[SCSI] Use menuconfig objects
[linux-2.6/sactl.git] / kernel / sys.c
blob4d141ae3e8029d13deaaee39d3245e5c42766157
1 /*
2 * linux/kernel/sys.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
36 #include <linux/compat.h>
37 #include <linux/syscalls.h>
38 #include <linux/kprobes.h>
39 #include <linux/user_namespace.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
43 #include <asm/unistd.h>
45 #ifndef SET_UNALIGN_CTL
46 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
47 #endif
48 #ifndef GET_UNALIGN_CTL
49 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
50 #endif
51 #ifndef SET_FPEMU_CTL
52 # define SET_FPEMU_CTL(a,b) (-EINVAL)
53 #endif
54 #ifndef GET_FPEMU_CTL
55 # define GET_FPEMU_CTL(a,b) (-EINVAL)
56 #endif
57 #ifndef SET_FPEXC_CTL
58 # define SET_FPEXC_CTL(a,b) (-EINVAL)
59 #endif
60 #ifndef GET_FPEXC_CTL
61 # define GET_FPEXC_CTL(a,b) (-EINVAL)
62 #endif
63 #ifndef GET_ENDIAN
64 # define GET_ENDIAN(a,b) (-EINVAL)
65 #endif
66 #ifndef SET_ENDIAN
67 # define SET_ENDIAN(a,b) (-EINVAL)
68 #endif
71 * this is where the system-wide overflow UID and GID are defined, for
72 * architectures that now have 32-bit UID/GID but didn't in the past
75 int overflowuid = DEFAULT_OVERFLOWUID;
76 int overflowgid = DEFAULT_OVERFLOWGID;
78 #ifdef CONFIG_UID16
79 EXPORT_SYMBOL(overflowuid);
80 EXPORT_SYMBOL(overflowgid);
81 #endif
84 * the same as above, but for filesystems which can only store a 16-bit
85 * UID and GID. as such, this is needed on all architectures
88 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
89 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
91 EXPORT_SYMBOL(fs_overflowuid);
92 EXPORT_SYMBOL(fs_overflowgid);
95 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
98 int C_A_D = 1;
99 struct pid *cad_pid;
100 EXPORT_SYMBOL(cad_pid);
103 * Notifier list for kernel code which wants to be called
104 * at shutdown. This is used to stop any idling DMA operations
105 * and the like.
108 static BLOCKING_NOTIFIER_HEAD(reboot_notifier_list);
111 * Notifier chain core routines. The exported routines below
112 * are layered on top of these, with appropriate locking added.
115 static int notifier_chain_register(struct notifier_block **nl,
116 struct notifier_block *n)
118 while ((*nl) != NULL) {
119 if (n->priority > (*nl)->priority)
120 break;
121 nl = &((*nl)->next);
123 n->next = *nl;
124 rcu_assign_pointer(*nl, n);
125 return 0;
128 static int notifier_chain_unregister(struct notifier_block **nl,
129 struct notifier_block *n)
131 while ((*nl) != NULL) {
132 if ((*nl) == n) {
133 rcu_assign_pointer(*nl, n->next);
134 return 0;
136 nl = &((*nl)->next);
138 return -ENOENT;
142 * notifier_call_chain - Informs the registered notifiers about an event.
143 * @nl: Pointer to head of the blocking notifier chain
144 * @val: Value passed unmodified to notifier function
145 * @v: Pointer passed unmodified to notifier function
146 * @nr_to_call: Number of notifier functions to be called. Don't care
147 * value of this parameter is -1.
148 * @nr_calls: Records the number of notifications sent. Don't care
149 * value of this field is NULL.
150 * @returns: notifier_call_chain returns the value returned by the
151 * last notifier function called.
154 static int __kprobes notifier_call_chain(struct notifier_block **nl,
155 unsigned long val, void *v,
156 int nr_to_call, int *nr_calls)
158 int ret = NOTIFY_DONE;
159 struct notifier_block *nb, *next_nb;
161 nb = rcu_dereference(*nl);
163 while (nb && nr_to_call) {
164 next_nb = rcu_dereference(nb->next);
165 ret = nb->notifier_call(nb, val, v);
167 if (nr_calls)
168 (*nr_calls)++;
170 if ((ret & NOTIFY_STOP_MASK) == NOTIFY_STOP_MASK)
171 break;
172 nb = next_nb;
173 nr_to_call--;
175 return ret;
179 * Atomic notifier chain routines. Registration and unregistration
180 * use a spinlock, and call_chain is synchronized by RCU (no locks).
184 * atomic_notifier_chain_register - Add notifier to an atomic notifier chain
185 * @nh: Pointer to head of the atomic notifier chain
186 * @n: New entry in notifier chain
188 * Adds a notifier to an atomic notifier chain.
190 * Currently always returns zero.
193 int atomic_notifier_chain_register(struct atomic_notifier_head *nh,
194 struct notifier_block *n)
196 unsigned long flags;
197 int ret;
199 spin_lock_irqsave(&nh->lock, flags);
200 ret = notifier_chain_register(&nh->head, n);
201 spin_unlock_irqrestore(&nh->lock, flags);
202 return ret;
205 EXPORT_SYMBOL_GPL(atomic_notifier_chain_register);
208 * atomic_notifier_chain_unregister - Remove notifier from an atomic notifier chain
209 * @nh: Pointer to head of the atomic notifier chain
210 * @n: Entry to remove from notifier chain
212 * Removes a notifier from an atomic notifier chain.
214 * Returns zero on success or %-ENOENT on failure.
216 int atomic_notifier_chain_unregister(struct atomic_notifier_head *nh,
217 struct notifier_block *n)
219 unsigned long flags;
220 int ret;
222 spin_lock_irqsave(&nh->lock, flags);
223 ret = notifier_chain_unregister(&nh->head, n);
224 spin_unlock_irqrestore(&nh->lock, flags);
225 synchronize_rcu();
226 return ret;
229 EXPORT_SYMBOL_GPL(atomic_notifier_chain_unregister);
232 * __atomic_notifier_call_chain - Call functions in an atomic notifier chain
233 * @nh: Pointer to head of the atomic notifier chain
234 * @val: Value passed unmodified to notifier function
235 * @v: Pointer passed unmodified to notifier function
236 * @nr_to_call: See the comment for notifier_call_chain.
237 * @nr_calls: See the comment for notifier_call_chain.
239 * Calls each function in a notifier chain in turn. The functions
240 * run in an atomic context, so they must not block.
241 * This routine uses RCU to synchronize with changes to the chain.
243 * If the return value of the notifier can be and'ed
244 * with %NOTIFY_STOP_MASK then atomic_notifier_call_chain()
245 * will return immediately, with the return value of
246 * the notifier function which halted execution.
247 * Otherwise the return value is the return value
248 * of the last notifier function called.
251 int __kprobes __atomic_notifier_call_chain(struct atomic_notifier_head *nh,
252 unsigned long val, void *v,
253 int nr_to_call, int *nr_calls)
255 int ret;
257 rcu_read_lock();
258 ret = notifier_call_chain(&nh->head, val, v, nr_to_call, nr_calls);
259 rcu_read_unlock();
260 return ret;
263 EXPORT_SYMBOL_GPL(__atomic_notifier_call_chain);
265 int __kprobes atomic_notifier_call_chain(struct atomic_notifier_head *nh,
266 unsigned long val, void *v)
268 return __atomic_notifier_call_chain(nh, val, v, -1, NULL);
271 EXPORT_SYMBOL_GPL(atomic_notifier_call_chain);
273 * Blocking notifier chain routines. All access to the chain is
274 * synchronized by an rwsem.
278 * blocking_notifier_chain_register - Add notifier to a blocking notifier chain
279 * @nh: Pointer to head of the blocking notifier chain
280 * @n: New entry in notifier chain
282 * Adds a notifier to a blocking notifier chain.
283 * Must be called in process context.
285 * Currently always returns zero.
288 int blocking_notifier_chain_register(struct blocking_notifier_head *nh,
289 struct notifier_block *n)
291 int ret;
294 * This code gets used during boot-up, when task switching is
295 * not yet working and interrupts must remain disabled. At
296 * such times we must not call down_write().
298 if (unlikely(system_state == SYSTEM_BOOTING))
299 return notifier_chain_register(&nh->head, n);
301 down_write(&nh->rwsem);
302 ret = notifier_chain_register(&nh->head, n);
303 up_write(&nh->rwsem);
304 return ret;
307 EXPORT_SYMBOL_GPL(blocking_notifier_chain_register);
310 * blocking_notifier_chain_unregister - Remove notifier from a blocking notifier chain
311 * @nh: Pointer to head of the blocking notifier chain
312 * @n: Entry to remove from notifier chain
314 * Removes a notifier from a blocking notifier chain.
315 * Must be called from process context.
317 * Returns zero on success or %-ENOENT on failure.
319 int blocking_notifier_chain_unregister(struct blocking_notifier_head *nh,
320 struct notifier_block *n)
322 int ret;
325 * This code gets used during boot-up, when task switching is
326 * not yet working and interrupts must remain disabled. At
327 * such times we must not call down_write().
329 if (unlikely(system_state == SYSTEM_BOOTING))
330 return notifier_chain_unregister(&nh->head, n);
332 down_write(&nh->rwsem);
333 ret = notifier_chain_unregister(&nh->head, n);
334 up_write(&nh->rwsem);
335 return ret;
338 EXPORT_SYMBOL_GPL(blocking_notifier_chain_unregister);
341 * __blocking_notifier_call_chain - Call functions in a blocking notifier chain
342 * @nh: Pointer to head of the blocking notifier chain
343 * @val: Value passed unmodified to notifier function
344 * @v: Pointer passed unmodified to notifier function
345 * @nr_to_call: See comment for notifier_call_chain.
346 * @nr_calls: See comment for notifier_call_chain.
348 * Calls each function in a notifier chain in turn. The functions
349 * run in a process context, so they are allowed to block.
351 * If the return value of the notifier can be and'ed
352 * with %NOTIFY_STOP_MASK then blocking_notifier_call_chain()
353 * will return immediately, with the return value of
354 * the notifier function which halted execution.
355 * Otherwise the return value is the return value
356 * of the last notifier function called.
359 int __blocking_notifier_call_chain(struct blocking_notifier_head *nh,
360 unsigned long val, void *v,
361 int nr_to_call, int *nr_calls)
363 int ret = NOTIFY_DONE;
366 * We check the head outside the lock, but if this access is
367 * racy then it does not matter what the result of the test
368 * is, we re-check the list after having taken the lock anyway:
370 if (rcu_dereference(nh->head)) {
371 down_read(&nh->rwsem);
372 ret = notifier_call_chain(&nh->head, val, v, nr_to_call,
373 nr_calls);
374 up_read(&nh->rwsem);
376 return ret;
378 EXPORT_SYMBOL_GPL(__blocking_notifier_call_chain);
380 int blocking_notifier_call_chain(struct blocking_notifier_head *nh,
381 unsigned long val, void *v)
383 return __blocking_notifier_call_chain(nh, val, v, -1, NULL);
385 EXPORT_SYMBOL_GPL(blocking_notifier_call_chain);
388 * Raw notifier chain routines. There is no protection;
389 * the caller must provide it. Use at your own risk!
393 * raw_notifier_chain_register - Add notifier to a raw notifier chain
394 * @nh: Pointer to head of the raw notifier chain
395 * @n: New entry in notifier chain
397 * Adds a notifier to a raw notifier chain.
398 * All locking must be provided by the caller.
400 * Currently always returns zero.
403 int raw_notifier_chain_register(struct raw_notifier_head *nh,
404 struct notifier_block *n)
406 return notifier_chain_register(&nh->head, n);
409 EXPORT_SYMBOL_GPL(raw_notifier_chain_register);
412 * raw_notifier_chain_unregister - Remove notifier from a raw notifier chain
413 * @nh: Pointer to head of the raw notifier chain
414 * @n: Entry to remove from notifier chain
416 * Removes a notifier from a raw notifier chain.
417 * All locking must be provided by the caller.
419 * Returns zero on success or %-ENOENT on failure.
421 int raw_notifier_chain_unregister(struct raw_notifier_head *nh,
422 struct notifier_block *n)
424 return notifier_chain_unregister(&nh->head, n);
427 EXPORT_SYMBOL_GPL(raw_notifier_chain_unregister);
430 * __raw_notifier_call_chain - Call functions in a raw notifier chain
431 * @nh: Pointer to head of the raw notifier chain
432 * @val: Value passed unmodified to notifier function
433 * @v: Pointer passed unmodified to notifier function
434 * @nr_to_call: See comment for notifier_call_chain.
435 * @nr_calls: See comment for notifier_call_chain
437 * Calls each function in a notifier chain in turn. The functions
438 * run in an undefined context.
439 * All locking must be provided by the caller.
441 * If the return value of the notifier can be and'ed
442 * with %NOTIFY_STOP_MASK then raw_notifier_call_chain()
443 * will return immediately, with the return value of
444 * the notifier function which halted execution.
445 * Otherwise the return value is the return value
446 * of the last notifier function called.
449 int __raw_notifier_call_chain(struct raw_notifier_head *nh,
450 unsigned long val, void *v,
451 int nr_to_call, int *nr_calls)
453 return notifier_call_chain(&nh->head, val, v, nr_to_call, nr_calls);
456 EXPORT_SYMBOL_GPL(__raw_notifier_call_chain);
458 int raw_notifier_call_chain(struct raw_notifier_head *nh,
459 unsigned long val, void *v)
461 return __raw_notifier_call_chain(nh, val, v, -1, NULL);
464 EXPORT_SYMBOL_GPL(raw_notifier_call_chain);
467 * SRCU notifier chain routines. Registration and unregistration
468 * use a mutex, and call_chain is synchronized by SRCU (no locks).
472 * srcu_notifier_chain_register - Add notifier to an SRCU notifier chain
473 * @nh: Pointer to head of the SRCU notifier chain
474 * @n: New entry in notifier chain
476 * Adds a notifier to an SRCU notifier chain.
477 * Must be called in process context.
479 * Currently always returns zero.
482 int srcu_notifier_chain_register(struct srcu_notifier_head *nh,
483 struct notifier_block *n)
485 int ret;
488 * This code gets used during boot-up, when task switching is
489 * not yet working and interrupts must remain disabled. At
490 * such times we must not call mutex_lock().
492 if (unlikely(system_state == SYSTEM_BOOTING))
493 return notifier_chain_register(&nh->head, n);
495 mutex_lock(&nh->mutex);
496 ret = notifier_chain_register(&nh->head, n);
497 mutex_unlock(&nh->mutex);
498 return ret;
501 EXPORT_SYMBOL_GPL(srcu_notifier_chain_register);
504 * srcu_notifier_chain_unregister - Remove notifier from an SRCU notifier chain
505 * @nh: Pointer to head of the SRCU notifier chain
506 * @n: Entry to remove from notifier chain
508 * Removes a notifier from an SRCU notifier chain.
509 * Must be called from process context.
511 * Returns zero on success or %-ENOENT on failure.
513 int srcu_notifier_chain_unregister(struct srcu_notifier_head *nh,
514 struct notifier_block *n)
516 int ret;
519 * This code gets used during boot-up, when task switching is
520 * not yet working and interrupts must remain disabled. At
521 * such times we must not call mutex_lock().
523 if (unlikely(system_state == SYSTEM_BOOTING))
524 return notifier_chain_unregister(&nh->head, n);
526 mutex_lock(&nh->mutex);
527 ret = notifier_chain_unregister(&nh->head, n);
528 mutex_unlock(&nh->mutex);
529 synchronize_srcu(&nh->srcu);
530 return ret;
533 EXPORT_SYMBOL_GPL(srcu_notifier_chain_unregister);
536 * __srcu_notifier_call_chain - Call functions in an SRCU notifier chain
537 * @nh: Pointer to head of the SRCU notifier chain
538 * @val: Value passed unmodified to notifier function
539 * @v: Pointer passed unmodified to notifier function
540 * @nr_to_call: See comment for notifier_call_chain.
541 * @nr_calls: See comment for notifier_call_chain
543 * Calls each function in a notifier chain in turn. The functions
544 * run in a process context, so they are allowed to block.
546 * If the return value of the notifier can be and'ed
547 * with %NOTIFY_STOP_MASK then srcu_notifier_call_chain()
548 * will return immediately, with the return value of
549 * the notifier function which halted execution.
550 * Otherwise the return value is the return value
551 * of the last notifier function called.
554 int __srcu_notifier_call_chain(struct srcu_notifier_head *nh,
555 unsigned long val, void *v,
556 int nr_to_call, int *nr_calls)
558 int ret;
559 int idx;
561 idx = srcu_read_lock(&nh->srcu);
562 ret = notifier_call_chain(&nh->head, val, v, nr_to_call, nr_calls);
563 srcu_read_unlock(&nh->srcu, idx);
564 return ret;
566 EXPORT_SYMBOL_GPL(__srcu_notifier_call_chain);
568 int srcu_notifier_call_chain(struct srcu_notifier_head *nh,
569 unsigned long val, void *v)
571 return __srcu_notifier_call_chain(nh, val, v, -1, NULL);
573 EXPORT_SYMBOL_GPL(srcu_notifier_call_chain);
576 * srcu_init_notifier_head - Initialize an SRCU notifier head
577 * @nh: Pointer to head of the srcu notifier chain
579 * Unlike other sorts of notifier heads, SRCU notifier heads require
580 * dynamic initialization. Be sure to call this routine before
581 * calling any of the other SRCU notifier routines for this head.
583 * If an SRCU notifier head is deallocated, it must first be cleaned
584 * up by calling srcu_cleanup_notifier_head(). Otherwise the head's
585 * per-cpu data (used by the SRCU mechanism) will leak.
588 void srcu_init_notifier_head(struct srcu_notifier_head *nh)
590 mutex_init(&nh->mutex);
591 if (init_srcu_struct(&nh->srcu) < 0)
592 BUG();
593 nh->head = NULL;
596 EXPORT_SYMBOL_GPL(srcu_init_notifier_head);
599 * register_reboot_notifier - Register function to be called at reboot time
600 * @nb: Info about notifier function to be called
602 * Registers a function with the list of functions
603 * to be called at reboot time.
605 * Currently always returns zero, as blocking_notifier_chain_register()
606 * always returns zero.
609 int register_reboot_notifier(struct notifier_block * nb)
611 return blocking_notifier_chain_register(&reboot_notifier_list, nb);
614 EXPORT_SYMBOL(register_reboot_notifier);
617 * unregister_reboot_notifier - Unregister previously registered reboot notifier
618 * @nb: Hook to be unregistered
620 * Unregisters a previously registered reboot
621 * notifier function.
623 * Returns zero on success, or %-ENOENT on failure.
626 int unregister_reboot_notifier(struct notifier_block * nb)
628 return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
631 EXPORT_SYMBOL(unregister_reboot_notifier);
633 static int set_one_prio(struct task_struct *p, int niceval, int error)
635 int no_nice;
637 if (p->uid != current->euid &&
638 p->euid != current->euid && !capable(CAP_SYS_NICE)) {
639 error = -EPERM;
640 goto out;
642 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
643 error = -EACCES;
644 goto out;
646 no_nice = security_task_setnice(p, niceval);
647 if (no_nice) {
648 error = no_nice;
649 goto out;
651 if (error == -ESRCH)
652 error = 0;
653 set_user_nice(p, niceval);
654 out:
655 return error;
658 asmlinkage long sys_setpriority(int which, int who, int niceval)
660 struct task_struct *g, *p;
661 struct user_struct *user;
662 int error = -EINVAL;
663 struct pid *pgrp;
665 if (which > PRIO_USER || which < PRIO_PROCESS)
666 goto out;
668 /* normalize: avoid signed division (rounding problems) */
669 error = -ESRCH;
670 if (niceval < -20)
671 niceval = -20;
672 if (niceval > 19)
673 niceval = 19;
675 read_lock(&tasklist_lock);
676 switch (which) {
677 case PRIO_PROCESS:
678 if (who)
679 p = find_task_by_pid(who);
680 else
681 p = current;
682 if (p)
683 error = set_one_prio(p, niceval, error);
684 break;
685 case PRIO_PGRP:
686 if (who)
687 pgrp = find_pid(who);
688 else
689 pgrp = task_pgrp(current);
690 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
691 error = set_one_prio(p, niceval, error);
692 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
693 break;
694 case PRIO_USER:
695 user = current->user;
696 if (!who)
697 who = current->uid;
698 else
699 if ((who != current->uid) && !(user = find_user(who)))
700 goto out_unlock; /* No processes for this user */
702 do_each_thread(g, p)
703 if (p->uid == who)
704 error = set_one_prio(p, niceval, error);
705 while_each_thread(g, p);
706 if (who != current->uid)
707 free_uid(user); /* For find_user() */
708 break;
710 out_unlock:
711 read_unlock(&tasklist_lock);
712 out:
713 return error;
717 * Ugh. To avoid negative return values, "getpriority()" will
718 * not return the normal nice-value, but a negated value that
719 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
720 * to stay compatible.
722 asmlinkage long sys_getpriority(int which, int who)
724 struct task_struct *g, *p;
725 struct user_struct *user;
726 long niceval, retval = -ESRCH;
727 struct pid *pgrp;
729 if (which > PRIO_USER || which < PRIO_PROCESS)
730 return -EINVAL;
732 read_lock(&tasklist_lock);
733 switch (which) {
734 case PRIO_PROCESS:
735 if (who)
736 p = find_task_by_pid(who);
737 else
738 p = current;
739 if (p) {
740 niceval = 20 - task_nice(p);
741 if (niceval > retval)
742 retval = niceval;
744 break;
745 case PRIO_PGRP:
746 if (who)
747 pgrp = find_pid(who);
748 else
749 pgrp = task_pgrp(current);
750 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
751 niceval = 20 - task_nice(p);
752 if (niceval > retval)
753 retval = niceval;
754 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
755 break;
756 case PRIO_USER:
757 user = current->user;
758 if (!who)
759 who = current->uid;
760 else
761 if ((who != current->uid) && !(user = find_user(who)))
762 goto out_unlock; /* No processes for this user */
764 do_each_thread(g, p)
765 if (p->uid == who) {
766 niceval = 20 - task_nice(p);
767 if (niceval > retval)
768 retval = niceval;
770 while_each_thread(g, p);
771 if (who != current->uid)
772 free_uid(user); /* for find_user() */
773 break;
775 out_unlock:
776 read_unlock(&tasklist_lock);
778 return retval;
782 * emergency_restart - reboot the system
784 * Without shutting down any hardware or taking any locks
785 * reboot the system. This is called when we know we are in
786 * trouble so this is our best effort to reboot. This is
787 * safe to call in interrupt context.
789 void emergency_restart(void)
791 machine_emergency_restart();
793 EXPORT_SYMBOL_GPL(emergency_restart);
795 static void kernel_restart_prepare(char *cmd)
797 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
798 system_state = SYSTEM_RESTART;
799 device_shutdown();
803 * kernel_restart - reboot the system
804 * @cmd: pointer to buffer containing command to execute for restart
805 * or %NULL
807 * Shutdown everything and perform a clean reboot.
808 * This is not safe to call in interrupt context.
810 void kernel_restart(char *cmd)
812 kernel_restart_prepare(cmd);
813 if (!cmd)
814 printk(KERN_EMERG "Restarting system.\n");
815 else
816 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
817 machine_restart(cmd);
819 EXPORT_SYMBOL_GPL(kernel_restart);
822 * kernel_kexec - reboot the system
824 * Move into place and start executing a preloaded standalone
825 * executable. If nothing was preloaded return an error.
827 static void kernel_kexec(void)
829 #ifdef CONFIG_KEXEC
830 struct kimage *image;
831 image = xchg(&kexec_image, NULL);
832 if (!image)
833 return;
834 kernel_restart_prepare(NULL);
835 printk(KERN_EMERG "Starting new kernel\n");
836 machine_shutdown();
837 machine_kexec(image);
838 #endif
841 void kernel_shutdown_prepare(enum system_states state)
843 blocking_notifier_call_chain(&reboot_notifier_list,
844 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
845 system_state = state;
846 device_shutdown();
849 * kernel_halt - halt the system
851 * Shutdown everything and perform a clean system halt.
853 void kernel_halt(void)
855 kernel_shutdown_prepare(SYSTEM_HALT);
856 printk(KERN_EMERG "System halted.\n");
857 machine_halt();
860 EXPORT_SYMBOL_GPL(kernel_halt);
863 * kernel_power_off - power_off the system
865 * Shutdown everything and perform a clean system power_off.
867 void kernel_power_off(void)
869 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
870 printk(KERN_EMERG "Power down.\n");
871 machine_power_off();
873 EXPORT_SYMBOL_GPL(kernel_power_off);
875 * Reboot system call: for obvious reasons only root may call it,
876 * and even root needs to set up some magic numbers in the registers
877 * so that some mistake won't make this reboot the whole machine.
878 * You can also set the meaning of the ctrl-alt-del-key here.
880 * reboot doesn't sync: do that yourself before calling this.
882 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
884 char buffer[256];
886 /* We only trust the superuser with rebooting the system. */
887 if (!capable(CAP_SYS_BOOT))
888 return -EPERM;
890 /* For safety, we require "magic" arguments. */
891 if (magic1 != LINUX_REBOOT_MAGIC1 ||
892 (magic2 != LINUX_REBOOT_MAGIC2 &&
893 magic2 != LINUX_REBOOT_MAGIC2A &&
894 magic2 != LINUX_REBOOT_MAGIC2B &&
895 magic2 != LINUX_REBOOT_MAGIC2C))
896 return -EINVAL;
898 /* Instead of trying to make the power_off code look like
899 * halt when pm_power_off is not set do it the easy way.
901 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
902 cmd = LINUX_REBOOT_CMD_HALT;
904 lock_kernel();
905 switch (cmd) {
906 case LINUX_REBOOT_CMD_RESTART:
907 kernel_restart(NULL);
908 break;
910 case LINUX_REBOOT_CMD_CAD_ON:
911 C_A_D = 1;
912 break;
914 case LINUX_REBOOT_CMD_CAD_OFF:
915 C_A_D = 0;
916 break;
918 case LINUX_REBOOT_CMD_HALT:
919 kernel_halt();
920 unlock_kernel();
921 do_exit(0);
922 break;
924 case LINUX_REBOOT_CMD_POWER_OFF:
925 kernel_power_off();
926 unlock_kernel();
927 do_exit(0);
928 break;
930 case LINUX_REBOOT_CMD_RESTART2:
931 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
932 unlock_kernel();
933 return -EFAULT;
935 buffer[sizeof(buffer) - 1] = '\0';
937 kernel_restart(buffer);
938 break;
940 case LINUX_REBOOT_CMD_KEXEC:
941 kernel_kexec();
942 unlock_kernel();
943 return -EINVAL;
945 #ifdef CONFIG_SOFTWARE_SUSPEND
946 case LINUX_REBOOT_CMD_SW_SUSPEND:
948 int ret = hibernate();
949 unlock_kernel();
950 return ret;
952 #endif
954 default:
955 unlock_kernel();
956 return -EINVAL;
958 unlock_kernel();
959 return 0;
962 static void deferred_cad(struct work_struct *dummy)
964 kernel_restart(NULL);
968 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
969 * As it's called within an interrupt, it may NOT sync: the only choice
970 * is whether to reboot at once, or just ignore the ctrl-alt-del.
972 void ctrl_alt_del(void)
974 static DECLARE_WORK(cad_work, deferred_cad);
976 if (C_A_D)
977 schedule_work(&cad_work);
978 else
979 kill_cad_pid(SIGINT, 1);
983 * Unprivileged users may change the real gid to the effective gid
984 * or vice versa. (BSD-style)
986 * If you set the real gid at all, or set the effective gid to a value not
987 * equal to the real gid, then the saved gid is set to the new effective gid.
989 * This makes it possible for a setgid program to completely drop its
990 * privileges, which is often a useful assertion to make when you are doing
991 * a security audit over a program.
993 * The general idea is that a program which uses just setregid() will be
994 * 100% compatible with BSD. A program which uses just setgid() will be
995 * 100% compatible with POSIX with saved IDs.
997 * SMP: There are not races, the GIDs are checked only by filesystem
998 * operations (as far as semantic preservation is concerned).
1000 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
1002 int old_rgid = current->gid;
1003 int old_egid = current->egid;
1004 int new_rgid = old_rgid;
1005 int new_egid = old_egid;
1006 int retval;
1008 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
1009 if (retval)
1010 return retval;
1012 if (rgid != (gid_t) -1) {
1013 if ((old_rgid == rgid) ||
1014 (current->egid==rgid) ||
1015 capable(CAP_SETGID))
1016 new_rgid = rgid;
1017 else
1018 return -EPERM;
1020 if (egid != (gid_t) -1) {
1021 if ((old_rgid == egid) ||
1022 (current->egid == egid) ||
1023 (current->sgid == egid) ||
1024 capable(CAP_SETGID))
1025 new_egid = egid;
1026 else
1027 return -EPERM;
1029 if (new_egid != old_egid) {
1030 current->mm->dumpable = suid_dumpable;
1031 smp_wmb();
1033 if (rgid != (gid_t) -1 ||
1034 (egid != (gid_t) -1 && egid != old_rgid))
1035 current->sgid = new_egid;
1036 current->fsgid = new_egid;
1037 current->egid = new_egid;
1038 current->gid = new_rgid;
1039 key_fsgid_changed(current);
1040 proc_id_connector(current, PROC_EVENT_GID);
1041 return 0;
1045 * setgid() is implemented like SysV w/ SAVED_IDS
1047 * SMP: Same implicit races as above.
1049 asmlinkage long sys_setgid(gid_t gid)
1051 int old_egid = current->egid;
1052 int retval;
1054 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
1055 if (retval)
1056 return retval;
1058 if (capable(CAP_SETGID)) {
1059 if (old_egid != gid) {
1060 current->mm->dumpable = suid_dumpable;
1061 smp_wmb();
1063 current->gid = current->egid = current->sgid = current->fsgid = gid;
1064 } else if ((gid == current->gid) || (gid == current->sgid)) {
1065 if (old_egid != gid) {
1066 current->mm->dumpable = suid_dumpable;
1067 smp_wmb();
1069 current->egid = current->fsgid = gid;
1071 else
1072 return -EPERM;
1074 key_fsgid_changed(current);
1075 proc_id_connector(current, PROC_EVENT_GID);
1076 return 0;
1079 static int set_user(uid_t new_ruid, int dumpclear)
1081 struct user_struct *new_user;
1083 new_user = alloc_uid(current->nsproxy->user_ns, new_ruid);
1084 if (!new_user)
1085 return -EAGAIN;
1087 if (atomic_read(&new_user->processes) >=
1088 current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
1089 new_user != current->nsproxy->user_ns->root_user) {
1090 free_uid(new_user);
1091 return -EAGAIN;
1094 switch_uid(new_user);
1096 if (dumpclear) {
1097 current->mm->dumpable = suid_dumpable;
1098 smp_wmb();
1100 current->uid = new_ruid;
1101 return 0;
1105 * Unprivileged users may change the real uid to the effective uid
1106 * or vice versa. (BSD-style)
1108 * If you set the real uid at all, or set the effective uid to a value not
1109 * equal to the real uid, then the saved uid is set to the new effective uid.
1111 * This makes it possible for a setuid program to completely drop its
1112 * privileges, which is often a useful assertion to make when you are doing
1113 * a security audit over a program.
1115 * The general idea is that a program which uses just setreuid() will be
1116 * 100% compatible with BSD. A program which uses just setuid() will be
1117 * 100% compatible with POSIX with saved IDs.
1119 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
1121 int old_ruid, old_euid, old_suid, new_ruid, new_euid;
1122 int retval;
1124 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
1125 if (retval)
1126 return retval;
1128 new_ruid = old_ruid = current->uid;
1129 new_euid = old_euid = current->euid;
1130 old_suid = current->suid;
1132 if (ruid != (uid_t) -1) {
1133 new_ruid = ruid;
1134 if ((old_ruid != ruid) &&
1135 (current->euid != ruid) &&
1136 !capable(CAP_SETUID))
1137 return -EPERM;
1140 if (euid != (uid_t) -1) {
1141 new_euid = euid;
1142 if ((old_ruid != euid) &&
1143 (current->euid != euid) &&
1144 (current->suid != euid) &&
1145 !capable(CAP_SETUID))
1146 return -EPERM;
1149 if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
1150 return -EAGAIN;
1152 if (new_euid != old_euid) {
1153 current->mm->dumpable = suid_dumpable;
1154 smp_wmb();
1156 current->fsuid = current->euid = new_euid;
1157 if (ruid != (uid_t) -1 ||
1158 (euid != (uid_t) -1 && euid != old_ruid))
1159 current->suid = current->euid;
1160 current->fsuid = current->euid;
1162 key_fsuid_changed(current);
1163 proc_id_connector(current, PROC_EVENT_UID);
1165 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
1171 * setuid() is implemented like SysV with SAVED_IDS
1173 * Note that SAVED_ID's is deficient in that a setuid root program
1174 * like sendmail, for example, cannot set its uid to be a normal
1175 * user and then switch back, because if you're root, setuid() sets
1176 * the saved uid too. If you don't like this, blame the bright people
1177 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
1178 * will allow a root program to temporarily drop privileges and be able to
1179 * regain them by swapping the real and effective uid.
1181 asmlinkage long sys_setuid(uid_t uid)
1183 int old_euid = current->euid;
1184 int old_ruid, old_suid, new_suid;
1185 int retval;
1187 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
1188 if (retval)
1189 return retval;
1191 old_ruid = current->uid;
1192 old_suid = current->suid;
1193 new_suid = old_suid;
1195 if (capable(CAP_SETUID)) {
1196 if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
1197 return -EAGAIN;
1198 new_suid = uid;
1199 } else if ((uid != current->uid) && (uid != new_suid))
1200 return -EPERM;
1202 if (old_euid != uid) {
1203 current->mm->dumpable = suid_dumpable;
1204 smp_wmb();
1206 current->fsuid = current->euid = uid;
1207 current->suid = new_suid;
1209 key_fsuid_changed(current);
1210 proc_id_connector(current, PROC_EVENT_UID);
1212 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
1217 * This function implements a generic ability to update ruid, euid,
1218 * and suid. This allows you to implement the 4.4 compatible seteuid().
1220 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
1222 int old_ruid = current->uid;
1223 int old_euid = current->euid;
1224 int old_suid = current->suid;
1225 int retval;
1227 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
1228 if (retval)
1229 return retval;
1231 if (!capable(CAP_SETUID)) {
1232 if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
1233 (ruid != current->euid) && (ruid != current->suid))
1234 return -EPERM;
1235 if ((euid != (uid_t) -1) && (euid != current->uid) &&
1236 (euid != current->euid) && (euid != current->suid))
1237 return -EPERM;
1238 if ((suid != (uid_t) -1) && (suid != current->uid) &&
1239 (suid != current->euid) && (suid != current->suid))
1240 return -EPERM;
1242 if (ruid != (uid_t) -1) {
1243 if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
1244 return -EAGAIN;
1246 if (euid != (uid_t) -1) {
1247 if (euid != current->euid) {
1248 current->mm->dumpable = suid_dumpable;
1249 smp_wmb();
1251 current->euid = euid;
1253 current->fsuid = current->euid;
1254 if (suid != (uid_t) -1)
1255 current->suid = suid;
1257 key_fsuid_changed(current);
1258 proc_id_connector(current, PROC_EVENT_UID);
1260 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
1263 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
1265 int retval;
1267 if (!(retval = put_user(current->uid, ruid)) &&
1268 !(retval = put_user(current->euid, euid)))
1269 retval = put_user(current->suid, suid);
1271 return retval;
1275 * Same as above, but for rgid, egid, sgid.
1277 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
1279 int retval;
1281 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
1282 if (retval)
1283 return retval;
1285 if (!capable(CAP_SETGID)) {
1286 if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
1287 (rgid != current->egid) && (rgid != current->sgid))
1288 return -EPERM;
1289 if ((egid != (gid_t) -1) && (egid != current->gid) &&
1290 (egid != current->egid) && (egid != current->sgid))
1291 return -EPERM;
1292 if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
1293 (sgid != current->egid) && (sgid != current->sgid))
1294 return -EPERM;
1296 if (egid != (gid_t) -1) {
1297 if (egid != current->egid) {
1298 current->mm->dumpable = suid_dumpable;
1299 smp_wmb();
1301 current->egid = egid;
1303 current->fsgid = current->egid;
1304 if (rgid != (gid_t) -1)
1305 current->gid = rgid;
1306 if (sgid != (gid_t) -1)
1307 current->sgid = sgid;
1309 key_fsgid_changed(current);
1310 proc_id_connector(current, PROC_EVENT_GID);
1311 return 0;
1314 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
1316 int retval;
1318 if (!(retval = put_user(current->gid, rgid)) &&
1319 !(retval = put_user(current->egid, egid)))
1320 retval = put_user(current->sgid, sgid);
1322 return retval;
1327 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
1328 * is used for "access()" and for the NFS daemon (letting nfsd stay at
1329 * whatever uid it wants to). It normally shadows "euid", except when
1330 * explicitly set by setfsuid() or for access..
1332 asmlinkage long sys_setfsuid(uid_t uid)
1334 int old_fsuid;
1336 old_fsuid = current->fsuid;
1337 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
1338 return old_fsuid;
1340 if (uid == current->uid || uid == current->euid ||
1341 uid == current->suid || uid == current->fsuid ||
1342 capable(CAP_SETUID)) {
1343 if (uid != old_fsuid) {
1344 current->mm->dumpable = suid_dumpable;
1345 smp_wmb();
1347 current->fsuid = uid;
1350 key_fsuid_changed(current);
1351 proc_id_connector(current, PROC_EVENT_UID);
1353 security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
1355 return old_fsuid;
1359 * Samma på svenska..
1361 asmlinkage long sys_setfsgid(gid_t gid)
1363 int old_fsgid;
1365 old_fsgid = current->fsgid;
1366 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
1367 return old_fsgid;
1369 if (gid == current->gid || gid == current->egid ||
1370 gid == current->sgid || gid == current->fsgid ||
1371 capable(CAP_SETGID)) {
1372 if (gid != old_fsgid) {
1373 current->mm->dumpable = suid_dumpable;
1374 smp_wmb();
1376 current->fsgid = gid;
1377 key_fsgid_changed(current);
1378 proc_id_connector(current, PROC_EVENT_GID);
1380 return old_fsgid;
1383 asmlinkage long sys_times(struct tms __user * tbuf)
1386 * In the SMP world we might just be unlucky and have one of
1387 * the times increment as we use it. Since the value is an
1388 * atomically safe type this is just fine. Conceptually its
1389 * as if the syscall took an instant longer to occur.
1391 if (tbuf) {
1392 struct tms tmp;
1393 struct task_struct *tsk = current;
1394 struct task_struct *t;
1395 cputime_t utime, stime, cutime, cstime;
1397 spin_lock_irq(&tsk->sighand->siglock);
1398 utime = tsk->signal->utime;
1399 stime = tsk->signal->stime;
1400 t = tsk;
1401 do {
1402 utime = cputime_add(utime, t->utime);
1403 stime = cputime_add(stime, t->stime);
1404 t = next_thread(t);
1405 } while (t != tsk);
1407 cutime = tsk->signal->cutime;
1408 cstime = tsk->signal->cstime;
1409 spin_unlock_irq(&tsk->sighand->siglock);
1411 tmp.tms_utime = cputime_to_clock_t(utime);
1412 tmp.tms_stime = cputime_to_clock_t(stime);
1413 tmp.tms_cutime = cputime_to_clock_t(cutime);
1414 tmp.tms_cstime = cputime_to_clock_t(cstime);
1415 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1416 return -EFAULT;
1418 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1422 * This needs some heavy checking ...
1423 * I just haven't the stomach for it. I also don't fully
1424 * understand sessions/pgrp etc. Let somebody who does explain it.
1426 * OK, I think I have the protection semantics right.... this is really
1427 * only important on a multi-user system anyway, to make sure one user
1428 * can't send a signal to a process owned by another. -TYT, 12/12/91
1430 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1431 * LBT 04.03.94
1434 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
1436 struct task_struct *p;
1437 struct task_struct *group_leader = current->group_leader;
1438 int err = -EINVAL;
1440 if (!pid)
1441 pid = group_leader->pid;
1442 if (!pgid)
1443 pgid = pid;
1444 if (pgid < 0)
1445 return -EINVAL;
1447 /* From this point forward we keep holding onto the tasklist lock
1448 * so that our parent does not change from under us. -DaveM
1450 write_lock_irq(&tasklist_lock);
1452 err = -ESRCH;
1453 p = find_task_by_pid(pid);
1454 if (!p)
1455 goto out;
1457 err = -EINVAL;
1458 if (!thread_group_leader(p))
1459 goto out;
1461 if (p->real_parent == group_leader) {
1462 err = -EPERM;
1463 if (task_session(p) != task_session(group_leader))
1464 goto out;
1465 err = -EACCES;
1466 if (p->did_exec)
1467 goto out;
1468 } else {
1469 err = -ESRCH;
1470 if (p != group_leader)
1471 goto out;
1474 err = -EPERM;
1475 if (p->signal->leader)
1476 goto out;
1478 if (pgid != pid) {
1479 struct task_struct *g =
1480 find_task_by_pid_type(PIDTYPE_PGID, pgid);
1482 if (!g || task_session(g) != task_session(group_leader))
1483 goto out;
1486 err = security_task_setpgid(p, pgid);
1487 if (err)
1488 goto out;
1490 if (process_group(p) != pgid) {
1491 detach_pid(p, PIDTYPE_PGID);
1492 p->signal->pgrp = pgid;
1493 attach_pid(p, PIDTYPE_PGID, find_pid(pgid));
1496 err = 0;
1497 out:
1498 /* All paths lead to here, thus we are safe. -DaveM */
1499 write_unlock_irq(&tasklist_lock);
1500 return err;
1503 asmlinkage long sys_getpgid(pid_t pid)
1505 if (!pid)
1506 return process_group(current);
1507 else {
1508 int retval;
1509 struct task_struct *p;
1511 read_lock(&tasklist_lock);
1512 p = find_task_by_pid(pid);
1514 retval = -ESRCH;
1515 if (p) {
1516 retval = security_task_getpgid(p);
1517 if (!retval)
1518 retval = process_group(p);
1520 read_unlock(&tasklist_lock);
1521 return retval;
1525 #ifdef __ARCH_WANT_SYS_GETPGRP
1527 asmlinkage long sys_getpgrp(void)
1529 /* SMP - assuming writes are word atomic this is fine */
1530 return process_group(current);
1533 #endif
1535 asmlinkage long sys_getsid(pid_t pid)
1537 if (!pid)
1538 return process_session(current);
1539 else {
1540 int retval;
1541 struct task_struct *p;
1543 read_lock(&tasklist_lock);
1544 p = find_task_by_pid(pid);
1546 retval = -ESRCH;
1547 if (p) {
1548 retval = security_task_getsid(p);
1549 if (!retval)
1550 retval = process_session(p);
1552 read_unlock(&tasklist_lock);
1553 return retval;
1557 asmlinkage long sys_setsid(void)
1559 struct task_struct *group_leader = current->group_leader;
1560 pid_t session;
1561 int err = -EPERM;
1563 write_lock_irq(&tasklist_lock);
1565 /* Fail if I am already a session leader */
1566 if (group_leader->signal->leader)
1567 goto out;
1569 session = group_leader->pid;
1570 /* Fail if a process group id already exists that equals the
1571 * proposed session id.
1573 * Don't check if session id == 1 because kernel threads use this
1574 * session id and so the check will always fail and make it so
1575 * init cannot successfully call setsid.
1577 if (session > 1 && find_task_by_pid_type(PIDTYPE_PGID, session))
1578 goto out;
1580 group_leader->signal->leader = 1;
1581 __set_special_pids(session, session);
1583 spin_lock(&group_leader->sighand->siglock);
1584 group_leader->signal->tty = NULL;
1585 spin_unlock(&group_leader->sighand->siglock);
1587 err = process_group(group_leader);
1588 out:
1589 write_unlock_irq(&tasklist_lock);
1590 return err;
1594 * Supplementary group IDs
1597 /* init to 2 - one for init_task, one to ensure it is never freed */
1598 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1600 struct group_info *groups_alloc(int gidsetsize)
1602 struct group_info *group_info;
1603 int nblocks;
1604 int i;
1606 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1607 /* Make sure we always allocate at least one indirect block pointer */
1608 nblocks = nblocks ? : 1;
1609 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1610 if (!group_info)
1611 return NULL;
1612 group_info->ngroups = gidsetsize;
1613 group_info->nblocks = nblocks;
1614 atomic_set(&group_info->usage, 1);
1616 if (gidsetsize <= NGROUPS_SMALL)
1617 group_info->blocks[0] = group_info->small_block;
1618 else {
1619 for (i = 0; i < nblocks; i++) {
1620 gid_t *b;
1621 b = (void *)__get_free_page(GFP_USER);
1622 if (!b)
1623 goto out_undo_partial_alloc;
1624 group_info->blocks[i] = b;
1627 return group_info;
1629 out_undo_partial_alloc:
1630 while (--i >= 0) {
1631 free_page((unsigned long)group_info->blocks[i]);
1633 kfree(group_info);
1634 return NULL;
1637 EXPORT_SYMBOL(groups_alloc);
1639 void groups_free(struct group_info *group_info)
1641 if (group_info->blocks[0] != group_info->small_block) {
1642 int i;
1643 for (i = 0; i < group_info->nblocks; i++)
1644 free_page((unsigned long)group_info->blocks[i]);
1646 kfree(group_info);
1649 EXPORT_SYMBOL(groups_free);
1651 /* export the group_info to a user-space array */
1652 static int groups_to_user(gid_t __user *grouplist,
1653 struct group_info *group_info)
1655 int i;
1656 int count = group_info->ngroups;
1658 for (i = 0; i < group_info->nblocks; i++) {
1659 int cp_count = min(NGROUPS_PER_BLOCK, count);
1660 int off = i * NGROUPS_PER_BLOCK;
1661 int len = cp_count * sizeof(*grouplist);
1663 if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1664 return -EFAULT;
1666 count -= cp_count;
1668 return 0;
1671 /* fill a group_info from a user-space array - it must be allocated already */
1672 static int groups_from_user(struct group_info *group_info,
1673 gid_t __user *grouplist)
1675 int i;
1676 int count = group_info->ngroups;
1678 for (i = 0; i < group_info->nblocks; i++) {
1679 int cp_count = min(NGROUPS_PER_BLOCK, count);
1680 int off = i * NGROUPS_PER_BLOCK;
1681 int len = cp_count * sizeof(*grouplist);
1683 if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1684 return -EFAULT;
1686 count -= cp_count;
1688 return 0;
1691 /* a simple Shell sort */
1692 static void groups_sort(struct group_info *group_info)
1694 int base, max, stride;
1695 int gidsetsize = group_info->ngroups;
1697 for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1698 ; /* nothing */
1699 stride /= 3;
1701 while (stride) {
1702 max = gidsetsize - stride;
1703 for (base = 0; base < max; base++) {
1704 int left = base;
1705 int right = left + stride;
1706 gid_t tmp = GROUP_AT(group_info, right);
1708 while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1709 GROUP_AT(group_info, right) =
1710 GROUP_AT(group_info, left);
1711 right = left;
1712 left -= stride;
1714 GROUP_AT(group_info, right) = tmp;
1716 stride /= 3;
1720 /* a simple bsearch */
1721 int groups_search(struct group_info *group_info, gid_t grp)
1723 unsigned int left, right;
1725 if (!group_info)
1726 return 0;
1728 left = 0;
1729 right = group_info->ngroups;
1730 while (left < right) {
1731 unsigned int mid = (left+right)/2;
1732 int cmp = grp - GROUP_AT(group_info, mid);
1733 if (cmp > 0)
1734 left = mid + 1;
1735 else if (cmp < 0)
1736 right = mid;
1737 else
1738 return 1;
1740 return 0;
1743 /* validate and set current->group_info */
1744 int set_current_groups(struct group_info *group_info)
1746 int retval;
1747 struct group_info *old_info;
1749 retval = security_task_setgroups(group_info);
1750 if (retval)
1751 return retval;
1753 groups_sort(group_info);
1754 get_group_info(group_info);
1756 task_lock(current);
1757 old_info = current->group_info;
1758 current->group_info = group_info;
1759 task_unlock(current);
1761 put_group_info(old_info);
1763 return 0;
1766 EXPORT_SYMBOL(set_current_groups);
1768 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1770 int i = 0;
1773 * SMP: Nobody else can change our grouplist. Thus we are
1774 * safe.
1777 if (gidsetsize < 0)
1778 return -EINVAL;
1780 /* no need to grab task_lock here; it cannot change */
1781 i = current->group_info->ngroups;
1782 if (gidsetsize) {
1783 if (i > gidsetsize) {
1784 i = -EINVAL;
1785 goto out;
1787 if (groups_to_user(grouplist, current->group_info)) {
1788 i = -EFAULT;
1789 goto out;
1792 out:
1793 return i;
1797 * SMP: Our groups are copy-on-write. We can set them safely
1798 * without another task interfering.
1801 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1803 struct group_info *group_info;
1804 int retval;
1806 if (!capable(CAP_SETGID))
1807 return -EPERM;
1808 if ((unsigned)gidsetsize > NGROUPS_MAX)
1809 return -EINVAL;
1811 group_info = groups_alloc(gidsetsize);
1812 if (!group_info)
1813 return -ENOMEM;
1814 retval = groups_from_user(group_info, grouplist);
1815 if (retval) {
1816 put_group_info(group_info);
1817 return retval;
1820 retval = set_current_groups(group_info);
1821 put_group_info(group_info);
1823 return retval;
1827 * Check whether we're fsgid/egid or in the supplemental group..
1829 int in_group_p(gid_t grp)
1831 int retval = 1;
1832 if (grp != current->fsgid)
1833 retval = groups_search(current->group_info, grp);
1834 return retval;
1837 EXPORT_SYMBOL(in_group_p);
1839 int in_egroup_p(gid_t grp)
1841 int retval = 1;
1842 if (grp != current->egid)
1843 retval = groups_search(current->group_info, grp);
1844 return retval;
1847 EXPORT_SYMBOL(in_egroup_p);
1849 DECLARE_RWSEM(uts_sem);
1851 EXPORT_SYMBOL(uts_sem);
1853 asmlinkage long sys_newuname(struct new_utsname __user * name)
1855 int errno = 0;
1857 down_read(&uts_sem);
1858 if (copy_to_user(name, utsname(), sizeof *name))
1859 errno = -EFAULT;
1860 up_read(&uts_sem);
1861 return errno;
1864 asmlinkage long sys_sethostname(char __user *name, int len)
1866 int errno;
1867 char tmp[__NEW_UTS_LEN];
1869 if (!capable(CAP_SYS_ADMIN))
1870 return -EPERM;
1871 if (len < 0 || len > __NEW_UTS_LEN)
1872 return -EINVAL;
1873 down_write(&uts_sem);
1874 errno = -EFAULT;
1875 if (!copy_from_user(tmp, name, len)) {
1876 memcpy(utsname()->nodename, tmp, len);
1877 utsname()->nodename[len] = 0;
1878 errno = 0;
1880 up_write(&uts_sem);
1881 return errno;
1884 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1886 asmlinkage long sys_gethostname(char __user *name, int len)
1888 int i, errno;
1890 if (len < 0)
1891 return -EINVAL;
1892 down_read(&uts_sem);
1893 i = 1 + strlen(utsname()->nodename);
1894 if (i > len)
1895 i = len;
1896 errno = 0;
1897 if (copy_to_user(name, utsname()->nodename, i))
1898 errno = -EFAULT;
1899 up_read(&uts_sem);
1900 return errno;
1903 #endif
1906 * Only setdomainname; getdomainname can be implemented by calling
1907 * uname()
1909 asmlinkage long sys_setdomainname(char __user *name, int len)
1911 int errno;
1912 char tmp[__NEW_UTS_LEN];
1914 if (!capable(CAP_SYS_ADMIN))
1915 return -EPERM;
1916 if (len < 0 || len > __NEW_UTS_LEN)
1917 return -EINVAL;
1919 down_write(&uts_sem);
1920 errno = -EFAULT;
1921 if (!copy_from_user(tmp, name, len)) {
1922 memcpy(utsname()->domainname, tmp, len);
1923 utsname()->domainname[len] = 0;
1924 errno = 0;
1926 up_write(&uts_sem);
1927 return errno;
1930 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1932 if (resource >= RLIM_NLIMITS)
1933 return -EINVAL;
1934 else {
1935 struct rlimit value;
1936 task_lock(current->group_leader);
1937 value = current->signal->rlim[resource];
1938 task_unlock(current->group_leader);
1939 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1943 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1946 * Back compatibility for getrlimit. Needed for some apps.
1949 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1951 struct rlimit x;
1952 if (resource >= RLIM_NLIMITS)
1953 return -EINVAL;
1955 task_lock(current->group_leader);
1956 x = current->signal->rlim[resource];
1957 task_unlock(current->group_leader);
1958 if (x.rlim_cur > 0x7FFFFFFF)
1959 x.rlim_cur = 0x7FFFFFFF;
1960 if (x.rlim_max > 0x7FFFFFFF)
1961 x.rlim_max = 0x7FFFFFFF;
1962 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1965 #endif
1967 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1969 struct rlimit new_rlim, *old_rlim;
1970 unsigned long it_prof_secs;
1971 int retval;
1973 if (resource >= RLIM_NLIMITS)
1974 return -EINVAL;
1975 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1976 return -EFAULT;
1977 if (new_rlim.rlim_cur > new_rlim.rlim_max)
1978 return -EINVAL;
1979 old_rlim = current->signal->rlim + resource;
1980 if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1981 !capable(CAP_SYS_RESOURCE))
1982 return -EPERM;
1983 if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
1984 return -EPERM;
1986 retval = security_task_setrlimit(resource, &new_rlim);
1987 if (retval)
1988 return retval;
1990 if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
1992 * The caller is asking for an immediate RLIMIT_CPU
1993 * expiry. But we use the zero value to mean "it was
1994 * never set". So let's cheat and make it one second
1995 * instead
1997 new_rlim.rlim_cur = 1;
2000 task_lock(current->group_leader);
2001 *old_rlim = new_rlim;
2002 task_unlock(current->group_leader);
2004 if (resource != RLIMIT_CPU)
2005 goto out;
2008 * RLIMIT_CPU handling. Note that the kernel fails to return an error
2009 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
2010 * very long-standing error, and fixing it now risks breakage of
2011 * applications, so we live with it
2013 if (new_rlim.rlim_cur == RLIM_INFINITY)
2014 goto out;
2016 it_prof_secs = cputime_to_secs(current->signal->it_prof_expires);
2017 if (it_prof_secs == 0 || new_rlim.rlim_cur <= it_prof_secs) {
2018 unsigned long rlim_cur = new_rlim.rlim_cur;
2019 cputime_t cputime;
2021 cputime = secs_to_cputime(rlim_cur);
2022 read_lock(&tasklist_lock);
2023 spin_lock_irq(&current->sighand->siglock);
2024 set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
2025 spin_unlock_irq(&current->sighand->siglock);
2026 read_unlock(&tasklist_lock);
2028 out:
2029 return 0;
2033 * It would make sense to put struct rusage in the task_struct,
2034 * except that would make the task_struct be *really big*. After
2035 * task_struct gets moved into malloc'ed memory, it would
2036 * make sense to do this. It will make moving the rest of the information
2037 * a lot simpler! (Which we're not doing right now because we're not
2038 * measuring them yet).
2040 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
2041 * races with threads incrementing their own counters. But since word
2042 * reads are atomic, we either get new values or old values and we don't
2043 * care which for the sums. We always take the siglock to protect reading
2044 * the c* fields from p->signal from races with exit.c updating those
2045 * fields when reaping, so a sample either gets all the additions of a
2046 * given child after it's reaped, or none so this sample is before reaping.
2048 * Locking:
2049 * We need to take the siglock for CHILDEREN, SELF and BOTH
2050 * for the cases current multithreaded, non-current single threaded
2051 * non-current multithreaded. Thread traversal is now safe with
2052 * the siglock held.
2053 * Strictly speaking, we donot need to take the siglock if we are current and
2054 * single threaded, as no one else can take our signal_struct away, no one
2055 * else can reap the children to update signal->c* counters, and no one else
2056 * can race with the signal-> fields. If we do not take any lock, the
2057 * signal-> fields could be read out of order while another thread was just
2058 * exiting. So we should place a read memory barrier when we avoid the lock.
2059 * On the writer side, write memory barrier is implied in __exit_signal
2060 * as __exit_signal releases the siglock spinlock after updating the signal->
2061 * fields. But we don't do this yet to keep things simple.
2065 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
2067 struct task_struct *t;
2068 unsigned long flags;
2069 cputime_t utime, stime;
2071 memset((char *) r, 0, sizeof *r);
2072 utime = stime = cputime_zero;
2074 rcu_read_lock();
2075 if (!lock_task_sighand(p, &flags)) {
2076 rcu_read_unlock();
2077 return;
2080 switch (who) {
2081 case RUSAGE_BOTH:
2082 case RUSAGE_CHILDREN:
2083 utime = p->signal->cutime;
2084 stime = p->signal->cstime;
2085 r->ru_nvcsw = p->signal->cnvcsw;
2086 r->ru_nivcsw = p->signal->cnivcsw;
2087 r->ru_minflt = p->signal->cmin_flt;
2088 r->ru_majflt = p->signal->cmaj_flt;
2089 r->ru_inblock = p->signal->cinblock;
2090 r->ru_oublock = p->signal->coublock;
2092 if (who == RUSAGE_CHILDREN)
2093 break;
2095 case RUSAGE_SELF:
2096 utime = cputime_add(utime, p->signal->utime);
2097 stime = cputime_add(stime, p->signal->stime);
2098 r->ru_nvcsw += p->signal->nvcsw;
2099 r->ru_nivcsw += p->signal->nivcsw;
2100 r->ru_minflt += p->signal->min_flt;
2101 r->ru_majflt += p->signal->maj_flt;
2102 r->ru_inblock += p->signal->inblock;
2103 r->ru_oublock += p->signal->oublock;
2104 t = p;
2105 do {
2106 utime = cputime_add(utime, t->utime);
2107 stime = cputime_add(stime, t->stime);
2108 r->ru_nvcsw += t->nvcsw;
2109 r->ru_nivcsw += t->nivcsw;
2110 r->ru_minflt += t->min_flt;
2111 r->ru_majflt += t->maj_flt;
2112 r->ru_inblock += task_io_get_inblock(t);
2113 r->ru_oublock += task_io_get_oublock(t);
2114 t = next_thread(t);
2115 } while (t != p);
2116 break;
2118 default:
2119 BUG();
2122 unlock_task_sighand(p, &flags);
2123 rcu_read_unlock();
2125 cputime_to_timeval(utime, &r->ru_utime);
2126 cputime_to_timeval(stime, &r->ru_stime);
2129 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
2131 struct rusage r;
2132 k_getrusage(p, who, &r);
2133 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
2136 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
2138 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
2139 return -EINVAL;
2140 return getrusage(current, who, ru);
2143 asmlinkage long sys_umask(int mask)
2145 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
2146 return mask;
2149 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
2150 unsigned long arg4, unsigned long arg5)
2152 long error;
2154 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2155 if (error)
2156 return error;
2158 switch (option) {
2159 case PR_SET_PDEATHSIG:
2160 if (!valid_signal(arg2)) {
2161 error = -EINVAL;
2162 break;
2164 current->pdeath_signal = arg2;
2165 break;
2166 case PR_GET_PDEATHSIG:
2167 error = put_user(current->pdeath_signal, (int __user *)arg2);
2168 break;
2169 case PR_GET_DUMPABLE:
2170 error = current->mm->dumpable;
2171 break;
2172 case PR_SET_DUMPABLE:
2173 if (arg2 < 0 || arg2 > 1) {
2174 error = -EINVAL;
2175 break;
2177 current->mm->dumpable = arg2;
2178 break;
2180 case PR_SET_UNALIGN:
2181 error = SET_UNALIGN_CTL(current, arg2);
2182 break;
2183 case PR_GET_UNALIGN:
2184 error = GET_UNALIGN_CTL(current, arg2);
2185 break;
2186 case PR_SET_FPEMU:
2187 error = SET_FPEMU_CTL(current, arg2);
2188 break;
2189 case PR_GET_FPEMU:
2190 error = GET_FPEMU_CTL(current, arg2);
2191 break;
2192 case PR_SET_FPEXC:
2193 error = SET_FPEXC_CTL(current, arg2);
2194 break;
2195 case PR_GET_FPEXC:
2196 error = GET_FPEXC_CTL(current, arg2);
2197 break;
2198 case PR_GET_TIMING:
2199 error = PR_TIMING_STATISTICAL;
2200 break;
2201 case PR_SET_TIMING:
2202 if (arg2 == PR_TIMING_STATISTICAL)
2203 error = 0;
2204 else
2205 error = -EINVAL;
2206 break;
2208 case PR_GET_KEEPCAPS:
2209 if (current->keep_capabilities)
2210 error = 1;
2211 break;
2212 case PR_SET_KEEPCAPS:
2213 if (arg2 != 0 && arg2 != 1) {
2214 error = -EINVAL;
2215 break;
2217 current->keep_capabilities = arg2;
2218 break;
2219 case PR_SET_NAME: {
2220 struct task_struct *me = current;
2221 unsigned char ncomm[sizeof(me->comm)];
2223 ncomm[sizeof(me->comm)-1] = 0;
2224 if (strncpy_from_user(ncomm, (char __user *)arg2,
2225 sizeof(me->comm)-1) < 0)
2226 return -EFAULT;
2227 set_task_comm(me, ncomm);
2228 return 0;
2230 case PR_GET_NAME: {
2231 struct task_struct *me = current;
2232 unsigned char tcomm[sizeof(me->comm)];
2234 get_task_comm(tcomm, me);
2235 if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
2236 return -EFAULT;
2237 return 0;
2239 case PR_GET_ENDIAN:
2240 error = GET_ENDIAN(current, arg2);
2241 break;
2242 case PR_SET_ENDIAN:
2243 error = SET_ENDIAN(current, arg2);
2244 break;
2246 case PR_GET_SECCOMP:
2247 error = prctl_get_seccomp();
2248 break;
2249 case PR_SET_SECCOMP:
2250 error = prctl_set_seccomp(arg2);
2251 break;
2253 default:
2254 error = -EINVAL;
2255 break;
2257 return error;
2260 asmlinkage long sys_getcpu(unsigned __user *cpup, unsigned __user *nodep,
2261 struct getcpu_cache __user *cache)
2263 int err = 0;
2264 int cpu = raw_smp_processor_id();
2265 if (cpup)
2266 err |= put_user(cpu, cpup);
2267 if (nodep)
2268 err |= put_user(cpu_to_node(cpu), nodep);
2269 if (cache) {
2271 * The cache is not needed for this implementation,
2272 * but make sure user programs pass something
2273 * valid. vsyscall implementations can instead make
2274 * good use of the cache. Only use t0 and t1 because
2275 * these are available in both 32bit and 64bit ABI (no
2276 * need for a compat_getcpu). 32bit has enough
2277 * padding
2279 unsigned long t0, t1;
2280 get_user(t0, &cache->blob[0]);
2281 get_user(t1, &cache->blob[1]);
2282 t0++;
2283 t1++;
2284 put_user(t0, &cache->blob[0]);
2285 put_user(t1, &cache->blob[1]);
2287 return err ? -EFAULT : 0;