V4L/DVB: v4l2-dev: remove duplicated #include
[linux-2.6/sactl.git] / drivers / md / raid10.c
blob8bdc9bfc288703aafbc8b20925f3d9b8e337fd54
1 /*
2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for futher copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include "dm-bio-list.h"
22 #include <linux/raid/raid10.h>
23 #include <linux/raid/bitmap.h>
26 * RAID10 provides a combination of RAID0 and RAID1 functionality.
27 * The layout of data is defined by
28 * chunk_size
29 * raid_disks
30 * near_copies (stored in low byte of layout)
31 * far_copies (stored in second byte of layout)
32 * far_offset (stored in bit 16 of layout )
34 * The data to be stored is divided into chunks using chunksize.
35 * Each device is divided into far_copies sections.
36 * In each section, chunks are laid out in a style similar to raid0, but
37 * near_copies copies of each chunk is stored (each on a different drive).
38 * The starting device for each section is offset near_copies from the starting
39 * device of the previous section.
40 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
41 * drive.
42 * near_copies and far_copies must be at least one, and their product is at most
43 * raid_disks.
45 * If far_offset is true, then the far_copies are handled a bit differently.
46 * The copies are still in different stripes, but instead of be very far apart
47 * on disk, there are adjacent stripes.
51 * Number of guaranteed r10bios in case of extreme VM load:
53 #define NR_RAID10_BIOS 256
55 static void unplug_slaves(mddev_t *mddev);
57 static void allow_barrier(conf_t *conf);
58 static void lower_barrier(conf_t *conf);
60 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
62 conf_t *conf = data;
63 r10bio_t *r10_bio;
64 int size = offsetof(struct r10bio_s, devs[conf->copies]);
66 /* allocate a r10bio with room for raid_disks entries in the bios array */
67 r10_bio = kzalloc(size, gfp_flags);
68 if (!r10_bio)
69 unplug_slaves(conf->mddev);
71 return r10_bio;
74 static void r10bio_pool_free(void *r10_bio, void *data)
76 kfree(r10_bio);
79 /* Maximum size of each resync request */
80 #define RESYNC_BLOCK_SIZE (64*1024)
81 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
82 /* amount of memory to reserve for resync requests */
83 #define RESYNC_WINDOW (1024*1024)
84 /* maximum number of concurrent requests, memory permitting */
85 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
88 * When performing a resync, we need to read and compare, so
89 * we need as many pages are there are copies.
90 * When performing a recovery, we need 2 bios, one for read,
91 * one for write (we recover only one drive per r10buf)
94 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
96 conf_t *conf = data;
97 struct page *page;
98 r10bio_t *r10_bio;
99 struct bio *bio;
100 int i, j;
101 int nalloc;
103 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
104 if (!r10_bio) {
105 unplug_slaves(conf->mddev);
106 return NULL;
109 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
110 nalloc = conf->copies; /* resync */
111 else
112 nalloc = 2; /* recovery */
115 * Allocate bios.
117 for (j = nalloc ; j-- ; ) {
118 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
119 if (!bio)
120 goto out_free_bio;
121 r10_bio->devs[j].bio = bio;
124 * Allocate RESYNC_PAGES data pages and attach them
125 * where needed.
127 for (j = 0 ; j < nalloc; j++) {
128 bio = r10_bio->devs[j].bio;
129 for (i = 0; i < RESYNC_PAGES; i++) {
130 page = alloc_page(gfp_flags);
131 if (unlikely(!page))
132 goto out_free_pages;
134 bio->bi_io_vec[i].bv_page = page;
138 return r10_bio;
140 out_free_pages:
141 for ( ; i > 0 ; i--)
142 safe_put_page(bio->bi_io_vec[i-1].bv_page);
143 while (j--)
144 for (i = 0; i < RESYNC_PAGES ; i++)
145 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
146 j = -1;
147 out_free_bio:
148 while ( ++j < nalloc )
149 bio_put(r10_bio->devs[j].bio);
150 r10bio_pool_free(r10_bio, conf);
151 return NULL;
154 static void r10buf_pool_free(void *__r10_bio, void *data)
156 int i;
157 conf_t *conf = data;
158 r10bio_t *r10bio = __r10_bio;
159 int j;
161 for (j=0; j < conf->copies; j++) {
162 struct bio *bio = r10bio->devs[j].bio;
163 if (bio) {
164 for (i = 0; i < RESYNC_PAGES; i++) {
165 safe_put_page(bio->bi_io_vec[i].bv_page);
166 bio->bi_io_vec[i].bv_page = NULL;
168 bio_put(bio);
171 r10bio_pool_free(r10bio, conf);
174 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
176 int i;
178 for (i = 0; i < conf->copies; i++) {
179 struct bio **bio = & r10_bio->devs[i].bio;
180 if (*bio && *bio != IO_BLOCKED)
181 bio_put(*bio);
182 *bio = NULL;
186 static void free_r10bio(r10bio_t *r10_bio)
188 conf_t *conf = mddev_to_conf(r10_bio->mddev);
191 * Wake up any possible resync thread that waits for the device
192 * to go idle.
194 allow_barrier(conf);
196 put_all_bios(conf, r10_bio);
197 mempool_free(r10_bio, conf->r10bio_pool);
200 static void put_buf(r10bio_t *r10_bio)
202 conf_t *conf = mddev_to_conf(r10_bio->mddev);
204 mempool_free(r10_bio, conf->r10buf_pool);
206 lower_barrier(conf);
209 static void reschedule_retry(r10bio_t *r10_bio)
211 unsigned long flags;
212 mddev_t *mddev = r10_bio->mddev;
213 conf_t *conf = mddev_to_conf(mddev);
215 spin_lock_irqsave(&conf->device_lock, flags);
216 list_add(&r10_bio->retry_list, &conf->retry_list);
217 conf->nr_queued ++;
218 spin_unlock_irqrestore(&conf->device_lock, flags);
220 /* wake up frozen array... */
221 wake_up(&conf->wait_barrier);
223 md_wakeup_thread(mddev->thread);
227 * raid_end_bio_io() is called when we have finished servicing a mirrored
228 * operation and are ready to return a success/failure code to the buffer
229 * cache layer.
231 static void raid_end_bio_io(r10bio_t *r10_bio)
233 struct bio *bio = r10_bio->master_bio;
235 bio_endio(bio,
236 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
237 free_r10bio(r10_bio);
241 * Update disk head position estimator based on IRQ completion info.
243 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
245 conf_t *conf = mddev_to_conf(r10_bio->mddev);
247 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
248 r10_bio->devs[slot].addr + (r10_bio->sectors);
251 static void raid10_end_read_request(struct bio *bio, int error)
253 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
254 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
255 int slot, dev;
256 conf_t *conf = mddev_to_conf(r10_bio->mddev);
259 slot = r10_bio->read_slot;
260 dev = r10_bio->devs[slot].devnum;
262 * this branch is our 'one mirror IO has finished' event handler:
264 update_head_pos(slot, r10_bio);
266 if (uptodate) {
268 * Set R10BIO_Uptodate in our master bio, so that
269 * we will return a good error code to the higher
270 * levels even if IO on some other mirrored buffer fails.
272 * The 'master' represents the composite IO operation to
273 * user-side. So if something waits for IO, then it will
274 * wait for the 'master' bio.
276 set_bit(R10BIO_Uptodate, &r10_bio->state);
277 raid_end_bio_io(r10_bio);
278 } else {
280 * oops, read error:
282 char b[BDEVNAME_SIZE];
283 if (printk_ratelimit())
284 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
285 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
286 reschedule_retry(r10_bio);
289 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
292 static void raid10_end_write_request(struct bio *bio, int error)
294 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
295 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
296 int slot, dev;
297 conf_t *conf = mddev_to_conf(r10_bio->mddev);
299 for (slot = 0; slot < conf->copies; slot++)
300 if (r10_bio->devs[slot].bio == bio)
301 break;
302 dev = r10_bio->devs[slot].devnum;
305 * this branch is our 'one mirror IO has finished' event handler:
307 if (!uptodate) {
308 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
309 /* an I/O failed, we can't clear the bitmap */
310 set_bit(R10BIO_Degraded, &r10_bio->state);
311 } else
313 * Set R10BIO_Uptodate in our master bio, so that
314 * we will return a good error code for to the higher
315 * levels even if IO on some other mirrored buffer fails.
317 * The 'master' represents the composite IO operation to
318 * user-side. So if something waits for IO, then it will
319 * wait for the 'master' bio.
321 set_bit(R10BIO_Uptodate, &r10_bio->state);
323 update_head_pos(slot, r10_bio);
327 * Let's see if all mirrored write operations have finished
328 * already.
330 if (atomic_dec_and_test(&r10_bio->remaining)) {
331 /* clear the bitmap if all writes complete successfully */
332 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
333 r10_bio->sectors,
334 !test_bit(R10BIO_Degraded, &r10_bio->state),
336 md_write_end(r10_bio->mddev);
337 raid_end_bio_io(r10_bio);
340 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
345 * RAID10 layout manager
346 * Aswell as the chunksize and raid_disks count, there are two
347 * parameters: near_copies and far_copies.
348 * near_copies * far_copies must be <= raid_disks.
349 * Normally one of these will be 1.
350 * If both are 1, we get raid0.
351 * If near_copies == raid_disks, we get raid1.
353 * Chunks are layed out in raid0 style with near_copies copies of the
354 * first chunk, followed by near_copies copies of the next chunk and
355 * so on.
356 * If far_copies > 1, then after 1/far_copies of the array has been assigned
357 * as described above, we start again with a device offset of near_copies.
358 * So we effectively have another copy of the whole array further down all
359 * the drives, but with blocks on different drives.
360 * With this layout, and block is never stored twice on the one device.
362 * raid10_find_phys finds the sector offset of a given virtual sector
363 * on each device that it is on.
365 * raid10_find_virt does the reverse mapping, from a device and a
366 * sector offset to a virtual address
369 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
371 int n,f;
372 sector_t sector;
373 sector_t chunk;
374 sector_t stripe;
375 int dev;
377 int slot = 0;
379 /* now calculate first sector/dev */
380 chunk = r10bio->sector >> conf->chunk_shift;
381 sector = r10bio->sector & conf->chunk_mask;
383 chunk *= conf->near_copies;
384 stripe = chunk;
385 dev = sector_div(stripe, conf->raid_disks);
386 if (conf->far_offset)
387 stripe *= conf->far_copies;
389 sector += stripe << conf->chunk_shift;
391 /* and calculate all the others */
392 for (n=0; n < conf->near_copies; n++) {
393 int d = dev;
394 sector_t s = sector;
395 r10bio->devs[slot].addr = sector;
396 r10bio->devs[slot].devnum = d;
397 slot++;
399 for (f = 1; f < conf->far_copies; f++) {
400 d += conf->near_copies;
401 if (d >= conf->raid_disks)
402 d -= conf->raid_disks;
403 s += conf->stride;
404 r10bio->devs[slot].devnum = d;
405 r10bio->devs[slot].addr = s;
406 slot++;
408 dev++;
409 if (dev >= conf->raid_disks) {
410 dev = 0;
411 sector += (conf->chunk_mask + 1);
414 BUG_ON(slot != conf->copies);
417 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
419 sector_t offset, chunk, vchunk;
421 offset = sector & conf->chunk_mask;
422 if (conf->far_offset) {
423 int fc;
424 chunk = sector >> conf->chunk_shift;
425 fc = sector_div(chunk, conf->far_copies);
426 dev -= fc * conf->near_copies;
427 if (dev < 0)
428 dev += conf->raid_disks;
429 } else {
430 while (sector >= conf->stride) {
431 sector -= conf->stride;
432 if (dev < conf->near_copies)
433 dev += conf->raid_disks - conf->near_copies;
434 else
435 dev -= conf->near_copies;
437 chunk = sector >> conf->chunk_shift;
439 vchunk = chunk * conf->raid_disks + dev;
440 sector_div(vchunk, conf->near_copies);
441 return (vchunk << conf->chunk_shift) + offset;
445 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
446 * @q: request queue
447 * @bvm: properties of new bio
448 * @biovec: the request that could be merged to it.
450 * Return amount of bytes we can accept at this offset
451 * If near_copies == raid_disk, there are no striping issues,
452 * but in that case, the function isn't called at all.
454 static int raid10_mergeable_bvec(struct request_queue *q,
455 struct bvec_merge_data *bvm,
456 struct bio_vec *biovec)
458 mddev_t *mddev = q->queuedata;
459 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
460 int max;
461 unsigned int chunk_sectors = mddev->chunk_size >> 9;
462 unsigned int bio_sectors = bvm->bi_size >> 9;
464 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
465 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
466 if (max <= biovec->bv_len && bio_sectors == 0)
467 return biovec->bv_len;
468 else
469 return max;
473 * This routine returns the disk from which the requested read should
474 * be done. There is a per-array 'next expected sequential IO' sector
475 * number - if this matches on the next IO then we use the last disk.
476 * There is also a per-disk 'last know head position' sector that is
477 * maintained from IRQ contexts, both the normal and the resync IO
478 * completion handlers update this position correctly. If there is no
479 * perfect sequential match then we pick the disk whose head is closest.
481 * If there are 2 mirrors in the same 2 devices, performance degrades
482 * because position is mirror, not device based.
484 * The rdev for the device selected will have nr_pending incremented.
488 * FIXME: possibly should rethink readbalancing and do it differently
489 * depending on near_copies / far_copies geometry.
491 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
493 const unsigned long this_sector = r10_bio->sector;
494 int disk, slot, nslot;
495 const int sectors = r10_bio->sectors;
496 sector_t new_distance, current_distance;
497 mdk_rdev_t *rdev;
499 raid10_find_phys(conf, r10_bio);
500 rcu_read_lock();
502 * Check if we can balance. We can balance on the whole
503 * device if no resync is going on (recovery is ok), or below
504 * the resync window. We take the first readable disk when
505 * above the resync window.
507 if (conf->mddev->recovery_cp < MaxSector
508 && (this_sector + sectors >= conf->next_resync)) {
509 /* make sure that disk is operational */
510 slot = 0;
511 disk = r10_bio->devs[slot].devnum;
513 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
514 r10_bio->devs[slot].bio == IO_BLOCKED ||
515 !test_bit(In_sync, &rdev->flags)) {
516 slot++;
517 if (slot == conf->copies) {
518 slot = 0;
519 disk = -1;
520 break;
522 disk = r10_bio->devs[slot].devnum;
524 goto rb_out;
528 /* make sure the disk is operational */
529 slot = 0;
530 disk = r10_bio->devs[slot].devnum;
531 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
532 r10_bio->devs[slot].bio == IO_BLOCKED ||
533 !test_bit(In_sync, &rdev->flags)) {
534 slot ++;
535 if (slot == conf->copies) {
536 disk = -1;
537 goto rb_out;
539 disk = r10_bio->devs[slot].devnum;
543 current_distance = abs(r10_bio->devs[slot].addr -
544 conf->mirrors[disk].head_position);
546 /* Find the disk whose head is closest,
547 * or - for far > 1 - find the closest to partition beginning */
549 for (nslot = slot; nslot < conf->copies; nslot++) {
550 int ndisk = r10_bio->devs[nslot].devnum;
553 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
554 r10_bio->devs[nslot].bio == IO_BLOCKED ||
555 !test_bit(In_sync, &rdev->flags))
556 continue;
558 /* This optimisation is debatable, and completely destroys
559 * sequential read speed for 'far copies' arrays. So only
560 * keep it for 'near' arrays, and review those later.
562 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
563 disk = ndisk;
564 slot = nslot;
565 break;
568 /* for far > 1 always use the lowest address */
569 if (conf->far_copies > 1)
570 new_distance = r10_bio->devs[nslot].addr;
571 else
572 new_distance = abs(r10_bio->devs[nslot].addr -
573 conf->mirrors[ndisk].head_position);
574 if (new_distance < current_distance) {
575 current_distance = new_distance;
576 disk = ndisk;
577 slot = nslot;
581 rb_out:
582 r10_bio->read_slot = slot;
583 /* conf->next_seq_sect = this_sector + sectors;*/
585 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
586 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
587 else
588 disk = -1;
589 rcu_read_unlock();
591 return disk;
594 static void unplug_slaves(mddev_t *mddev)
596 conf_t *conf = mddev_to_conf(mddev);
597 int i;
599 rcu_read_lock();
600 for (i=0; i<mddev->raid_disks; i++) {
601 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
602 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
603 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
605 atomic_inc(&rdev->nr_pending);
606 rcu_read_unlock();
608 blk_unplug(r_queue);
610 rdev_dec_pending(rdev, mddev);
611 rcu_read_lock();
614 rcu_read_unlock();
617 static void raid10_unplug(struct request_queue *q)
619 mddev_t *mddev = q->queuedata;
621 unplug_slaves(q->queuedata);
622 md_wakeup_thread(mddev->thread);
625 static int raid10_congested(void *data, int bits)
627 mddev_t *mddev = data;
628 conf_t *conf = mddev_to_conf(mddev);
629 int i, ret = 0;
631 rcu_read_lock();
632 for (i = 0; i < mddev->raid_disks && ret == 0; i++) {
633 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
634 if (rdev && !test_bit(Faulty, &rdev->flags)) {
635 struct request_queue *q = bdev_get_queue(rdev->bdev);
637 ret |= bdi_congested(&q->backing_dev_info, bits);
640 rcu_read_unlock();
641 return ret;
644 static int flush_pending_writes(conf_t *conf)
646 /* Any writes that have been queued but are awaiting
647 * bitmap updates get flushed here.
648 * We return 1 if any requests were actually submitted.
650 int rv = 0;
652 spin_lock_irq(&conf->device_lock);
654 if (conf->pending_bio_list.head) {
655 struct bio *bio;
656 bio = bio_list_get(&conf->pending_bio_list);
657 blk_remove_plug(conf->mddev->queue);
658 spin_unlock_irq(&conf->device_lock);
659 /* flush any pending bitmap writes to disk
660 * before proceeding w/ I/O */
661 bitmap_unplug(conf->mddev->bitmap);
663 while (bio) { /* submit pending writes */
664 struct bio *next = bio->bi_next;
665 bio->bi_next = NULL;
666 generic_make_request(bio);
667 bio = next;
669 rv = 1;
670 } else
671 spin_unlock_irq(&conf->device_lock);
672 return rv;
674 /* Barriers....
675 * Sometimes we need to suspend IO while we do something else,
676 * either some resync/recovery, or reconfigure the array.
677 * To do this we raise a 'barrier'.
678 * The 'barrier' is a counter that can be raised multiple times
679 * to count how many activities are happening which preclude
680 * normal IO.
681 * We can only raise the barrier if there is no pending IO.
682 * i.e. if nr_pending == 0.
683 * We choose only to raise the barrier if no-one is waiting for the
684 * barrier to go down. This means that as soon as an IO request
685 * is ready, no other operations which require a barrier will start
686 * until the IO request has had a chance.
688 * So: regular IO calls 'wait_barrier'. When that returns there
689 * is no backgroup IO happening, It must arrange to call
690 * allow_barrier when it has finished its IO.
691 * backgroup IO calls must call raise_barrier. Once that returns
692 * there is no normal IO happeing. It must arrange to call
693 * lower_barrier when the particular background IO completes.
696 static void raise_barrier(conf_t *conf, int force)
698 BUG_ON(force && !conf->barrier);
699 spin_lock_irq(&conf->resync_lock);
701 /* Wait until no block IO is waiting (unless 'force') */
702 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
703 conf->resync_lock,
704 raid10_unplug(conf->mddev->queue));
706 /* block any new IO from starting */
707 conf->barrier++;
709 /* No wait for all pending IO to complete */
710 wait_event_lock_irq(conf->wait_barrier,
711 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
712 conf->resync_lock,
713 raid10_unplug(conf->mddev->queue));
715 spin_unlock_irq(&conf->resync_lock);
718 static void lower_barrier(conf_t *conf)
720 unsigned long flags;
721 spin_lock_irqsave(&conf->resync_lock, flags);
722 conf->barrier--;
723 spin_unlock_irqrestore(&conf->resync_lock, flags);
724 wake_up(&conf->wait_barrier);
727 static void wait_barrier(conf_t *conf)
729 spin_lock_irq(&conf->resync_lock);
730 if (conf->barrier) {
731 conf->nr_waiting++;
732 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
733 conf->resync_lock,
734 raid10_unplug(conf->mddev->queue));
735 conf->nr_waiting--;
737 conf->nr_pending++;
738 spin_unlock_irq(&conf->resync_lock);
741 static void allow_barrier(conf_t *conf)
743 unsigned long flags;
744 spin_lock_irqsave(&conf->resync_lock, flags);
745 conf->nr_pending--;
746 spin_unlock_irqrestore(&conf->resync_lock, flags);
747 wake_up(&conf->wait_barrier);
750 static void freeze_array(conf_t *conf)
752 /* stop syncio and normal IO and wait for everything to
753 * go quiet.
754 * We increment barrier and nr_waiting, and then
755 * wait until nr_pending match nr_queued+1
756 * This is called in the context of one normal IO request
757 * that has failed. Thus any sync request that might be pending
758 * will be blocked by nr_pending, and we need to wait for
759 * pending IO requests to complete or be queued for re-try.
760 * Thus the number queued (nr_queued) plus this request (1)
761 * must match the number of pending IOs (nr_pending) before
762 * we continue.
764 spin_lock_irq(&conf->resync_lock);
765 conf->barrier++;
766 conf->nr_waiting++;
767 wait_event_lock_irq(conf->wait_barrier,
768 conf->nr_pending == conf->nr_queued+1,
769 conf->resync_lock,
770 ({ flush_pending_writes(conf);
771 raid10_unplug(conf->mddev->queue); }));
772 spin_unlock_irq(&conf->resync_lock);
775 static void unfreeze_array(conf_t *conf)
777 /* reverse the effect of the freeze */
778 spin_lock_irq(&conf->resync_lock);
779 conf->barrier--;
780 conf->nr_waiting--;
781 wake_up(&conf->wait_barrier);
782 spin_unlock_irq(&conf->resync_lock);
785 static int make_request(struct request_queue *q, struct bio * bio)
787 mddev_t *mddev = q->queuedata;
788 conf_t *conf = mddev_to_conf(mddev);
789 mirror_info_t *mirror;
790 r10bio_t *r10_bio;
791 struct bio *read_bio;
792 int cpu;
793 int i;
794 int chunk_sects = conf->chunk_mask + 1;
795 const int rw = bio_data_dir(bio);
796 const int do_sync = bio_sync(bio);
797 struct bio_list bl;
798 unsigned long flags;
799 mdk_rdev_t *blocked_rdev;
801 if (unlikely(bio_barrier(bio))) {
802 bio_endio(bio, -EOPNOTSUPP);
803 return 0;
806 /* If this request crosses a chunk boundary, we need to
807 * split it. This will only happen for 1 PAGE (or less) requests.
809 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
810 > chunk_sects &&
811 conf->near_copies < conf->raid_disks)) {
812 struct bio_pair *bp;
813 /* Sanity check -- queue functions should prevent this happening */
814 if (bio->bi_vcnt != 1 ||
815 bio->bi_idx != 0)
816 goto bad_map;
817 /* This is a one page bio that upper layers
818 * refuse to split for us, so we need to split it.
820 bp = bio_split(bio,
821 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
822 if (make_request(q, &bp->bio1))
823 generic_make_request(&bp->bio1);
824 if (make_request(q, &bp->bio2))
825 generic_make_request(&bp->bio2);
827 bio_pair_release(bp);
828 return 0;
829 bad_map:
830 printk("raid10_make_request bug: can't convert block across chunks"
831 " or bigger than %dk %llu %d\n", chunk_sects/2,
832 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
834 bio_io_error(bio);
835 return 0;
838 md_write_start(mddev, bio);
841 * Register the new request and wait if the reconstruction
842 * thread has put up a bar for new requests.
843 * Continue immediately if no resync is active currently.
845 wait_barrier(conf);
847 cpu = part_stat_lock();
848 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
849 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
850 bio_sectors(bio));
851 part_stat_unlock();
853 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
855 r10_bio->master_bio = bio;
856 r10_bio->sectors = bio->bi_size >> 9;
858 r10_bio->mddev = mddev;
859 r10_bio->sector = bio->bi_sector;
860 r10_bio->state = 0;
862 if (rw == READ) {
864 * read balancing logic:
866 int disk = read_balance(conf, r10_bio);
867 int slot = r10_bio->read_slot;
868 if (disk < 0) {
869 raid_end_bio_io(r10_bio);
870 return 0;
872 mirror = conf->mirrors + disk;
874 read_bio = bio_clone(bio, GFP_NOIO);
876 r10_bio->devs[slot].bio = read_bio;
878 read_bio->bi_sector = r10_bio->devs[slot].addr +
879 mirror->rdev->data_offset;
880 read_bio->bi_bdev = mirror->rdev->bdev;
881 read_bio->bi_end_io = raid10_end_read_request;
882 read_bio->bi_rw = READ | do_sync;
883 read_bio->bi_private = r10_bio;
885 generic_make_request(read_bio);
886 return 0;
890 * WRITE:
892 /* first select target devices under rcu_lock and
893 * inc refcount on their rdev. Record them by setting
894 * bios[x] to bio
896 raid10_find_phys(conf, r10_bio);
897 retry_write:
898 blocked_rdev = NULL;
899 rcu_read_lock();
900 for (i = 0; i < conf->copies; i++) {
901 int d = r10_bio->devs[i].devnum;
902 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
903 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
904 atomic_inc(&rdev->nr_pending);
905 blocked_rdev = rdev;
906 break;
908 if (rdev && !test_bit(Faulty, &rdev->flags)) {
909 atomic_inc(&rdev->nr_pending);
910 r10_bio->devs[i].bio = bio;
911 } else {
912 r10_bio->devs[i].bio = NULL;
913 set_bit(R10BIO_Degraded, &r10_bio->state);
916 rcu_read_unlock();
918 if (unlikely(blocked_rdev)) {
919 /* Have to wait for this device to get unblocked, then retry */
920 int j;
921 int d;
923 for (j = 0; j < i; j++)
924 if (r10_bio->devs[j].bio) {
925 d = r10_bio->devs[j].devnum;
926 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
928 allow_barrier(conf);
929 md_wait_for_blocked_rdev(blocked_rdev, mddev);
930 wait_barrier(conf);
931 goto retry_write;
934 atomic_set(&r10_bio->remaining, 0);
936 bio_list_init(&bl);
937 for (i = 0; i < conf->copies; i++) {
938 struct bio *mbio;
939 int d = r10_bio->devs[i].devnum;
940 if (!r10_bio->devs[i].bio)
941 continue;
943 mbio = bio_clone(bio, GFP_NOIO);
944 r10_bio->devs[i].bio = mbio;
946 mbio->bi_sector = r10_bio->devs[i].addr+
947 conf->mirrors[d].rdev->data_offset;
948 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
949 mbio->bi_end_io = raid10_end_write_request;
950 mbio->bi_rw = WRITE | do_sync;
951 mbio->bi_private = r10_bio;
953 atomic_inc(&r10_bio->remaining);
954 bio_list_add(&bl, mbio);
957 if (unlikely(!atomic_read(&r10_bio->remaining))) {
958 /* the array is dead */
959 md_write_end(mddev);
960 raid_end_bio_io(r10_bio);
961 return 0;
964 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
965 spin_lock_irqsave(&conf->device_lock, flags);
966 bio_list_merge(&conf->pending_bio_list, &bl);
967 blk_plug_device(mddev->queue);
968 spin_unlock_irqrestore(&conf->device_lock, flags);
970 /* In case raid10d snuck in to freeze_array */
971 wake_up(&conf->wait_barrier);
973 if (do_sync)
974 md_wakeup_thread(mddev->thread);
976 return 0;
979 static void status(struct seq_file *seq, mddev_t *mddev)
981 conf_t *conf = mddev_to_conf(mddev);
982 int i;
984 if (conf->near_copies < conf->raid_disks)
985 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
986 if (conf->near_copies > 1)
987 seq_printf(seq, " %d near-copies", conf->near_copies);
988 if (conf->far_copies > 1) {
989 if (conf->far_offset)
990 seq_printf(seq, " %d offset-copies", conf->far_copies);
991 else
992 seq_printf(seq, " %d far-copies", conf->far_copies);
994 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
995 conf->raid_disks - mddev->degraded);
996 for (i = 0; i < conf->raid_disks; i++)
997 seq_printf(seq, "%s",
998 conf->mirrors[i].rdev &&
999 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1000 seq_printf(seq, "]");
1003 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1005 char b[BDEVNAME_SIZE];
1006 conf_t *conf = mddev_to_conf(mddev);
1009 * If it is not operational, then we have already marked it as dead
1010 * else if it is the last working disks, ignore the error, let the
1011 * next level up know.
1012 * else mark the drive as failed
1014 if (test_bit(In_sync, &rdev->flags)
1015 && conf->raid_disks-mddev->degraded == 1)
1017 * Don't fail the drive, just return an IO error.
1018 * The test should really be more sophisticated than
1019 * "working_disks == 1", but it isn't critical, and
1020 * can wait until we do more sophisticated "is the drive
1021 * really dead" tests...
1023 return;
1024 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1025 unsigned long flags;
1026 spin_lock_irqsave(&conf->device_lock, flags);
1027 mddev->degraded++;
1028 spin_unlock_irqrestore(&conf->device_lock, flags);
1030 * if recovery is running, make sure it aborts.
1032 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1034 set_bit(Faulty, &rdev->flags);
1035 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1036 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device.\n"
1037 "raid10: Operation continuing on %d devices.\n",
1038 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1041 static void print_conf(conf_t *conf)
1043 int i;
1044 mirror_info_t *tmp;
1046 printk("RAID10 conf printout:\n");
1047 if (!conf) {
1048 printk("(!conf)\n");
1049 return;
1051 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1052 conf->raid_disks);
1054 for (i = 0; i < conf->raid_disks; i++) {
1055 char b[BDEVNAME_SIZE];
1056 tmp = conf->mirrors + i;
1057 if (tmp->rdev)
1058 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1059 i, !test_bit(In_sync, &tmp->rdev->flags),
1060 !test_bit(Faulty, &tmp->rdev->flags),
1061 bdevname(tmp->rdev->bdev,b));
1065 static void close_sync(conf_t *conf)
1067 wait_barrier(conf);
1068 allow_barrier(conf);
1070 mempool_destroy(conf->r10buf_pool);
1071 conf->r10buf_pool = NULL;
1074 /* check if there are enough drives for
1075 * every block to appear on atleast one
1077 static int enough(conf_t *conf)
1079 int first = 0;
1081 do {
1082 int n = conf->copies;
1083 int cnt = 0;
1084 while (n--) {
1085 if (conf->mirrors[first].rdev)
1086 cnt++;
1087 first = (first+1) % conf->raid_disks;
1089 if (cnt == 0)
1090 return 0;
1091 } while (first != 0);
1092 return 1;
1095 static int raid10_spare_active(mddev_t *mddev)
1097 int i;
1098 conf_t *conf = mddev->private;
1099 mirror_info_t *tmp;
1102 * Find all non-in_sync disks within the RAID10 configuration
1103 * and mark them in_sync
1105 for (i = 0; i < conf->raid_disks; i++) {
1106 tmp = conf->mirrors + i;
1107 if (tmp->rdev
1108 && !test_bit(Faulty, &tmp->rdev->flags)
1109 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1110 unsigned long flags;
1111 spin_lock_irqsave(&conf->device_lock, flags);
1112 mddev->degraded--;
1113 spin_unlock_irqrestore(&conf->device_lock, flags);
1117 print_conf(conf);
1118 return 0;
1122 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1124 conf_t *conf = mddev->private;
1125 int err = -EEXIST;
1126 int mirror;
1127 mirror_info_t *p;
1128 int first = 0;
1129 int last = mddev->raid_disks - 1;
1131 if (mddev->recovery_cp < MaxSector)
1132 /* only hot-add to in-sync arrays, as recovery is
1133 * very different from resync
1135 return -EBUSY;
1136 if (!enough(conf))
1137 return -EINVAL;
1139 if (rdev->raid_disk)
1140 first = last = rdev->raid_disk;
1142 if (rdev->saved_raid_disk >= 0 &&
1143 rdev->saved_raid_disk >= first &&
1144 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1145 mirror = rdev->saved_raid_disk;
1146 else
1147 mirror = first;
1148 for ( ; mirror <= last ; mirror++)
1149 if ( !(p=conf->mirrors+mirror)->rdev) {
1151 blk_queue_stack_limits(mddev->queue,
1152 rdev->bdev->bd_disk->queue);
1153 /* as we don't honour merge_bvec_fn, we must never risk
1154 * violating it, so limit ->max_sector to one PAGE, as
1155 * a one page request is never in violation.
1157 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1158 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1159 mddev->queue->max_sectors = (PAGE_SIZE>>9);
1161 p->head_position = 0;
1162 rdev->raid_disk = mirror;
1163 err = 0;
1164 if (rdev->saved_raid_disk != mirror)
1165 conf->fullsync = 1;
1166 rcu_assign_pointer(p->rdev, rdev);
1167 break;
1170 print_conf(conf);
1171 return err;
1174 static int raid10_remove_disk(mddev_t *mddev, int number)
1176 conf_t *conf = mddev->private;
1177 int err = 0;
1178 mdk_rdev_t *rdev;
1179 mirror_info_t *p = conf->mirrors+ number;
1181 print_conf(conf);
1182 rdev = p->rdev;
1183 if (rdev) {
1184 if (test_bit(In_sync, &rdev->flags) ||
1185 atomic_read(&rdev->nr_pending)) {
1186 err = -EBUSY;
1187 goto abort;
1189 /* Only remove faulty devices in recovery
1190 * is not possible.
1192 if (!test_bit(Faulty, &rdev->flags) &&
1193 enough(conf)) {
1194 err = -EBUSY;
1195 goto abort;
1197 p->rdev = NULL;
1198 synchronize_rcu();
1199 if (atomic_read(&rdev->nr_pending)) {
1200 /* lost the race, try later */
1201 err = -EBUSY;
1202 p->rdev = rdev;
1205 abort:
1207 print_conf(conf);
1208 return err;
1212 static void end_sync_read(struct bio *bio, int error)
1214 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1215 conf_t *conf = mddev_to_conf(r10_bio->mddev);
1216 int i,d;
1218 for (i=0; i<conf->copies; i++)
1219 if (r10_bio->devs[i].bio == bio)
1220 break;
1221 BUG_ON(i == conf->copies);
1222 update_head_pos(i, r10_bio);
1223 d = r10_bio->devs[i].devnum;
1225 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1226 set_bit(R10BIO_Uptodate, &r10_bio->state);
1227 else {
1228 atomic_add(r10_bio->sectors,
1229 &conf->mirrors[d].rdev->corrected_errors);
1230 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1231 md_error(r10_bio->mddev,
1232 conf->mirrors[d].rdev);
1235 /* for reconstruct, we always reschedule after a read.
1236 * for resync, only after all reads
1238 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1239 atomic_dec_and_test(&r10_bio->remaining)) {
1240 /* we have read all the blocks,
1241 * do the comparison in process context in raid10d
1243 reschedule_retry(r10_bio);
1245 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1248 static void end_sync_write(struct bio *bio, int error)
1250 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1251 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1252 mddev_t *mddev = r10_bio->mddev;
1253 conf_t *conf = mddev_to_conf(mddev);
1254 int i,d;
1256 for (i = 0; i < conf->copies; i++)
1257 if (r10_bio->devs[i].bio == bio)
1258 break;
1259 d = r10_bio->devs[i].devnum;
1261 if (!uptodate)
1262 md_error(mddev, conf->mirrors[d].rdev);
1264 update_head_pos(i, r10_bio);
1266 while (atomic_dec_and_test(&r10_bio->remaining)) {
1267 if (r10_bio->master_bio == NULL) {
1268 /* the primary of several recovery bios */
1269 md_done_sync(mddev, r10_bio->sectors, 1);
1270 put_buf(r10_bio);
1271 break;
1272 } else {
1273 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1274 put_buf(r10_bio);
1275 r10_bio = r10_bio2;
1278 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1282 * Note: sync and recover and handled very differently for raid10
1283 * This code is for resync.
1284 * For resync, we read through virtual addresses and read all blocks.
1285 * If there is any error, we schedule a write. The lowest numbered
1286 * drive is authoritative.
1287 * However requests come for physical address, so we need to map.
1288 * For every physical address there are raid_disks/copies virtual addresses,
1289 * which is always are least one, but is not necessarly an integer.
1290 * This means that a physical address can span multiple chunks, so we may
1291 * have to submit multiple io requests for a single sync request.
1294 * We check if all blocks are in-sync and only write to blocks that
1295 * aren't in sync
1297 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1299 conf_t *conf = mddev_to_conf(mddev);
1300 int i, first;
1301 struct bio *tbio, *fbio;
1303 atomic_set(&r10_bio->remaining, 1);
1305 /* find the first device with a block */
1306 for (i=0; i<conf->copies; i++)
1307 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1308 break;
1310 if (i == conf->copies)
1311 goto done;
1313 first = i;
1314 fbio = r10_bio->devs[i].bio;
1316 /* now find blocks with errors */
1317 for (i=0 ; i < conf->copies ; i++) {
1318 int j, d;
1319 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1321 tbio = r10_bio->devs[i].bio;
1323 if (tbio->bi_end_io != end_sync_read)
1324 continue;
1325 if (i == first)
1326 continue;
1327 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1328 /* We know that the bi_io_vec layout is the same for
1329 * both 'first' and 'i', so we just compare them.
1330 * All vec entries are PAGE_SIZE;
1332 for (j = 0; j < vcnt; j++)
1333 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1334 page_address(tbio->bi_io_vec[j].bv_page),
1335 PAGE_SIZE))
1336 break;
1337 if (j == vcnt)
1338 continue;
1339 mddev->resync_mismatches += r10_bio->sectors;
1341 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1342 /* Don't fix anything. */
1343 continue;
1344 /* Ok, we need to write this bio
1345 * First we need to fixup bv_offset, bv_len and
1346 * bi_vecs, as the read request might have corrupted these
1348 tbio->bi_vcnt = vcnt;
1349 tbio->bi_size = r10_bio->sectors << 9;
1350 tbio->bi_idx = 0;
1351 tbio->bi_phys_segments = 0;
1352 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1353 tbio->bi_flags |= 1 << BIO_UPTODATE;
1354 tbio->bi_next = NULL;
1355 tbio->bi_rw = WRITE;
1356 tbio->bi_private = r10_bio;
1357 tbio->bi_sector = r10_bio->devs[i].addr;
1359 for (j=0; j < vcnt ; j++) {
1360 tbio->bi_io_vec[j].bv_offset = 0;
1361 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1363 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1364 page_address(fbio->bi_io_vec[j].bv_page),
1365 PAGE_SIZE);
1367 tbio->bi_end_io = end_sync_write;
1369 d = r10_bio->devs[i].devnum;
1370 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1371 atomic_inc(&r10_bio->remaining);
1372 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1374 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1375 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1376 generic_make_request(tbio);
1379 done:
1380 if (atomic_dec_and_test(&r10_bio->remaining)) {
1381 md_done_sync(mddev, r10_bio->sectors, 1);
1382 put_buf(r10_bio);
1387 * Now for the recovery code.
1388 * Recovery happens across physical sectors.
1389 * We recover all non-is_sync drives by finding the virtual address of
1390 * each, and then choose a working drive that also has that virt address.
1391 * There is a separate r10_bio for each non-in_sync drive.
1392 * Only the first two slots are in use. The first for reading,
1393 * The second for writing.
1397 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1399 conf_t *conf = mddev_to_conf(mddev);
1400 int i, d;
1401 struct bio *bio, *wbio;
1404 /* move the pages across to the second bio
1405 * and submit the write request
1407 bio = r10_bio->devs[0].bio;
1408 wbio = r10_bio->devs[1].bio;
1409 for (i=0; i < wbio->bi_vcnt; i++) {
1410 struct page *p = bio->bi_io_vec[i].bv_page;
1411 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1412 wbio->bi_io_vec[i].bv_page = p;
1414 d = r10_bio->devs[1].devnum;
1416 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1417 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1418 if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1419 generic_make_request(wbio);
1420 else
1421 bio_endio(wbio, -EIO);
1426 * This is a kernel thread which:
1428 * 1. Retries failed read operations on working mirrors.
1429 * 2. Updates the raid superblock when problems encounter.
1430 * 3. Performs writes following reads for array synchronising.
1433 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1435 int sect = 0; /* Offset from r10_bio->sector */
1436 int sectors = r10_bio->sectors;
1437 mdk_rdev_t*rdev;
1438 while(sectors) {
1439 int s = sectors;
1440 int sl = r10_bio->read_slot;
1441 int success = 0;
1442 int start;
1444 if (s > (PAGE_SIZE>>9))
1445 s = PAGE_SIZE >> 9;
1447 rcu_read_lock();
1448 do {
1449 int d = r10_bio->devs[sl].devnum;
1450 rdev = rcu_dereference(conf->mirrors[d].rdev);
1451 if (rdev &&
1452 test_bit(In_sync, &rdev->flags)) {
1453 atomic_inc(&rdev->nr_pending);
1454 rcu_read_unlock();
1455 success = sync_page_io(rdev->bdev,
1456 r10_bio->devs[sl].addr +
1457 sect + rdev->data_offset,
1458 s<<9,
1459 conf->tmppage, READ);
1460 rdev_dec_pending(rdev, mddev);
1461 rcu_read_lock();
1462 if (success)
1463 break;
1465 sl++;
1466 if (sl == conf->copies)
1467 sl = 0;
1468 } while (!success && sl != r10_bio->read_slot);
1469 rcu_read_unlock();
1471 if (!success) {
1472 /* Cannot read from anywhere -- bye bye array */
1473 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1474 md_error(mddev, conf->mirrors[dn].rdev);
1475 break;
1478 start = sl;
1479 /* write it back and re-read */
1480 rcu_read_lock();
1481 while (sl != r10_bio->read_slot) {
1482 int d;
1483 if (sl==0)
1484 sl = conf->copies;
1485 sl--;
1486 d = r10_bio->devs[sl].devnum;
1487 rdev = rcu_dereference(conf->mirrors[d].rdev);
1488 if (rdev &&
1489 test_bit(In_sync, &rdev->flags)) {
1490 atomic_inc(&rdev->nr_pending);
1491 rcu_read_unlock();
1492 atomic_add(s, &rdev->corrected_errors);
1493 if (sync_page_io(rdev->bdev,
1494 r10_bio->devs[sl].addr +
1495 sect + rdev->data_offset,
1496 s<<9, conf->tmppage, WRITE)
1497 == 0)
1498 /* Well, this device is dead */
1499 md_error(mddev, rdev);
1500 rdev_dec_pending(rdev, mddev);
1501 rcu_read_lock();
1504 sl = start;
1505 while (sl != r10_bio->read_slot) {
1506 int d;
1507 if (sl==0)
1508 sl = conf->copies;
1509 sl--;
1510 d = r10_bio->devs[sl].devnum;
1511 rdev = rcu_dereference(conf->mirrors[d].rdev);
1512 if (rdev &&
1513 test_bit(In_sync, &rdev->flags)) {
1514 char b[BDEVNAME_SIZE];
1515 atomic_inc(&rdev->nr_pending);
1516 rcu_read_unlock();
1517 if (sync_page_io(rdev->bdev,
1518 r10_bio->devs[sl].addr +
1519 sect + rdev->data_offset,
1520 s<<9, conf->tmppage, READ) == 0)
1521 /* Well, this device is dead */
1522 md_error(mddev, rdev);
1523 else
1524 printk(KERN_INFO
1525 "raid10:%s: read error corrected"
1526 " (%d sectors at %llu on %s)\n",
1527 mdname(mddev), s,
1528 (unsigned long long)(sect+
1529 rdev->data_offset),
1530 bdevname(rdev->bdev, b));
1532 rdev_dec_pending(rdev, mddev);
1533 rcu_read_lock();
1536 rcu_read_unlock();
1538 sectors -= s;
1539 sect += s;
1543 static void raid10d(mddev_t *mddev)
1545 r10bio_t *r10_bio;
1546 struct bio *bio;
1547 unsigned long flags;
1548 conf_t *conf = mddev_to_conf(mddev);
1549 struct list_head *head = &conf->retry_list;
1550 int unplug=0;
1551 mdk_rdev_t *rdev;
1553 md_check_recovery(mddev);
1555 for (;;) {
1556 char b[BDEVNAME_SIZE];
1558 unplug += flush_pending_writes(conf);
1560 spin_lock_irqsave(&conf->device_lock, flags);
1561 if (list_empty(head)) {
1562 spin_unlock_irqrestore(&conf->device_lock, flags);
1563 break;
1565 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1566 list_del(head->prev);
1567 conf->nr_queued--;
1568 spin_unlock_irqrestore(&conf->device_lock, flags);
1570 mddev = r10_bio->mddev;
1571 conf = mddev_to_conf(mddev);
1572 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1573 sync_request_write(mddev, r10_bio);
1574 unplug = 1;
1575 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1576 recovery_request_write(mddev, r10_bio);
1577 unplug = 1;
1578 } else {
1579 int mirror;
1580 /* we got a read error. Maybe the drive is bad. Maybe just
1581 * the block and we can fix it.
1582 * We freeze all other IO, and try reading the block from
1583 * other devices. When we find one, we re-write
1584 * and check it that fixes the read error.
1585 * This is all done synchronously while the array is
1586 * frozen.
1588 if (mddev->ro == 0) {
1589 freeze_array(conf);
1590 fix_read_error(conf, mddev, r10_bio);
1591 unfreeze_array(conf);
1594 bio = r10_bio->devs[r10_bio->read_slot].bio;
1595 r10_bio->devs[r10_bio->read_slot].bio =
1596 mddev->ro ? IO_BLOCKED : NULL;
1597 mirror = read_balance(conf, r10_bio);
1598 if (mirror == -1) {
1599 printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1600 " read error for block %llu\n",
1601 bdevname(bio->bi_bdev,b),
1602 (unsigned long long)r10_bio->sector);
1603 raid_end_bio_io(r10_bio);
1604 bio_put(bio);
1605 } else {
1606 const int do_sync = bio_sync(r10_bio->master_bio);
1607 bio_put(bio);
1608 rdev = conf->mirrors[mirror].rdev;
1609 if (printk_ratelimit())
1610 printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1611 " another mirror\n",
1612 bdevname(rdev->bdev,b),
1613 (unsigned long long)r10_bio->sector);
1614 bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1615 r10_bio->devs[r10_bio->read_slot].bio = bio;
1616 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1617 + rdev->data_offset;
1618 bio->bi_bdev = rdev->bdev;
1619 bio->bi_rw = READ | do_sync;
1620 bio->bi_private = r10_bio;
1621 bio->bi_end_io = raid10_end_read_request;
1622 unplug = 1;
1623 generic_make_request(bio);
1627 if (unplug)
1628 unplug_slaves(mddev);
1632 static int init_resync(conf_t *conf)
1634 int buffs;
1636 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1637 BUG_ON(conf->r10buf_pool);
1638 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1639 if (!conf->r10buf_pool)
1640 return -ENOMEM;
1641 conf->next_resync = 0;
1642 return 0;
1646 * perform a "sync" on one "block"
1648 * We need to make sure that no normal I/O request - particularly write
1649 * requests - conflict with active sync requests.
1651 * This is achieved by tracking pending requests and a 'barrier' concept
1652 * that can be installed to exclude normal IO requests.
1654 * Resync and recovery are handled very differently.
1655 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1657 * For resync, we iterate over virtual addresses, read all copies,
1658 * and update if there are differences. If only one copy is live,
1659 * skip it.
1660 * For recovery, we iterate over physical addresses, read a good
1661 * value for each non-in_sync drive, and over-write.
1663 * So, for recovery we may have several outstanding complex requests for a
1664 * given address, one for each out-of-sync device. We model this by allocating
1665 * a number of r10_bio structures, one for each out-of-sync device.
1666 * As we setup these structures, we collect all bio's together into a list
1667 * which we then process collectively to add pages, and then process again
1668 * to pass to generic_make_request.
1670 * The r10_bio structures are linked using a borrowed master_bio pointer.
1671 * This link is counted in ->remaining. When the r10_bio that points to NULL
1672 * has its remaining count decremented to 0, the whole complex operation
1673 * is complete.
1677 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1679 conf_t *conf = mddev_to_conf(mddev);
1680 r10bio_t *r10_bio;
1681 struct bio *biolist = NULL, *bio;
1682 sector_t max_sector, nr_sectors;
1683 int disk;
1684 int i;
1685 int max_sync;
1686 int sync_blocks;
1688 sector_t sectors_skipped = 0;
1689 int chunks_skipped = 0;
1691 if (!conf->r10buf_pool)
1692 if (init_resync(conf))
1693 return 0;
1695 skipped:
1696 max_sector = mddev->size << 1;
1697 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1698 max_sector = mddev->resync_max_sectors;
1699 if (sector_nr >= max_sector) {
1700 /* If we aborted, we need to abort the
1701 * sync on the 'current' bitmap chucks (there can
1702 * be several when recovering multiple devices).
1703 * as we may have started syncing it but not finished.
1704 * We can find the current address in
1705 * mddev->curr_resync, but for recovery,
1706 * we need to convert that to several
1707 * virtual addresses.
1709 if (mddev->curr_resync < max_sector) { /* aborted */
1710 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1711 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1712 &sync_blocks, 1);
1713 else for (i=0; i<conf->raid_disks; i++) {
1714 sector_t sect =
1715 raid10_find_virt(conf, mddev->curr_resync, i);
1716 bitmap_end_sync(mddev->bitmap, sect,
1717 &sync_blocks, 1);
1719 } else /* completed sync */
1720 conf->fullsync = 0;
1722 bitmap_close_sync(mddev->bitmap);
1723 close_sync(conf);
1724 *skipped = 1;
1725 return sectors_skipped;
1727 if (chunks_skipped >= conf->raid_disks) {
1728 /* if there has been nothing to do on any drive,
1729 * then there is nothing to do at all..
1731 *skipped = 1;
1732 return (max_sector - sector_nr) + sectors_skipped;
1735 if (max_sector > mddev->resync_max)
1736 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1738 /* make sure whole request will fit in a chunk - if chunks
1739 * are meaningful
1741 if (conf->near_copies < conf->raid_disks &&
1742 max_sector > (sector_nr | conf->chunk_mask))
1743 max_sector = (sector_nr | conf->chunk_mask) + 1;
1745 * If there is non-resync activity waiting for us then
1746 * put in a delay to throttle resync.
1748 if (!go_faster && conf->nr_waiting)
1749 msleep_interruptible(1000);
1751 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1753 /* Again, very different code for resync and recovery.
1754 * Both must result in an r10bio with a list of bios that
1755 * have bi_end_io, bi_sector, bi_bdev set,
1756 * and bi_private set to the r10bio.
1757 * For recovery, we may actually create several r10bios
1758 * with 2 bios in each, that correspond to the bios in the main one.
1759 * In this case, the subordinate r10bios link back through a
1760 * borrowed master_bio pointer, and the counter in the master
1761 * includes a ref from each subordinate.
1763 /* First, we decide what to do and set ->bi_end_io
1764 * To end_sync_read if we want to read, and
1765 * end_sync_write if we will want to write.
1768 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1769 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1770 /* recovery... the complicated one */
1771 int i, j, k;
1772 r10_bio = NULL;
1774 for (i=0 ; i<conf->raid_disks; i++)
1775 if (conf->mirrors[i].rdev &&
1776 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1777 int still_degraded = 0;
1778 /* want to reconstruct this device */
1779 r10bio_t *rb2 = r10_bio;
1780 sector_t sect = raid10_find_virt(conf, sector_nr, i);
1781 int must_sync;
1782 /* Unless we are doing a full sync, we only need
1783 * to recover the block if it is set in the bitmap
1785 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1786 &sync_blocks, 1);
1787 if (sync_blocks < max_sync)
1788 max_sync = sync_blocks;
1789 if (!must_sync &&
1790 !conf->fullsync) {
1791 /* yep, skip the sync_blocks here, but don't assume
1792 * that there will never be anything to do here
1794 chunks_skipped = -1;
1795 continue;
1798 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1799 raise_barrier(conf, rb2 != NULL);
1800 atomic_set(&r10_bio->remaining, 0);
1802 r10_bio->master_bio = (struct bio*)rb2;
1803 if (rb2)
1804 atomic_inc(&rb2->remaining);
1805 r10_bio->mddev = mddev;
1806 set_bit(R10BIO_IsRecover, &r10_bio->state);
1807 r10_bio->sector = sect;
1809 raid10_find_phys(conf, r10_bio);
1810 /* Need to check if this section will still be
1811 * degraded
1813 for (j=0; j<conf->copies;j++) {
1814 int d = r10_bio->devs[j].devnum;
1815 if (conf->mirrors[d].rdev == NULL ||
1816 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) {
1817 still_degraded = 1;
1818 break;
1821 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1822 &sync_blocks, still_degraded);
1824 for (j=0; j<conf->copies;j++) {
1825 int d = r10_bio->devs[j].devnum;
1826 if (conf->mirrors[d].rdev &&
1827 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1828 /* This is where we read from */
1829 bio = r10_bio->devs[0].bio;
1830 bio->bi_next = biolist;
1831 biolist = bio;
1832 bio->bi_private = r10_bio;
1833 bio->bi_end_io = end_sync_read;
1834 bio->bi_rw = READ;
1835 bio->bi_sector = r10_bio->devs[j].addr +
1836 conf->mirrors[d].rdev->data_offset;
1837 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1838 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1839 atomic_inc(&r10_bio->remaining);
1840 /* and we write to 'i' */
1842 for (k=0; k<conf->copies; k++)
1843 if (r10_bio->devs[k].devnum == i)
1844 break;
1845 BUG_ON(k == conf->copies);
1846 bio = r10_bio->devs[1].bio;
1847 bio->bi_next = biolist;
1848 biolist = bio;
1849 bio->bi_private = r10_bio;
1850 bio->bi_end_io = end_sync_write;
1851 bio->bi_rw = WRITE;
1852 bio->bi_sector = r10_bio->devs[k].addr +
1853 conf->mirrors[i].rdev->data_offset;
1854 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1856 r10_bio->devs[0].devnum = d;
1857 r10_bio->devs[1].devnum = i;
1859 break;
1862 if (j == conf->copies) {
1863 /* Cannot recover, so abort the recovery */
1864 put_buf(r10_bio);
1865 if (rb2)
1866 atomic_dec(&rb2->remaining);
1867 r10_bio = rb2;
1868 if (!test_and_set_bit(MD_RECOVERY_INTR,
1869 &mddev->recovery))
1870 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1871 mdname(mddev));
1872 break;
1875 if (biolist == NULL) {
1876 while (r10_bio) {
1877 r10bio_t *rb2 = r10_bio;
1878 r10_bio = (r10bio_t*) rb2->master_bio;
1879 rb2->master_bio = NULL;
1880 put_buf(rb2);
1882 goto giveup;
1884 } else {
1885 /* resync. Schedule a read for every block at this virt offset */
1886 int count = 0;
1888 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1889 &sync_blocks, mddev->degraded) &&
1890 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1891 /* We can skip this block */
1892 *skipped = 1;
1893 return sync_blocks + sectors_skipped;
1895 if (sync_blocks < max_sync)
1896 max_sync = sync_blocks;
1897 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1899 r10_bio->mddev = mddev;
1900 atomic_set(&r10_bio->remaining, 0);
1901 raise_barrier(conf, 0);
1902 conf->next_resync = sector_nr;
1904 r10_bio->master_bio = NULL;
1905 r10_bio->sector = sector_nr;
1906 set_bit(R10BIO_IsSync, &r10_bio->state);
1907 raid10_find_phys(conf, r10_bio);
1908 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1910 for (i=0; i<conf->copies; i++) {
1911 int d = r10_bio->devs[i].devnum;
1912 bio = r10_bio->devs[i].bio;
1913 bio->bi_end_io = NULL;
1914 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1915 if (conf->mirrors[d].rdev == NULL ||
1916 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1917 continue;
1918 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1919 atomic_inc(&r10_bio->remaining);
1920 bio->bi_next = biolist;
1921 biolist = bio;
1922 bio->bi_private = r10_bio;
1923 bio->bi_end_io = end_sync_read;
1924 bio->bi_rw = READ;
1925 bio->bi_sector = r10_bio->devs[i].addr +
1926 conf->mirrors[d].rdev->data_offset;
1927 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1928 count++;
1931 if (count < 2) {
1932 for (i=0; i<conf->copies; i++) {
1933 int d = r10_bio->devs[i].devnum;
1934 if (r10_bio->devs[i].bio->bi_end_io)
1935 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1937 put_buf(r10_bio);
1938 biolist = NULL;
1939 goto giveup;
1943 for (bio = biolist; bio ; bio=bio->bi_next) {
1945 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1946 if (bio->bi_end_io)
1947 bio->bi_flags |= 1 << BIO_UPTODATE;
1948 bio->bi_vcnt = 0;
1949 bio->bi_idx = 0;
1950 bio->bi_phys_segments = 0;
1951 bio->bi_size = 0;
1954 nr_sectors = 0;
1955 if (sector_nr + max_sync < max_sector)
1956 max_sector = sector_nr + max_sync;
1957 do {
1958 struct page *page;
1959 int len = PAGE_SIZE;
1960 disk = 0;
1961 if (sector_nr + (len>>9) > max_sector)
1962 len = (max_sector - sector_nr) << 9;
1963 if (len == 0)
1964 break;
1965 for (bio= biolist ; bio ; bio=bio->bi_next) {
1966 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1967 if (bio_add_page(bio, page, len, 0) == 0) {
1968 /* stop here */
1969 struct bio *bio2;
1970 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1971 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1972 /* remove last page from this bio */
1973 bio2->bi_vcnt--;
1974 bio2->bi_size -= len;
1975 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1977 goto bio_full;
1979 disk = i;
1981 nr_sectors += len>>9;
1982 sector_nr += len>>9;
1983 } while (biolist->bi_vcnt < RESYNC_PAGES);
1984 bio_full:
1985 r10_bio->sectors = nr_sectors;
1987 while (biolist) {
1988 bio = biolist;
1989 biolist = biolist->bi_next;
1991 bio->bi_next = NULL;
1992 r10_bio = bio->bi_private;
1993 r10_bio->sectors = nr_sectors;
1995 if (bio->bi_end_io == end_sync_read) {
1996 md_sync_acct(bio->bi_bdev, nr_sectors);
1997 generic_make_request(bio);
2001 if (sectors_skipped)
2002 /* pretend they weren't skipped, it makes
2003 * no important difference in this case
2005 md_done_sync(mddev, sectors_skipped, 1);
2007 return sectors_skipped + nr_sectors;
2008 giveup:
2009 /* There is nowhere to write, so all non-sync
2010 * drives must be failed, so try the next chunk...
2013 sector_t sec = max_sector - sector_nr;
2014 sectors_skipped += sec;
2015 chunks_skipped ++;
2016 sector_nr = max_sector;
2017 goto skipped;
2021 static int run(mddev_t *mddev)
2023 conf_t *conf;
2024 int i, disk_idx;
2025 mirror_info_t *disk;
2026 mdk_rdev_t *rdev;
2027 struct list_head *tmp;
2028 int nc, fc, fo;
2029 sector_t stride, size;
2031 if (mddev->chunk_size == 0) {
2032 printk(KERN_ERR "md/raid10: non-zero chunk size required.\n");
2033 return -EINVAL;
2036 nc = mddev->layout & 255;
2037 fc = (mddev->layout >> 8) & 255;
2038 fo = mddev->layout & (1<<16);
2039 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2040 (mddev->layout >> 17)) {
2041 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
2042 mdname(mddev), mddev->layout);
2043 goto out;
2046 * copy the already verified devices into our private RAID10
2047 * bookkeeping area. [whatever we allocate in run(),
2048 * should be freed in stop()]
2050 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2051 mddev->private = conf;
2052 if (!conf) {
2053 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2054 mdname(mddev));
2055 goto out;
2057 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2058 GFP_KERNEL);
2059 if (!conf->mirrors) {
2060 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2061 mdname(mddev));
2062 goto out_free_conf;
2065 conf->tmppage = alloc_page(GFP_KERNEL);
2066 if (!conf->tmppage)
2067 goto out_free_conf;
2069 conf->mddev = mddev;
2070 conf->raid_disks = mddev->raid_disks;
2071 conf->near_copies = nc;
2072 conf->far_copies = fc;
2073 conf->copies = nc*fc;
2074 conf->far_offset = fo;
2075 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
2076 conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
2077 size = mddev->size >> (conf->chunk_shift-1);
2078 sector_div(size, fc);
2079 size = size * conf->raid_disks;
2080 sector_div(size, nc);
2081 /* 'size' is now the number of chunks in the array */
2082 /* calculate "used chunks per device" in 'stride' */
2083 stride = size * conf->copies;
2085 /* We need to round up when dividing by raid_disks to
2086 * get the stride size.
2088 stride += conf->raid_disks - 1;
2089 sector_div(stride, conf->raid_disks);
2090 mddev->size = stride << (conf->chunk_shift-1);
2092 if (fo)
2093 stride = 1;
2094 else
2095 sector_div(stride, fc);
2096 conf->stride = stride << conf->chunk_shift;
2098 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2099 r10bio_pool_free, conf);
2100 if (!conf->r10bio_pool) {
2101 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2102 mdname(mddev));
2103 goto out_free_conf;
2106 spin_lock_init(&conf->device_lock);
2107 mddev->queue->queue_lock = &conf->device_lock;
2109 rdev_for_each(rdev, tmp, mddev) {
2110 disk_idx = rdev->raid_disk;
2111 if (disk_idx >= mddev->raid_disks
2112 || disk_idx < 0)
2113 continue;
2114 disk = conf->mirrors + disk_idx;
2116 disk->rdev = rdev;
2118 blk_queue_stack_limits(mddev->queue,
2119 rdev->bdev->bd_disk->queue);
2120 /* as we don't honour merge_bvec_fn, we must never risk
2121 * violating it, so limit ->max_sector to one PAGE, as
2122 * a one page request is never in violation.
2124 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2125 mddev->queue->max_sectors > (PAGE_SIZE>>9))
2126 mddev->queue->max_sectors = (PAGE_SIZE>>9);
2128 disk->head_position = 0;
2130 INIT_LIST_HEAD(&conf->retry_list);
2132 spin_lock_init(&conf->resync_lock);
2133 init_waitqueue_head(&conf->wait_barrier);
2135 /* need to check that every block has at least one working mirror */
2136 if (!enough(conf)) {
2137 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
2138 mdname(mddev));
2139 goto out_free_conf;
2142 mddev->degraded = 0;
2143 for (i = 0; i < conf->raid_disks; i++) {
2145 disk = conf->mirrors + i;
2147 if (!disk->rdev ||
2148 !test_bit(In_sync, &disk->rdev->flags)) {
2149 disk->head_position = 0;
2150 mddev->degraded++;
2151 if (disk->rdev)
2152 conf->fullsync = 1;
2157 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
2158 if (!mddev->thread) {
2159 printk(KERN_ERR
2160 "raid10: couldn't allocate thread for %s\n",
2161 mdname(mddev));
2162 goto out_free_conf;
2165 printk(KERN_INFO
2166 "raid10: raid set %s active with %d out of %d devices\n",
2167 mdname(mddev), mddev->raid_disks - mddev->degraded,
2168 mddev->raid_disks);
2170 * Ok, everything is just fine now
2172 mddev->array_sectors = size << conf->chunk_shift;
2173 mddev->resync_max_sectors = size << conf->chunk_shift;
2175 mddev->queue->unplug_fn = raid10_unplug;
2176 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2177 mddev->queue->backing_dev_info.congested_data = mddev;
2179 /* Calculate max read-ahead size.
2180 * We need to readahead at least twice a whole stripe....
2181 * maybe...
2184 int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE);
2185 stripe /= conf->near_copies;
2186 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2187 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2190 if (conf->near_copies < mddev->raid_disks)
2191 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2192 return 0;
2194 out_free_conf:
2195 if (conf->r10bio_pool)
2196 mempool_destroy(conf->r10bio_pool);
2197 safe_put_page(conf->tmppage);
2198 kfree(conf->mirrors);
2199 kfree(conf);
2200 mddev->private = NULL;
2201 out:
2202 return -EIO;
2205 static int stop(mddev_t *mddev)
2207 conf_t *conf = mddev_to_conf(mddev);
2209 md_unregister_thread(mddev->thread);
2210 mddev->thread = NULL;
2211 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2212 if (conf->r10bio_pool)
2213 mempool_destroy(conf->r10bio_pool);
2214 kfree(conf->mirrors);
2215 kfree(conf);
2216 mddev->private = NULL;
2217 return 0;
2220 static void raid10_quiesce(mddev_t *mddev, int state)
2222 conf_t *conf = mddev_to_conf(mddev);
2224 switch(state) {
2225 case 1:
2226 raise_barrier(conf, 0);
2227 break;
2228 case 0:
2229 lower_barrier(conf);
2230 break;
2232 if (mddev->thread) {
2233 if (mddev->bitmap)
2234 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
2235 else
2236 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
2237 md_wakeup_thread(mddev->thread);
2241 static struct mdk_personality raid10_personality =
2243 .name = "raid10",
2244 .level = 10,
2245 .owner = THIS_MODULE,
2246 .make_request = make_request,
2247 .run = run,
2248 .stop = stop,
2249 .status = status,
2250 .error_handler = error,
2251 .hot_add_disk = raid10_add_disk,
2252 .hot_remove_disk= raid10_remove_disk,
2253 .spare_active = raid10_spare_active,
2254 .sync_request = sync_request,
2255 .quiesce = raid10_quiesce,
2258 static int __init raid_init(void)
2260 return register_md_personality(&raid10_personality);
2263 static void raid_exit(void)
2265 unregister_md_personality(&raid10_personality);
2268 module_init(raid_init);
2269 module_exit(raid_exit);
2270 MODULE_LICENSE("GPL");
2271 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2272 MODULE_ALIAS("md-raid10");
2273 MODULE_ALIAS("md-level-10");