP configuration:
743 if (smp_found_config)
744 get_smp_config();
745 init_apic_mappings();
746 #endif
749 * Request address space for all standard RAM and ROM resources
750 * and also for regions reported as reserved by the e820.
752 probe_roms();
753 e820_reserve_resources();
755 request_resource(&iomem_resource, &video_ram_resource);
758 unsigned i;
759 /* request I/O space for devices used on all i[345]86 PCs */
760 for (i = 0; i < STANDARD_IO_RESOURCES; i++)
761 request_resource(&ioport_resource, &standard_io_resources[i]);
764 e820_setup_gap();
766 #ifdef CONFIG_GART_IOMMU
767 iommu_hole_init();
768 #endif
770 #ifdef CONFIG_VT
771 #if defined(CONFIG_VGA_CONSOLE)
772 conswitchp = &vga_con;
773 #elif defined(CONFIG_DUMMY_CONSOLE)
774 conswitchp = &dummy_con;
775 #endif
776 #endif
779 static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
781 unsigned int *v;
783 if (c->extended_cpuid_level < 0x80000004)
784 return 0;
786 v = (unsigned int *) c->x86_model_id;
787 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
788 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
789 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
790 c->x86_model_id[48] = 0;
791 return 1;
795 static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
797 unsigned int n, dummy, eax, ebx, ecx, edx;
799 n = c->extended_cpuid_level;
801 if (n >= 0x80000005) {
802 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
803 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
804 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
805 c->x86_cache_size=(ecx>>24)+(edx>>24);
806 /* On K8 L1 TLB is inclusive, so don't count it */
807 c->x86_tlbsize = 0;
810 if (n >= 0x80000006) {
811 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
812 ecx = cpuid_ecx(0x80000006);
813 c->x86_cache_size = ecx >> 16;
814 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
816 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
817 c->x86_cache_size, ecx & 0xFF);
820 if (n >= 0x80000007)
821 cpuid(0x80000007, &dummy, &dummy, &dummy, &c->x86_power);
822 if (n >= 0x80000008) {
823 cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
824 c->x86_virt_bits = (eax >> 8) & 0xff;
825 c->x86_phys_bits = eax & 0xff;
829 #ifdef CONFIG_NUMA
830 static int nearby_node(int apicid)
832 int i;
833 for (i = apicid - 1; i >= 0; i--) {
834 int node = apicid_to_node[i];
835 if (node != NUMA_NO_NODE && node_online(node))
836 return node;
838 for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
839 int node = apicid_to_node[i];
840 if (node != NUMA_NO_NODE && node_online(node))
841 return node;
843 return first_node(node_online_map); /* Shouldn't happen */
845 #endif
848 * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
849 * Assumes number of cores is a power of two.
851 static void __init amd_detect_cmp(struct cpuinfo_x86 *c)
853 #ifdef CONFIG_SMP
854 int cpu = smp_processor_id();
855 unsigned bits;
856 #ifdef CONFIG_NUMA
857 int node = 0;
858 unsigned apicid = hard_smp_processor_id();
859 #endif
861 bits = 0;
862 while ((1 << bits) < c->x86_max_cores)
863 bits++;
865 /* Low order bits define the core id (index of core in socket) */
866 cpu_core_id[cpu] = phys_proc_id[cpu] & ((1 << bits)-1);
867 /* Convert the APIC ID into the socket ID */
868 phys_proc_id[cpu] = phys_pkg_id(bits);
870 #ifdef CONFIG_NUMA
871 node = phys_proc_id[cpu];
872 if (apicid_to_node[apicid] != NUMA_NO_NODE)
873 node = apicid_to_node[apicid];
874 if (!node_online(node)) {
875 /* Two possibilities here:
876 - The CPU is missing memory and no node was created.
877 In that case try picking one from a nearby CPU
878 - The APIC IDs differ from the HyperTransport node IDs
879 which the K8 northbridge parsing fills in.
880 Assume they are all increased by a constant offset,
881 but in the same order as the HT nodeids.
882 If that doesn't result in a usable node fall back to the
883 path for the previous case. */
884 int ht_nodeid = apicid - (phys_proc_id[0] << bits);
885 if (ht_nodeid >= 0 &&
886 apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
887 node = apicid_to_node[ht_nodeid];
888 /* Pick a nearby node */
889 if (!node_online(node))
890 node = nearby_node(apicid);
892 numa_set_node(cpu, node);
894 printk(KERN_INFO "CPU %d/%x(%d) -> Node %d -> Core %d\n",
895 cpu, apicid, c->x86_max_cores, node, cpu_core_id[cpu]);
896 #endif
897 #endif
900 static int __init init_amd(struct cpuinfo_x86 *c)
902 int r;
903 unsigned level;
905 #ifdef CONFIG_SMP
906 unsigned long value;
909 * Disable TLB flush filter by setting HWCR.FFDIS on K8
910 * bit 6 of msr C001_0015
912 * Errata 63 for SH-B3 steppings
913 * Errata 122 for all steppings (F+ have it disabled by default)
915 if (c->x86 == 15) {
916 rdmsrl(MSR_K8_HWCR, value);
917 value |= 1 << 6;
918 wrmsrl(MSR_K8_HWCR, value);
920 #endif
922 /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
923 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
924 clear_bit(0*32+31, &c->x86_capability);
926 /* On C+ stepping K8 rep microcode works well for copy/memset */
927 level = cpuid_eax(1);
928 if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58))
929 set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
931 r = get_model_name(c);
932 if (!r) {
933 switch (c->x86) {
934 case 15:
935 /* Should distinguish Models here, but this is only
936 a fallback anyways. */
937 strcpy(c->x86_model_id, "Hammer");
938 break;
941 display_cacheinfo(c);
943 /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
944 if (c->x86_power & (1<<8))
945 set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
947 if (c->extended_cpuid_level >= 0x80000008) {
948 c->x86_max_cores = (cpuid_ecx(0x80000008) & 0xff) + 1;
950 amd_detect_cmp(c);
953 return r;
956 static void __cpuinit detect_ht(struct cpuinfo_x86 *c)
958 #ifdef CONFIG_SMP
959 u32 eax, ebx, ecx, edx;
960 int index_msb, core_bits;
961 int cpu = smp_processor_id();
963 cpuid(1, &eax, &ebx, &ecx, &edx);
965 c->apicid = phys_pkg_id(0);
967 if (!cpu_has(c, X86_FEATURE_HT) || cpu_has(c, X86_FEATURE_CMP_LEGACY))
968 return;
970 smp_num_siblings = (ebx & 0xff0000) >> 16;
972 if (smp_num_siblings == 1) {
973 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
974 } else if (smp_num_siblings > 1 ) {
976 if (smp_num_siblings > NR_CPUS) {
977 printk(KERN_WARNING "CPU: Unsupported number of the siblings %d", smp_num_siblings);
978 smp_num_siblings = 1;
979 return;
982 index_msb = get_count_order(smp_num_siblings);
983 phys_proc_id[cpu] = phys_pkg_id(index_msb);
985 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
986 phys_proc_id[cpu]);
988 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
990 index_msb = get_count_order(smp_num_siblings) ;
992 core_bits = get_count_order(c->x86_max_cores);
994 cpu_core_id[cpu] = phys_pkg_id(index_msb) &
995 ((1 << core_bits) - 1);
997 if (c->x86_max_cores > 1)
998 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
999 cpu_core_id[cpu]);
1001 #endif
1005 * find out the number of processor cores on the die
1007 static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
1009 unsigned int eax;
1011 if (c->cpuid_level < 4)
1012 return 1;
1014 __asm__("cpuid"
1015 : "=a" (eax)
1016 : "0" (4), "c" (0)
1017 : "bx", "dx");
1019 if (eax & 0x1f)
1020 return ((eax >> 26) + 1);
1021 else
1022 return 1;
1025 static void srat_detect_node(void)
1027 #ifdef CONFIG_NUMA
1028 unsigned node;
1029 int cpu = smp_processor_id();
1031 /* Don't do the funky fallback heuristics the AMD version employs
1032 for now. */
1033 node = apicid_to_node[hard_smp_processor_id()];
1034 if (node == NUMA_NO_NODE)
1035 node = 0;
1036 numa_set_node(cpu, node);
1038 if (acpi_numa > 0)
1039 printk(KERN_INFO "CPU %d -> Node %d\n", cpu, node);
1040 #endif
1043 static void __cpuinit init_intel(struct cpuinfo_x86 *c)
1045 /* Cache sizes */
1046 unsigned n;
1048 init_intel_cacheinfo(c);
1049 n = c->extended_cpuid_level;
1050 if (n >= 0x80000008) {
1051 unsigned eax = cpuid_eax(0x80000008);
1052 c->x86_virt_bits = (eax >> 8) & 0xff;
1053 c->x86_phys_bits = eax & 0xff;
1054 /* CPUID workaround for Intel 0F34 CPU */
1055 if (c->x86_vendor == X86_VENDOR_INTEL &&
1056 c->x86 == 0xF && c->x86_model == 0x3 &&
1057 c->x86_mask == 0x4)
1058 c->x86_phys_bits = 36;
1061 if (c->x86 == 15)
1062 c->x86_cache_alignment = c->x86_clflush_size * 2;
1063 if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
1064 (c->x86 == 0x6 && c->x86_model >= 0x0e))
1065 set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
1066 set_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
1067 c->x86_max_cores = intel_num_cpu_cores(c);
1069 srat_detect_node();
1072 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
1074 char *v = c->x86_vendor_id;
1076 if (!strcmp(v, "AuthenticAMD"))
1077 c->x86_vendor = X86_VENDOR_AMD;
1078 else if (!strcmp(v, "GenuineIntel"))
1079 c->x86_vendor = X86_VENDOR_INTEL;
1080 else
1081 c->x86_vendor = X86_VENDOR_UNKNOWN;
1084 struct cpu_model_info {
1085 int vendor;
1086 int family;
1087 char *model_names[16];
1090 /* Do some early cpuid on the boot CPU to get some parameter that are
1091 needed before check_bugs. Everything advanced is in identify_cpu
1092 below. */
1093 void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
1095 u32 tfms;
1097 c->loops_per_jiffy = loops_per_jiffy;
1098 c->x86_cache_size = -1;
1099 c->x86_vendor = X86_VENDOR_UNKNOWN;
1100 c->x86_model = c->x86_mask = 0; /* So far unknown... */
1101 c->x86_vendor_id[0] = '\0'; /* Unset */
1102 c->x86_model_id[0] = '\0'; /* Unset */
1103 c->x86_clflush_size = 64;
1104 c->x86_cache_alignment = c->x86_clflush_size;
1105 c->x86_max_cores = 1;
1106 c->extended_cpuid_level = 0;
1107 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1109 /* Get vendor name */
1110 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
1111 (unsigned int *)&c->x86_vendor_id[0],
1112 (unsigned int *)&c->x86_vendor_id[8],
1113 (unsigned int *)&c->x86_vendor_id[4]);
1115 get_cpu_vendor(c);
1117 /* Initialize the standard set of capabilities */
1118 /* Note that the vendor-specific code below might override */
1120 /* Intel-defined flags: level 0x00000001 */
1121 if (c->cpuid_level >= 0x00000001) {
1122 __u32 misc;
1123 cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
1124 &c->x86_capability[0]);
1125 c->x86 = (tfms >> 8) & 0xf;
1126 c->x86_model = (tfms >> 4) & 0xf;
1127 c->x86_mask = tfms & 0xf;
1128 if (c->x86 == 0xf)
1129 c->x86 += (tfms >> 20) & 0xff;
1130 if (c->x86 >= 0x6)
1131 c->x86_model += ((tfms >> 16) & 0xF) << 4;
1132 if (c->x86_capability[0] & (1<<19))
1133 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
1134 } else {
1135 /* Have CPUID level 0 only - unheard of */
1136 c->x86 = 4;
1139 #ifdef CONFIG_SMP
1140 phys_proc_id[smp_processor_id()] = (cpuid_ebx(1) >> 24) & 0xff;
1141 #endif
1145 * This does the hard work of actually picking apart the CPU stuff...
1147 void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
1149 int i;
1150 u32 xlvl;
1152 early_identify_cpu(c);
1154 /* AMD-defined flags: level 0x80000001 */
1155 xlvl = cpuid_eax(0x80000000);
1156 c->extended_cpuid_level = xlvl;
1157 if ((xlvl & 0xffff0000) == 0x80000000) {
1158 if (xlvl >= 0x80000001) {
1159 c->x86_capability[1] = cpuid_edx(0x80000001);
1160 c->x86_capability[6] = cpuid_ecx(0x80000001);
1162 if (xlvl >= 0x80000004)
1163 get_model_name(c); /* Default name */
1166 /* Transmeta-defined flags: level 0x80860001 */
1167 xlvl = cpuid_eax(0x80860000);
1168 if ((xlvl & 0xffff0000) == 0x80860000) {
1169 /* Don't set x86_cpuid_level here for now to not confuse. */
1170 if (xlvl >= 0x80860001)
1171 c->x86_capability[2] = cpuid_edx(0x80860001);
1175 * Vendor-specific initialization. In this section we
1176 * canonicalize the feature flags, meaning if there are
1177 * features a certain CPU supports which CPUID doesn't
1178 * tell us, CPUID claiming incorrect flags, or other bugs,
1179 * we handle them here.
1181 * At the end of this section, c->x86_capability better
1182 * indicate the features this CPU genuinely supports!
1184 switch (c->x86_vendor) {
1185 case X86_VENDOR_AMD:
1186 init_amd(c);
1187 break;
1189 case X86_VENDOR_INTEL:
1190 init_intel(c);
1191 break;
1193 case X86_VENDOR_UNKNOWN:
1194 default:
1195 display_cacheinfo(c);
1196 break;
1199 select_idle_routine(c);
1200 detect_ht(c);
1203 * On SMP, boot_cpu_data holds the common feature set between
1204 * all CPUs; so make sure that we indicate which features are
1205 * common between the CPUs. The first time this routine gets
1206 * executed, c == &boot_cpu_data.
1208 if (c != &boot_cpu_data) {
1209 /* AND the already accumulated flags with these */
1210 for (i = 0 ; i < NCAPINTS ; i++)
1211 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1214 #ifdef CONFIG_X86_MCE
1215 mcheck_init(c);
1216 #endif
1217 if (c == &boot_cpu_data)
1218 mtrr_bp_init();
1219 else
1220 mtrr_ap_init();
1221 #ifdef CONFIG_NUMA
1222 numa_add_cpu(smp_processor_id());
1223 #endif
1227 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
1229 if (c->x86_model_id[0])
1230 printk("%s", c->x86_model_id);
1232 if (c->x86_mask || c->cpuid_level >= 0)
1233 printk(" stepping %02x\n", c->x86_mask);
1234 else
1235 printk("\n");
1239 * Get CPU information for use by the procfs.
1242 static int show_cpuinfo(struct seq_file *m, void *v)
1244 struct cpuinfo_x86 *c = v;
1247 * These flag bits must match the definitions in <asm/cpufeature.h>.
1248 * NULL means this bit is undefined or reserved; either way it doesn't
1249 * have meaning as far as Linux is concerned. Note that it's important
1250 * to realize there is a difference between this table and CPUID -- if
1251 * applications want to get the raw CPUID data, they should access
1252 * /dev/cpu/<cpu_nr>/cpuid instead.
1254 static char *x86_cap_flags[] = {
1255 /* Intel-defined */
1256 "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
1257 "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
1258 "pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
1259 "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", NULL,
1261 /* AMD-defined */
1262 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1263 NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
1264 NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
1265 NULL, "fxsr_opt", "rdtscp", NULL, NULL, "lm", "3dnowext", "3dnow",
1267 /* Transmeta-defined */
1268 "recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
1269 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1270 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1271 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1273 /* Other (Linux-defined) */
1274 "cxmmx", NULL, "cyrix_arr", "centaur_mcr", NULL,
1275 "constant_tsc", NULL, NULL,
1276 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1277 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1278 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1280 /* Intel-defined (#2) */
1281 "pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
1282 "tm2", NULL, "cid", NULL, NULL, "cx16", "xtpr", NULL,
1283 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1284 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1286 /* VIA/Cyrix/Centaur-defined */
1287 NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
1288 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1289 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1290 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1292 /* AMD-defined (#2) */
1293 "lahf_lm", "cmp_legacy", "svm", NULL, "cr8_legacy", NULL, NULL, NULL,
1294 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1295 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1296 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1298 static char *x86_power_flags[] = {
1299 "ts", /* temperature sensor */
1300 "fid", /* frequency id control */
1301 "vid", /* voltage id control */
1302 "ttp", /* thermal trip */
1303 "tm",
1304 "stc",
1305 NULL,
1306 /* nothing */ /* constant_tsc - moved to flags */
1310 #ifdef CONFIG_SMP
1311 if (!cpu_online(c-cpu_data))
1312 return 0;
1313 #endif
1315 seq_printf(m,"processor\t: %u\n"
1316 "vendor_id\t: %s\n"
1317 "cpu family\t: %d\n"
1318 "model\t\t: %d\n"
1319 "model name\t: %s\n",
1320 (unsigned)(c-cpu_data),
1321 c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
1322 c->x86,
1323 (int)c->x86_model,
1324 c->x86_model_id[0] ? c->x86_model_id : "unknown");
1326 if (c->x86_mask || c->cpuid_level >= 0)
1327 seq_printf(m, "stepping\t: %d\n", c->x86_mask);
1328 else
1329 seq_printf(m, "stepping\t: unknown\n");
1331 if (cpu_has(c,X86_FEATURE_TSC)) {
1332 unsigned int freq = cpufreq_quick_get((unsigned)(c-cpu_data));
1333 if (!freq)
1334 freq = cpu_khz;
1335 seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
1336 freq / 1000, (freq % 1000));
1339 /* Cache size */
1340 if (c->x86_cache_size >= 0)
1341 seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
1343 #ifdef CONFIG_SMP
1344 if (smp_num_siblings * c->x86_max_cores > 1) {
1345 int cpu = c - cpu_data;
1346 seq_printf(m, "physical id\t: %d\n", phys_proc_id[cpu]);
1347 seq_printf(m, "siblings\t: %d\n", cpus_weight(cpu_core_map[cpu]));
1348 seq_printf(m, "core id\t\t: %d\n", cpu_core_id[cpu]);
1349 seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
1351 #endif
1353 seq_printf(m,
1354 "fpu\t\t: yes\n"
1355 "fpu_exception\t: yes\n"
1356 "cpuid level\t: %d\n"
1357 "wp\t\t: yes\n"
1358 "flags\t\t:",
1359 c->cpuid_level);
1362 int i;
1363 for ( i = 0 ; i < 32*NCAPINTS ; i++ )
1364 if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
1365 seq_printf(m, " %s", x86_cap_flags[i]);
1368 seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
1369 c->loops_per_jiffy/(500000/HZ),
1370 (c->loops_per_jiffy/(5000/HZ)) % 100);
1372 if (c->x86_tlbsize > 0)
1373 seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
1374 seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
1375 seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
1377 seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
1378 c->x86_phys_bits, c->x86_virt_bits);
1380 seq_printf(m, "power management:");
1382 unsigned i;
1383 for (i = 0; i < 32; i++)
1384 if (c->x86_power & (1 << i)) {
1385 if (i < ARRAY_SIZE(x86_power_flags) &&
1386 x86_power_flags[i])
1387 seq_printf(m, "%s%s",
1388 x86_power_flags[i][0]?" ":"",
1389 x86_power_flags[i]);
1390 else
1391 seq_printf(m, " [%d]", i);
1395 seq_printf(m, "\n\n");
1397 return 0;
1400 static void *c_start(struct seq_file *m, loff_t *pos)
1402 return *pos < NR_CPUS ? cpu_data + *pos : NULL;
1405 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1407 ++*pos;
1408 return c_start(m, pos);
1411 static void c_stop(struct seq_file *m, void *v)
1415 struct seq_operations cpuinfo_op = {
1416 .start =c_start,
1417 .next = c_next,
1418 .stop = c_stop,
1419 .show = show_cpuinfo,