[PATCH] Extend next_timer_interrupt() to use a reference jiffie
[linux-2.6/sactl.git] / kernel / timer.c
blob6d843e100e75d9c6ce2ccb269bf7c4dd6839e32f
1 /*
2 * linux/kernel/timer.c
4 * Kernel internal timers, kernel timekeeping, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/delay.h>
38 #include <asm/uaccess.h>
39 #include <asm/unistd.h>
40 #include <asm/div64.h>
41 #include <asm/timex.h>
42 #include <asm/io.h>
44 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
46 EXPORT_SYMBOL(jiffies_64);
49 * per-CPU timer vector definitions:
51 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
52 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
53 #define TVN_SIZE (1 << TVN_BITS)
54 #define TVR_SIZE (1 << TVR_BITS)
55 #define TVN_MASK (TVN_SIZE - 1)
56 #define TVR_MASK (TVR_SIZE - 1)
58 typedef struct tvec_s {
59 struct list_head vec[TVN_SIZE];
60 } tvec_t;
62 typedef struct tvec_root_s {
63 struct list_head vec[TVR_SIZE];
64 } tvec_root_t;
66 struct tvec_t_base_s {
67 spinlock_t lock;
68 struct timer_list *running_timer;
69 unsigned long timer_jiffies;
70 tvec_root_t tv1;
71 tvec_t tv2;
72 tvec_t tv3;
73 tvec_t tv4;
74 tvec_t tv5;
75 } ____cacheline_aligned_in_smp;
77 typedef struct tvec_t_base_s tvec_base_t;
79 tvec_base_t boot_tvec_bases;
80 EXPORT_SYMBOL(boot_tvec_bases);
81 static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = &boot_tvec_bases;
83 /**
84 * __round_jiffies - function to round jiffies to a full second
85 * @j: the time in (absolute) jiffies that should be rounded
86 * @cpu: the processor number on which the timeout will happen
88 * __round_jiffies() rounds an absolute time in the future (in jiffies)
89 * up or down to (approximately) full seconds. This is useful for timers
90 * for which the exact time they fire does not matter too much, as long as
91 * they fire approximately every X seconds.
93 * By rounding these timers to whole seconds, all such timers will fire
94 * at the same time, rather than at various times spread out. The goal
95 * of this is to have the CPU wake up less, which saves power.
97 * The exact rounding is skewed for each processor to avoid all
98 * processors firing at the exact same time, which could lead
99 * to lock contention or spurious cache line bouncing.
101 * The return value is the rounded version of the @j parameter.
103 unsigned long __round_jiffies(unsigned long j, int cpu)
105 int rem;
106 unsigned long original = j;
109 * We don't want all cpus firing their timers at once hitting the
110 * same lock or cachelines, so we skew each extra cpu with an extra
111 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
112 * already did this.
113 * The skew is done by adding 3*cpunr, then round, then subtract this
114 * extra offset again.
116 j += cpu * 3;
118 rem = j % HZ;
121 * If the target jiffie is just after a whole second (which can happen
122 * due to delays of the timer irq, long irq off times etc etc) then
123 * we should round down to the whole second, not up. Use 1/4th second
124 * as cutoff for this rounding as an extreme upper bound for this.
126 if (rem < HZ/4) /* round down */
127 j = j - rem;
128 else /* round up */
129 j = j - rem + HZ;
131 /* now that we have rounded, subtract the extra skew again */
132 j -= cpu * 3;
134 if (j <= jiffies) /* rounding ate our timeout entirely; */
135 return original;
136 return j;
138 EXPORT_SYMBOL_GPL(__round_jiffies);
141 * __round_jiffies_relative - function to round jiffies to a full second
142 * @j: the time in (relative) jiffies that should be rounded
143 * @cpu: the processor number on which the timeout will happen
145 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
146 * up or down to (approximately) full seconds. This is useful for timers
147 * for which the exact time they fire does not matter too much, as long as
148 * they fire approximately every X seconds.
150 * By rounding these timers to whole seconds, all such timers will fire
151 * at the same time, rather than at various times spread out. The goal
152 * of this is to have the CPU wake up less, which saves power.
154 * The exact rounding is skewed for each processor to avoid all
155 * processors firing at the exact same time, which could lead
156 * to lock contention or spurious cache line bouncing.
158 * The return value is the rounded version of the @j parameter.
160 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
163 * In theory the following code can skip a jiffy in case jiffies
164 * increments right between the addition and the later subtraction.
165 * However since the entire point of this function is to use approximate
166 * timeouts, it's entirely ok to not handle that.
168 return __round_jiffies(j + jiffies, cpu) - jiffies;
170 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
173 * round_jiffies - function to round jiffies to a full second
174 * @j: the time in (absolute) jiffies that should be rounded
176 * round_jiffies() rounds an absolute time in the future (in jiffies)
177 * up or down to (approximately) full seconds. This is useful for timers
178 * for which the exact time they fire does not matter too much, as long as
179 * they fire approximately every X seconds.
181 * By rounding these timers to whole seconds, all such timers will fire
182 * at the same time, rather than at various times spread out. The goal
183 * of this is to have the CPU wake up less, which saves power.
185 * The return value is the rounded version of the @j parameter.
187 unsigned long round_jiffies(unsigned long j)
189 return __round_jiffies(j, raw_smp_processor_id());
191 EXPORT_SYMBOL_GPL(round_jiffies);
194 * round_jiffies_relative - function to round jiffies to a full second
195 * @j: the time in (relative) jiffies that should be rounded
197 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
198 * up or down to (approximately) full seconds. This is useful for timers
199 * for which the exact time they fire does not matter too much, as long as
200 * they fire approximately every X seconds.
202 * By rounding these timers to whole seconds, all such timers will fire
203 * at the same time, rather than at various times spread out. The goal
204 * of this is to have the CPU wake up less, which saves power.
206 * The return value is the rounded version of the @j parameter.
208 unsigned long round_jiffies_relative(unsigned long j)
210 return __round_jiffies_relative(j, raw_smp_processor_id());
212 EXPORT_SYMBOL_GPL(round_jiffies_relative);
215 static inline void set_running_timer(tvec_base_t *base,
216 struct timer_list *timer)
218 #ifdef CONFIG_SMP
219 base->running_timer = timer;
220 #endif
223 static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
225 unsigned long expires = timer->expires;
226 unsigned long idx = expires - base->timer_jiffies;
227 struct list_head *vec;
229 if (idx < TVR_SIZE) {
230 int i = expires & TVR_MASK;
231 vec = base->tv1.vec + i;
232 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
233 int i = (expires >> TVR_BITS) & TVN_MASK;
234 vec = base->tv2.vec + i;
235 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
236 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
237 vec = base->tv3.vec + i;
238 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
239 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
240 vec = base->tv4.vec + i;
241 } else if ((signed long) idx < 0) {
243 * Can happen if you add a timer with expires == jiffies,
244 * or you set a timer to go off in the past
246 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
247 } else {
248 int i;
249 /* If the timeout is larger than 0xffffffff on 64-bit
250 * architectures then we use the maximum timeout:
252 if (idx > 0xffffffffUL) {
253 idx = 0xffffffffUL;
254 expires = idx + base->timer_jiffies;
256 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
257 vec = base->tv5.vec + i;
260 * Timers are FIFO:
262 list_add_tail(&timer->entry, vec);
266 * init_timer - initialize a timer.
267 * @timer: the timer to be initialized
269 * init_timer() must be done to a timer prior calling *any* of the
270 * other timer functions.
272 void fastcall init_timer(struct timer_list *timer)
274 timer->entry.next = NULL;
275 timer->base = __raw_get_cpu_var(tvec_bases);
277 EXPORT_SYMBOL(init_timer);
279 static inline void detach_timer(struct timer_list *timer,
280 int clear_pending)
282 struct list_head *entry = &timer->entry;
284 __list_del(entry->prev, entry->next);
285 if (clear_pending)
286 entry->next = NULL;
287 entry->prev = LIST_POISON2;
291 * We are using hashed locking: holding per_cpu(tvec_bases).lock
292 * means that all timers which are tied to this base via timer->base are
293 * locked, and the base itself is locked too.
295 * So __run_timers/migrate_timers can safely modify all timers which could
296 * be found on ->tvX lists.
298 * When the timer's base is locked, and the timer removed from list, it is
299 * possible to set timer->base = NULL and drop the lock: the timer remains
300 * locked.
302 static tvec_base_t *lock_timer_base(struct timer_list *timer,
303 unsigned long *flags)
304 __acquires(timer->base->lock)
306 tvec_base_t *base;
308 for (;;) {
309 base = timer->base;
310 if (likely(base != NULL)) {
311 spin_lock_irqsave(&base->lock, *flags);
312 if (likely(base == timer->base))
313 return base;
314 /* The timer has migrated to another CPU */
315 spin_unlock_irqrestore(&base->lock, *flags);
317 cpu_relax();
321 int __mod_timer(struct timer_list *timer, unsigned long expires)
323 tvec_base_t *base, *new_base;
324 unsigned long flags;
325 int ret = 0;
327 BUG_ON(!timer->function);
329 base = lock_timer_base(timer, &flags);
331 if (timer_pending(timer)) {
332 detach_timer(timer, 0);
333 ret = 1;
336 new_base = __get_cpu_var(tvec_bases);
338 if (base != new_base) {
340 * We are trying to schedule the timer on the local CPU.
341 * However we can't change timer's base while it is running,
342 * otherwise del_timer_sync() can't detect that the timer's
343 * handler yet has not finished. This also guarantees that
344 * the timer is serialized wrt itself.
346 if (likely(base->running_timer != timer)) {
347 /* See the comment in lock_timer_base() */
348 timer->base = NULL;
349 spin_unlock(&base->lock);
350 base = new_base;
351 spin_lock(&base->lock);
352 timer->base = base;
356 timer->expires = expires;
357 internal_add_timer(base, timer);
358 spin_unlock_irqrestore(&base->lock, flags);
360 return ret;
363 EXPORT_SYMBOL(__mod_timer);
366 * add_timer_on - start a timer on a particular CPU
367 * @timer: the timer to be added
368 * @cpu: the CPU to start it on
370 * This is not very scalable on SMP. Double adds are not possible.
372 void add_timer_on(struct timer_list *timer, int cpu)
374 tvec_base_t *base = per_cpu(tvec_bases, cpu);
375 unsigned long flags;
377 BUG_ON(timer_pending(timer) || !timer->function);
378 spin_lock_irqsave(&base->lock, flags);
379 timer->base = base;
380 internal_add_timer(base, timer);
381 spin_unlock_irqrestore(&base->lock, flags);
386 * mod_timer - modify a timer's timeout
387 * @timer: the timer to be modified
388 * @expires: new timeout in jiffies
390 * mod_timer() is a more efficient way to update the expire field of an
391 * active timer (if the timer is inactive it will be activated)
393 * mod_timer(timer, expires) is equivalent to:
395 * del_timer(timer); timer->expires = expires; add_timer(timer);
397 * Note that if there are multiple unserialized concurrent users of the
398 * same timer, then mod_timer() is the only safe way to modify the timeout,
399 * since add_timer() cannot modify an already running timer.
401 * The function returns whether it has modified a pending timer or not.
402 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
403 * active timer returns 1.)
405 int mod_timer(struct timer_list *timer, unsigned long expires)
407 BUG_ON(!timer->function);
410 * This is a common optimization triggered by the
411 * networking code - if the timer is re-modified
412 * to be the same thing then just return:
414 if (timer->expires == expires && timer_pending(timer))
415 return 1;
417 return __mod_timer(timer, expires);
420 EXPORT_SYMBOL(mod_timer);
423 * del_timer - deactive a timer.
424 * @timer: the timer to be deactivated
426 * del_timer() deactivates a timer - this works on both active and inactive
427 * timers.
429 * The function returns whether it has deactivated a pending timer or not.
430 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
431 * active timer returns 1.)
433 int del_timer(struct timer_list *timer)
435 tvec_base_t *base;
436 unsigned long flags;
437 int ret = 0;
439 if (timer_pending(timer)) {
440 base = lock_timer_base(timer, &flags);
441 if (timer_pending(timer)) {
442 detach_timer(timer, 1);
443 ret = 1;
445 spin_unlock_irqrestore(&base->lock, flags);
448 return ret;
451 EXPORT_SYMBOL(del_timer);
453 #ifdef CONFIG_SMP
455 * try_to_del_timer_sync - Try to deactivate a timer
456 * @timer: timer do del
458 * This function tries to deactivate a timer. Upon successful (ret >= 0)
459 * exit the timer is not queued and the handler is not running on any CPU.
461 * It must not be called from interrupt contexts.
463 int try_to_del_timer_sync(struct timer_list *timer)
465 tvec_base_t *base;
466 unsigned long flags;
467 int ret = -1;
469 base = lock_timer_base(timer, &flags);
471 if (base->running_timer == timer)
472 goto out;
474 ret = 0;
475 if (timer_pending(timer)) {
476 detach_timer(timer, 1);
477 ret = 1;
479 out:
480 spin_unlock_irqrestore(&base->lock, flags);
482 return ret;
486 * del_timer_sync - deactivate a timer and wait for the handler to finish.
487 * @timer: the timer to be deactivated
489 * This function only differs from del_timer() on SMP: besides deactivating
490 * the timer it also makes sure the handler has finished executing on other
491 * CPUs.
493 * Synchronization rules: Callers must prevent restarting of the timer,
494 * otherwise this function is meaningless. It must not be called from
495 * interrupt contexts. The caller must not hold locks which would prevent
496 * completion of the timer's handler. The timer's handler must not call
497 * add_timer_on(). Upon exit the timer is not queued and the handler is
498 * not running on any CPU.
500 * The function returns whether it has deactivated a pending timer or not.
502 int del_timer_sync(struct timer_list *timer)
504 for (;;) {
505 int ret = try_to_del_timer_sync(timer);
506 if (ret >= 0)
507 return ret;
508 cpu_relax();
512 EXPORT_SYMBOL(del_timer_sync);
513 #endif
515 static int cascade(tvec_base_t *base, tvec_t *tv, int index)
517 /* cascade all the timers from tv up one level */
518 struct timer_list *timer, *tmp;
519 struct list_head tv_list;
521 list_replace_init(tv->vec + index, &tv_list);
524 * We are removing _all_ timers from the list, so we
525 * don't have to detach them individually.
527 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
528 BUG_ON(timer->base != base);
529 internal_add_timer(base, timer);
532 return index;
535 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
538 * __run_timers - run all expired timers (if any) on this CPU.
539 * @base: the timer vector to be processed.
541 * This function cascades all vectors and executes all expired timer
542 * vectors.
544 static inline void __run_timers(tvec_base_t *base)
546 struct timer_list *timer;
548 spin_lock_irq(&base->lock);
549 while (time_after_eq(jiffies, base->timer_jiffies)) {
550 struct list_head work_list;
551 struct list_head *head = &work_list;
552 int index = base->timer_jiffies & TVR_MASK;
555 * Cascade timers:
557 if (!index &&
558 (!cascade(base, &base->tv2, INDEX(0))) &&
559 (!cascade(base, &base->tv3, INDEX(1))) &&
560 !cascade(base, &base->tv4, INDEX(2)))
561 cascade(base, &base->tv5, INDEX(3));
562 ++base->timer_jiffies;
563 list_replace_init(base->tv1.vec + index, &work_list);
564 while (!list_empty(head)) {
565 void (*fn)(unsigned long);
566 unsigned long data;
568 timer = list_entry(head->next,struct timer_list,entry);
569 fn = timer->function;
570 data = timer->data;
572 set_running_timer(base, timer);
573 detach_timer(timer, 1);
574 spin_unlock_irq(&base->lock);
576 int preempt_count = preempt_count();
577 fn(data);
578 if (preempt_count != preempt_count()) {
579 printk(KERN_WARNING "huh, entered %p "
580 "with preempt_count %08x, exited"
581 " with %08x?\n",
582 fn, preempt_count,
583 preempt_count());
584 BUG();
587 spin_lock_irq(&base->lock);
590 set_running_timer(base, NULL);
591 spin_unlock_irq(&base->lock);
594 #if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
596 * Find out when the next timer event is due to happen. This
597 * is used on S/390 to stop all activity when a cpus is idle.
598 * This functions needs to be called disabled.
600 static unsigned long __next_timer_interrupt(tvec_base_t *base)
602 unsigned long timer_jiffies = base->timer_jiffies;
603 unsigned long expires = timer_jiffies + (LONG_MAX >> 1);
604 int index, slot, array, found = 0;
605 struct timer_list *nte;
606 tvec_t *varray[4];
608 /* Look for timer events in tv1. */
609 index = slot = timer_jiffies & TVR_MASK;
610 do {
611 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
612 found = 1;
613 expires = nte->expires;
614 /* Look at the cascade bucket(s)? */
615 if (!index || slot < index)
616 goto cascade;
617 return expires;
619 slot = (slot + 1) & TVR_MASK;
620 } while (slot != index);
622 cascade:
623 /* Calculate the next cascade event */
624 if (index)
625 timer_jiffies += TVR_SIZE - index;
626 timer_jiffies >>= TVR_BITS;
628 /* Check tv2-tv5. */
629 varray[0] = &base->tv2;
630 varray[1] = &base->tv3;
631 varray[2] = &base->tv4;
632 varray[3] = &base->tv5;
634 for (array = 0; array < 4; array++) {
635 tvec_t *varp = varray[array];
637 index = slot = timer_jiffies & TVN_MASK;
638 do {
639 list_for_each_entry(nte, varp->vec + slot, entry) {
640 found = 1;
641 if (time_before(nte->expires, expires))
642 expires = nte->expires;
645 * Do we still search for the first timer or are
646 * we looking up the cascade buckets ?
648 if (found) {
649 /* Look at the cascade bucket(s)? */
650 if (!index || slot < index)
651 break;
652 return expires;
654 slot = (slot + 1) & TVN_MASK;
655 } while (slot != index);
657 if (index)
658 timer_jiffies += TVN_SIZE - index;
659 timer_jiffies >>= TVN_BITS;
661 return expires;
665 * Check, if the next hrtimer event is before the next timer wheel
666 * event:
668 static unsigned long cmp_next_hrtimer_event(unsigned long now,
669 unsigned long expires)
671 ktime_t hr_delta = hrtimer_get_next_event();
672 struct timespec tsdelta;
674 if (hr_delta.tv64 == KTIME_MAX)
675 return expires;
677 if (hr_delta.tv64 <= TICK_NSEC)
678 return now;
680 tsdelta = ktime_to_timespec(hr_delta);
681 now += timespec_to_jiffies(&tsdelta);
682 if (time_before(now, expires))
683 return now;
684 return expires;
688 * next_timer_interrupt - return the jiffy of the next pending timer
690 unsigned long get_next_timer_interrupt(unsigned long now)
692 tvec_base_t *base = __get_cpu_var(tvec_bases);
693 unsigned long expires;
695 spin_lock(&base->lock);
696 expires = __next_timer_interrupt(base);
697 spin_unlock(&base->lock);
699 if (time_before_eq(expires, now))
700 return now;
702 return cmp_next_hrtimer_event(now, expires);
705 #ifdef CONFIG_NO_IDLE_HZ
706 unsigned long next_timer_interrupt(void)
708 return get_next_timer_interrupt(jiffies);
710 #endif
712 #endif
714 /******************************************************************/
717 * The current time
718 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
719 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
720 * at zero at system boot time, so wall_to_monotonic will be negative,
721 * however, we will ALWAYS keep the tv_nsec part positive so we can use
722 * the usual normalization.
724 struct timespec xtime __attribute__ ((aligned (16)));
725 struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
727 EXPORT_SYMBOL(xtime);
730 /* XXX - all of this timekeeping code should be later moved to time.c */
731 #include <linux/clocksource.h>
732 static struct clocksource *clock; /* pointer to current clocksource */
734 #ifdef CONFIG_GENERIC_TIME
736 * __get_nsec_offset - Returns nanoseconds since last call to periodic_hook
738 * private function, must hold xtime_lock lock when being
739 * called. Returns the number of nanoseconds since the
740 * last call to update_wall_time() (adjusted by NTP scaling)
742 static inline s64 __get_nsec_offset(void)
744 cycle_t cycle_now, cycle_delta;
745 s64 ns_offset;
747 /* read clocksource: */
748 cycle_now = clocksource_read(clock);
750 /* calculate the delta since the last update_wall_time: */
751 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
753 /* convert to nanoseconds: */
754 ns_offset = cyc2ns(clock, cycle_delta);
756 return ns_offset;
760 * __get_realtime_clock_ts - Returns the time of day in a timespec
761 * @ts: pointer to the timespec to be set
763 * Returns the time of day in a timespec. Used by
764 * do_gettimeofday() and get_realtime_clock_ts().
766 static inline void __get_realtime_clock_ts(struct timespec *ts)
768 unsigned long seq;
769 s64 nsecs;
771 do {
772 seq = read_seqbegin(&xtime_lock);
774 *ts = xtime;
775 nsecs = __get_nsec_offset();
777 } while (read_seqretry(&xtime_lock, seq));
779 timespec_add_ns(ts, nsecs);
783 * getnstimeofday - Returns the time of day in a timespec
784 * @ts: pointer to the timespec to be set
786 * Returns the time of day in a timespec.
788 void getnstimeofday(struct timespec *ts)
790 __get_realtime_clock_ts(ts);
793 EXPORT_SYMBOL(getnstimeofday);
796 * do_gettimeofday - Returns the time of day in a timeval
797 * @tv: pointer to the timeval to be set
799 * NOTE: Users should be converted to using get_realtime_clock_ts()
801 void do_gettimeofday(struct timeval *tv)
803 struct timespec now;
805 __get_realtime_clock_ts(&now);
806 tv->tv_sec = now.tv_sec;
807 tv->tv_usec = now.tv_nsec/1000;
810 EXPORT_SYMBOL(do_gettimeofday);
812 * do_settimeofday - Sets the time of day
813 * @tv: pointer to the timespec variable containing the new time
815 * Sets the time of day to the new time and update NTP and notify hrtimers
817 int do_settimeofday(struct timespec *tv)
819 unsigned long flags;
820 time_t wtm_sec, sec = tv->tv_sec;
821 long wtm_nsec, nsec = tv->tv_nsec;
823 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
824 return -EINVAL;
826 write_seqlock_irqsave(&xtime_lock, flags);
828 nsec -= __get_nsec_offset();
830 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
831 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
833 set_normalized_timespec(&xtime, sec, nsec);
834 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
836 clock->error = 0;
837 ntp_clear();
839 write_sequnlock_irqrestore(&xtime_lock, flags);
841 /* signal hrtimers about time change */
842 clock_was_set();
844 return 0;
847 EXPORT_SYMBOL(do_settimeofday);
850 * change_clocksource - Swaps clocksources if a new one is available
852 * Accumulates current time interval and initializes new clocksource
854 static void change_clocksource(void)
856 struct clocksource *new;
857 cycle_t now;
858 u64 nsec;
860 new = clocksource_get_next();
862 if (clock == new)
863 return;
865 now = clocksource_read(new);
866 nsec = __get_nsec_offset();
867 timespec_add_ns(&xtime, nsec);
869 clock = new;
870 clock->cycle_last = now;
872 clock->error = 0;
873 clock->xtime_nsec = 0;
874 clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH);
876 printk(KERN_INFO "Time: %s clocksource has been installed.\n",
877 clock->name);
879 #else
880 static inline void change_clocksource(void) { }
881 #endif
884 * timeofday_is_continuous - check to see if timekeeping is free running
886 int timekeeping_is_continuous(void)
888 unsigned long seq;
889 int ret;
891 do {
892 seq = read_seqbegin(&xtime_lock);
894 ret = clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
896 } while (read_seqretry(&xtime_lock, seq));
898 return ret;
902 * read_persistent_clock - Return time in seconds from the persistent clock.
904 * Weak dummy function for arches that do not yet support it.
905 * Returns seconds from epoch using the battery backed persistent clock.
906 * Returns zero if unsupported.
908 * XXX - Do be sure to remove it once all arches implement it.
910 unsigned long __attribute__((weak)) read_persistent_clock(void)
912 return 0;
916 * timekeeping_init - Initializes the clocksource and common timekeeping values
918 void __init timekeeping_init(void)
920 unsigned long flags;
921 unsigned long sec = read_persistent_clock();
923 write_seqlock_irqsave(&xtime_lock, flags);
925 ntp_clear();
927 clock = clocksource_get_next();
928 clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH);
929 clock->cycle_last = clocksource_read(clock);
931 xtime.tv_sec = sec;
932 xtime.tv_nsec = 0;
933 set_normalized_timespec(&wall_to_monotonic,
934 -xtime.tv_sec, -xtime.tv_nsec);
936 write_sequnlock_irqrestore(&xtime_lock, flags);
940 /* flag for if timekeeping is suspended */
941 static int timekeeping_suspended;
942 /* time in seconds when suspend began */
943 static unsigned long timekeeping_suspend_time;
946 * timekeeping_resume - Resumes the generic timekeeping subsystem.
947 * @dev: unused
949 * This is for the generic clocksource timekeeping.
950 * xtime/wall_to_monotonic/jiffies/etc are
951 * still managed by arch specific suspend/resume code.
953 static int timekeeping_resume(struct sys_device *dev)
955 unsigned long flags;
956 unsigned long now = read_persistent_clock();
958 write_seqlock_irqsave(&xtime_lock, flags);
960 if (now && (now > timekeeping_suspend_time)) {
961 unsigned long sleep_length = now - timekeeping_suspend_time;
963 xtime.tv_sec += sleep_length;
964 wall_to_monotonic.tv_sec -= sleep_length;
966 /* re-base the last cycle value */
967 clock->cycle_last = clocksource_read(clock);
968 clock->error = 0;
969 timekeeping_suspended = 0;
970 write_sequnlock_irqrestore(&xtime_lock, flags);
972 touch_softlockup_watchdog();
973 hrtimer_notify_resume();
975 return 0;
978 static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
980 unsigned long flags;
982 write_seqlock_irqsave(&xtime_lock, flags);
983 timekeeping_suspended = 1;
984 timekeeping_suspend_time = read_persistent_clock();
985 write_sequnlock_irqrestore(&xtime_lock, flags);
986 return 0;
989 /* sysfs resume/suspend bits for timekeeping */
990 static struct sysdev_class timekeeping_sysclass = {
991 .resume = timekeeping_resume,
992 .suspend = timekeeping_suspend,
993 set_kset_name("timekeeping"),
996 static struct sys_device device_timer = {
997 .id = 0,
998 .cls = &timekeeping_sysclass,
1001 static int __init timekeeping_init_device(void)
1003 int error = sysdev_class_register(&timekeeping_sysclass);
1004 if (!error)
1005 error = sysdev_register(&device_timer);
1006 return error;
1009 device_initcall(timekeeping_init_device);
1012 * If the error is already larger, we look ahead even further
1013 * to compensate for late or lost adjustments.
1015 static __always_inline int clocksource_bigadjust(s64 error, s64 *interval,
1016 s64 *offset)
1018 s64 tick_error, i;
1019 u32 look_ahead, adj;
1020 s32 error2, mult;
1023 * Use the current error value to determine how much to look ahead.
1024 * The larger the error the slower we adjust for it to avoid problems
1025 * with losing too many ticks, otherwise we would overadjust and
1026 * produce an even larger error. The smaller the adjustment the
1027 * faster we try to adjust for it, as lost ticks can do less harm
1028 * here. This is tuned so that an error of about 1 msec is adusted
1029 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
1031 error2 = clock->error >> (TICK_LENGTH_SHIFT + 22 - 2 * SHIFT_HZ);
1032 error2 = abs(error2);
1033 for (look_ahead = 0; error2 > 0; look_ahead++)
1034 error2 >>= 2;
1037 * Now calculate the error in (1 << look_ahead) ticks, but first
1038 * remove the single look ahead already included in the error.
1040 tick_error = current_tick_length() >>
1041 (TICK_LENGTH_SHIFT - clock->shift + 1);
1042 tick_error -= clock->xtime_interval >> 1;
1043 error = ((error - tick_error) >> look_ahead) + tick_error;
1045 /* Finally calculate the adjustment shift value. */
1046 i = *interval;
1047 mult = 1;
1048 if (error < 0) {
1049 error = -error;
1050 *interval = -*interval;
1051 *offset = -*offset;
1052 mult = -1;
1054 for (adj = 0; error > i; adj++)
1055 error >>= 1;
1057 *interval <<= adj;
1058 *offset <<= adj;
1059 return mult << adj;
1063 * Adjust the multiplier to reduce the error value,
1064 * this is optimized for the most common adjustments of -1,0,1,
1065 * for other values we can do a bit more work.
1067 static void clocksource_adjust(struct clocksource *clock, s64 offset)
1069 s64 error, interval = clock->cycle_interval;
1070 int adj;
1072 error = clock->error >> (TICK_LENGTH_SHIFT - clock->shift - 1);
1073 if (error > interval) {
1074 error >>= 2;
1075 if (likely(error <= interval))
1076 adj = 1;
1077 else
1078 adj = clocksource_bigadjust(error, &interval, &offset);
1079 } else if (error < -interval) {
1080 error >>= 2;
1081 if (likely(error >= -interval)) {
1082 adj = -1;
1083 interval = -interval;
1084 offset = -offset;
1085 } else
1086 adj = clocksource_bigadjust(error, &interval, &offset);
1087 } else
1088 return;
1090 clock->mult += adj;
1091 clock->xtime_interval += interval;
1092 clock->xtime_nsec -= offset;
1093 clock->error -= (interval - offset) <<
1094 (TICK_LENGTH_SHIFT - clock->shift);
1098 * update_wall_time - Uses the current clocksource to increment the wall time
1100 * Called from the timer interrupt, must hold a write on xtime_lock.
1102 static void update_wall_time(void)
1104 cycle_t offset;
1106 /* Make sure we're fully resumed: */
1107 if (unlikely(timekeeping_suspended))
1108 return;
1110 #ifdef CONFIG_GENERIC_TIME
1111 offset = (clocksource_read(clock) - clock->cycle_last) & clock->mask;
1112 #else
1113 offset = clock->cycle_interval;
1114 #endif
1115 clock->xtime_nsec += (s64)xtime.tv_nsec << clock->shift;
1117 /* normally this loop will run just once, however in the
1118 * case of lost or late ticks, it will accumulate correctly.
1120 while (offset >= clock->cycle_interval) {
1121 /* accumulate one interval */
1122 clock->xtime_nsec += clock->xtime_interval;
1123 clock->cycle_last += clock->cycle_interval;
1124 offset -= clock->cycle_interval;
1126 if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) {
1127 clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift;
1128 xtime.tv_sec++;
1129 second_overflow();
1132 /* interpolator bits */
1133 time_interpolator_update(clock->xtime_interval
1134 >> clock->shift);
1136 /* accumulate error between NTP and clock interval */
1137 clock->error += current_tick_length();
1138 clock->error -= clock->xtime_interval << (TICK_LENGTH_SHIFT - clock->shift);
1141 /* correct the clock when NTP error is too big */
1142 clocksource_adjust(clock, offset);
1144 /* store full nanoseconds into xtime */
1145 xtime.tv_nsec = (s64)clock->xtime_nsec >> clock->shift;
1146 clock->xtime_nsec -= (s64)xtime.tv_nsec << clock->shift;
1148 /* check to see if there is a new clocksource to use */
1149 change_clocksource();
1153 * Called from the timer interrupt handler to charge one tick to the current
1154 * process. user_tick is 1 if the tick is user time, 0 for system.
1156 void update_process_times(int user_tick)
1158 struct task_struct *p = current;
1159 int cpu = smp_processor_id();
1161 /* Note: this timer irq context must be accounted for as well. */
1162 if (user_tick)
1163 account_user_time(p, jiffies_to_cputime(1));
1164 else
1165 account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
1166 run_local_timers();
1167 if (rcu_pending(cpu))
1168 rcu_check_callbacks(cpu, user_tick);
1169 scheduler_tick();
1170 run_posix_cpu_timers(p);
1174 * Nr of active tasks - counted in fixed-point numbers
1176 static unsigned long count_active_tasks(void)
1178 return nr_active() * FIXED_1;
1182 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
1183 * imply that avenrun[] is the standard name for this kind of thing.
1184 * Nothing else seems to be standardized: the fractional size etc
1185 * all seem to differ on different machines.
1187 * Requires xtime_lock to access.
1189 unsigned long avenrun[3];
1191 EXPORT_SYMBOL(avenrun);
1194 * calc_load - given tick count, update the avenrun load estimates.
1195 * This is called while holding a write_lock on xtime_lock.
1197 static inline void calc_load(unsigned long ticks)
1199 unsigned long active_tasks; /* fixed-point */
1200 static int count = LOAD_FREQ;
1202 count -= ticks;
1203 if (unlikely(count < 0)) {
1204 active_tasks = count_active_tasks();
1205 do {
1206 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
1207 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
1208 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
1209 count += LOAD_FREQ;
1210 } while (count < 0);
1215 * This read-write spinlock protects us from races in SMP while
1216 * playing with xtime and avenrun.
1218 __attribute__((weak)) __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
1220 EXPORT_SYMBOL(xtime_lock);
1223 * This function runs timers and the timer-tq in bottom half context.
1225 static void run_timer_softirq(struct softirq_action *h)
1227 tvec_base_t *base = __get_cpu_var(tvec_bases);
1229 hrtimer_run_queues();
1230 if (time_after_eq(jiffies, base->timer_jiffies))
1231 __run_timers(base);
1235 * Called by the local, per-CPU timer interrupt on SMP.
1237 void run_local_timers(void)
1239 raise_softirq(TIMER_SOFTIRQ);
1240 softlockup_tick();
1244 * Called by the timer interrupt. xtime_lock must already be taken
1245 * by the timer IRQ!
1247 static inline void update_times(unsigned long ticks)
1249 update_wall_time();
1250 calc_load(ticks);
1254 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1255 * without sampling the sequence number in xtime_lock.
1256 * jiffies is defined in the linker script...
1259 void do_timer(unsigned long ticks)
1261 jiffies_64 += ticks;
1262 update_times(ticks);
1265 #ifdef __ARCH_WANT_SYS_ALARM
1268 * For backwards compatibility? This can be done in libc so Alpha
1269 * and all newer ports shouldn't need it.
1271 asmlinkage unsigned long sys_alarm(unsigned int seconds)
1273 return alarm_setitimer(seconds);
1276 #endif
1278 #ifndef __alpha__
1281 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1282 * should be moved into arch/i386 instead?
1286 * sys_getpid - return the thread group id of the current process
1288 * Note, despite the name, this returns the tgid not the pid. The tgid and
1289 * the pid are identical unless CLONE_THREAD was specified on clone() in
1290 * which case the tgid is the same in all threads of the same group.
1292 * This is SMP safe as current->tgid does not change.
1294 asmlinkage long sys_getpid(void)
1296 return current->tgid;
1300 * Accessing ->real_parent is not SMP-safe, it could
1301 * change from under us. However, we can use a stale
1302 * value of ->real_parent under rcu_read_lock(), see
1303 * release_task()->call_rcu(delayed_put_task_struct).
1305 asmlinkage long sys_getppid(void)
1307 int pid;
1309 rcu_read_lock();
1310 pid = rcu_dereference(current->real_parent)->tgid;
1311 rcu_read_unlock();
1313 return pid;
1316 asmlinkage long sys_getuid(void)
1318 /* Only we change this so SMP safe */
1319 return current->uid;
1322 asmlinkage long sys_geteuid(void)
1324 /* Only we change this so SMP safe */
1325 return current->euid;
1328 asmlinkage long sys_getgid(void)
1330 /* Only we change this so SMP safe */
1331 return current->gid;
1334 asmlinkage long sys_getegid(void)
1336 /* Only we change this so SMP safe */
1337 return current->egid;
1340 #endif
1342 static void process_timeout(unsigned long __data)
1344 wake_up_process((struct task_struct *)__data);
1348 * schedule_timeout - sleep until timeout
1349 * @timeout: timeout value in jiffies
1351 * Make the current task sleep until @timeout jiffies have
1352 * elapsed. The routine will return immediately unless
1353 * the current task state has been set (see set_current_state()).
1355 * You can set the task state as follows -
1357 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1358 * pass before the routine returns. The routine will return 0
1360 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1361 * delivered to the current task. In this case the remaining time
1362 * in jiffies will be returned, or 0 if the timer expired in time
1364 * The current task state is guaranteed to be TASK_RUNNING when this
1365 * routine returns.
1367 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1368 * the CPU away without a bound on the timeout. In this case the return
1369 * value will be %MAX_SCHEDULE_TIMEOUT.
1371 * In all cases the return value is guaranteed to be non-negative.
1373 fastcall signed long __sched schedule_timeout(signed long timeout)
1375 struct timer_list timer;
1376 unsigned long expire;
1378 switch (timeout)
1380 case MAX_SCHEDULE_TIMEOUT:
1382 * These two special cases are useful to be comfortable
1383 * in the caller. Nothing more. We could take
1384 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1385 * but I' d like to return a valid offset (>=0) to allow
1386 * the caller to do everything it want with the retval.
1388 schedule();
1389 goto out;
1390 default:
1392 * Another bit of PARANOID. Note that the retval will be
1393 * 0 since no piece of kernel is supposed to do a check
1394 * for a negative retval of schedule_timeout() (since it
1395 * should never happens anyway). You just have the printk()
1396 * that will tell you if something is gone wrong and where.
1398 if (timeout < 0) {
1399 printk(KERN_ERR "schedule_timeout: wrong timeout "
1400 "value %lx\n", timeout);
1401 dump_stack();
1402 current->state = TASK_RUNNING;
1403 goto out;
1407 expire = timeout + jiffies;
1409 setup_timer(&timer, process_timeout, (unsigned long)current);
1410 __mod_timer(&timer, expire);
1411 schedule();
1412 del_singleshot_timer_sync(&timer);
1414 timeout = expire - jiffies;
1416 out:
1417 return timeout < 0 ? 0 : timeout;
1419 EXPORT_SYMBOL(schedule_timeout);
1422 * We can use __set_current_state() here because schedule_timeout() calls
1423 * schedule() unconditionally.
1425 signed long __sched schedule_timeout_interruptible(signed long timeout)
1427 __set_current_state(TASK_INTERRUPTIBLE);
1428 return schedule_timeout(timeout);
1430 EXPORT_SYMBOL(schedule_timeout_interruptible);
1432 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1434 __set_current_state(TASK_UNINTERRUPTIBLE);
1435 return schedule_timeout(timeout);
1437 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1439 /* Thread ID - the internal kernel "pid" */
1440 asmlinkage long sys_gettid(void)
1442 return current->pid;
1446 * do_sysinfo - fill in sysinfo struct
1447 * @info: pointer to buffer to fill
1449 int do_sysinfo(struct sysinfo *info)
1451 unsigned long mem_total, sav_total;
1452 unsigned int mem_unit, bitcount;
1453 unsigned long seq;
1455 memset(info, 0, sizeof(struct sysinfo));
1457 do {
1458 struct timespec tp;
1459 seq = read_seqbegin(&xtime_lock);
1462 * This is annoying. The below is the same thing
1463 * posix_get_clock_monotonic() does, but it wants to
1464 * take the lock which we want to cover the loads stuff
1465 * too.
1468 getnstimeofday(&tp);
1469 tp.tv_sec += wall_to_monotonic.tv_sec;
1470 tp.tv_nsec += wall_to_monotonic.tv_nsec;
1471 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1472 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1473 tp.tv_sec++;
1475 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1477 info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1478 info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1479 info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1481 info->procs = nr_threads;
1482 } while (read_seqretry(&xtime_lock, seq));
1484 si_meminfo(info);
1485 si_swapinfo(info);
1488 * If the sum of all the available memory (i.e. ram + swap)
1489 * is less than can be stored in a 32 bit unsigned long then
1490 * we can be binary compatible with 2.2.x kernels. If not,
1491 * well, in that case 2.2.x was broken anyways...
1493 * -Erik Andersen <andersee@debian.org>
1496 mem_total = info->totalram + info->totalswap;
1497 if (mem_total < info->totalram || mem_total < info->totalswap)
1498 goto out;
1499 bitcount = 0;
1500 mem_unit = info->mem_unit;
1501 while (mem_unit > 1) {
1502 bitcount++;
1503 mem_unit >>= 1;
1504 sav_total = mem_total;
1505 mem_total <<= 1;
1506 if (mem_total < sav_total)
1507 goto out;
1511 * If mem_total did not overflow, multiply all memory values by
1512 * info->mem_unit and set it to 1. This leaves things compatible
1513 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1514 * kernels...
1517 info->mem_unit = 1;
1518 info->totalram <<= bitcount;
1519 info->freeram <<= bitcount;
1520 info->sharedram <<= bitcount;
1521 info->bufferram <<= bitcount;
1522 info->totalswap <<= bitcount;
1523 info->freeswap <<= bitcount;
1524 info->totalhigh <<= bitcount;
1525 info->freehigh <<= bitcount;
1527 out:
1528 return 0;
1531 asmlinkage long sys_sysinfo(struct sysinfo __user *info)
1533 struct sysinfo val;
1535 do_sysinfo(&val);
1537 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1538 return -EFAULT;
1540 return 0;
1544 * lockdep: we want to track each per-CPU base as a separate lock-class,
1545 * but timer-bases are kmalloc()-ed, so we need to attach separate
1546 * keys to them:
1548 static struct lock_class_key base_lock_keys[NR_CPUS];
1550 static int __devinit init_timers_cpu(int cpu)
1552 int j;
1553 tvec_base_t *base;
1554 static char __devinitdata tvec_base_done[NR_CPUS];
1556 if (!tvec_base_done[cpu]) {
1557 static char boot_done;
1559 if (boot_done) {
1561 * The APs use this path later in boot
1563 base = kmalloc_node(sizeof(*base), GFP_KERNEL,
1564 cpu_to_node(cpu));
1565 if (!base)
1566 return -ENOMEM;
1567 memset(base, 0, sizeof(*base));
1568 per_cpu(tvec_bases, cpu) = base;
1569 } else {
1571 * This is for the boot CPU - we use compile-time
1572 * static initialisation because per-cpu memory isn't
1573 * ready yet and because the memory allocators are not
1574 * initialised either.
1576 boot_done = 1;
1577 base = &boot_tvec_bases;
1579 tvec_base_done[cpu] = 1;
1580 } else {
1581 base = per_cpu(tvec_bases, cpu);
1584 spin_lock_init(&base->lock);
1585 lockdep_set_class(&base->lock, base_lock_keys + cpu);
1587 for (j = 0; j < TVN_SIZE; j++) {
1588 INIT_LIST_HEAD(base->tv5.vec + j);
1589 INIT_LIST_HEAD(base->tv4.vec + j);
1590 INIT_LIST_HEAD(base->tv3.vec + j);
1591 INIT_LIST_HEAD(base->tv2.vec + j);
1593 for (j = 0; j < TVR_SIZE; j++)
1594 INIT_LIST_HEAD(base->tv1.vec + j);
1596 base->timer_jiffies = jiffies;
1597 return 0;
1600 #ifdef CONFIG_HOTPLUG_CPU
1601 static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
1603 struct timer_list *timer;
1605 while (!list_empty(head)) {
1606 timer = list_entry(head->next, struct timer_list, entry);
1607 detach_timer(timer, 0);
1608 timer->base = new_base;
1609 internal_add_timer(new_base, timer);
1613 static void __devinit migrate_timers(int cpu)
1615 tvec_base_t *old_base;
1616 tvec_base_t *new_base;
1617 int i;
1619 BUG_ON(cpu_online(cpu));
1620 old_base = per_cpu(tvec_bases, cpu);
1621 new_base = get_cpu_var(tvec_bases);
1623 local_irq_disable();
1624 spin_lock(&new_base->lock);
1625 spin_lock(&old_base->lock);
1627 BUG_ON(old_base->running_timer);
1629 for (i = 0; i < TVR_SIZE; i++)
1630 migrate_timer_list(new_base, old_base->tv1.vec + i);
1631 for (i = 0; i < TVN_SIZE; i++) {
1632 migrate_timer_list(new_base, old_base->tv2.vec + i);
1633 migrate_timer_list(new_base, old_base->tv3.vec + i);
1634 migrate_timer_list(new_base, old_base->tv4.vec + i);
1635 migrate_timer_list(new_base, old_base->tv5.vec + i);
1638 spin_unlock(&old_base->lock);
1639 spin_unlock(&new_base->lock);
1640 local_irq_enable();
1641 put_cpu_var(tvec_bases);
1643 #endif /* CONFIG_HOTPLUG_CPU */
1645 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1646 unsigned long action, void *hcpu)
1648 long cpu = (long)hcpu;
1649 switch(action) {
1650 case CPU_UP_PREPARE:
1651 if (init_timers_cpu(cpu) < 0)
1652 return NOTIFY_BAD;
1653 break;
1654 #ifdef CONFIG_HOTPLUG_CPU
1655 case CPU_DEAD:
1656 migrate_timers(cpu);
1657 break;
1658 #endif
1659 default:
1660 break;
1662 return NOTIFY_OK;
1665 static struct notifier_block __cpuinitdata timers_nb = {
1666 .notifier_call = timer_cpu_notify,
1670 void __init init_timers(void)
1672 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1673 (void *)(long)smp_processor_id());
1675 BUG_ON(err == NOTIFY_BAD);
1676 register_cpu_notifier(&timers_nb);
1677 open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
1680 #ifdef CONFIG_TIME_INTERPOLATION
1682 struct time_interpolator *time_interpolator __read_mostly;
1683 static struct time_interpolator *time_interpolator_list __read_mostly;
1684 static DEFINE_SPINLOCK(time_interpolator_lock);
1686 static inline cycles_t time_interpolator_get_cycles(unsigned int src)
1688 unsigned long (*x)(void);
1690 switch (src)
1692 case TIME_SOURCE_FUNCTION:
1693 x = time_interpolator->addr;
1694 return x();
1696 case TIME_SOURCE_MMIO64 :
1697 return readq_relaxed((void __iomem *)time_interpolator->addr);
1699 case TIME_SOURCE_MMIO32 :
1700 return readl_relaxed((void __iomem *)time_interpolator->addr);
1702 default: return get_cycles();
1706 static inline u64 time_interpolator_get_counter(int writelock)
1708 unsigned int src = time_interpolator->source;
1710 if (time_interpolator->jitter)
1712 cycles_t lcycle;
1713 cycles_t now;
1715 do {
1716 lcycle = time_interpolator->last_cycle;
1717 now = time_interpolator_get_cycles(src);
1718 if (lcycle && time_after(lcycle, now))
1719 return lcycle;
1721 /* When holding the xtime write lock, there's no need
1722 * to add the overhead of the cmpxchg. Readers are
1723 * force to retry until the write lock is released.
1725 if (writelock) {
1726 time_interpolator->last_cycle = now;
1727 return now;
1729 /* Keep track of the last timer value returned. The use of cmpxchg here
1730 * will cause contention in an SMP environment.
1732 } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
1733 return now;
1735 else
1736 return time_interpolator_get_cycles(src);
1739 void time_interpolator_reset(void)
1741 time_interpolator->offset = 0;
1742 time_interpolator->last_counter = time_interpolator_get_counter(1);
1745 #define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)
1747 unsigned long time_interpolator_get_offset(void)
1749 /* If we do not have a time interpolator set up then just return zero */
1750 if (!time_interpolator)
1751 return 0;
1753 return time_interpolator->offset +
1754 GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator);
1757 #define INTERPOLATOR_ADJUST 65536
1758 #define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
1760 void time_interpolator_update(long delta_nsec)
1762 u64 counter;
1763 unsigned long offset;
1765 /* If there is no time interpolator set up then do nothing */
1766 if (!time_interpolator)
1767 return;
1770 * The interpolator compensates for late ticks by accumulating the late
1771 * time in time_interpolator->offset. A tick earlier than expected will
1772 * lead to a reset of the offset and a corresponding jump of the clock
1773 * forward. Again this only works if the interpolator clock is running
1774 * slightly slower than the regular clock and the tuning logic insures
1775 * that.
1778 counter = time_interpolator_get_counter(1);
1779 offset = time_interpolator->offset +
1780 GET_TI_NSECS(counter, time_interpolator);
1782 if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
1783 time_interpolator->offset = offset - delta_nsec;
1784 else {
1785 time_interpolator->skips++;
1786 time_interpolator->ns_skipped += delta_nsec - offset;
1787 time_interpolator->offset = 0;
1789 time_interpolator->last_counter = counter;
1791 /* Tuning logic for time interpolator invoked every minute or so.
1792 * Decrease interpolator clock speed if no skips occurred and an offset is carried.
1793 * Increase interpolator clock speed if we skip too much time.
1795 if (jiffies % INTERPOLATOR_ADJUST == 0)
1797 if (time_interpolator->skips == 0 && time_interpolator->offset > tick_nsec)
1798 time_interpolator->nsec_per_cyc--;
1799 if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
1800 time_interpolator->nsec_per_cyc++;
1801 time_interpolator->skips = 0;
1802 time_interpolator->ns_skipped = 0;
1806 static inline int
1807 is_better_time_interpolator(struct time_interpolator *new)
1809 if (!time_interpolator)
1810 return 1;
1811 return new->frequency > 2*time_interpolator->frequency ||
1812 (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
1815 void
1816 register_time_interpolator(struct time_interpolator *ti)
1818 unsigned long flags;
1820 /* Sanity check */
1821 BUG_ON(ti->frequency == 0 || ti->mask == 0);
1823 ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
1824 spin_lock(&time_interpolator_lock);
1825 write_seqlock_irqsave(&xtime_lock, flags);
1826 if (is_better_time_interpolator(ti)) {
1827 time_interpolator = ti;
1828 time_interpolator_reset();
1830 write_sequnlock_irqrestore(&xtime_lock, flags);
1832 ti->next = time_interpolator_list;
1833 time_interpolator_list = ti;
1834 spin_unlock(&time_interpolator_lock);
1837 void
1838 unregister_time_interpolator(struct time_interpolator *ti)
1840 struct time_interpolator *curr, **prev;
1841 unsigned long flags;
1843 spin_lock(&time_interpolator_lock);
1844 prev = &time_interpolator_list;
1845 for (curr = *prev; curr; curr = curr->next) {
1846 if (curr == ti) {
1847 *prev = curr->next;
1848 break;
1850 prev = &curr->next;
1853 write_seqlock_irqsave(&xtime_lock, flags);
1854 if (ti == time_interpolator) {
1855 /* we lost the best time-interpolator: */
1856 time_interpolator = NULL;
1857 /* find the next-best interpolator */
1858 for (curr = time_interpolator_list; curr; curr = curr->next)
1859 if (is_better_time_interpolator(curr))
1860 time_interpolator = curr;
1861 time_interpolator_reset();
1863 write_sequnlock_irqrestore(&xtime_lock, flags);
1864 spin_unlock(&time_interpolator_lock);
1866 #endif /* CONFIG_TIME_INTERPOLATION */
1869 * msleep - sleep safely even with waitqueue interruptions
1870 * @msecs: Time in milliseconds to sleep for
1872 void msleep(unsigned int msecs)
1874 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1876 while (timeout)
1877 timeout = schedule_timeout_uninterruptible(timeout);
1880 EXPORT_SYMBOL(msleep);
1883 * msleep_interruptible - sleep waiting for signals
1884 * @msecs: Time in milliseconds to sleep for
1886 unsigned long msleep_interruptible(unsigned int msecs)
1888 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1890 while (timeout && !signal_pending(current))
1891 timeout = schedule_timeout_interruptible(timeout);
1892 return jiffies_to_msecs(timeout);
1895 EXPORT_SYMBOL(msleep_interruptible);