sched: pull RT tasks from overloaded runqueues
[linux-2.6/sactl.git] / kernel / sched.c
blobc91797107913d6e593c5679bd32a4f40cec85b4f
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/smp.h>
49 #include <linux/threads.h>
50 #include <linux/timer.h>
51 #include <linux/rcupdate.h>
52 #include <linux/cpu.h>
53 #include <linux/cpuset.h>
54 #include <linux/percpu.h>
55 #include <linux/kthread.h>
56 #include <linux/seq_file.h>
57 #include <linux/sysctl.h>
58 #include <linux/syscalls.h>
59 #include <linux/times.h>
60 #include <linux/tsacct_kern.h>
61 #include <linux/kprobes.h>
62 #include <linux/delayacct.h>
63 #include <linux/reciprocal_div.h>
64 #include <linux/unistd.h>
65 #include <linux/pagemap.h>
67 #include <asm/tlb.h>
68 #include <asm/irq_regs.h>
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
75 unsigned long long __attribute__((weak)) sched_clock(void)
77 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
85 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
94 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99 * Some helpers for converting nanosecond timing to jiffy resolution
101 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102 #define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
104 #define NICE_0_LOAD SCHED_LOAD_SCALE
105 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108 * These are the 'tuning knobs' of the scheduler:
110 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
111 * Timeslices get refilled after they expire.
113 #define DEF_TIMESLICE (100 * HZ / 1000)
115 #ifdef CONFIG_SMP
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
129 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
134 #endif
136 static inline int rt_policy(int policy)
138 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
139 return 1;
140 return 0;
143 static inline int task_has_rt_policy(struct task_struct *p)
145 return rt_policy(p->policy);
149 * This is the priority-queue data structure of the RT scheduling class:
151 struct rt_prio_array {
152 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
153 struct list_head queue[MAX_RT_PRIO];
156 #ifdef CONFIG_FAIR_GROUP_SCHED
158 #include <linux/cgroup.h>
160 struct cfs_rq;
162 /* task group related information */
163 struct task_group {
164 #ifdef CONFIG_FAIR_CGROUP_SCHED
165 struct cgroup_subsys_state css;
166 #endif
167 /* schedulable entities of this group on each cpu */
168 struct sched_entity **se;
169 /* runqueue "owned" by this group on each cpu */
170 struct cfs_rq **cfs_rq;
173 * shares assigned to a task group governs how much of cpu bandwidth
174 * is allocated to the group. The more shares a group has, the more is
175 * the cpu bandwidth allocated to it.
177 * For ex, lets say that there are three task groups, A, B and C which
178 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
179 * cpu bandwidth allocated by the scheduler to task groups A, B and C
180 * should be:
182 * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
183 * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
184 * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
186 * The weight assigned to a task group's schedulable entities on every
187 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
188 * group's shares. For ex: lets say that task group A has been
189 * assigned shares of 1000 and there are two CPUs in a system. Then,
191 * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
193 * Note: It's not necessary that each of a task's group schedulable
194 * entity have the same weight on all CPUs. If the group
195 * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
196 * better distribution of weight could be:
198 * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
199 * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
201 * rebalance_shares() is responsible for distributing the shares of a
202 * task groups like this among the group's schedulable entities across
203 * cpus.
206 unsigned long shares;
208 struct rcu_head rcu;
211 /* Default task group's sched entity on each cpu */
212 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
213 /* Default task group's cfs_rq on each cpu */
214 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
216 static struct sched_entity *init_sched_entity_p[NR_CPUS];
217 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
219 /* task_group_mutex serializes add/remove of task groups and also changes to
220 * a task group's cpu shares.
222 static DEFINE_MUTEX(task_group_mutex);
224 /* doms_cur_mutex serializes access to doms_cur[] array */
225 static DEFINE_MUTEX(doms_cur_mutex);
227 #ifdef CONFIG_SMP
228 /* kernel thread that runs rebalance_shares() periodically */
229 static struct task_struct *lb_monitor_task;
230 static int load_balance_monitor(void *unused);
231 #endif
233 static void set_se_shares(struct sched_entity *se, unsigned long shares);
235 /* Default task group.
236 * Every task in system belong to this group at bootup.
238 struct task_group init_task_group = {
239 .se = init_sched_entity_p,
240 .cfs_rq = init_cfs_rq_p,
243 #ifdef CONFIG_FAIR_USER_SCHED
244 # define INIT_TASK_GROUP_LOAD 2*NICE_0_LOAD
245 #else
246 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
247 #endif
249 #define MIN_GROUP_SHARES 2
251 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
253 /* return group to which a task belongs */
254 static inline struct task_group *task_group(struct task_struct *p)
256 struct task_group *tg;
258 #ifdef CONFIG_FAIR_USER_SCHED
259 tg = p->user->tg;
260 #elif defined(CONFIG_FAIR_CGROUP_SCHED)
261 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
262 struct task_group, css);
263 #else
264 tg = &init_task_group;
265 #endif
266 return tg;
269 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
270 static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
272 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
273 p->se.parent = task_group(p)->se[cpu];
276 static inline void lock_task_group_list(void)
278 mutex_lock(&task_group_mutex);
281 static inline void unlock_task_group_list(void)
283 mutex_unlock(&task_group_mutex);
286 static inline void lock_doms_cur(void)
288 mutex_lock(&doms_cur_mutex);
291 static inline void unlock_doms_cur(void)
293 mutex_unlock(&doms_cur_mutex);
296 #else
298 static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
299 static inline void lock_task_group_list(void) { }
300 static inline void unlock_task_group_list(void) { }
301 static inline void lock_doms_cur(void) { }
302 static inline void unlock_doms_cur(void) { }
304 #endif /* CONFIG_FAIR_GROUP_SCHED */
306 /* CFS-related fields in a runqueue */
307 struct cfs_rq {
308 struct load_weight load;
309 unsigned long nr_running;
311 u64 exec_clock;
312 u64 min_vruntime;
314 struct rb_root tasks_timeline;
315 struct rb_node *rb_leftmost;
316 struct rb_node *rb_load_balance_curr;
317 /* 'curr' points to currently running entity on this cfs_rq.
318 * It is set to NULL otherwise (i.e when none are currently running).
320 struct sched_entity *curr;
322 unsigned long nr_spread_over;
324 #ifdef CONFIG_FAIR_GROUP_SCHED
325 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
328 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
329 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
330 * (like users, containers etc.)
332 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
333 * list is used during load balance.
335 struct list_head leaf_cfs_rq_list;
336 struct task_group *tg; /* group that "owns" this runqueue */
337 #endif
340 /* Real-Time classes' related field in a runqueue: */
341 struct rt_rq {
342 struct rt_prio_array active;
343 int rt_load_balance_idx;
344 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
345 unsigned long rt_nr_running;
346 /* highest queued rt task prio */
347 int highest_prio;
351 * This is the main, per-CPU runqueue data structure.
353 * Locking rule: those places that want to lock multiple runqueues
354 * (such as the load balancing or the thread migration code), lock
355 * acquire operations must be ordered by ascending &runqueue.
357 struct rq {
358 /* runqueue lock: */
359 spinlock_t lock;
362 * nr_running and cpu_load should be in the same cacheline because
363 * remote CPUs use both these fields when doing load calculation.
365 unsigned long nr_running;
366 #define CPU_LOAD_IDX_MAX 5
367 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
368 unsigned char idle_at_tick;
369 #ifdef CONFIG_NO_HZ
370 unsigned char in_nohz_recently;
371 #endif
372 /* capture load from *all* tasks on this cpu: */
373 struct load_weight load;
374 unsigned long nr_load_updates;
375 u64 nr_switches;
377 struct cfs_rq cfs;
378 #ifdef CONFIG_FAIR_GROUP_SCHED
379 /* list of leaf cfs_rq on this cpu: */
380 struct list_head leaf_cfs_rq_list;
381 #endif
382 struct rt_rq rt;
385 * This is part of a global counter where only the total sum
386 * over all CPUs matters. A task can increase this counter on
387 * one CPU and if it got migrated afterwards it may decrease
388 * it on another CPU. Always updated under the runqueue lock:
390 unsigned long nr_uninterruptible;
392 struct task_struct *curr, *idle;
393 unsigned long next_balance;
394 struct mm_struct *prev_mm;
396 u64 clock, prev_clock_raw;
397 s64 clock_max_delta;
399 unsigned int clock_warps, clock_overflows;
400 u64 idle_clock;
401 unsigned int clock_deep_idle_events;
402 u64 tick_timestamp;
404 atomic_t nr_iowait;
406 #ifdef CONFIG_SMP
407 struct sched_domain *sd;
409 /* For active balancing */
410 int active_balance;
411 int push_cpu;
412 /* cpu of this runqueue: */
413 int cpu;
415 struct task_struct *migration_thread;
416 struct list_head migration_queue;
417 #endif
419 #ifdef CONFIG_SCHEDSTATS
420 /* latency stats */
421 struct sched_info rq_sched_info;
423 /* sys_sched_yield() stats */
424 unsigned int yld_exp_empty;
425 unsigned int yld_act_empty;
426 unsigned int yld_both_empty;
427 unsigned int yld_count;
429 /* schedule() stats */
430 unsigned int sched_switch;
431 unsigned int sched_count;
432 unsigned int sched_goidle;
434 /* try_to_wake_up() stats */
435 unsigned int ttwu_count;
436 unsigned int ttwu_local;
438 /* BKL stats */
439 unsigned int bkl_count;
440 #endif
441 struct lock_class_key rq_lock_key;
444 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
446 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
448 rq->curr->sched_class->check_preempt_curr(rq, p);
451 static inline int cpu_of(struct rq *rq)
453 #ifdef CONFIG_SMP
454 return rq->cpu;
455 #else
456 return 0;
457 #endif
461 * Update the per-runqueue clock, as finegrained as the platform can give
462 * us, but without assuming monotonicity, etc.:
464 static void __update_rq_clock(struct rq *rq)
466 u64 prev_raw = rq->prev_clock_raw;
467 u64 now = sched_clock();
468 s64 delta = now - prev_raw;
469 u64 clock = rq->clock;
471 #ifdef CONFIG_SCHED_DEBUG
472 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
473 #endif
475 * Protect against sched_clock() occasionally going backwards:
477 if (unlikely(delta < 0)) {
478 clock++;
479 rq->clock_warps++;
480 } else {
482 * Catch too large forward jumps too:
484 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
485 if (clock < rq->tick_timestamp + TICK_NSEC)
486 clock = rq->tick_timestamp + TICK_NSEC;
487 else
488 clock++;
489 rq->clock_overflows++;
490 } else {
491 if (unlikely(delta > rq->clock_max_delta))
492 rq->clock_max_delta = delta;
493 clock += delta;
497 rq->prev_clock_raw = now;
498 rq->clock = clock;
501 static void update_rq_clock(struct rq *rq)
503 if (likely(smp_processor_id() == cpu_of(rq)))
504 __update_rq_clock(rq);
508 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
509 * See detach_destroy_domains: synchronize_sched for details.
511 * The domain tree of any CPU may only be accessed from within
512 * preempt-disabled sections.
514 #define for_each_domain(cpu, __sd) \
515 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
517 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
518 #define this_rq() (&__get_cpu_var(runqueues))
519 #define task_rq(p) cpu_rq(task_cpu(p))
520 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
523 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
525 #ifdef CONFIG_SCHED_DEBUG
526 # define const_debug __read_mostly
527 #else
528 # define const_debug static const
529 #endif
532 * Debugging: various feature bits
534 enum {
535 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
536 SCHED_FEAT_WAKEUP_PREEMPT = 2,
537 SCHED_FEAT_START_DEBIT = 4,
538 SCHED_FEAT_TREE_AVG = 8,
539 SCHED_FEAT_APPROX_AVG = 16,
542 const_debug unsigned int sysctl_sched_features =
543 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
544 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
545 SCHED_FEAT_START_DEBIT * 1 |
546 SCHED_FEAT_TREE_AVG * 0 |
547 SCHED_FEAT_APPROX_AVG * 0;
549 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
552 * Number of tasks to iterate in a single balance run.
553 * Limited because this is done with IRQs disabled.
555 const_debug unsigned int sysctl_sched_nr_migrate = 32;
558 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
559 * clock constructed from sched_clock():
561 unsigned long long cpu_clock(int cpu)
563 unsigned long long now;
564 unsigned long flags;
565 struct rq *rq;
567 local_irq_save(flags);
568 rq = cpu_rq(cpu);
570 * Only call sched_clock() if the scheduler has already been
571 * initialized (some code might call cpu_clock() very early):
573 if (rq->idle)
574 update_rq_clock(rq);
575 now = rq->clock;
576 local_irq_restore(flags);
578 return now;
580 EXPORT_SYMBOL_GPL(cpu_clock);
582 #ifndef prepare_arch_switch
583 # define prepare_arch_switch(next) do { } while (0)
584 #endif
585 #ifndef finish_arch_switch
586 # define finish_arch_switch(prev) do { } while (0)
587 #endif
589 static inline int task_current(struct rq *rq, struct task_struct *p)
591 return rq->curr == p;
594 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
595 static inline int task_running(struct rq *rq, struct task_struct *p)
597 return task_current(rq, p);
600 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
604 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
606 #ifdef CONFIG_DEBUG_SPINLOCK
607 /* this is a valid case when another task releases the spinlock */
608 rq->lock.owner = current;
609 #endif
611 * If we are tracking spinlock dependencies then we have to
612 * fix up the runqueue lock - which gets 'carried over' from
613 * prev into current:
615 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
617 spin_unlock_irq(&rq->lock);
620 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
621 static inline int task_running(struct rq *rq, struct task_struct *p)
623 #ifdef CONFIG_SMP
624 return p->oncpu;
625 #else
626 return task_current(rq, p);
627 #endif
630 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
632 #ifdef CONFIG_SMP
634 * We can optimise this out completely for !SMP, because the
635 * SMP rebalancing from interrupt is the only thing that cares
636 * here.
638 next->oncpu = 1;
639 #endif
640 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
641 spin_unlock_irq(&rq->lock);
642 #else
643 spin_unlock(&rq->lock);
644 #endif
647 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
649 #ifdef CONFIG_SMP
651 * After ->oncpu is cleared, the task can be moved to a different CPU.
652 * We must ensure this doesn't happen until the switch is completely
653 * finished.
655 smp_wmb();
656 prev->oncpu = 0;
657 #endif
658 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
659 local_irq_enable();
660 #endif
662 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
665 * __task_rq_lock - lock the runqueue a given task resides on.
666 * Must be called interrupts disabled.
668 static inline struct rq *__task_rq_lock(struct task_struct *p)
669 __acquires(rq->lock)
671 for (;;) {
672 struct rq *rq = task_rq(p);
673 spin_lock(&rq->lock);
674 if (likely(rq == task_rq(p)))
675 return rq;
676 spin_unlock(&rq->lock);
681 * task_rq_lock - lock the runqueue a given task resides on and disable
682 * interrupts. Note the ordering: we can safely lookup the task_rq without
683 * explicitly disabling preemption.
685 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
686 __acquires(rq->lock)
688 struct rq *rq;
690 for (;;) {
691 local_irq_save(*flags);
692 rq = task_rq(p);
693 spin_lock(&rq->lock);
694 if (likely(rq == task_rq(p)))
695 return rq;
696 spin_unlock_irqrestore(&rq->lock, *flags);
700 static void __task_rq_unlock(struct rq *rq)
701 __releases(rq->lock)
703 spin_unlock(&rq->lock);
706 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
707 __releases(rq->lock)
709 spin_unlock_irqrestore(&rq->lock, *flags);
713 * this_rq_lock - lock this runqueue and disable interrupts.
715 static struct rq *this_rq_lock(void)
716 __acquires(rq->lock)
718 struct rq *rq;
720 local_irq_disable();
721 rq = this_rq();
722 spin_lock(&rq->lock);
724 return rq;
728 * We are going deep-idle (irqs are disabled):
730 void sched_clock_idle_sleep_event(void)
732 struct rq *rq = cpu_rq(smp_processor_id());
734 spin_lock(&rq->lock);
735 __update_rq_clock(rq);
736 spin_unlock(&rq->lock);
737 rq->clock_deep_idle_events++;
739 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
742 * We just idled delta nanoseconds (called with irqs disabled):
744 void sched_clock_idle_wakeup_event(u64 delta_ns)
746 struct rq *rq = cpu_rq(smp_processor_id());
747 u64 now = sched_clock();
749 touch_softlockup_watchdog();
750 rq->idle_clock += delta_ns;
752 * Override the previous timestamp and ignore all
753 * sched_clock() deltas that occured while we idled,
754 * and use the PM-provided delta_ns to advance the
755 * rq clock:
757 spin_lock(&rq->lock);
758 rq->prev_clock_raw = now;
759 rq->clock += delta_ns;
760 spin_unlock(&rq->lock);
762 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
765 * resched_task - mark a task 'to be rescheduled now'.
767 * On UP this means the setting of the need_resched flag, on SMP it
768 * might also involve a cross-CPU call to trigger the scheduler on
769 * the target CPU.
771 #ifdef CONFIG_SMP
773 #ifndef tsk_is_polling
774 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
775 #endif
777 static void resched_task(struct task_struct *p)
779 int cpu;
781 assert_spin_locked(&task_rq(p)->lock);
783 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
784 return;
786 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
788 cpu = task_cpu(p);
789 if (cpu == smp_processor_id())
790 return;
792 /* NEED_RESCHED must be visible before we test polling */
793 smp_mb();
794 if (!tsk_is_polling(p))
795 smp_send_reschedule(cpu);
798 static void resched_cpu(int cpu)
800 struct rq *rq = cpu_rq(cpu);
801 unsigned long flags;
803 if (!spin_trylock_irqsave(&rq->lock, flags))
804 return;
805 resched_task(cpu_curr(cpu));
806 spin_unlock_irqrestore(&rq->lock, flags);
808 #else
809 static inline void resched_task(struct task_struct *p)
811 assert_spin_locked(&task_rq(p)->lock);
812 set_tsk_need_resched(p);
814 #endif
816 #if BITS_PER_LONG == 32
817 # define WMULT_CONST (~0UL)
818 #else
819 # define WMULT_CONST (1UL << 32)
820 #endif
822 #define WMULT_SHIFT 32
825 * Shift right and round:
827 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
829 static unsigned long
830 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
831 struct load_weight *lw)
833 u64 tmp;
835 if (unlikely(!lw->inv_weight))
836 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
838 tmp = (u64)delta_exec * weight;
840 * Check whether we'd overflow the 64-bit multiplication:
842 if (unlikely(tmp > WMULT_CONST))
843 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
844 WMULT_SHIFT/2);
845 else
846 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
848 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
851 static inline unsigned long
852 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
854 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
857 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
859 lw->weight += inc;
862 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
864 lw->weight -= dec;
868 * To aid in avoiding the subversion of "niceness" due to uneven distribution
869 * of tasks with abnormal "nice" values across CPUs the contribution that
870 * each task makes to its run queue's load is weighted according to its
871 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
872 * scaled version of the new time slice allocation that they receive on time
873 * slice expiry etc.
876 #define WEIGHT_IDLEPRIO 2
877 #define WMULT_IDLEPRIO (1 << 31)
880 * Nice levels are multiplicative, with a gentle 10% change for every
881 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
882 * nice 1, it will get ~10% less CPU time than another CPU-bound task
883 * that remained on nice 0.
885 * The "10% effect" is relative and cumulative: from _any_ nice level,
886 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
887 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
888 * If a task goes up by ~10% and another task goes down by ~10% then
889 * the relative distance between them is ~25%.)
891 static const int prio_to_weight[40] = {
892 /* -20 */ 88761, 71755, 56483, 46273, 36291,
893 /* -15 */ 29154, 23254, 18705, 14949, 11916,
894 /* -10 */ 9548, 7620, 6100, 4904, 3906,
895 /* -5 */ 3121, 2501, 1991, 1586, 1277,
896 /* 0 */ 1024, 820, 655, 526, 423,
897 /* 5 */ 335, 272, 215, 172, 137,
898 /* 10 */ 110, 87, 70, 56, 45,
899 /* 15 */ 36, 29, 23, 18, 15,
903 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
905 * In cases where the weight does not change often, we can use the
906 * precalculated inverse to speed up arithmetics by turning divisions
907 * into multiplications:
909 static const u32 prio_to_wmult[40] = {
910 /* -20 */ 48388, 59856, 76040, 92818, 118348,
911 /* -15 */ 147320, 184698, 229616, 287308, 360437,
912 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
913 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
914 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
915 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
916 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
917 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
920 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
923 * runqueue iterator, to support SMP load-balancing between different
924 * scheduling classes, without having to expose their internal data
925 * structures to the load-balancing proper:
927 struct rq_iterator {
928 void *arg;
929 struct task_struct *(*start)(void *);
930 struct task_struct *(*next)(void *);
933 #ifdef CONFIG_SMP
934 static unsigned long
935 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
936 unsigned long max_load_move, struct sched_domain *sd,
937 enum cpu_idle_type idle, int *all_pinned,
938 int *this_best_prio, struct rq_iterator *iterator);
940 static int
941 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
942 struct sched_domain *sd, enum cpu_idle_type idle,
943 struct rq_iterator *iterator);
944 #endif
946 #ifdef CONFIG_CGROUP_CPUACCT
947 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
948 #else
949 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
950 #endif
952 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
954 update_load_add(&rq->load, load);
957 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
959 update_load_sub(&rq->load, load);
962 #include "sched_stats.h"
963 #include "sched_idletask.c"
964 #include "sched_fair.c"
965 #include "sched_rt.c"
966 #ifdef CONFIG_SCHED_DEBUG
967 # include "sched_debug.c"
968 #endif
970 #define sched_class_highest (&rt_sched_class)
972 static void inc_nr_running(struct task_struct *p, struct rq *rq)
974 rq->nr_running++;
977 static void dec_nr_running(struct task_struct *p, struct rq *rq)
979 rq->nr_running--;
982 static void set_load_weight(struct task_struct *p)
984 if (task_has_rt_policy(p)) {
985 p->se.load.weight = prio_to_weight[0] * 2;
986 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
987 return;
991 * SCHED_IDLE tasks get minimal weight:
993 if (p->policy == SCHED_IDLE) {
994 p->se.load.weight = WEIGHT_IDLEPRIO;
995 p->se.load.inv_weight = WMULT_IDLEPRIO;
996 return;
999 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1000 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1003 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1005 sched_info_queued(p);
1006 p->sched_class->enqueue_task(rq, p, wakeup);
1007 p->se.on_rq = 1;
1010 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1012 p->sched_class->dequeue_task(rq, p, sleep);
1013 p->se.on_rq = 0;
1017 * __normal_prio - return the priority that is based on the static prio
1019 static inline int __normal_prio(struct task_struct *p)
1021 return p->static_prio;
1025 * Calculate the expected normal priority: i.e. priority
1026 * without taking RT-inheritance into account. Might be
1027 * boosted by interactivity modifiers. Changes upon fork,
1028 * setprio syscalls, and whenever the interactivity
1029 * estimator recalculates.
1031 static inline int normal_prio(struct task_struct *p)
1033 int prio;
1035 if (task_has_rt_policy(p))
1036 prio = MAX_RT_PRIO-1 - p->rt_priority;
1037 else
1038 prio = __normal_prio(p);
1039 return prio;
1043 * Calculate the current priority, i.e. the priority
1044 * taken into account by the scheduler. This value might
1045 * be boosted by RT tasks, or might be boosted by
1046 * interactivity modifiers. Will be RT if the task got
1047 * RT-boosted. If not then it returns p->normal_prio.
1049 static int effective_prio(struct task_struct *p)
1051 p->normal_prio = normal_prio(p);
1053 * If we are RT tasks or we were boosted to RT priority,
1054 * keep the priority unchanged. Otherwise, update priority
1055 * to the normal priority:
1057 if (!rt_prio(p->prio))
1058 return p->normal_prio;
1059 return p->prio;
1063 * activate_task - move a task to the runqueue.
1065 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1067 if (p->state == TASK_UNINTERRUPTIBLE)
1068 rq->nr_uninterruptible--;
1070 enqueue_task(rq, p, wakeup);
1071 inc_nr_running(p, rq);
1075 * deactivate_task - remove a task from the runqueue.
1077 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1079 if (p->state == TASK_UNINTERRUPTIBLE)
1080 rq->nr_uninterruptible++;
1082 dequeue_task(rq, p, sleep);
1083 dec_nr_running(p, rq);
1087 * task_curr - is this task currently executing on a CPU?
1088 * @p: the task in question.
1090 inline int task_curr(const struct task_struct *p)
1092 return cpu_curr(task_cpu(p)) == p;
1095 /* Used instead of source_load when we know the type == 0 */
1096 unsigned long weighted_cpuload(const int cpu)
1098 return cpu_rq(cpu)->load.weight;
1101 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1103 set_task_cfs_rq(p, cpu);
1104 #ifdef CONFIG_SMP
1106 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1107 * successfuly executed on another CPU. We must ensure that updates of
1108 * per-task data have been completed by this moment.
1110 smp_wmb();
1111 task_thread_info(p)->cpu = cpu;
1112 #endif
1115 #ifdef CONFIG_SMP
1118 * Is this task likely cache-hot:
1120 static inline int
1121 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1123 s64 delta;
1125 if (p->sched_class != &fair_sched_class)
1126 return 0;
1128 if (sysctl_sched_migration_cost == -1)
1129 return 1;
1130 if (sysctl_sched_migration_cost == 0)
1131 return 0;
1133 delta = now - p->se.exec_start;
1135 return delta < (s64)sysctl_sched_migration_cost;
1139 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1141 int old_cpu = task_cpu(p);
1142 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1143 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1144 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1145 u64 clock_offset;
1147 clock_offset = old_rq->clock - new_rq->clock;
1149 #ifdef CONFIG_SCHEDSTATS
1150 if (p->se.wait_start)
1151 p->se.wait_start -= clock_offset;
1152 if (p->se.sleep_start)
1153 p->se.sleep_start -= clock_offset;
1154 if (p->se.block_start)
1155 p->se.block_start -= clock_offset;
1156 if (old_cpu != new_cpu) {
1157 schedstat_inc(p, se.nr_migrations);
1158 if (task_hot(p, old_rq->clock, NULL))
1159 schedstat_inc(p, se.nr_forced2_migrations);
1161 #endif
1162 p->se.vruntime -= old_cfsrq->min_vruntime -
1163 new_cfsrq->min_vruntime;
1165 __set_task_cpu(p, new_cpu);
1168 struct migration_req {
1169 struct list_head list;
1171 struct task_struct *task;
1172 int dest_cpu;
1174 struct completion done;
1178 * The task's runqueue lock must be held.
1179 * Returns true if you have to wait for migration thread.
1181 static int
1182 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1184 struct rq *rq = task_rq(p);
1187 * If the task is not on a runqueue (and not running), then
1188 * it is sufficient to simply update the task's cpu field.
1190 if (!p->se.on_rq && !task_running(rq, p)) {
1191 set_task_cpu(p, dest_cpu);
1192 return 0;
1195 init_completion(&req->done);
1196 req->task = p;
1197 req->dest_cpu = dest_cpu;
1198 list_add(&req->list, &rq->migration_queue);
1200 return 1;
1204 * wait_task_inactive - wait for a thread to unschedule.
1206 * The caller must ensure that the task *will* unschedule sometime soon,
1207 * else this function might spin for a *long* time. This function can't
1208 * be called with interrupts off, or it may introduce deadlock with
1209 * smp_call_function() if an IPI is sent by the same process we are
1210 * waiting to become inactive.
1212 void wait_task_inactive(struct task_struct *p)
1214 unsigned long flags;
1215 int running, on_rq;
1216 struct rq *rq;
1218 for (;;) {
1220 * We do the initial early heuristics without holding
1221 * any task-queue locks at all. We'll only try to get
1222 * the runqueue lock when things look like they will
1223 * work out!
1225 rq = task_rq(p);
1228 * If the task is actively running on another CPU
1229 * still, just relax and busy-wait without holding
1230 * any locks.
1232 * NOTE! Since we don't hold any locks, it's not
1233 * even sure that "rq" stays as the right runqueue!
1234 * But we don't care, since "task_running()" will
1235 * return false if the runqueue has changed and p
1236 * is actually now running somewhere else!
1238 while (task_running(rq, p))
1239 cpu_relax();
1242 * Ok, time to look more closely! We need the rq
1243 * lock now, to be *sure*. If we're wrong, we'll
1244 * just go back and repeat.
1246 rq = task_rq_lock(p, &flags);
1247 running = task_running(rq, p);
1248 on_rq = p->se.on_rq;
1249 task_rq_unlock(rq, &flags);
1252 * Was it really running after all now that we
1253 * checked with the proper locks actually held?
1255 * Oops. Go back and try again..
1257 if (unlikely(running)) {
1258 cpu_relax();
1259 continue;
1263 * It's not enough that it's not actively running,
1264 * it must be off the runqueue _entirely_, and not
1265 * preempted!
1267 * So if it wa still runnable (but just not actively
1268 * running right now), it's preempted, and we should
1269 * yield - it could be a while.
1271 if (unlikely(on_rq)) {
1272 schedule_timeout_uninterruptible(1);
1273 continue;
1277 * Ahh, all good. It wasn't running, and it wasn't
1278 * runnable, which means that it will never become
1279 * running in the future either. We're all done!
1281 break;
1285 /***
1286 * kick_process - kick a running thread to enter/exit the kernel
1287 * @p: the to-be-kicked thread
1289 * Cause a process which is running on another CPU to enter
1290 * kernel-mode, without any delay. (to get signals handled.)
1292 * NOTE: this function doesnt have to take the runqueue lock,
1293 * because all it wants to ensure is that the remote task enters
1294 * the kernel. If the IPI races and the task has been migrated
1295 * to another CPU then no harm is done and the purpose has been
1296 * achieved as well.
1298 void kick_process(struct task_struct *p)
1300 int cpu;
1302 preempt_disable();
1303 cpu = task_cpu(p);
1304 if ((cpu != smp_processor_id()) && task_curr(p))
1305 smp_send_reschedule(cpu);
1306 preempt_enable();
1310 * Return a low guess at the load of a migration-source cpu weighted
1311 * according to the scheduling class and "nice" value.
1313 * We want to under-estimate the load of migration sources, to
1314 * balance conservatively.
1316 static unsigned long source_load(int cpu, int type)
1318 struct rq *rq = cpu_rq(cpu);
1319 unsigned long total = weighted_cpuload(cpu);
1321 if (type == 0)
1322 return total;
1324 return min(rq->cpu_load[type-1], total);
1328 * Return a high guess at the load of a migration-target cpu weighted
1329 * according to the scheduling class and "nice" value.
1331 static unsigned long target_load(int cpu, int type)
1333 struct rq *rq = cpu_rq(cpu);
1334 unsigned long total = weighted_cpuload(cpu);
1336 if (type == 0)
1337 return total;
1339 return max(rq->cpu_load[type-1], total);
1343 * Return the average load per task on the cpu's run queue
1345 static inline unsigned long cpu_avg_load_per_task(int cpu)
1347 struct rq *rq = cpu_rq(cpu);
1348 unsigned long total = weighted_cpuload(cpu);
1349 unsigned long n = rq->nr_running;
1351 return n ? total / n : SCHED_LOAD_SCALE;
1355 * find_idlest_group finds and returns the least busy CPU group within the
1356 * domain.
1358 static struct sched_group *
1359 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1361 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1362 unsigned long min_load = ULONG_MAX, this_load = 0;
1363 int load_idx = sd->forkexec_idx;
1364 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1366 do {
1367 unsigned long load, avg_load;
1368 int local_group;
1369 int i;
1371 /* Skip over this group if it has no CPUs allowed */
1372 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1373 continue;
1375 local_group = cpu_isset(this_cpu, group->cpumask);
1377 /* Tally up the load of all CPUs in the group */
1378 avg_load = 0;
1380 for_each_cpu_mask(i, group->cpumask) {
1381 /* Bias balancing toward cpus of our domain */
1382 if (local_group)
1383 load = source_load(i, load_idx);
1384 else
1385 load = target_load(i, load_idx);
1387 avg_load += load;
1390 /* Adjust by relative CPU power of the group */
1391 avg_load = sg_div_cpu_power(group,
1392 avg_load * SCHED_LOAD_SCALE);
1394 if (local_group) {
1395 this_load = avg_load;
1396 this = group;
1397 } else if (avg_load < min_load) {
1398 min_load = avg_load;
1399 idlest = group;
1401 } while (group = group->next, group != sd->groups);
1403 if (!idlest || 100*this_load < imbalance*min_load)
1404 return NULL;
1405 return idlest;
1409 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1411 static int
1412 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1414 cpumask_t tmp;
1415 unsigned long load, min_load = ULONG_MAX;
1416 int idlest = -1;
1417 int i;
1419 /* Traverse only the allowed CPUs */
1420 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1422 for_each_cpu_mask(i, tmp) {
1423 load = weighted_cpuload(i);
1425 if (load < min_load || (load == min_load && i == this_cpu)) {
1426 min_load = load;
1427 idlest = i;
1431 return idlest;
1435 * sched_balance_self: balance the current task (running on cpu) in domains
1436 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1437 * SD_BALANCE_EXEC.
1439 * Balance, ie. select the least loaded group.
1441 * Returns the target CPU number, or the same CPU if no balancing is needed.
1443 * preempt must be disabled.
1445 static int sched_balance_self(int cpu, int flag)
1447 struct task_struct *t = current;
1448 struct sched_domain *tmp, *sd = NULL;
1450 for_each_domain(cpu, tmp) {
1452 * If power savings logic is enabled for a domain, stop there.
1454 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1455 break;
1456 if (tmp->flags & flag)
1457 sd = tmp;
1460 while (sd) {
1461 cpumask_t span;
1462 struct sched_group *group;
1463 int new_cpu, weight;
1465 if (!(sd->flags & flag)) {
1466 sd = sd->child;
1467 continue;
1470 span = sd->span;
1471 group = find_idlest_group(sd, t, cpu);
1472 if (!group) {
1473 sd = sd->child;
1474 continue;
1477 new_cpu = find_idlest_cpu(group, t, cpu);
1478 if (new_cpu == -1 || new_cpu == cpu) {
1479 /* Now try balancing at a lower domain level of cpu */
1480 sd = sd->child;
1481 continue;
1484 /* Now try balancing at a lower domain level of new_cpu */
1485 cpu = new_cpu;
1486 sd = NULL;
1487 weight = cpus_weight(span);
1488 for_each_domain(cpu, tmp) {
1489 if (weight <= cpus_weight(tmp->span))
1490 break;
1491 if (tmp->flags & flag)
1492 sd = tmp;
1494 /* while loop will break here if sd == NULL */
1497 return cpu;
1500 #endif /* CONFIG_SMP */
1503 * wake_idle() will wake a task on an idle cpu if task->cpu is
1504 * not idle and an idle cpu is available. The span of cpus to
1505 * search starts with cpus closest then further out as needed,
1506 * so we always favor a closer, idle cpu.
1508 * Returns the CPU we should wake onto.
1510 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1511 static int wake_idle(int cpu, struct task_struct *p)
1513 cpumask_t tmp;
1514 struct sched_domain *sd;
1515 int i;
1518 * If it is idle, then it is the best cpu to run this task.
1520 * This cpu is also the best, if it has more than one task already.
1521 * Siblings must be also busy(in most cases) as they didn't already
1522 * pickup the extra load from this cpu and hence we need not check
1523 * sibling runqueue info. This will avoid the checks and cache miss
1524 * penalities associated with that.
1526 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1527 return cpu;
1529 for_each_domain(cpu, sd) {
1530 if (sd->flags & SD_WAKE_IDLE) {
1531 cpus_and(tmp, sd->span, p->cpus_allowed);
1532 for_each_cpu_mask(i, tmp) {
1533 if (idle_cpu(i)) {
1534 if (i != task_cpu(p)) {
1535 schedstat_inc(p,
1536 se.nr_wakeups_idle);
1538 return i;
1541 } else {
1542 break;
1545 return cpu;
1547 #else
1548 static inline int wake_idle(int cpu, struct task_struct *p)
1550 return cpu;
1552 #endif
1554 /***
1555 * try_to_wake_up - wake up a thread
1556 * @p: the to-be-woken-up thread
1557 * @state: the mask of task states that can be woken
1558 * @sync: do a synchronous wakeup?
1560 * Put it on the run-queue if it's not already there. The "current"
1561 * thread is always on the run-queue (except when the actual
1562 * re-schedule is in progress), and as such you're allowed to do
1563 * the simpler "current->state = TASK_RUNNING" to mark yourself
1564 * runnable without the overhead of this.
1566 * returns failure only if the task is already active.
1568 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1570 int cpu, orig_cpu, this_cpu, success = 0;
1571 unsigned long flags;
1572 long old_state;
1573 struct rq *rq;
1574 #ifdef CONFIG_SMP
1575 struct sched_domain *sd, *this_sd = NULL;
1576 unsigned long load, this_load;
1577 int new_cpu;
1578 #endif
1580 rq = task_rq_lock(p, &flags);
1581 old_state = p->state;
1582 if (!(old_state & state))
1583 goto out;
1585 if (p->se.on_rq)
1586 goto out_running;
1588 cpu = task_cpu(p);
1589 orig_cpu = cpu;
1590 this_cpu = smp_processor_id();
1592 #ifdef CONFIG_SMP
1593 if (unlikely(task_running(rq, p)))
1594 goto out_activate;
1596 new_cpu = cpu;
1598 schedstat_inc(rq, ttwu_count);
1599 if (cpu == this_cpu) {
1600 schedstat_inc(rq, ttwu_local);
1601 goto out_set_cpu;
1604 for_each_domain(this_cpu, sd) {
1605 if (cpu_isset(cpu, sd->span)) {
1606 schedstat_inc(sd, ttwu_wake_remote);
1607 this_sd = sd;
1608 break;
1612 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1613 goto out_set_cpu;
1616 * Check for affine wakeup and passive balancing possibilities.
1618 if (this_sd) {
1619 int idx = this_sd->wake_idx;
1620 unsigned int imbalance;
1622 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1624 load = source_load(cpu, idx);
1625 this_load = target_load(this_cpu, idx);
1627 new_cpu = this_cpu; /* Wake to this CPU if we can */
1629 if (this_sd->flags & SD_WAKE_AFFINE) {
1630 unsigned long tl = this_load;
1631 unsigned long tl_per_task;
1634 * Attract cache-cold tasks on sync wakeups:
1636 if (sync && !task_hot(p, rq->clock, this_sd))
1637 goto out_set_cpu;
1639 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1640 tl_per_task = cpu_avg_load_per_task(this_cpu);
1643 * If sync wakeup then subtract the (maximum possible)
1644 * effect of the currently running task from the load
1645 * of the current CPU:
1647 if (sync)
1648 tl -= current->se.load.weight;
1650 if ((tl <= load &&
1651 tl + target_load(cpu, idx) <= tl_per_task) ||
1652 100*(tl + p->se.load.weight) <= imbalance*load) {
1654 * This domain has SD_WAKE_AFFINE and
1655 * p is cache cold in this domain, and
1656 * there is no bad imbalance.
1658 schedstat_inc(this_sd, ttwu_move_affine);
1659 schedstat_inc(p, se.nr_wakeups_affine);
1660 goto out_set_cpu;
1665 * Start passive balancing when half the imbalance_pct
1666 * limit is reached.
1668 if (this_sd->flags & SD_WAKE_BALANCE) {
1669 if (imbalance*this_load <= 100*load) {
1670 schedstat_inc(this_sd, ttwu_move_balance);
1671 schedstat_inc(p, se.nr_wakeups_passive);
1672 goto out_set_cpu;
1677 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1678 out_set_cpu:
1679 new_cpu = wake_idle(new_cpu, p);
1680 if (new_cpu != cpu) {
1681 set_task_cpu(p, new_cpu);
1682 task_rq_unlock(rq, &flags);
1683 /* might preempt at this point */
1684 rq = task_rq_lock(p, &flags);
1685 old_state = p->state;
1686 if (!(old_state & state))
1687 goto out;
1688 if (p->se.on_rq)
1689 goto out_running;
1691 this_cpu = smp_processor_id();
1692 cpu = task_cpu(p);
1695 out_activate:
1696 #endif /* CONFIG_SMP */
1697 schedstat_inc(p, se.nr_wakeups);
1698 if (sync)
1699 schedstat_inc(p, se.nr_wakeups_sync);
1700 if (orig_cpu != cpu)
1701 schedstat_inc(p, se.nr_wakeups_migrate);
1702 if (cpu == this_cpu)
1703 schedstat_inc(p, se.nr_wakeups_local);
1704 else
1705 schedstat_inc(p, se.nr_wakeups_remote);
1706 update_rq_clock(rq);
1707 activate_task(rq, p, 1);
1708 check_preempt_curr(rq, p);
1709 success = 1;
1711 out_running:
1712 p->state = TASK_RUNNING;
1713 out:
1714 task_rq_unlock(rq, &flags);
1716 return success;
1719 int fastcall wake_up_process(struct task_struct *p)
1721 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1722 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1724 EXPORT_SYMBOL(wake_up_process);
1726 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1728 return try_to_wake_up(p, state, 0);
1732 * Perform scheduler related setup for a newly forked process p.
1733 * p is forked by current.
1735 * __sched_fork() is basic setup used by init_idle() too:
1737 static void __sched_fork(struct task_struct *p)
1739 p->se.exec_start = 0;
1740 p->se.sum_exec_runtime = 0;
1741 p->se.prev_sum_exec_runtime = 0;
1743 #ifdef CONFIG_SCHEDSTATS
1744 p->se.wait_start = 0;
1745 p->se.sum_sleep_runtime = 0;
1746 p->se.sleep_start = 0;
1747 p->se.block_start = 0;
1748 p->se.sleep_max = 0;
1749 p->se.block_max = 0;
1750 p->se.exec_max = 0;
1751 p->se.slice_max = 0;
1752 p->se.wait_max = 0;
1753 #endif
1755 INIT_LIST_HEAD(&p->run_list);
1756 p->se.on_rq = 0;
1758 #ifdef CONFIG_PREEMPT_NOTIFIERS
1759 INIT_HLIST_HEAD(&p->preempt_notifiers);
1760 #endif
1763 * We mark the process as running here, but have not actually
1764 * inserted it onto the runqueue yet. This guarantees that
1765 * nobody will actually run it, and a signal or other external
1766 * event cannot wake it up and insert it on the runqueue either.
1768 p->state = TASK_RUNNING;
1772 * fork()/clone()-time setup:
1774 void sched_fork(struct task_struct *p, int clone_flags)
1776 int cpu = get_cpu();
1778 __sched_fork(p);
1780 #ifdef CONFIG_SMP
1781 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1782 #endif
1783 set_task_cpu(p, cpu);
1786 * Make sure we do not leak PI boosting priority to the child:
1788 p->prio = current->normal_prio;
1789 if (!rt_prio(p->prio))
1790 p->sched_class = &fair_sched_class;
1792 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1793 if (likely(sched_info_on()))
1794 memset(&p->sched_info, 0, sizeof(p->sched_info));
1795 #endif
1796 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1797 p->oncpu = 0;
1798 #endif
1799 #ifdef CONFIG_PREEMPT
1800 /* Want to start with kernel preemption disabled. */
1801 task_thread_info(p)->preempt_count = 1;
1802 #endif
1803 put_cpu();
1807 * wake_up_new_task - wake up a newly created task for the first time.
1809 * This function will do some initial scheduler statistics housekeeping
1810 * that must be done for every newly created context, then puts the task
1811 * on the runqueue and wakes it.
1813 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1815 unsigned long flags;
1816 struct rq *rq;
1818 rq = task_rq_lock(p, &flags);
1819 BUG_ON(p->state != TASK_RUNNING);
1820 update_rq_clock(rq);
1822 p->prio = effective_prio(p);
1824 if (!p->sched_class->task_new || !current->se.on_rq) {
1825 activate_task(rq, p, 0);
1826 } else {
1828 * Let the scheduling class do new task startup
1829 * management (if any):
1831 p->sched_class->task_new(rq, p);
1832 inc_nr_running(p, rq);
1834 check_preempt_curr(rq, p);
1835 task_rq_unlock(rq, &flags);
1838 #ifdef CONFIG_PREEMPT_NOTIFIERS
1841 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1842 * @notifier: notifier struct to register
1844 void preempt_notifier_register(struct preempt_notifier *notifier)
1846 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1848 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1851 * preempt_notifier_unregister - no longer interested in preemption notifications
1852 * @notifier: notifier struct to unregister
1854 * This is safe to call from within a preemption notifier.
1856 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1858 hlist_del(&notifier->link);
1860 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1862 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1864 struct preempt_notifier *notifier;
1865 struct hlist_node *node;
1867 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1868 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1871 static void
1872 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1873 struct task_struct *next)
1875 struct preempt_notifier *notifier;
1876 struct hlist_node *node;
1878 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1879 notifier->ops->sched_out(notifier, next);
1882 #else
1884 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1888 static void
1889 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1890 struct task_struct *next)
1894 #endif
1897 * prepare_task_switch - prepare to switch tasks
1898 * @rq: the runqueue preparing to switch
1899 * @prev: the current task that is being switched out
1900 * @next: the task we are going to switch to.
1902 * This is called with the rq lock held and interrupts off. It must
1903 * be paired with a subsequent finish_task_switch after the context
1904 * switch.
1906 * prepare_task_switch sets up locking and calls architecture specific
1907 * hooks.
1909 static inline void
1910 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1911 struct task_struct *next)
1913 fire_sched_out_preempt_notifiers(prev, next);
1914 prepare_lock_switch(rq, next);
1915 prepare_arch_switch(next);
1919 * finish_task_switch - clean up after a task-switch
1920 * @rq: runqueue associated with task-switch
1921 * @prev: the thread we just switched away from.
1923 * finish_task_switch must be called after the context switch, paired
1924 * with a prepare_task_switch call before the context switch.
1925 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1926 * and do any other architecture-specific cleanup actions.
1928 * Note that we may have delayed dropping an mm in context_switch(). If
1929 * so, we finish that here outside of the runqueue lock. (Doing it
1930 * with the lock held can cause deadlocks; see schedule() for
1931 * details.)
1933 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1934 __releases(rq->lock)
1936 struct mm_struct *mm = rq->prev_mm;
1937 long prev_state;
1939 rq->prev_mm = NULL;
1942 * A task struct has one reference for the use as "current".
1943 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1944 * schedule one last time. The schedule call will never return, and
1945 * the scheduled task must drop that reference.
1946 * The test for TASK_DEAD must occur while the runqueue locks are
1947 * still held, otherwise prev could be scheduled on another cpu, die
1948 * there before we look at prev->state, and then the reference would
1949 * be dropped twice.
1950 * Manfred Spraul <manfred@colorfullife.com>
1952 prev_state = prev->state;
1953 finish_arch_switch(prev);
1954 finish_lock_switch(rq, prev);
1955 schedule_tail_balance_rt(rq);
1957 fire_sched_in_preempt_notifiers(current);
1958 if (mm)
1959 mmdrop(mm);
1960 if (unlikely(prev_state == TASK_DEAD)) {
1962 * Remove function-return probe instances associated with this
1963 * task and put them back on the free list.
1965 kprobe_flush_task(prev);
1966 put_task_struct(prev);
1971 * schedule_tail - first thing a freshly forked thread must call.
1972 * @prev: the thread we just switched away from.
1974 asmlinkage void schedule_tail(struct task_struct *prev)
1975 __releases(rq->lock)
1977 struct rq *rq = this_rq();
1979 finish_task_switch(rq, prev);
1980 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1981 /* In this case, finish_task_switch does not reenable preemption */
1982 preempt_enable();
1983 #endif
1984 if (current->set_child_tid)
1985 put_user(task_pid_vnr(current), current->set_child_tid);
1989 * context_switch - switch to the new MM and the new
1990 * thread's register state.
1992 static inline void
1993 context_switch(struct rq *rq, struct task_struct *prev,
1994 struct task_struct *next)
1996 struct mm_struct *mm, *oldmm;
1998 prepare_task_switch(rq, prev, next);
1999 mm = next->mm;
2000 oldmm = prev->active_mm;
2002 * For paravirt, this is coupled with an exit in switch_to to
2003 * combine the page table reload and the switch backend into
2004 * one hypercall.
2006 arch_enter_lazy_cpu_mode();
2008 if (unlikely(!mm)) {
2009 next->active_mm = oldmm;
2010 atomic_inc(&oldmm->mm_count);
2011 enter_lazy_tlb(oldmm, next);
2012 } else
2013 switch_mm(oldmm, mm, next);
2015 if (unlikely(!prev->mm)) {
2016 prev->active_mm = NULL;
2017 rq->prev_mm = oldmm;
2020 * Since the runqueue lock will be released by the next
2021 * task (which is an invalid locking op but in the case
2022 * of the scheduler it's an obvious special-case), so we
2023 * do an early lockdep release here:
2025 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2026 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2027 #endif
2029 /* Here we just switch the register state and the stack. */
2030 switch_to(prev, next, prev);
2032 barrier();
2034 * this_rq must be evaluated again because prev may have moved
2035 * CPUs since it called schedule(), thus the 'rq' on its stack
2036 * frame will be invalid.
2038 finish_task_switch(this_rq(), prev);
2042 * nr_running, nr_uninterruptible and nr_context_switches:
2044 * externally visible scheduler statistics: current number of runnable
2045 * threads, current number of uninterruptible-sleeping threads, total
2046 * number of context switches performed since bootup.
2048 unsigned long nr_running(void)
2050 unsigned long i, sum = 0;
2052 for_each_online_cpu(i)
2053 sum += cpu_rq(i)->nr_running;
2055 return sum;
2058 unsigned long nr_uninterruptible(void)
2060 unsigned long i, sum = 0;
2062 for_each_possible_cpu(i)
2063 sum += cpu_rq(i)->nr_uninterruptible;
2066 * Since we read the counters lockless, it might be slightly
2067 * inaccurate. Do not allow it to go below zero though:
2069 if (unlikely((long)sum < 0))
2070 sum = 0;
2072 return sum;
2075 unsigned long long nr_context_switches(void)
2077 int i;
2078 unsigned long long sum = 0;
2080 for_each_possible_cpu(i)
2081 sum += cpu_rq(i)->nr_switches;
2083 return sum;
2086 unsigned long nr_iowait(void)
2088 unsigned long i, sum = 0;
2090 for_each_possible_cpu(i)
2091 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2093 return sum;
2096 unsigned long nr_active(void)
2098 unsigned long i, running = 0, uninterruptible = 0;
2100 for_each_online_cpu(i) {
2101 running += cpu_rq(i)->nr_running;
2102 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2105 if (unlikely((long)uninterruptible < 0))
2106 uninterruptible = 0;
2108 return running + uninterruptible;
2112 * Update rq->cpu_load[] statistics. This function is usually called every
2113 * scheduler tick (TICK_NSEC).
2115 static void update_cpu_load(struct rq *this_rq)
2117 unsigned long this_load = this_rq->load.weight;
2118 int i, scale;
2120 this_rq->nr_load_updates++;
2122 /* Update our load: */
2123 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2124 unsigned long old_load, new_load;
2126 /* scale is effectively 1 << i now, and >> i divides by scale */
2128 old_load = this_rq->cpu_load[i];
2129 new_load = this_load;
2131 * Round up the averaging division if load is increasing. This
2132 * prevents us from getting stuck on 9 if the load is 10, for
2133 * example.
2135 if (new_load > old_load)
2136 new_load += scale-1;
2137 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2141 #ifdef CONFIG_SMP
2144 * double_rq_lock - safely lock two runqueues
2146 * Note this does not disable interrupts like task_rq_lock,
2147 * you need to do so manually before calling.
2149 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2150 __acquires(rq1->lock)
2151 __acquires(rq2->lock)
2153 BUG_ON(!irqs_disabled());
2154 if (rq1 == rq2) {
2155 spin_lock(&rq1->lock);
2156 __acquire(rq2->lock); /* Fake it out ;) */
2157 } else {
2158 if (rq1 < rq2) {
2159 spin_lock(&rq1->lock);
2160 spin_lock(&rq2->lock);
2161 } else {
2162 spin_lock(&rq2->lock);
2163 spin_lock(&rq1->lock);
2166 update_rq_clock(rq1);
2167 update_rq_clock(rq2);
2171 * double_rq_unlock - safely unlock two runqueues
2173 * Note this does not restore interrupts like task_rq_unlock,
2174 * you need to do so manually after calling.
2176 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2177 __releases(rq1->lock)
2178 __releases(rq2->lock)
2180 spin_unlock(&rq1->lock);
2181 if (rq1 != rq2)
2182 spin_unlock(&rq2->lock);
2183 else
2184 __release(rq2->lock);
2188 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2190 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2191 __releases(this_rq->lock)
2192 __acquires(busiest->lock)
2193 __acquires(this_rq->lock)
2195 int ret = 0;
2197 if (unlikely(!irqs_disabled())) {
2198 /* printk() doesn't work good under rq->lock */
2199 spin_unlock(&this_rq->lock);
2200 BUG_ON(1);
2202 if (unlikely(!spin_trylock(&busiest->lock))) {
2203 if (busiest < this_rq) {
2204 spin_unlock(&this_rq->lock);
2205 spin_lock(&busiest->lock);
2206 spin_lock(&this_rq->lock);
2207 ret = 1;
2208 } else
2209 spin_lock(&busiest->lock);
2211 return ret;
2215 * If dest_cpu is allowed for this process, migrate the task to it.
2216 * This is accomplished by forcing the cpu_allowed mask to only
2217 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2218 * the cpu_allowed mask is restored.
2220 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2222 struct migration_req req;
2223 unsigned long flags;
2224 struct rq *rq;
2226 rq = task_rq_lock(p, &flags);
2227 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2228 || unlikely(cpu_is_offline(dest_cpu)))
2229 goto out;
2231 /* force the process onto the specified CPU */
2232 if (migrate_task(p, dest_cpu, &req)) {
2233 /* Need to wait for migration thread (might exit: take ref). */
2234 struct task_struct *mt = rq->migration_thread;
2236 get_task_struct(mt);
2237 task_rq_unlock(rq, &flags);
2238 wake_up_process(mt);
2239 put_task_struct(mt);
2240 wait_for_completion(&req.done);
2242 return;
2244 out:
2245 task_rq_unlock(rq, &flags);
2249 * sched_exec - execve() is a valuable balancing opportunity, because at
2250 * this point the task has the smallest effective memory and cache footprint.
2252 void sched_exec(void)
2254 int new_cpu, this_cpu = get_cpu();
2255 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2256 put_cpu();
2257 if (new_cpu != this_cpu)
2258 sched_migrate_task(current, new_cpu);
2262 * pull_task - move a task from a remote runqueue to the local runqueue.
2263 * Both runqueues must be locked.
2265 static void pull_task(struct rq *src_rq, struct task_struct *p,
2266 struct rq *this_rq, int this_cpu)
2268 deactivate_task(src_rq, p, 0);
2269 set_task_cpu(p, this_cpu);
2270 activate_task(this_rq, p, 0);
2272 * Note that idle threads have a prio of MAX_PRIO, for this test
2273 * to be always true for them.
2275 check_preempt_curr(this_rq, p);
2279 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2281 static
2282 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2283 struct sched_domain *sd, enum cpu_idle_type idle,
2284 int *all_pinned)
2287 * We do not migrate tasks that are:
2288 * 1) running (obviously), or
2289 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2290 * 3) are cache-hot on their current CPU.
2292 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2293 schedstat_inc(p, se.nr_failed_migrations_affine);
2294 return 0;
2296 *all_pinned = 0;
2298 if (task_running(rq, p)) {
2299 schedstat_inc(p, se.nr_failed_migrations_running);
2300 return 0;
2304 * Aggressive migration if:
2305 * 1) task is cache cold, or
2306 * 2) too many balance attempts have failed.
2309 if (!task_hot(p, rq->clock, sd) ||
2310 sd->nr_balance_failed > sd->cache_nice_tries) {
2311 #ifdef CONFIG_SCHEDSTATS
2312 if (task_hot(p, rq->clock, sd)) {
2313 schedstat_inc(sd, lb_hot_gained[idle]);
2314 schedstat_inc(p, se.nr_forced_migrations);
2316 #endif
2317 return 1;
2320 if (task_hot(p, rq->clock, sd)) {
2321 schedstat_inc(p, se.nr_failed_migrations_hot);
2322 return 0;
2324 return 1;
2327 static unsigned long
2328 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2329 unsigned long max_load_move, struct sched_domain *sd,
2330 enum cpu_idle_type idle, int *all_pinned,
2331 int *this_best_prio, struct rq_iterator *iterator)
2333 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2334 struct task_struct *p;
2335 long rem_load_move = max_load_move;
2337 if (max_load_move == 0)
2338 goto out;
2340 pinned = 1;
2343 * Start the load-balancing iterator:
2345 p = iterator->start(iterator->arg);
2346 next:
2347 if (!p || loops++ > sysctl_sched_nr_migrate)
2348 goto out;
2350 * To help distribute high priority tasks across CPUs we don't
2351 * skip a task if it will be the highest priority task (i.e. smallest
2352 * prio value) on its new queue regardless of its load weight
2354 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2355 SCHED_LOAD_SCALE_FUZZ;
2356 if ((skip_for_load && p->prio >= *this_best_prio) ||
2357 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2358 p = iterator->next(iterator->arg);
2359 goto next;
2362 pull_task(busiest, p, this_rq, this_cpu);
2363 pulled++;
2364 rem_load_move -= p->se.load.weight;
2367 * We only want to steal up to the prescribed amount of weighted load.
2369 if (rem_load_move > 0) {
2370 if (p->prio < *this_best_prio)
2371 *this_best_prio = p->prio;
2372 p = iterator->next(iterator->arg);
2373 goto next;
2375 out:
2377 * Right now, this is one of only two places pull_task() is called,
2378 * so we can safely collect pull_task() stats here rather than
2379 * inside pull_task().
2381 schedstat_add(sd, lb_gained[idle], pulled);
2383 if (all_pinned)
2384 *all_pinned = pinned;
2386 return max_load_move - rem_load_move;
2390 * move_tasks tries to move up to max_load_move weighted load from busiest to
2391 * this_rq, as part of a balancing operation within domain "sd".
2392 * Returns 1 if successful and 0 otherwise.
2394 * Called with both runqueues locked.
2396 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2397 unsigned long max_load_move,
2398 struct sched_domain *sd, enum cpu_idle_type idle,
2399 int *all_pinned)
2401 const struct sched_class *class = sched_class_highest;
2402 unsigned long total_load_moved = 0;
2403 int this_best_prio = this_rq->curr->prio;
2405 do {
2406 total_load_moved +=
2407 class->load_balance(this_rq, this_cpu, busiest,
2408 max_load_move - total_load_moved,
2409 sd, idle, all_pinned, &this_best_prio);
2410 class = class->next;
2411 } while (class && max_load_move > total_load_moved);
2413 return total_load_moved > 0;
2416 static int
2417 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2418 struct sched_domain *sd, enum cpu_idle_type idle,
2419 struct rq_iterator *iterator)
2421 struct task_struct *p = iterator->start(iterator->arg);
2422 int pinned = 0;
2424 while (p) {
2425 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2426 pull_task(busiest, p, this_rq, this_cpu);
2428 * Right now, this is only the second place pull_task()
2429 * is called, so we can safely collect pull_task()
2430 * stats here rather than inside pull_task().
2432 schedstat_inc(sd, lb_gained[idle]);
2434 return 1;
2436 p = iterator->next(iterator->arg);
2439 return 0;
2443 * move_one_task tries to move exactly one task from busiest to this_rq, as
2444 * part of active balancing operations within "domain".
2445 * Returns 1 if successful and 0 otherwise.
2447 * Called with both runqueues locked.
2449 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2450 struct sched_domain *sd, enum cpu_idle_type idle)
2452 const struct sched_class *class;
2454 for (class = sched_class_highest; class; class = class->next)
2455 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2456 return 1;
2458 return 0;
2462 * find_busiest_group finds and returns the busiest CPU group within the
2463 * domain. It calculates and returns the amount of weighted load which
2464 * should be moved to restore balance via the imbalance parameter.
2466 static struct sched_group *
2467 find_busiest_group(struct sched_domain *sd, int this_cpu,
2468 unsigned long *imbalance, enum cpu_idle_type idle,
2469 int *sd_idle, cpumask_t *cpus, int *balance)
2471 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2472 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2473 unsigned long max_pull;
2474 unsigned long busiest_load_per_task, busiest_nr_running;
2475 unsigned long this_load_per_task, this_nr_running;
2476 int load_idx, group_imb = 0;
2477 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2478 int power_savings_balance = 1;
2479 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2480 unsigned long min_nr_running = ULONG_MAX;
2481 struct sched_group *group_min = NULL, *group_leader = NULL;
2482 #endif
2484 max_load = this_load = total_load = total_pwr = 0;
2485 busiest_load_per_task = busiest_nr_running = 0;
2486 this_load_per_task = this_nr_running = 0;
2487 if (idle == CPU_NOT_IDLE)
2488 load_idx = sd->busy_idx;
2489 else if (idle == CPU_NEWLY_IDLE)
2490 load_idx = sd->newidle_idx;
2491 else
2492 load_idx = sd->idle_idx;
2494 do {
2495 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2496 int local_group;
2497 int i;
2498 int __group_imb = 0;
2499 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2500 unsigned long sum_nr_running, sum_weighted_load;
2502 local_group = cpu_isset(this_cpu, group->cpumask);
2504 if (local_group)
2505 balance_cpu = first_cpu(group->cpumask);
2507 /* Tally up the load of all CPUs in the group */
2508 sum_weighted_load = sum_nr_running = avg_load = 0;
2509 max_cpu_load = 0;
2510 min_cpu_load = ~0UL;
2512 for_each_cpu_mask(i, group->cpumask) {
2513 struct rq *rq;
2515 if (!cpu_isset(i, *cpus))
2516 continue;
2518 rq = cpu_rq(i);
2520 if (*sd_idle && rq->nr_running)
2521 *sd_idle = 0;
2523 /* Bias balancing toward cpus of our domain */
2524 if (local_group) {
2525 if (idle_cpu(i) && !first_idle_cpu) {
2526 first_idle_cpu = 1;
2527 balance_cpu = i;
2530 load = target_load(i, load_idx);
2531 } else {
2532 load = source_load(i, load_idx);
2533 if (load > max_cpu_load)
2534 max_cpu_load = load;
2535 if (min_cpu_load > load)
2536 min_cpu_load = load;
2539 avg_load += load;
2540 sum_nr_running += rq->nr_running;
2541 sum_weighted_load += weighted_cpuload(i);
2545 * First idle cpu or the first cpu(busiest) in this sched group
2546 * is eligible for doing load balancing at this and above
2547 * domains. In the newly idle case, we will allow all the cpu's
2548 * to do the newly idle load balance.
2550 if (idle != CPU_NEWLY_IDLE && local_group &&
2551 balance_cpu != this_cpu && balance) {
2552 *balance = 0;
2553 goto ret;
2556 total_load += avg_load;
2557 total_pwr += group->__cpu_power;
2559 /* Adjust by relative CPU power of the group */
2560 avg_load = sg_div_cpu_power(group,
2561 avg_load * SCHED_LOAD_SCALE);
2563 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2564 __group_imb = 1;
2566 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2568 if (local_group) {
2569 this_load = avg_load;
2570 this = group;
2571 this_nr_running = sum_nr_running;
2572 this_load_per_task = sum_weighted_load;
2573 } else if (avg_load > max_load &&
2574 (sum_nr_running > group_capacity || __group_imb)) {
2575 max_load = avg_load;
2576 busiest = group;
2577 busiest_nr_running = sum_nr_running;
2578 busiest_load_per_task = sum_weighted_load;
2579 group_imb = __group_imb;
2582 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2584 * Busy processors will not participate in power savings
2585 * balance.
2587 if (idle == CPU_NOT_IDLE ||
2588 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2589 goto group_next;
2592 * If the local group is idle or completely loaded
2593 * no need to do power savings balance at this domain
2595 if (local_group && (this_nr_running >= group_capacity ||
2596 !this_nr_running))
2597 power_savings_balance = 0;
2600 * If a group is already running at full capacity or idle,
2601 * don't include that group in power savings calculations
2603 if (!power_savings_balance || sum_nr_running >= group_capacity
2604 || !sum_nr_running)
2605 goto group_next;
2608 * Calculate the group which has the least non-idle load.
2609 * This is the group from where we need to pick up the load
2610 * for saving power
2612 if ((sum_nr_running < min_nr_running) ||
2613 (sum_nr_running == min_nr_running &&
2614 first_cpu(group->cpumask) <
2615 first_cpu(group_min->cpumask))) {
2616 group_min = group;
2617 min_nr_running = sum_nr_running;
2618 min_load_per_task = sum_weighted_load /
2619 sum_nr_running;
2623 * Calculate the group which is almost near its
2624 * capacity but still has some space to pick up some load
2625 * from other group and save more power
2627 if (sum_nr_running <= group_capacity - 1) {
2628 if (sum_nr_running > leader_nr_running ||
2629 (sum_nr_running == leader_nr_running &&
2630 first_cpu(group->cpumask) >
2631 first_cpu(group_leader->cpumask))) {
2632 group_leader = group;
2633 leader_nr_running = sum_nr_running;
2636 group_next:
2637 #endif
2638 group = group->next;
2639 } while (group != sd->groups);
2641 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2642 goto out_balanced;
2644 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2646 if (this_load >= avg_load ||
2647 100*max_load <= sd->imbalance_pct*this_load)
2648 goto out_balanced;
2650 busiest_load_per_task /= busiest_nr_running;
2651 if (group_imb)
2652 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2655 * We're trying to get all the cpus to the average_load, so we don't
2656 * want to push ourselves above the average load, nor do we wish to
2657 * reduce the max loaded cpu below the average load, as either of these
2658 * actions would just result in more rebalancing later, and ping-pong
2659 * tasks around. Thus we look for the minimum possible imbalance.
2660 * Negative imbalances (*we* are more loaded than anyone else) will
2661 * be counted as no imbalance for these purposes -- we can't fix that
2662 * by pulling tasks to us. Be careful of negative numbers as they'll
2663 * appear as very large values with unsigned longs.
2665 if (max_load <= busiest_load_per_task)
2666 goto out_balanced;
2669 * In the presence of smp nice balancing, certain scenarios can have
2670 * max load less than avg load(as we skip the groups at or below
2671 * its cpu_power, while calculating max_load..)
2673 if (max_load < avg_load) {
2674 *imbalance = 0;
2675 goto small_imbalance;
2678 /* Don't want to pull so many tasks that a group would go idle */
2679 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2681 /* How much load to actually move to equalise the imbalance */
2682 *imbalance = min(max_pull * busiest->__cpu_power,
2683 (avg_load - this_load) * this->__cpu_power)
2684 / SCHED_LOAD_SCALE;
2687 * if *imbalance is less than the average load per runnable task
2688 * there is no gaurantee that any tasks will be moved so we'll have
2689 * a think about bumping its value to force at least one task to be
2690 * moved
2692 if (*imbalance < busiest_load_per_task) {
2693 unsigned long tmp, pwr_now, pwr_move;
2694 unsigned int imbn;
2696 small_imbalance:
2697 pwr_move = pwr_now = 0;
2698 imbn = 2;
2699 if (this_nr_running) {
2700 this_load_per_task /= this_nr_running;
2701 if (busiest_load_per_task > this_load_per_task)
2702 imbn = 1;
2703 } else
2704 this_load_per_task = SCHED_LOAD_SCALE;
2706 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2707 busiest_load_per_task * imbn) {
2708 *imbalance = busiest_load_per_task;
2709 return busiest;
2713 * OK, we don't have enough imbalance to justify moving tasks,
2714 * however we may be able to increase total CPU power used by
2715 * moving them.
2718 pwr_now += busiest->__cpu_power *
2719 min(busiest_load_per_task, max_load);
2720 pwr_now += this->__cpu_power *
2721 min(this_load_per_task, this_load);
2722 pwr_now /= SCHED_LOAD_SCALE;
2724 /* Amount of load we'd subtract */
2725 tmp = sg_div_cpu_power(busiest,
2726 busiest_load_per_task * SCHED_LOAD_SCALE);
2727 if (max_load > tmp)
2728 pwr_move += busiest->__cpu_power *
2729 min(busiest_load_per_task, max_load - tmp);
2731 /* Amount of load we'd add */
2732 if (max_load * busiest->__cpu_power <
2733 busiest_load_per_task * SCHED_LOAD_SCALE)
2734 tmp = sg_div_cpu_power(this,
2735 max_load * busiest->__cpu_power);
2736 else
2737 tmp = sg_div_cpu_power(this,
2738 busiest_load_per_task * SCHED_LOAD_SCALE);
2739 pwr_move += this->__cpu_power *
2740 min(this_load_per_task, this_load + tmp);
2741 pwr_move /= SCHED_LOAD_SCALE;
2743 /* Move if we gain throughput */
2744 if (pwr_move > pwr_now)
2745 *imbalance = busiest_load_per_task;
2748 return busiest;
2750 out_balanced:
2751 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2752 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2753 goto ret;
2755 if (this == group_leader && group_leader != group_min) {
2756 *imbalance = min_load_per_task;
2757 return group_min;
2759 #endif
2760 ret:
2761 *imbalance = 0;
2762 return NULL;
2766 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2768 static struct rq *
2769 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2770 unsigned long imbalance, cpumask_t *cpus)
2772 struct rq *busiest = NULL, *rq;
2773 unsigned long max_load = 0;
2774 int i;
2776 for_each_cpu_mask(i, group->cpumask) {
2777 unsigned long wl;
2779 if (!cpu_isset(i, *cpus))
2780 continue;
2782 rq = cpu_rq(i);
2783 wl = weighted_cpuload(i);
2785 if (rq->nr_running == 1 && wl > imbalance)
2786 continue;
2788 if (wl > max_load) {
2789 max_load = wl;
2790 busiest = rq;
2794 return busiest;
2798 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2799 * so long as it is large enough.
2801 #define MAX_PINNED_INTERVAL 512
2804 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2805 * tasks if there is an imbalance.
2807 static int load_balance(int this_cpu, struct rq *this_rq,
2808 struct sched_domain *sd, enum cpu_idle_type idle,
2809 int *balance)
2811 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2812 struct sched_group *group;
2813 unsigned long imbalance;
2814 struct rq *busiest;
2815 cpumask_t cpus = CPU_MASK_ALL;
2816 unsigned long flags;
2819 * When power savings policy is enabled for the parent domain, idle
2820 * sibling can pick up load irrespective of busy siblings. In this case,
2821 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2822 * portraying it as CPU_NOT_IDLE.
2824 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2825 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2826 sd_idle = 1;
2828 schedstat_inc(sd, lb_count[idle]);
2830 redo:
2831 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2832 &cpus, balance);
2834 if (*balance == 0)
2835 goto out_balanced;
2837 if (!group) {
2838 schedstat_inc(sd, lb_nobusyg[idle]);
2839 goto out_balanced;
2842 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2843 if (!busiest) {
2844 schedstat_inc(sd, lb_nobusyq[idle]);
2845 goto out_balanced;
2848 BUG_ON(busiest == this_rq);
2850 schedstat_add(sd, lb_imbalance[idle], imbalance);
2852 ld_moved = 0;
2853 if (busiest->nr_running > 1) {
2855 * Attempt to move tasks. If find_busiest_group has found
2856 * an imbalance but busiest->nr_running <= 1, the group is
2857 * still unbalanced. ld_moved simply stays zero, so it is
2858 * correctly treated as an imbalance.
2860 local_irq_save(flags);
2861 double_rq_lock(this_rq, busiest);
2862 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2863 imbalance, sd, idle, &all_pinned);
2864 double_rq_unlock(this_rq, busiest);
2865 local_irq_restore(flags);
2868 * some other cpu did the load balance for us.
2870 if (ld_moved && this_cpu != smp_processor_id())
2871 resched_cpu(this_cpu);
2873 /* All tasks on this runqueue were pinned by CPU affinity */
2874 if (unlikely(all_pinned)) {
2875 cpu_clear(cpu_of(busiest), cpus);
2876 if (!cpus_empty(cpus))
2877 goto redo;
2878 goto out_balanced;
2882 if (!ld_moved) {
2883 schedstat_inc(sd, lb_failed[idle]);
2884 sd->nr_balance_failed++;
2886 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2888 spin_lock_irqsave(&busiest->lock, flags);
2890 /* don't kick the migration_thread, if the curr
2891 * task on busiest cpu can't be moved to this_cpu
2893 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2894 spin_unlock_irqrestore(&busiest->lock, flags);
2895 all_pinned = 1;
2896 goto out_one_pinned;
2899 if (!busiest->active_balance) {
2900 busiest->active_balance = 1;
2901 busiest->push_cpu = this_cpu;
2902 active_balance = 1;
2904 spin_unlock_irqrestore(&busiest->lock, flags);
2905 if (active_balance)
2906 wake_up_process(busiest->migration_thread);
2909 * We've kicked active balancing, reset the failure
2910 * counter.
2912 sd->nr_balance_failed = sd->cache_nice_tries+1;
2914 } else
2915 sd->nr_balance_failed = 0;
2917 if (likely(!active_balance)) {
2918 /* We were unbalanced, so reset the balancing interval */
2919 sd->balance_interval = sd->min_interval;
2920 } else {
2922 * If we've begun active balancing, start to back off. This
2923 * case may not be covered by the all_pinned logic if there
2924 * is only 1 task on the busy runqueue (because we don't call
2925 * move_tasks).
2927 if (sd->balance_interval < sd->max_interval)
2928 sd->balance_interval *= 2;
2931 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2932 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2933 return -1;
2934 return ld_moved;
2936 out_balanced:
2937 schedstat_inc(sd, lb_balanced[idle]);
2939 sd->nr_balance_failed = 0;
2941 out_one_pinned:
2942 /* tune up the balancing interval */
2943 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2944 (sd->balance_interval < sd->max_interval))
2945 sd->balance_interval *= 2;
2947 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2948 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2949 return -1;
2950 return 0;
2954 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2955 * tasks if there is an imbalance.
2957 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2958 * this_rq is locked.
2960 static int
2961 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2963 struct sched_group *group;
2964 struct rq *busiest = NULL;
2965 unsigned long imbalance;
2966 int ld_moved = 0;
2967 int sd_idle = 0;
2968 int all_pinned = 0;
2969 cpumask_t cpus = CPU_MASK_ALL;
2972 * When power savings policy is enabled for the parent domain, idle
2973 * sibling can pick up load irrespective of busy siblings. In this case,
2974 * let the state of idle sibling percolate up as IDLE, instead of
2975 * portraying it as CPU_NOT_IDLE.
2977 if (sd->flags & SD_SHARE_CPUPOWER &&
2978 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2979 sd_idle = 1;
2981 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2982 redo:
2983 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2984 &sd_idle, &cpus, NULL);
2985 if (!group) {
2986 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2987 goto out_balanced;
2990 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2991 &cpus);
2992 if (!busiest) {
2993 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2994 goto out_balanced;
2997 BUG_ON(busiest == this_rq);
2999 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3001 ld_moved = 0;
3002 if (busiest->nr_running > 1) {
3003 /* Attempt to move tasks */
3004 double_lock_balance(this_rq, busiest);
3005 /* this_rq->clock is already updated */
3006 update_rq_clock(busiest);
3007 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3008 imbalance, sd, CPU_NEWLY_IDLE,
3009 &all_pinned);
3010 spin_unlock(&busiest->lock);
3012 if (unlikely(all_pinned)) {
3013 cpu_clear(cpu_of(busiest), cpus);
3014 if (!cpus_empty(cpus))
3015 goto redo;
3019 if (!ld_moved) {
3020 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3021 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3022 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3023 return -1;
3024 } else
3025 sd->nr_balance_failed = 0;
3027 return ld_moved;
3029 out_balanced:
3030 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3031 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3032 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3033 return -1;
3034 sd->nr_balance_failed = 0;
3036 return 0;
3040 * idle_balance is called by schedule() if this_cpu is about to become
3041 * idle. Attempts to pull tasks from other CPUs.
3043 static void idle_balance(int this_cpu, struct rq *this_rq)
3045 struct sched_domain *sd;
3046 int pulled_task = -1;
3047 unsigned long next_balance = jiffies + HZ;
3049 for_each_domain(this_cpu, sd) {
3050 unsigned long interval;
3052 if (!(sd->flags & SD_LOAD_BALANCE))
3053 continue;
3055 if (sd->flags & SD_BALANCE_NEWIDLE)
3056 /* If we've pulled tasks over stop searching: */
3057 pulled_task = load_balance_newidle(this_cpu,
3058 this_rq, sd);
3060 interval = msecs_to_jiffies(sd->balance_interval);
3061 if (time_after(next_balance, sd->last_balance + interval))
3062 next_balance = sd->last_balance + interval;
3063 if (pulled_task)
3064 break;
3066 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3068 * We are going idle. next_balance may be set based on
3069 * a busy processor. So reset next_balance.
3071 this_rq->next_balance = next_balance;
3076 * active_load_balance is run by migration threads. It pushes running tasks
3077 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3078 * running on each physical CPU where possible, and avoids physical /
3079 * logical imbalances.
3081 * Called with busiest_rq locked.
3083 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3085 int target_cpu = busiest_rq->push_cpu;
3086 struct sched_domain *sd;
3087 struct rq *target_rq;
3089 /* Is there any task to move? */
3090 if (busiest_rq->nr_running <= 1)
3091 return;
3093 target_rq = cpu_rq(target_cpu);
3096 * This condition is "impossible", if it occurs
3097 * we need to fix it. Originally reported by
3098 * Bjorn Helgaas on a 128-cpu setup.
3100 BUG_ON(busiest_rq == target_rq);
3102 /* move a task from busiest_rq to target_rq */
3103 double_lock_balance(busiest_rq, target_rq);
3104 update_rq_clock(busiest_rq);
3105 update_rq_clock(target_rq);
3107 /* Search for an sd spanning us and the target CPU. */
3108 for_each_domain(target_cpu, sd) {
3109 if ((sd->flags & SD_LOAD_BALANCE) &&
3110 cpu_isset(busiest_cpu, sd->span))
3111 break;
3114 if (likely(sd)) {
3115 schedstat_inc(sd, alb_count);
3117 if (move_one_task(target_rq, target_cpu, busiest_rq,
3118 sd, CPU_IDLE))
3119 schedstat_inc(sd, alb_pushed);
3120 else
3121 schedstat_inc(sd, alb_failed);
3123 spin_unlock(&target_rq->lock);
3126 #ifdef CONFIG_NO_HZ
3127 static struct {
3128 atomic_t load_balancer;
3129 cpumask_t cpu_mask;
3130 } nohz ____cacheline_aligned = {
3131 .load_balancer = ATOMIC_INIT(-1),
3132 .cpu_mask = CPU_MASK_NONE,
3136 * This routine will try to nominate the ilb (idle load balancing)
3137 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3138 * load balancing on behalf of all those cpus. If all the cpus in the system
3139 * go into this tickless mode, then there will be no ilb owner (as there is
3140 * no need for one) and all the cpus will sleep till the next wakeup event
3141 * arrives...
3143 * For the ilb owner, tick is not stopped. And this tick will be used
3144 * for idle load balancing. ilb owner will still be part of
3145 * nohz.cpu_mask..
3147 * While stopping the tick, this cpu will become the ilb owner if there
3148 * is no other owner. And will be the owner till that cpu becomes busy
3149 * or if all cpus in the system stop their ticks at which point
3150 * there is no need for ilb owner.
3152 * When the ilb owner becomes busy, it nominates another owner, during the
3153 * next busy scheduler_tick()
3155 int select_nohz_load_balancer(int stop_tick)
3157 int cpu = smp_processor_id();
3159 if (stop_tick) {
3160 cpu_set(cpu, nohz.cpu_mask);
3161 cpu_rq(cpu)->in_nohz_recently = 1;
3164 * If we are going offline and still the leader, give up!
3166 if (cpu_is_offline(cpu) &&
3167 atomic_read(&nohz.load_balancer) == cpu) {
3168 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3169 BUG();
3170 return 0;
3173 /* time for ilb owner also to sleep */
3174 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3175 if (atomic_read(&nohz.load_balancer) == cpu)
3176 atomic_set(&nohz.load_balancer, -1);
3177 return 0;
3180 if (atomic_read(&nohz.load_balancer) == -1) {
3181 /* make me the ilb owner */
3182 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3183 return 1;
3184 } else if (atomic_read(&nohz.load_balancer) == cpu)
3185 return 1;
3186 } else {
3187 if (!cpu_isset(cpu, nohz.cpu_mask))
3188 return 0;
3190 cpu_clear(cpu, nohz.cpu_mask);
3192 if (atomic_read(&nohz.load_balancer) == cpu)
3193 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3194 BUG();
3196 return 0;
3198 #endif
3200 static DEFINE_SPINLOCK(balancing);
3203 * It checks each scheduling domain to see if it is due to be balanced,
3204 * and initiates a balancing operation if so.
3206 * Balancing parameters are set up in arch_init_sched_domains.
3208 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3210 int balance = 1;
3211 struct rq *rq = cpu_rq(cpu);
3212 unsigned long interval;
3213 struct sched_domain *sd;
3214 /* Earliest time when we have to do rebalance again */
3215 unsigned long next_balance = jiffies + 60*HZ;
3216 int update_next_balance = 0;
3218 for_each_domain(cpu, sd) {
3219 if (!(sd->flags & SD_LOAD_BALANCE))
3220 continue;
3222 interval = sd->balance_interval;
3223 if (idle != CPU_IDLE)
3224 interval *= sd->busy_factor;
3226 /* scale ms to jiffies */
3227 interval = msecs_to_jiffies(interval);
3228 if (unlikely(!interval))
3229 interval = 1;
3230 if (interval > HZ*NR_CPUS/10)
3231 interval = HZ*NR_CPUS/10;
3234 if (sd->flags & SD_SERIALIZE) {
3235 if (!spin_trylock(&balancing))
3236 goto out;
3239 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3240 if (load_balance(cpu, rq, sd, idle, &balance)) {
3242 * We've pulled tasks over so either we're no
3243 * longer idle, or one of our SMT siblings is
3244 * not idle.
3246 idle = CPU_NOT_IDLE;
3248 sd->last_balance = jiffies;
3250 if (sd->flags & SD_SERIALIZE)
3251 spin_unlock(&balancing);
3252 out:
3253 if (time_after(next_balance, sd->last_balance + interval)) {
3254 next_balance = sd->last_balance + interval;
3255 update_next_balance = 1;
3259 * Stop the load balance at this level. There is another
3260 * CPU in our sched group which is doing load balancing more
3261 * actively.
3263 if (!balance)
3264 break;
3268 * next_balance will be updated only when there is a need.
3269 * When the cpu is attached to null domain for ex, it will not be
3270 * updated.
3272 if (likely(update_next_balance))
3273 rq->next_balance = next_balance;
3277 * run_rebalance_domains is triggered when needed from the scheduler tick.
3278 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3279 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3281 static void run_rebalance_domains(struct softirq_action *h)
3283 int this_cpu = smp_processor_id();
3284 struct rq *this_rq = cpu_rq(this_cpu);
3285 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3286 CPU_IDLE : CPU_NOT_IDLE;
3288 rebalance_domains(this_cpu, idle);
3290 #ifdef CONFIG_NO_HZ
3292 * If this cpu is the owner for idle load balancing, then do the
3293 * balancing on behalf of the other idle cpus whose ticks are
3294 * stopped.
3296 if (this_rq->idle_at_tick &&
3297 atomic_read(&nohz.load_balancer) == this_cpu) {
3298 cpumask_t cpus = nohz.cpu_mask;
3299 struct rq *rq;
3300 int balance_cpu;
3302 cpu_clear(this_cpu, cpus);
3303 for_each_cpu_mask(balance_cpu, cpus) {
3305 * If this cpu gets work to do, stop the load balancing
3306 * work being done for other cpus. Next load
3307 * balancing owner will pick it up.
3309 if (need_resched())
3310 break;
3312 rebalance_domains(balance_cpu, CPU_IDLE);
3314 rq = cpu_rq(balance_cpu);
3315 if (time_after(this_rq->next_balance, rq->next_balance))
3316 this_rq->next_balance = rq->next_balance;
3319 #endif
3323 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3325 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3326 * idle load balancing owner or decide to stop the periodic load balancing,
3327 * if the whole system is idle.
3329 static inline void trigger_load_balance(struct rq *rq, int cpu)
3331 #ifdef CONFIG_NO_HZ
3333 * If we were in the nohz mode recently and busy at the current
3334 * scheduler tick, then check if we need to nominate new idle
3335 * load balancer.
3337 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3338 rq->in_nohz_recently = 0;
3340 if (atomic_read(&nohz.load_balancer) == cpu) {
3341 cpu_clear(cpu, nohz.cpu_mask);
3342 atomic_set(&nohz.load_balancer, -1);
3345 if (atomic_read(&nohz.load_balancer) == -1) {
3347 * simple selection for now: Nominate the
3348 * first cpu in the nohz list to be the next
3349 * ilb owner.
3351 * TBD: Traverse the sched domains and nominate
3352 * the nearest cpu in the nohz.cpu_mask.
3354 int ilb = first_cpu(nohz.cpu_mask);
3356 if (ilb != NR_CPUS)
3357 resched_cpu(ilb);
3362 * If this cpu is idle and doing idle load balancing for all the
3363 * cpus with ticks stopped, is it time for that to stop?
3365 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3366 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3367 resched_cpu(cpu);
3368 return;
3372 * If this cpu is idle and the idle load balancing is done by
3373 * someone else, then no need raise the SCHED_SOFTIRQ
3375 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3376 cpu_isset(cpu, nohz.cpu_mask))
3377 return;
3378 #endif
3379 if (time_after_eq(jiffies, rq->next_balance))
3380 raise_softirq(SCHED_SOFTIRQ);
3383 #else /* CONFIG_SMP */
3386 * on UP we do not need to balance between CPUs:
3388 static inline void idle_balance(int cpu, struct rq *rq)
3392 #endif
3394 DEFINE_PER_CPU(struct kernel_stat, kstat);
3396 EXPORT_PER_CPU_SYMBOL(kstat);
3399 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3400 * that have not yet been banked in case the task is currently running.
3402 unsigned long long task_sched_runtime(struct task_struct *p)
3404 unsigned long flags;
3405 u64 ns, delta_exec;
3406 struct rq *rq;
3408 rq = task_rq_lock(p, &flags);
3409 ns = p->se.sum_exec_runtime;
3410 if (task_current(rq, p)) {
3411 update_rq_clock(rq);
3412 delta_exec = rq->clock - p->se.exec_start;
3413 if ((s64)delta_exec > 0)
3414 ns += delta_exec;
3416 task_rq_unlock(rq, &flags);
3418 return ns;
3422 * Account user cpu time to a process.
3423 * @p: the process that the cpu time gets accounted to
3424 * @cputime: the cpu time spent in user space since the last update
3426 void account_user_time(struct task_struct *p, cputime_t cputime)
3428 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3429 cputime64_t tmp;
3431 p->utime = cputime_add(p->utime, cputime);
3433 /* Add user time to cpustat. */
3434 tmp = cputime_to_cputime64(cputime);
3435 if (TASK_NICE(p) > 0)
3436 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3437 else
3438 cpustat->user = cputime64_add(cpustat->user, tmp);
3442 * Account guest cpu time to a process.
3443 * @p: the process that the cpu time gets accounted to
3444 * @cputime: the cpu time spent in virtual machine since the last update
3446 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3448 cputime64_t tmp;
3449 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3451 tmp = cputime_to_cputime64(cputime);
3453 p->utime = cputime_add(p->utime, cputime);
3454 p->gtime = cputime_add(p->gtime, cputime);
3456 cpustat->user = cputime64_add(cpustat->user, tmp);
3457 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3461 * Account scaled user cpu time to a process.
3462 * @p: the process that the cpu time gets accounted to
3463 * @cputime: the cpu time spent in user space since the last update
3465 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3467 p->utimescaled = cputime_add(p->utimescaled, cputime);
3471 * Account system cpu time to a process.
3472 * @p: the process that the cpu time gets accounted to
3473 * @hardirq_offset: the offset to subtract from hardirq_count()
3474 * @cputime: the cpu time spent in kernel space since the last update
3476 void account_system_time(struct task_struct *p, int hardirq_offset,
3477 cputime_t cputime)
3479 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3480 struct rq *rq = this_rq();
3481 cputime64_t tmp;
3483 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3484 return account_guest_time(p, cputime);
3486 p->stime = cputime_add(p->stime, cputime);
3488 /* Add system time to cpustat. */
3489 tmp = cputime_to_cputime64(cputime);
3490 if (hardirq_count() - hardirq_offset)
3491 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3492 else if (softirq_count())
3493 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3494 else if (p != rq->idle)
3495 cpustat->system = cputime64_add(cpustat->system, tmp);
3496 else if (atomic_read(&rq->nr_iowait) > 0)
3497 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3498 else
3499 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3500 /* Account for system time used */
3501 acct_update_integrals(p);
3505 * Account scaled system cpu time to a process.
3506 * @p: the process that the cpu time gets accounted to
3507 * @hardirq_offset: the offset to subtract from hardirq_count()
3508 * @cputime: the cpu time spent in kernel space since the last update
3510 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3512 p->stimescaled = cputime_add(p->stimescaled, cputime);
3516 * Account for involuntary wait time.
3517 * @p: the process from which the cpu time has been stolen
3518 * @steal: the cpu time spent in involuntary wait
3520 void account_steal_time(struct task_struct *p, cputime_t steal)
3522 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3523 cputime64_t tmp = cputime_to_cputime64(steal);
3524 struct rq *rq = this_rq();
3526 if (p == rq->idle) {
3527 p->stime = cputime_add(p->stime, steal);
3528 if (atomic_read(&rq->nr_iowait) > 0)
3529 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3530 else
3531 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3532 } else
3533 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3537 * This function gets called by the timer code, with HZ frequency.
3538 * We call it with interrupts disabled.
3540 * It also gets called by the fork code, when changing the parent's
3541 * timeslices.
3543 void scheduler_tick(void)
3545 int cpu = smp_processor_id();
3546 struct rq *rq = cpu_rq(cpu);
3547 struct task_struct *curr = rq->curr;
3548 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3550 spin_lock(&rq->lock);
3551 __update_rq_clock(rq);
3553 * Let rq->clock advance by at least TICK_NSEC:
3555 if (unlikely(rq->clock < next_tick))
3556 rq->clock = next_tick;
3557 rq->tick_timestamp = rq->clock;
3558 update_cpu_load(rq);
3559 if (curr != rq->idle) /* FIXME: needed? */
3560 curr->sched_class->task_tick(rq, curr);
3561 spin_unlock(&rq->lock);
3563 #ifdef CONFIG_SMP
3564 rq->idle_at_tick = idle_cpu(cpu);
3565 trigger_load_balance(rq, cpu);
3566 #endif
3569 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3571 void fastcall add_preempt_count(int val)
3574 * Underflow?
3576 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3577 return;
3578 preempt_count() += val;
3580 * Spinlock count overflowing soon?
3582 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3583 PREEMPT_MASK - 10);
3585 EXPORT_SYMBOL(add_preempt_count);
3587 void fastcall sub_preempt_count(int val)
3590 * Underflow?
3592 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3593 return;
3595 * Is the spinlock portion underflowing?
3597 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3598 !(preempt_count() & PREEMPT_MASK)))
3599 return;
3601 preempt_count() -= val;
3603 EXPORT_SYMBOL(sub_preempt_count);
3605 #endif
3608 * Print scheduling while atomic bug:
3610 static noinline void __schedule_bug(struct task_struct *prev)
3612 struct pt_regs *regs = get_irq_regs();
3614 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3615 prev->comm, prev->pid, preempt_count());
3617 debug_show_held_locks(prev);
3618 if (irqs_disabled())
3619 print_irqtrace_events(prev);
3621 if (regs)
3622 show_regs(regs);
3623 else
3624 dump_stack();
3628 * Various schedule()-time debugging checks and statistics:
3630 static inline void schedule_debug(struct task_struct *prev)
3633 * Test if we are atomic. Since do_exit() needs to call into
3634 * schedule() atomically, we ignore that path for now.
3635 * Otherwise, whine if we are scheduling when we should not be.
3637 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3638 __schedule_bug(prev);
3640 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3642 schedstat_inc(this_rq(), sched_count);
3643 #ifdef CONFIG_SCHEDSTATS
3644 if (unlikely(prev->lock_depth >= 0)) {
3645 schedstat_inc(this_rq(), bkl_count);
3646 schedstat_inc(prev, sched_info.bkl_count);
3648 #endif
3652 * Pick up the highest-prio task:
3654 static inline struct task_struct *
3655 pick_next_task(struct rq *rq, struct task_struct *prev)
3657 const struct sched_class *class;
3658 struct task_struct *p;
3661 * Optimization: we know that if all tasks are in
3662 * the fair class we can call that function directly:
3664 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3665 p = fair_sched_class.pick_next_task(rq);
3666 if (likely(p))
3667 return p;
3670 class = sched_class_highest;
3671 for ( ; ; ) {
3672 p = class->pick_next_task(rq);
3673 if (p)
3674 return p;
3676 * Will never be NULL as the idle class always
3677 * returns a non-NULL p:
3679 class = class->next;
3684 * schedule() is the main scheduler function.
3686 asmlinkage void __sched schedule(void)
3688 struct task_struct *prev, *next;
3689 long *switch_count;
3690 struct rq *rq;
3691 int cpu;
3693 need_resched:
3694 preempt_disable();
3695 cpu = smp_processor_id();
3696 rq = cpu_rq(cpu);
3697 rcu_qsctr_inc(cpu);
3698 prev = rq->curr;
3699 switch_count = &prev->nivcsw;
3701 release_kernel_lock(prev);
3702 need_resched_nonpreemptible:
3704 schedule_debug(prev);
3707 * Do the rq-clock update outside the rq lock:
3709 local_irq_disable();
3710 __update_rq_clock(rq);
3711 spin_lock(&rq->lock);
3712 clear_tsk_need_resched(prev);
3714 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3715 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3716 unlikely(signal_pending(prev)))) {
3717 prev->state = TASK_RUNNING;
3718 } else {
3719 deactivate_task(rq, prev, 1);
3721 switch_count = &prev->nvcsw;
3724 schedule_balance_rt(rq, prev);
3726 if (unlikely(!rq->nr_running))
3727 idle_balance(cpu, rq);
3729 prev->sched_class->put_prev_task(rq, prev);
3730 next = pick_next_task(rq, prev);
3732 sched_info_switch(prev, next);
3734 if (likely(prev != next)) {
3735 rq->nr_switches++;
3736 rq->curr = next;
3737 ++*switch_count;
3739 context_switch(rq, prev, next); /* unlocks the rq */
3740 } else
3741 spin_unlock_irq(&rq->lock);
3743 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3744 cpu = smp_processor_id();
3745 rq = cpu_rq(cpu);
3746 goto need_resched_nonpreemptible;
3748 preempt_enable_no_resched();
3749 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3750 goto need_resched;
3752 EXPORT_SYMBOL(schedule);
3754 #ifdef CONFIG_PREEMPT
3756 * this is the entry point to schedule() from in-kernel preemption
3757 * off of preempt_enable. Kernel preemptions off return from interrupt
3758 * occur there and call schedule directly.
3760 asmlinkage void __sched preempt_schedule(void)
3762 struct thread_info *ti = current_thread_info();
3763 #ifdef CONFIG_PREEMPT_BKL
3764 struct task_struct *task = current;
3765 int saved_lock_depth;
3766 #endif
3768 * If there is a non-zero preempt_count or interrupts are disabled,
3769 * we do not want to preempt the current task. Just return..
3771 if (likely(ti->preempt_count || irqs_disabled()))
3772 return;
3774 do {
3775 add_preempt_count(PREEMPT_ACTIVE);
3778 * We keep the big kernel semaphore locked, but we
3779 * clear ->lock_depth so that schedule() doesnt
3780 * auto-release the semaphore:
3782 #ifdef CONFIG_PREEMPT_BKL
3783 saved_lock_depth = task->lock_depth;
3784 task->lock_depth = -1;
3785 #endif
3786 schedule();
3787 #ifdef CONFIG_PREEMPT_BKL
3788 task->lock_depth = saved_lock_depth;
3789 #endif
3790 sub_preempt_count(PREEMPT_ACTIVE);
3793 * Check again in case we missed a preemption opportunity
3794 * between schedule and now.
3796 barrier();
3797 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3799 EXPORT_SYMBOL(preempt_schedule);
3802 * this is the entry point to schedule() from kernel preemption
3803 * off of irq context.
3804 * Note, that this is called and return with irqs disabled. This will
3805 * protect us against recursive calling from irq.
3807 asmlinkage void __sched preempt_schedule_irq(void)
3809 struct thread_info *ti = current_thread_info();
3810 #ifdef CONFIG_PREEMPT_BKL
3811 struct task_struct *task = current;
3812 int saved_lock_depth;
3813 #endif
3814 /* Catch callers which need to be fixed */
3815 BUG_ON(ti->preempt_count || !irqs_disabled());
3817 do {
3818 add_preempt_count(PREEMPT_ACTIVE);
3821 * We keep the big kernel semaphore locked, but we
3822 * clear ->lock_depth so that schedule() doesnt
3823 * auto-release the semaphore:
3825 #ifdef CONFIG_PREEMPT_BKL
3826 saved_lock_depth = task->lock_depth;
3827 task->lock_depth = -1;
3828 #endif
3829 local_irq_enable();
3830 schedule();
3831 local_irq_disable();
3832 #ifdef CONFIG_PREEMPT_BKL
3833 task->lock_depth = saved_lock_depth;
3834 #endif
3835 sub_preempt_count(PREEMPT_ACTIVE);
3838 * Check again in case we missed a preemption opportunity
3839 * between schedule and now.
3841 barrier();
3842 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3845 #endif /* CONFIG_PREEMPT */
3847 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3848 void *key)
3850 return try_to_wake_up(curr->private, mode, sync);
3852 EXPORT_SYMBOL(default_wake_function);
3855 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3856 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3857 * number) then we wake all the non-exclusive tasks and one exclusive task.
3859 * There are circumstances in which we can try to wake a task which has already
3860 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3861 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3863 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3864 int nr_exclusive, int sync, void *key)
3866 wait_queue_t *curr, *next;
3868 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3869 unsigned flags = curr->flags;
3871 if (curr->func(curr, mode, sync, key) &&
3872 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3873 break;
3878 * __wake_up - wake up threads blocked on a waitqueue.
3879 * @q: the waitqueue
3880 * @mode: which threads
3881 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3882 * @key: is directly passed to the wakeup function
3884 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3885 int nr_exclusive, void *key)
3887 unsigned long flags;
3889 spin_lock_irqsave(&q->lock, flags);
3890 __wake_up_common(q, mode, nr_exclusive, 0, key);
3891 spin_unlock_irqrestore(&q->lock, flags);
3893 EXPORT_SYMBOL(__wake_up);
3896 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3898 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3900 __wake_up_common(q, mode, 1, 0, NULL);
3904 * __wake_up_sync - wake up threads blocked on a waitqueue.
3905 * @q: the waitqueue
3906 * @mode: which threads
3907 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3909 * The sync wakeup differs that the waker knows that it will schedule
3910 * away soon, so while the target thread will be woken up, it will not
3911 * be migrated to another CPU - ie. the two threads are 'synchronized'
3912 * with each other. This can prevent needless bouncing between CPUs.
3914 * On UP it can prevent extra preemption.
3916 void fastcall
3917 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3919 unsigned long flags;
3920 int sync = 1;
3922 if (unlikely(!q))
3923 return;
3925 if (unlikely(!nr_exclusive))
3926 sync = 0;
3928 spin_lock_irqsave(&q->lock, flags);
3929 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3930 spin_unlock_irqrestore(&q->lock, flags);
3932 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3934 void complete(struct completion *x)
3936 unsigned long flags;
3938 spin_lock_irqsave(&x->wait.lock, flags);
3939 x->done++;
3940 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3941 1, 0, NULL);
3942 spin_unlock_irqrestore(&x->wait.lock, flags);
3944 EXPORT_SYMBOL(complete);
3946 void complete_all(struct completion *x)
3948 unsigned long flags;
3950 spin_lock_irqsave(&x->wait.lock, flags);
3951 x->done += UINT_MAX/2;
3952 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3953 0, 0, NULL);
3954 spin_unlock_irqrestore(&x->wait.lock, flags);
3956 EXPORT_SYMBOL(complete_all);
3958 static inline long __sched
3959 do_wait_for_common(struct completion *x, long timeout, int state)
3961 if (!x->done) {
3962 DECLARE_WAITQUEUE(wait, current);
3964 wait.flags |= WQ_FLAG_EXCLUSIVE;
3965 __add_wait_queue_tail(&x->wait, &wait);
3966 do {
3967 if (state == TASK_INTERRUPTIBLE &&
3968 signal_pending(current)) {
3969 __remove_wait_queue(&x->wait, &wait);
3970 return -ERESTARTSYS;
3972 __set_current_state(state);
3973 spin_unlock_irq(&x->wait.lock);
3974 timeout = schedule_timeout(timeout);
3975 spin_lock_irq(&x->wait.lock);
3976 if (!timeout) {
3977 __remove_wait_queue(&x->wait, &wait);
3978 return timeout;
3980 } while (!x->done);
3981 __remove_wait_queue(&x->wait, &wait);
3983 x->done--;
3984 return timeout;
3987 static long __sched
3988 wait_for_common(struct completion *x, long timeout, int state)
3990 might_sleep();
3992 spin_lock_irq(&x->wait.lock);
3993 timeout = do_wait_for_common(x, timeout, state);
3994 spin_unlock_irq(&x->wait.lock);
3995 return timeout;
3998 void __sched wait_for_completion(struct completion *x)
4000 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4002 EXPORT_SYMBOL(wait_for_completion);
4004 unsigned long __sched
4005 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4007 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4009 EXPORT_SYMBOL(wait_for_completion_timeout);
4011 int __sched wait_for_completion_interruptible(struct completion *x)
4013 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4014 if (t == -ERESTARTSYS)
4015 return t;
4016 return 0;
4018 EXPORT_SYMBOL(wait_for_completion_interruptible);
4020 unsigned long __sched
4021 wait_for_completion_interruptible_timeout(struct completion *x,
4022 unsigned long timeout)
4024 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4026 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4028 static long __sched
4029 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4031 unsigned long flags;
4032 wait_queue_t wait;
4034 init_waitqueue_entry(&wait, current);
4036 __set_current_state(state);
4038 spin_lock_irqsave(&q->lock, flags);
4039 __add_wait_queue(q, &wait);
4040 spin_unlock(&q->lock);
4041 timeout = schedule_timeout(timeout);
4042 spin_lock_irq(&q->lock);
4043 __remove_wait_queue(q, &wait);
4044 spin_unlock_irqrestore(&q->lock, flags);
4046 return timeout;
4049 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4051 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4053 EXPORT_SYMBOL(interruptible_sleep_on);
4055 long __sched
4056 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4058 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4060 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4062 void __sched sleep_on(wait_queue_head_t *q)
4064 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4066 EXPORT_SYMBOL(sleep_on);
4068 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4070 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4072 EXPORT_SYMBOL(sleep_on_timeout);
4074 #ifdef CONFIG_RT_MUTEXES
4077 * rt_mutex_setprio - set the current priority of a task
4078 * @p: task
4079 * @prio: prio value (kernel-internal form)
4081 * This function changes the 'effective' priority of a task. It does
4082 * not touch ->normal_prio like __setscheduler().
4084 * Used by the rt_mutex code to implement priority inheritance logic.
4086 void rt_mutex_setprio(struct task_struct *p, int prio)
4088 unsigned long flags;
4089 int oldprio, on_rq, running;
4090 struct rq *rq;
4092 BUG_ON(prio < 0 || prio > MAX_PRIO);
4094 rq = task_rq_lock(p, &flags);
4095 update_rq_clock(rq);
4097 oldprio = p->prio;
4098 on_rq = p->se.on_rq;
4099 running = task_current(rq, p);
4100 if (on_rq) {
4101 dequeue_task(rq, p, 0);
4102 if (running)
4103 p->sched_class->put_prev_task(rq, p);
4106 if (rt_prio(prio))
4107 p->sched_class = &rt_sched_class;
4108 else
4109 p->sched_class = &fair_sched_class;
4111 p->prio = prio;
4113 if (on_rq) {
4114 if (running)
4115 p->sched_class->set_curr_task(rq);
4116 enqueue_task(rq, p, 0);
4118 * Reschedule if we are currently running on this runqueue and
4119 * our priority decreased, or if we are not currently running on
4120 * this runqueue and our priority is higher than the current's
4122 if (running) {
4123 if (p->prio > oldprio)
4124 resched_task(rq->curr);
4125 } else {
4126 check_preempt_curr(rq, p);
4129 task_rq_unlock(rq, &flags);
4132 #endif
4134 void set_user_nice(struct task_struct *p, long nice)
4136 int old_prio, delta, on_rq;
4137 unsigned long flags;
4138 struct rq *rq;
4140 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4141 return;
4143 * We have to be careful, if called from sys_setpriority(),
4144 * the task might be in the middle of scheduling on another CPU.
4146 rq = task_rq_lock(p, &flags);
4147 update_rq_clock(rq);
4149 * The RT priorities are set via sched_setscheduler(), but we still
4150 * allow the 'normal' nice value to be set - but as expected
4151 * it wont have any effect on scheduling until the task is
4152 * SCHED_FIFO/SCHED_RR:
4154 if (task_has_rt_policy(p)) {
4155 p->static_prio = NICE_TO_PRIO(nice);
4156 goto out_unlock;
4158 on_rq = p->se.on_rq;
4159 if (on_rq)
4160 dequeue_task(rq, p, 0);
4162 p->static_prio = NICE_TO_PRIO(nice);
4163 set_load_weight(p);
4164 old_prio = p->prio;
4165 p->prio = effective_prio(p);
4166 delta = p->prio - old_prio;
4168 if (on_rq) {
4169 enqueue_task(rq, p, 0);
4171 * If the task increased its priority or is running and
4172 * lowered its priority, then reschedule its CPU:
4174 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4175 resched_task(rq->curr);
4177 out_unlock:
4178 task_rq_unlock(rq, &flags);
4180 EXPORT_SYMBOL(set_user_nice);
4183 * can_nice - check if a task can reduce its nice value
4184 * @p: task
4185 * @nice: nice value
4187 int can_nice(const struct task_struct *p, const int nice)
4189 /* convert nice value [19,-20] to rlimit style value [1,40] */
4190 int nice_rlim = 20 - nice;
4192 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4193 capable(CAP_SYS_NICE));
4196 #ifdef __ARCH_WANT_SYS_NICE
4199 * sys_nice - change the priority of the current process.
4200 * @increment: priority increment
4202 * sys_setpriority is a more generic, but much slower function that
4203 * does similar things.
4205 asmlinkage long sys_nice(int increment)
4207 long nice, retval;
4210 * Setpriority might change our priority at the same moment.
4211 * We don't have to worry. Conceptually one call occurs first
4212 * and we have a single winner.
4214 if (increment < -40)
4215 increment = -40;
4216 if (increment > 40)
4217 increment = 40;
4219 nice = PRIO_TO_NICE(current->static_prio) + increment;
4220 if (nice < -20)
4221 nice = -20;
4222 if (nice > 19)
4223 nice = 19;
4225 if (increment < 0 && !can_nice(current, nice))
4226 return -EPERM;
4228 retval = security_task_setnice(current, nice);
4229 if (retval)
4230 return retval;
4232 set_user_nice(current, nice);
4233 return 0;
4236 #endif
4239 * task_prio - return the priority value of a given task.
4240 * @p: the task in question.
4242 * This is the priority value as seen by users in /proc.
4243 * RT tasks are offset by -200. Normal tasks are centered
4244 * around 0, value goes from -16 to +15.
4246 int task_prio(const struct task_struct *p)
4248 return p->prio - MAX_RT_PRIO;
4252 * task_nice - return the nice value of a given task.
4253 * @p: the task in question.
4255 int task_nice(const struct task_struct *p)
4257 return TASK_NICE(p);
4259 EXPORT_SYMBOL_GPL(task_nice);
4262 * idle_cpu - is a given cpu idle currently?
4263 * @cpu: the processor in question.
4265 int idle_cpu(int cpu)
4267 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4271 * idle_task - return the idle task for a given cpu.
4272 * @cpu: the processor in question.
4274 struct task_struct *idle_task(int cpu)
4276 return cpu_rq(cpu)->idle;
4280 * find_process_by_pid - find a process with a matching PID value.
4281 * @pid: the pid in question.
4283 static struct task_struct *find_process_by_pid(pid_t pid)
4285 return pid ? find_task_by_vpid(pid) : current;
4288 /* Actually do priority change: must hold rq lock. */
4289 static void
4290 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4292 BUG_ON(p->se.on_rq);
4294 p->policy = policy;
4295 switch (p->policy) {
4296 case SCHED_NORMAL:
4297 case SCHED_BATCH:
4298 case SCHED_IDLE:
4299 p->sched_class = &fair_sched_class;
4300 break;
4301 case SCHED_FIFO:
4302 case SCHED_RR:
4303 p->sched_class = &rt_sched_class;
4304 break;
4307 p->rt_priority = prio;
4308 p->normal_prio = normal_prio(p);
4309 /* we are holding p->pi_lock already */
4310 p->prio = rt_mutex_getprio(p);
4311 set_load_weight(p);
4315 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4316 * @p: the task in question.
4317 * @policy: new policy.
4318 * @param: structure containing the new RT priority.
4320 * NOTE that the task may be already dead.
4322 int sched_setscheduler(struct task_struct *p, int policy,
4323 struct sched_param *param)
4325 int retval, oldprio, oldpolicy = -1, on_rq, running;
4326 unsigned long flags;
4327 struct rq *rq;
4329 /* may grab non-irq protected spin_locks */
4330 BUG_ON(in_interrupt());
4331 recheck:
4332 /* double check policy once rq lock held */
4333 if (policy < 0)
4334 policy = oldpolicy = p->policy;
4335 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4336 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4337 policy != SCHED_IDLE)
4338 return -EINVAL;
4340 * Valid priorities for SCHED_FIFO and SCHED_RR are
4341 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4342 * SCHED_BATCH and SCHED_IDLE is 0.
4344 if (param->sched_priority < 0 ||
4345 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4346 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4347 return -EINVAL;
4348 if (rt_policy(policy) != (param->sched_priority != 0))
4349 return -EINVAL;
4352 * Allow unprivileged RT tasks to decrease priority:
4354 if (!capable(CAP_SYS_NICE)) {
4355 if (rt_policy(policy)) {
4356 unsigned long rlim_rtprio;
4358 if (!lock_task_sighand(p, &flags))
4359 return -ESRCH;
4360 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4361 unlock_task_sighand(p, &flags);
4363 /* can't set/change the rt policy */
4364 if (policy != p->policy && !rlim_rtprio)
4365 return -EPERM;
4367 /* can't increase priority */
4368 if (param->sched_priority > p->rt_priority &&
4369 param->sched_priority > rlim_rtprio)
4370 return -EPERM;
4373 * Like positive nice levels, dont allow tasks to
4374 * move out of SCHED_IDLE either:
4376 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4377 return -EPERM;
4379 /* can't change other user's priorities */
4380 if ((current->euid != p->euid) &&
4381 (current->euid != p->uid))
4382 return -EPERM;
4385 retval = security_task_setscheduler(p, policy, param);
4386 if (retval)
4387 return retval;
4389 * make sure no PI-waiters arrive (or leave) while we are
4390 * changing the priority of the task:
4392 spin_lock_irqsave(&p->pi_lock, flags);
4394 * To be able to change p->policy safely, the apropriate
4395 * runqueue lock must be held.
4397 rq = __task_rq_lock(p);
4398 /* recheck policy now with rq lock held */
4399 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4400 policy = oldpolicy = -1;
4401 __task_rq_unlock(rq);
4402 spin_unlock_irqrestore(&p->pi_lock, flags);
4403 goto recheck;
4405 update_rq_clock(rq);
4406 on_rq = p->se.on_rq;
4407 running = task_current(rq, p);
4408 if (on_rq) {
4409 deactivate_task(rq, p, 0);
4410 if (running)
4411 p->sched_class->put_prev_task(rq, p);
4414 oldprio = p->prio;
4415 __setscheduler(rq, p, policy, param->sched_priority);
4417 if (on_rq) {
4418 if (running)
4419 p->sched_class->set_curr_task(rq);
4420 activate_task(rq, p, 0);
4422 * Reschedule if we are currently running on this runqueue and
4423 * our priority decreased, or if we are not currently running on
4424 * this runqueue and our priority is higher than the current's
4426 if (running) {
4427 if (p->prio > oldprio)
4428 resched_task(rq->curr);
4429 } else {
4430 check_preempt_curr(rq, p);
4433 __task_rq_unlock(rq);
4434 spin_unlock_irqrestore(&p->pi_lock, flags);
4436 rt_mutex_adjust_pi(p);
4438 return 0;
4440 EXPORT_SYMBOL_GPL(sched_setscheduler);
4442 static int
4443 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4445 struct sched_param lparam;
4446 struct task_struct *p;
4447 int retval;
4449 if (!param || pid < 0)
4450 return -EINVAL;
4451 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4452 return -EFAULT;
4454 rcu_read_lock();
4455 retval = -ESRCH;
4456 p = find_process_by_pid(pid);
4457 if (p != NULL)
4458 retval = sched_setscheduler(p, policy, &lparam);
4459 rcu_read_unlock();
4461 return retval;
4465 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4466 * @pid: the pid in question.
4467 * @policy: new policy.
4468 * @param: structure containing the new RT priority.
4470 asmlinkage long
4471 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4473 /* negative values for policy are not valid */
4474 if (policy < 0)
4475 return -EINVAL;
4477 return do_sched_setscheduler(pid, policy, param);
4481 * sys_sched_setparam - set/change the RT priority of a thread
4482 * @pid: the pid in question.
4483 * @param: structure containing the new RT priority.
4485 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4487 return do_sched_setscheduler(pid, -1, param);
4491 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4492 * @pid: the pid in question.
4494 asmlinkage long sys_sched_getscheduler(pid_t pid)
4496 struct task_struct *p;
4497 int retval;
4499 if (pid < 0)
4500 return -EINVAL;
4502 retval = -ESRCH;
4503 read_lock(&tasklist_lock);
4504 p = find_process_by_pid(pid);
4505 if (p) {
4506 retval = security_task_getscheduler(p);
4507 if (!retval)
4508 retval = p->policy;
4510 read_unlock(&tasklist_lock);
4511 return retval;
4515 * sys_sched_getscheduler - get the RT priority of a thread
4516 * @pid: the pid in question.
4517 * @param: structure containing the RT priority.
4519 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4521 struct sched_param lp;
4522 struct task_struct *p;
4523 int retval;
4525 if (!param || pid < 0)
4526 return -EINVAL;
4528 read_lock(&tasklist_lock);
4529 p = find_process_by_pid(pid);
4530 retval = -ESRCH;
4531 if (!p)
4532 goto out_unlock;
4534 retval = security_task_getscheduler(p);
4535 if (retval)
4536 goto out_unlock;
4538 lp.sched_priority = p->rt_priority;
4539 read_unlock(&tasklist_lock);
4542 * This one might sleep, we cannot do it with a spinlock held ...
4544 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4546 return retval;
4548 out_unlock:
4549 read_unlock(&tasklist_lock);
4550 return retval;
4553 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4555 cpumask_t cpus_allowed;
4556 struct task_struct *p;
4557 int retval;
4559 get_online_cpus();
4560 read_lock(&tasklist_lock);
4562 p = find_process_by_pid(pid);
4563 if (!p) {
4564 read_unlock(&tasklist_lock);
4565 put_online_cpus();
4566 return -ESRCH;
4570 * It is not safe to call set_cpus_allowed with the
4571 * tasklist_lock held. We will bump the task_struct's
4572 * usage count and then drop tasklist_lock.
4574 get_task_struct(p);
4575 read_unlock(&tasklist_lock);
4577 retval = -EPERM;
4578 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4579 !capable(CAP_SYS_NICE))
4580 goto out_unlock;
4582 retval = security_task_setscheduler(p, 0, NULL);
4583 if (retval)
4584 goto out_unlock;
4586 cpus_allowed = cpuset_cpus_allowed(p);
4587 cpus_and(new_mask, new_mask, cpus_allowed);
4588 again:
4589 retval = set_cpus_allowed(p, new_mask);
4591 if (!retval) {
4592 cpus_allowed = cpuset_cpus_allowed(p);
4593 if (!cpus_subset(new_mask, cpus_allowed)) {
4595 * We must have raced with a concurrent cpuset
4596 * update. Just reset the cpus_allowed to the
4597 * cpuset's cpus_allowed
4599 new_mask = cpus_allowed;
4600 goto again;
4603 out_unlock:
4604 put_task_struct(p);
4605 put_online_cpus();
4606 return retval;
4609 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4610 cpumask_t *new_mask)
4612 if (len < sizeof(cpumask_t)) {
4613 memset(new_mask, 0, sizeof(cpumask_t));
4614 } else if (len > sizeof(cpumask_t)) {
4615 len = sizeof(cpumask_t);
4617 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4621 * sys_sched_setaffinity - set the cpu affinity of a process
4622 * @pid: pid of the process
4623 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4624 * @user_mask_ptr: user-space pointer to the new cpu mask
4626 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4627 unsigned long __user *user_mask_ptr)
4629 cpumask_t new_mask;
4630 int retval;
4632 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4633 if (retval)
4634 return retval;
4636 return sched_setaffinity(pid, new_mask);
4640 * Represents all cpu's present in the system
4641 * In systems capable of hotplug, this map could dynamically grow
4642 * as new cpu's are detected in the system via any platform specific
4643 * method, such as ACPI for e.g.
4646 cpumask_t cpu_present_map __read_mostly;
4647 EXPORT_SYMBOL(cpu_present_map);
4649 #ifndef CONFIG_SMP
4650 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4651 EXPORT_SYMBOL(cpu_online_map);
4653 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4654 EXPORT_SYMBOL(cpu_possible_map);
4655 #endif
4657 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4659 struct task_struct *p;
4660 int retval;
4662 get_online_cpus();
4663 read_lock(&tasklist_lock);
4665 retval = -ESRCH;
4666 p = find_process_by_pid(pid);
4667 if (!p)
4668 goto out_unlock;
4670 retval = security_task_getscheduler(p);
4671 if (retval)
4672 goto out_unlock;
4674 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4676 out_unlock:
4677 read_unlock(&tasklist_lock);
4678 put_online_cpus();
4680 return retval;
4684 * sys_sched_getaffinity - get the cpu affinity of a process
4685 * @pid: pid of the process
4686 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4687 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4689 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4690 unsigned long __user *user_mask_ptr)
4692 int ret;
4693 cpumask_t mask;
4695 if (len < sizeof(cpumask_t))
4696 return -EINVAL;
4698 ret = sched_getaffinity(pid, &mask);
4699 if (ret < 0)
4700 return ret;
4702 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4703 return -EFAULT;
4705 return sizeof(cpumask_t);
4709 * sys_sched_yield - yield the current processor to other threads.
4711 * This function yields the current CPU to other tasks. If there are no
4712 * other threads running on this CPU then this function will return.
4714 asmlinkage long sys_sched_yield(void)
4716 struct rq *rq = this_rq_lock();
4718 schedstat_inc(rq, yld_count);
4719 current->sched_class->yield_task(rq);
4722 * Since we are going to call schedule() anyway, there's
4723 * no need to preempt or enable interrupts:
4725 __release(rq->lock);
4726 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4727 _raw_spin_unlock(&rq->lock);
4728 preempt_enable_no_resched();
4730 schedule();
4732 return 0;
4735 static void __cond_resched(void)
4737 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4738 __might_sleep(__FILE__, __LINE__);
4739 #endif
4741 * The BKS might be reacquired before we have dropped
4742 * PREEMPT_ACTIVE, which could trigger a second
4743 * cond_resched() call.
4745 do {
4746 add_preempt_count(PREEMPT_ACTIVE);
4747 schedule();
4748 sub_preempt_count(PREEMPT_ACTIVE);
4749 } while (need_resched());
4752 int __sched cond_resched(void)
4754 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4755 system_state == SYSTEM_RUNNING) {
4756 __cond_resched();
4757 return 1;
4759 return 0;
4761 EXPORT_SYMBOL(cond_resched);
4764 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4765 * call schedule, and on return reacquire the lock.
4767 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4768 * operations here to prevent schedule() from being called twice (once via
4769 * spin_unlock(), once by hand).
4771 int cond_resched_lock(spinlock_t *lock)
4773 int ret = 0;
4775 if (need_lockbreak(lock)) {
4776 spin_unlock(lock);
4777 cpu_relax();
4778 ret = 1;
4779 spin_lock(lock);
4781 if (need_resched() && system_state == SYSTEM_RUNNING) {
4782 spin_release(&lock->dep_map, 1, _THIS_IP_);
4783 _raw_spin_unlock(lock);
4784 preempt_enable_no_resched();
4785 __cond_resched();
4786 ret = 1;
4787 spin_lock(lock);
4789 return ret;
4791 EXPORT_SYMBOL(cond_resched_lock);
4793 int __sched cond_resched_softirq(void)
4795 BUG_ON(!in_softirq());
4797 if (need_resched() && system_state == SYSTEM_RUNNING) {
4798 local_bh_enable();
4799 __cond_resched();
4800 local_bh_disable();
4801 return 1;
4803 return 0;
4805 EXPORT_SYMBOL(cond_resched_softirq);
4808 * yield - yield the current processor to other threads.
4810 * This is a shortcut for kernel-space yielding - it marks the
4811 * thread runnable and calls sys_sched_yield().
4813 void __sched yield(void)
4815 set_current_state(TASK_RUNNING);
4816 sys_sched_yield();
4818 EXPORT_SYMBOL(yield);
4821 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4822 * that process accounting knows that this is a task in IO wait state.
4824 * But don't do that if it is a deliberate, throttling IO wait (this task
4825 * has set its backing_dev_info: the queue against which it should throttle)
4827 void __sched io_schedule(void)
4829 struct rq *rq = &__raw_get_cpu_var(runqueues);
4831 delayacct_blkio_start();
4832 atomic_inc(&rq->nr_iowait);
4833 schedule();
4834 atomic_dec(&rq->nr_iowait);
4835 delayacct_blkio_end();
4837 EXPORT_SYMBOL(io_schedule);
4839 long __sched io_schedule_timeout(long timeout)
4841 struct rq *rq = &__raw_get_cpu_var(runqueues);
4842 long ret;
4844 delayacct_blkio_start();
4845 atomic_inc(&rq->nr_iowait);
4846 ret = schedule_timeout(timeout);
4847 atomic_dec(&rq->nr_iowait);
4848 delayacct_blkio_end();
4849 return ret;
4853 * sys_sched_get_priority_max - return maximum RT priority.
4854 * @policy: scheduling class.
4856 * this syscall returns the maximum rt_priority that can be used
4857 * by a given scheduling class.
4859 asmlinkage long sys_sched_get_priority_max(int policy)
4861 int ret = -EINVAL;
4863 switch (policy) {
4864 case SCHED_FIFO:
4865 case SCHED_RR:
4866 ret = MAX_USER_RT_PRIO-1;
4867 break;
4868 case SCHED_NORMAL:
4869 case SCHED_BATCH:
4870 case SCHED_IDLE:
4871 ret = 0;
4872 break;
4874 return ret;
4878 * sys_sched_get_priority_min - return minimum RT priority.
4879 * @policy: scheduling class.
4881 * this syscall returns the minimum rt_priority that can be used
4882 * by a given scheduling class.
4884 asmlinkage long sys_sched_get_priority_min(int policy)
4886 int ret = -EINVAL;
4888 switch (policy) {
4889 case SCHED_FIFO:
4890 case SCHED_RR:
4891 ret = 1;
4892 break;
4893 case SCHED_NORMAL:
4894 case SCHED_BATCH:
4895 case SCHED_IDLE:
4896 ret = 0;
4898 return ret;
4902 * sys_sched_rr_get_interval - return the default timeslice of a process.
4903 * @pid: pid of the process.
4904 * @interval: userspace pointer to the timeslice value.
4906 * this syscall writes the default timeslice value of a given process
4907 * into the user-space timespec buffer. A value of '0' means infinity.
4909 asmlinkage
4910 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4912 struct task_struct *p;
4913 unsigned int time_slice;
4914 int retval;
4915 struct timespec t;
4917 if (pid < 0)
4918 return -EINVAL;
4920 retval = -ESRCH;
4921 read_lock(&tasklist_lock);
4922 p = find_process_by_pid(pid);
4923 if (!p)
4924 goto out_unlock;
4926 retval = security_task_getscheduler(p);
4927 if (retval)
4928 goto out_unlock;
4931 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
4932 * tasks that are on an otherwise idle runqueue:
4934 time_slice = 0;
4935 if (p->policy == SCHED_RR) {
4936 time_slice = DEF_TIMESLICE;
4937 } else {
4938 struct sched_entity *se = &p->se;
4939 unsigned long flags;
4940 struct rq *rq;
4942 rq = task_rq_lock(p, &flags);
4943 if (rq->cfs.load.weight)
4944 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
4945 task_rq_unlock(rq, &flags);
4947 read_unlock(&tasklist_lock);
4948 jiffies_to_timespec(time_slice, &t);
4949 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4950 return retval;
4952 out_unlock:
4953 read_unlock(&tasklist_lock);
4954 return retval;
4957 static const char stat_nam[] = "RSDTtZX";
4959 void sched_show_task(struct task_struct *p)
4961 unsigned long free = 0;
4962 unsigned state;
4964 state = p->state ? __ffs(p->state) + 1 : 0;
4965 printk(KERN_INFO "%-13.13s %c", p->comm,
4966 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4967 #if BITS_PER_LONG == 32
4968 if (state == TASK_RUNNING)
4969 printk(KERN_CONT " running ");
4970 else
4971 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4972 #else
4973 if (state == TASK_RUNNING)
4974 printk(KERN_CONT " running task ");
4975 else
4976 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4977 #endif
4978 #ifdef CONFIG_DEBUG_STACK_USAGE
4980 unsigned long *n = end_of_stack(p);
4981 while (!*n)
4982 n++;
4983 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4985 #endif
4986 printk(KERN_CONT "%5lu %5d %6d\n", free,
4987 task_pid_nr(p), task_pid_nr(p->real_parent));
4989 if (state != TASK_RUNNING)
4990 show_stack(p, NULL);
4993 void show_state_filter(unsigned long state_filter)
4995 struct task_struct *g, *p;
4997 #if BITS_PER_LONG == 32
4998 printk(KERN_INFO
4999 " task PC stack pid father\n");
5000 #else
5001 printk(KERN_INFO
5002 " task PC stack pid father\n");
5003 #endif
5004 read_lock(&tasklist_lock);
5005 do_each_thread(g, p) {
5007 * reset the NMI-timeout, listing all files on a slow
5008 * console might take alot of time:
5010 touch_nmi_watchdog();
5011 if (!state_filter || (p->state & state_filter))
5012 sched_show_task(p);
5013 } while_each_thread(g, p);
5015 touch_all_softlockup_watchdogs();
5017 #ifdef CONFIG_SCHED_DEBUG
5018 sysrq_sched_debug_show();
5019 #endif
5020 read_unlock(&tasklist_lock);
5022 * Only show locks if all tasks are dumped:
5024 if (state_filter == -1)
5025 debug_show_all_locks();
5028 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5030 idle->sched_class = &idle_sched_class;
5034 * init_idle - set up an idle thread for a given CPU
5035 * @idle: task in question
5036 * @cpu: cpu the idle task belongs to
5038 * NOTE: this function does not set the idle thread's NEED_RESCHED
5039 * flag, to make booting more robust.
5041 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5043 struct rq *rq = cpu_rq(cpu);
5044 unsigned long flags;
5046 __sched_fork(idle);
5047 idle->se.exec_start = sched_clock();
5049 idle->prio = idle->normal_prio = MAX_PRIO;
5050 idle->cpus_allowed = cpumask_of_cpu(cpu);
5051 __set_task_cpu(idle, cpu);
5053 spin_lock_irqsave(&rq->lock, flags);
5054 rq->curr = rq->idle = idle;
5055 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5056 idle->oncpu = 1;
5057 #endif
5058 spin_unlock_irqrestore(&rq->lock, flags);
5060 /* Set the preempt count _outside_ the spinlocks! */
5061 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
5062 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5063 #else
5064 task_thread_info(idle)->preempt_count = 0;
5065 #endif
5067 * The idle tasks have their own, simple scheduling class:
5069 idle->sched_class = &idle_sched_class;
5073 * In a system that switches off the HZ timer nohz_cpu_mask
5074 * indicates which cpus entered this state. This is used
5075 * in the rcu update to wait only for active cpus. For system
5076 * which do not switch off the HZ timer nohz_cpu_mask should
5077 * always be CPU_MASK_NONE.
5079 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5082 * Increase the granularity value when there are more CPUs,
5083 * because with more CPUs the 'effective latency' as visible
5084 * to users decreases. But the relationship is not linear,
5085 * so pick a second-best guess by going with the log2 of the
5086 * number of CPUs.
5088 * This idea comes from the SD scheduler of Con Kolivas:
5090 static inline void sched_init_granularity(void)
5092 unsigned int factor = 1 + ilog2(num_online_cpus());
5093 const unsigned long limit = 200000000;
5095 sysctl_sched_min_granularity *= factor;
5096 if (sysctl_sched_min_granularity > limit)
5097 sysctl_sched_min_granularity = limit;
5099 sysctl_sched_latency *= factor;
5100 if (sysctl_sched_latency > limit)
5101 sysctl_sched_latency = limit;
5103 sysctl_sched_wakeup_granularity *= factor;
5104 sysctl_sched_batch_wakeup_granularity *= factor;
5107 #ifdef CONFIG_SMP
5109 * This is how migration works:
5111 * 1) we queue a struct migration_req structure in the source CPU's
5112 * runqueue and wake up that CPU's migration thread.
5113 * 2) we down() the locked semaphore => thread blocks.
5114 * 3) migration thread wakes up (implicitly it forces the migrated
5115 * thread off the CPU)
5116 * 4) it gets the migration request and checks whether the migrated
5117 * task is still in the wrong runqueue.
5118 * 5) if it's in the wrong runqueue then the migration thread removes
5119 * it and puts it into the right queue.
5120 * 6) migration thread up()s the semaphore.
5121 * 7) we wake up and the migration is done.
5125 * Change a given task's CPU affinity. Migrate the thread to a
5126 * proper CPU and schedule it away if the CPU it's executing on
5127 * is removed from the allowed bitmask.
5129 * NOTE: the caller must have a valid reference to the task, the
5130 * task must not exit() & deallocate itself prematurely. The
5131 * call is not atomic; no spinlocks may be held.
5133 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5135 struct migration_req req;
5136 unsigned long flags;
5137 struct rq *rq;
5138 int ret = 0;
5140 rq = task_rq_lock(p, &flags);
5141 if (!cpus_intersects(new_mask, cpu_online_map)) {
5142 ret = -EINVAL;
5143 goto out;
5146 p->cpus_allowed = new_mask;
5147 /* Can the task run on the task's current CPU? If so, we're done */
5148 if (cpu_isset(task_cpu(p), new_mask))
5149 goto out;
5151 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5152 /* Need help from migration thread: drop lock and wait. */
5153 task_rq_unlock(rq, &flags);
5154 wake_up_process(rq->migration_thread);
5155 wait_for_completion(&req.done);
5156 tlb_migrate_finish(p->mm);
5157 return 0;
5159 out:
5160 task_rq_unlock(rq, &flags);
5162 return ret;
5164 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5167 * Move (not current) task off this cpu, onto dest cpu. We're doing
5168 * this because either it can't run here any more (set_cpus_allowed()
5169 * away from this CPU, or CPU going down), or because we're
5170 * attempting to rebalance this task on exec (sched_exec).
5172 * So we race with normal scheduler movements, but that's OK, as long
5173 * as the task is no longer on this CPU.
5175 * Returns non-zero if task was successfully migrated.
5177 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5179 struct rq *rq_dest, *rq_src;
5180 int ret = 0, on_rq;
5182 if (unlikely(cpu_is_offline(dest_cpu)))
5183 return ret;
5185 rq_src = cpu_rq(src_cpu);
5186 rq_dest = cpu_rq(dest_cpu);
5188 double_rq_lock(rq_src, rq_dest);
5189 /* Already moved. */
5190 if (task_cpu(p) != src_cpu)
5191 goto out;
5192 /* Affinity changed (again). */
5193 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5194 goto out;
5196 on_rq = p->se.on_rq;
5197 if (on_rq)
5198 deactivate_task(rq_src, p, 0);
5200 set_task_cpu(p, dest_cpu);
5201 if (on_rq) {
5202 activate_task(rq_dest, p, 0);
5203 check_preempt_curr(rq_dest, p);
5205 ret = 1;
5206 out:
5207 double_rq_unlock(rq_src, rq_dest);
5208 return ret;
5212 * migration_thread - this is a highprio system thread that performs
5213 * thread migration by bumping thread off CPU then 'pushing' onto
5214 * another runqueue.
5216 static int migration_thread(void *data)
5218 int cpu = (long)data;
5219 struct rq *rq;
5221 rq = cpu_rq(cpu);
5222 BUG_ON(rq->migration_thread != current);
5224 set_current_state(TASK_INTERRUPTIBLE);
5225 while (!kthread_should_stop()) {
5226 struct migration_req *req;
5227 struct list_head *head;
5229 spin_lock_irq(&rq->lock);
5231 if (cpu_is_offline(cpu)) {
5232 spin_unlock_irq(&rq->lock);
5233 goto wait_to_die;
5236 if (rq->active_balance) {
5237 active_load_balance(rq, cpu);
5238 rq->active_balance = 0;
5241 head = &rq->migration_queue;
5243 if (list_empty(head)) {
5244 spin_unlock_irq(&rq->lock);
5245 schedule();
5246 set_current_state(TASK_INTERRUPTIBLE);
5247 continue;
5249 req = list_entry(head->next, struct migration_req, list);
5250 list_del_init(head->next);
5252 spin_unlock(&rq->lock);
5253 __migrate_task(req->task, cpu, req->dest_cpu);
5254 local_irq_enable();
5256 complete(&req->done);
5258 __set_current_state(TASK_RUNNING);
5259 return 0;
5261 wait_to_die:
5262 /* Wait for kthread_stop */
5263 set_current_state(TASK_INTERRUPTIBLE);
5264 while (!kthread_should_stop()) {
5265 schedule();
5266 set_current_state(TASK_INTERRUPTIBLE);
5268 __set_current_state(TASK_RUNNING);
5269 return 0;
5272 #ifdef CONFIG_HOTPLUG_CPU
5274 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5276 int ret;
5278 local_irq_disable();
5279 ret = __migrate_task(p, src_cpu, dest_cpu);
5280 local_irq_enable();
5281 return ret;
5285 * Figure out where task on dead CPU should go, use force if necessary.
5286 * NOTE: interrupts should be disabled by the caller
5288 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5290 unsigned long flags;
5291 cpumask_t mask;
5292 struct rq *rq;
5293 int dest_cpu;
5295 do {
5296 /* On same node? */
5297 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5298 cpus_and(mask, mask, p->cpus_allowed);
5299 dest_cpu = any_online_cpu(mask);
5301 /* On any allowed CPU? */
5302 if (dest_cpu == NR_CPUS)
5303 dest_cpu = any_online_cpu(p->cpus_allowed);
5305 /* No more Mr. Nice Guy. */
5306 if (dest_cpu == NR_CPUS) {
5307 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5309 * Try to stay on the same cpuset, where the
5310 * current cpuset may be a subset of all cpus.
5311 * The cpuset_cpus_allowed_locked() variant of
5312 * cpuset_cpus_allowed() will not block. It must be
5313 * called within calls to cpuset_lock/cpuset_unlock.
5315 rq = task_rq_lock(p, &flags);
5316 p->cpus_allowed = cpus_allowed;
5317 dest_cpu = any_online_cpu(p->cpus_allowed);
5318 task_rq_unlock(rq, &flags);
5321 * Don't tell them about moving exiting tasks or
5322 * kernel threads (both mm NULL), since they never
5323 * leave kernel.
5325 if (p->mm && printk_ratelimit()) {
5326 printk(KERN_INFO "process %d (%s) no "
5327 "longer affine to cpu%d\n",
5328 task_pid_nr(p), p->comm, dead_cpu);
5331 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5335 * While a dead CPU has no uninterruptible tasks queued at this point,
5336 * it might still have a nonzero ->nr_uninterruptible counter, because
5337 * for performance reasons the counter is not stricly tracking tasks to
5338 * their home CPUs. So we just add the counter to another CPU's counter,
5339 * to keep the global sum constant after CPU-down:
5341 static void migrate_nr_uninterruptible(struct rq *rq_src)
5343 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5344 unsigned long flags;
5346 local_irq_save(flags);
5347 double_rq_lock(rq_src, rq_dest);
5348 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5349 rq_src->nr_uninterruptible = 0;
5350 double_rq_unlock(rq_src, rq_dest);
5351 local_irq_restore(flags);
5354 /* Run through task list and migrate tasks from the dead cpu. */
5355 static void migrate_live_tasks(int src_cpu)
5357 struct task_struct *p, *t;
5359 read_lock(&tasklist_lock);
5361 do_each_thread(t, p) {
5362 if (p == current)
5363 continue;
5365 if (task_cpu(p) == src_cpu)
5366 move_task_off_dead_cpu(src_cpu, p);
5367 } while_each_thread(t, p);
5369 read_unlock(&tasklist_lock);
5373 * Schedules idle task to be the next runnable task on current CPU.
5374 * It does so by boosting its priority to highest possible.
5375 * Used by CPU offline code.
5377 void sched_idle_next(void)
5379 int this_cpu = smp_processor_id();
5380 struct rq *rq = cpu_rq(this_cpu);
5381 struct task_struct *p = rq->idle;
5382 unsigned long flags;
5384 /* cpu has to be offline */
5385 BUG_ON(cpu_online(this_cpu));
5388 * Strictly not necessary since rest of the CPUs are stopped by now
5389 * and interrupts disabled on the current cpu.
5391 spin_lock_irqsave(&rq->lock, flags);
5393 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5395 update_rq_clock(rq);
5396 activate_task(rq, p, 0);
5398 spin_unlock_irqrestore(&rq->lock, flags);
5402 * Ensures that the idle task is using init_mm right before its cpu goes
5403 * offline.
5405 void idle_task_exit(void)
5407 struct mm_struct *mm = current->active_mm;
5409 BUG_ON(cpu_online(smp_processor_id()));
5411 if (mm != &init_mm)
5412 switch_mm(mm, &init_mm, current);
5413 mmdrop(mm);
5416 /* called under rq->lock with disabled interrupts */
5417 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5419 struct rq *rq = cpu_rq(dead_cpu);
5421 /* Must be exiting, otherwise would be on tasklist. */
5422 BUG_ON(!p->exit_state);
5424 /* Cannot have done final schedule yet: would have vanished. */
5425 BUG_ON(p->state == TASK_DEAD);
5427 get_task_struct(p);
5430 * Drop lock around migration; if someone else moves it,
5431 * that's OK. No task can be added to this CPU, so iteration is
5432 * fine.
5434 spin_unlock_irq(&rq->lock);
5435 move_task_off_dead_cpu(dead_cpu, p);
5436 spin_lock_irq(&rq->lock);
5438 put_task_struct(p);
5441 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5442 static void migrate_dead_tasks(unsigned int dead_cpu)
5444 struct rq *rq = cpu_rq(dead_cpu);
5445 struct task_struct *next;
5447 for ( ; ; ) {
5448 if (!rq->nr_running)
5449 break;
5450 update_rq_clock(rq);
5451 next = pick_next_task(rq, rq->curr);
5452 if (!next)
5453 break;
5454 migrate_dead(dead_cpu, next);
5458 #endif /* CONFIG_HOTPLUG_CPU */
5460 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5462 static struct ctl_table sd_ctl_dir[] = {
5464 .procname = "sched_domain",
5465 .mode = 0555,
5467 {0, },
5470 static struct ctl_table sd_ctl_root[] = {
5472 .ctl_name = CTL_KERN,
5473 .procname = "kernel",
5474 .mode = 0555,
5475 .child = sd_ctl_dir,
5477 {0, },
5480 static struct ctl_table *sd_alloc_ctl_entry(int n)
5482 struct ctl_table *entry =
5483 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5485 return entry;
5488 static void sd_free_ctl_entry(struct ctl_table **tablep)
5490 struct ctl_table *entry;
5493 * In the intermediate directories, both the child directory and
5494 * procname are dynamically allocated and could fail but the mode
5495 * will always be set. In the lowest directory the names are
5496 * static strings and all have proc handlers.
5498 for (entry = *tablep; entry->mode; entry++) {
5499 if (entry->child)
5500 sd_free_ctl_entry(&entry->child);
5501 if (entry->proc_handler == NULL)
5502 kfree(entry->procname);
5505 kfree(*tablep);
5506 *tablep = NULL;
5509 static void
5510 set_table_entry(struct ctl_table *entry,
5511 const char *procname, void *data, int maxlen,
5512 mode_t mode, proc_handler *proc_handler)
5514 entry->procname = procname;
5515 entry->data = data;
5516 entry->maxlen = maxlen;
5517 entry->mode = mode;
5518 entry->proc_handler = proc_handler;
5521 static struct ctl_table *
5522 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5524 struct ctl_table *table = sd_alloc_ctl_entry(12);
5526 if (table == NULL)
5527 return NULL;
5529 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5530 sizeof(long), 0644, proc_doulongvec_minmax);
5531 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5532 sizeof(long), 0644, proc_doulongvec_minmax);
5533 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5534 sizeof(int), 0644, proc_dointvec_minmax);
5535 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5536 sizeof(int), 0644, proc_dointvec_minmax);
5537 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5538 sizeof(int), 0644, proc_dointvec_minmax);
5539 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5540 sizeof(int), 0644, proc_dointvec_minmax);
5541 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5542 sizeof(int), 0644, proc_dointvec_minmax);
5543 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5544 sizeof(int), 0644, proc_dointvec_minmax);
5545 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5546 sizeof(int), 0644, proc_dointvec_minmax);
5547 set_table_entry(&table[9], "cache_nice_tries",
5548 &sd->cache_nice_tries,
5549 sizeof(int), 0644, proc_dointvec_minmax);
5550 set_table_entry(&table[10], "flags", &sd->flags,
5551 sizeof(int), 0644, proc_dointvec_minmax);
5552 /* &table[11] is terminator */
5554 return table;
5557 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5559 struct ctl_table *entry, *table;
5560 struct sched_domain *sd;
5561 int domain_num = 0, i;
5562 char buf[32];
5564 for_each_domain(cpu, sd)
5565 domain_num++;
5566 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5567 if (table == NULL)
5568 return NULL;
5570 i = 0;
5571 for_each_domain(cpu, sd) {
5572 snprintf(buf, 32, "domain%d", i);
5573 entry->procname = kstrdup(buf, GFP_KERNEL);
5574 entry->mode = 0555;
5575 entry->child = sd_alloc_ctl_domain_table(sd);
5576 entry++;
5577 i++;
5579 return table;
5582 static struct ctl_table_header *sd_sysctl_header;
5583 static void register_sched_domain_sysctl(void)
5585 int i, cpu_num = num_online_cpus();
5586 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5587 char buf[32];
5589 WARN_ON(sd_ctl_dir[0].child);
5590 sd_ctl_dir[0].child = entry;
5592 if (entry == NULL)
5593 return;
5595 for_each_online_cpu(i) {
5596 snprintf(buf, 32, "cpu%d", i);
5597 entry->procname = kstrdup(buf, GFP_KERNEL);
5598 entry->mode = 0555;
5599 entry->child = sd_alloc_ctl_cpu_table(i);
5600 entry++;
5603 WARN_ON(sd_sysctl_header);
5604 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5607 /* may be called multiple times per register */
5608 static void unregister_sched_domain_sysctl(void)
5610 if (sd_sysctl_header)
5611 unregister_sysctl_table(sd_sysctl_header);
5612 sd_sysctl_header = NULL;
5613 if (sd_ctl_dir[0].child)
5614 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5616 #else
5617 static void register_sched_domain_sysctl(void)
5620 static void unregister_sched_domain_sysctl(void)
5623 #endif
5626 * migration_call - callback that gets triggered when a CPU is added.
5627 * Here we can start up the necessary migration thread for the new CPU.
5629 static int __cpuinit
5630 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5632 struct task_struct *p;
5633 int cpu = (long)hcpu;
5634 unsigned long flags;
5635 struct rq *rq;
5637 switch (action) {
5639 case CPU_UP_PREPARE:
5640 case CPU_UP_PREPARE_FROZEN:
5641 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5642 if (IS_ERR(p))
5643 return NOTIFY_BAD;
5644 kthread_bind(p, cpu);
5645 /* Must be high prio: stop_machine expects to yield to it. */
5646 rq = task_rq_lock(p, &flags);
5647 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5648 task_rq_unlock(rq, &flags);
5649 cpu_rq(cpu)->migration_thread = p;
5650 break;
5652 case CPU_ONLINE:
5653 case CPU_ONLINE_FROZEN:
5654 /* Strictly unnecessary, as first user will wake it. */
5655 wake_up_process(cpu_rq(cpu)->migration_thread);
5656 break;
5658 #ifdef CONFIG_HOTPLUG_CPU
5659 case CPU_UP_CANCELED:
5660 case CPU_UP_CANCELED_FROZEN:
5661 if (!cpu_rq(cpu)->migration_thread)
5662 break;
5663 /* Unbind it from offline cpu so it can run. Fall thru. */
5664 kthread_bind(cpu_rq(cpu)->migration_thread,
5665 any_online_cpu(cpu_online_map));
5666 kthread_stop(cpu_rq(cpu)->migration_thread);
5667 cpu_rq(cpu)->migration_thread = NULL;
5668 break;
5670 case CPU_DEAD:
5671 case CPU_DEAD_FROZEN:
5672 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5673 migrate_live_tasks(cpu);
5674 rq = cpu_rq(cpu);
5675 kthread_stop(rq->migration_thread);
5676 rq->migration_thread = NULL;
5677 /* Idle task back to normal (off runqueue, low prio) */
5678 spin_lock_irq(&rq->lock);
5679 update_rq_clock(rq);
5680 deactivate_task(rq, rq->idle, 0);
5681 rq->idle->static_prio = MAX_PRIO;
5682 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5683 rq->idle->sched_class = &idle_sched_class;
5684 migrate_dead_tasks(cpu);
5685 spin_unlock_irq(&rq->lock);
5686 cpuset_unlock();
5687 migrate_nr_uninterruptible(rq);
5688 BUG_ON(rq->nr_running != 0);
5691 * No need to migrate the tasks: it was best-effort if
5692 * they didn't take sched_hotcpu_mutex. Just wake up
5693 * the requestors.
5695 spin_lock_irq(&rq->lock);
5696 while (!list_empty(&rq->migration_queue)) {
5697 struct migration_req *req;
5699 req = list_entry(rq->migration_queue.next,
5700 struct migration_req, list);
5701 list_del_init(&req->list);
5702 complete(&req->done);
5704 spin_unlock_irq(&rq->lock);
5705 break;
5706 #endif
5708 return NOTIFY_OK;
5711 /* Register at highest priority so that task migration (migrate_all_tasks)
5712 * happens before everything else.
5714 static struct notifier_block __cpuinitdata migration_notifier = {
5715 .notifier_call = migration_call,
5716 .priority = 10
5719 void __init migration_init(void)
5721 void *cpu = (void *)(long)smp_processor_id();
5722 int err;
5724 /* Start one for the boot CPU: */
5725 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5726 BUG_ON(err == NOTIFY_BAD);
5727 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5728 register_cpu_notifier(&migration_notifier);
5730 #endif
5732 #ifdef CONFIG_SMP
5734 /* Number of possible processor ids */
5735 int nr_cpu_ids __read_mostly = NR_CPUS;
5736 EXPORT_SYMBOL(nr_cpu_ids);
5738 #ifdef CONFIG_SCHED_DEBUG
5740 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
5742 struct sched_group *group = sd->groups;
5743 cpumask_t groupmask;
5744 char str[NR_CPUS];
5746 cpumask_scnprintf(str, NR_CPUS, sd->span);
5747 cpus_clear(groupmask);
5749 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5751 if (!(sd->flags & SD_LOAD_BALANCE)) {
5752 printk("does not load-balance\n");
5753 if (sd->parent)
5754 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5755 " has parent");
5756 return -1;
5759 printk(KERN_CONT "span %s\n", str);
5761 if (!cpu_isset(cpu, sd->span)) {
5762 printk(KERN_ERR "ERROR: domain->span does not contain "
5763 "CPU%d\n", cpu);
5765 if (!cpu_isset(cpu, group->cpumask)) {
5766 printk(KERN_ERR "ERROR: domain->groups does not contain"
5767 " CPU%d\n", cpu);
5770 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5771 do {
5772 if (!group) {
5773 printk("\n");
5774 printk(KERN_ERR "ERROR: group is NULL\n");
5775 break;
5778 if (!group->__cpu_power) {
5779 printk(KERN_CONT "\n");
5780 printk(KERN_ERR "ERROR: domain->cpu_power not "
5781 "set\n");
5782 break;
5785 if (!cpus_weight(group->cpumask)) {
5786 printk(KERN_CONT "\n");
5787 printk(KERN_ERR "ERROR: empty group\n");
5788 break;
5791 if (cpus_intersects(groupmask, group->cpumask)) {
5792 printk(KERN_CONT "\n");
5793 printk(KERN_ERR "ERROR: repeated CPUs\n");
5794 break;
5797 cpus_or(groupmask, groupmask, group->cpumask);
5799 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5800 printk(KERN_CONT " %s", str);
5802 group = group->next;
5803 } while (group != sd->groups);
5804 printk(KERN_CONT "\n");
5806 if (!cpus_equal(sd->span, groupmask))
5807 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5809 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5810 printk(KERN_ERR "ERROR: parent span is not a superset "
5811 "of domain->span\n");
5812 return 0;
5815 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5817 int level = 0;
5819 if (!sd) {
5820 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5821 return;
5824 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5826 for (;;) {
5827 if (sched_domain_debug_one(sd, cpu, level))
5828 break;
5829 level++;
5830 sd = sd->parent;
5831 if (!sd)
5832 break;
5835 #else
5836 # define sched_domain_debug(sd, cpu) do { } while (0)
5837 #endif
5839 static int sd_degenerate(struct sched_domain *sd)
5841 if (cpus_weight(sd->span) == 1)
5842 return 1;
5844 /* Following flags need at least 2 groups */
5845 if (sd->flags & (SD_LOAD_BALANCE |
5846 SD_BALANCE_NEWIDLE |
5847 SD_BALANCE_FORK |
5848 SD_BALANCE_EXEC |
5849 SD_SHARE_CPUPOWER |
5850 SD_SHARE_PKG_RESOURCES)) {
5851 if (sd->groups != sd->groups->next)
5852 return 0;
5855 /* Following flags don't use groups */
5856 if (sd->flags & (SD_WAKE_IDLE |
5857 SD_WAKE_AFFINE |
5858 SD_WAKE_BALANCE))
5859 return 0;
5861 return 1;
5864 static int
5865 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5867 unsigned long cflags = sd->flags, pflags = parent->flags;
5869 if (sd_degenerate(parent))
5870 return 1;
5872 if (!cpus_equal(sd->span, parent->span))
5873 return 0;
5875 /* Does parent contain flags not in child? */
5876 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5877 if (cflags & SD_WAKE_AFFINE)
5878 pflags &= ~SD_WAKE_BALANCE;
5879 /* Flags needing groups don't count if only 1 group in parent */
5880 if (parent->groups == parent->groups->next) {
5881 pflags &= ~(SD_LOAD_BALANCE |
5882 SD_BALANCE_NEWIDLE |
5883 SD_BALANCE_FORK |
5884 SD_BALANCE_EXEC |
5885 SD_SHARE_CPUPOWER |
5886 SD_SHARE_PKG_RESOURCES);
5888 if (~cflags & pflags)
5889 return 0;
5891 return 1;
5895 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5896 * hold the hotplug lock.
5898 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5900 struct rq *rq = cpu_rq(cpu);
5901 struct sched_domain *tmp;
5903 /* Remove the sched domains which do not contribute to scheduling. */
5904 for (tmp = sd; tmp; tmp = tmp->parent) {
5905 struct sched_domain *parent = tmp->parent;
5906 if (!parent)
5907 break;
5908 if (sd_parent_degenerate(tmp, parent)) {
5909 tmp->parent = parent->parent;
5910 if (parent->parent)
5911 parent->parent->child = tmp;
5915 if (sd && sd_degenerate(sd)) {
5916 sd = sd->parent;
5917 if (sd)
5918 sd->child = NULL;
5921 sched_domain_debug(sd, cpu);
5923 rcu_assign_pointer(rq->sd, sd);
5926 /* cpus with isolated domains */
5927 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5929 /* Setup the mask of cpus configured for isolated domains */
5930 static int __init isolated_cpu_setup(char *str)
5932 int ints[NR_CPUS], i;
5934 str = get_options(str, ARRAY_SIZE(ints), ints);
5935 cpus_clear(cpu_isolated_map);
5936 for (i = 1; i <= ints[0]; i++)
5937 if (ints[i] < NR_CPUS)
5938 cpu_set(ints[i], cpu_isolated_map);
5939 return 1;
5942 __setup("isolcpus=", isolated_cpu_setup);
5945 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5946 * to a function which identifies what group(along with sched group) a CPU
5947 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5948 * (due to the fact that we keep track of groups covered with a cpumask_t).
5950 * init_sched_build_groups will build a circular linked list of the groups
5951 * covered by the given span, and will set each group's ->cpumask correctly,
5952 * and ->cpu_power to 0.
5954 static void
5955 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5956 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5957 struct sched_group **sg))
5959 struct sched_group *first = NULL, *last = NULL;
5960 cpumask_t covered = CPU_MASK_NONE;
5961 int i;
5963 for_each_cpu_mask(i, span) {
5964 struct sched_group *sg;
5965 int group = group_fn(i, cpu_map, &sg);
5966 int j;
5968 if (cpu_isset(i, covered))
5969 continue;
5971 sg->cpumask = CPU_MASK_NONE;
5972 sg->__cpu_power = 0;
5974 for_each_cpu_mask(j, span) {
5975 if (group_fn(j, cpu_map, NULL) != group)
5976 continue;
5978 cpu_set(j, covered);
5979 cpu_set(j, sg->cpumask);
5981 if (!first)
5982 first = sg;
5983 if (last)
5984 last->next = sg;
5985 last = sg;
5987 last->next = first;
5990 #define SD_NODES_PER_DOMAIN 16
5992 #ifdef CONFIG_NUMA
5995 * find_next_best_node - find the next node to include in a sched_domain
5996 * @node: node whose sched_domain we're building
5997 * @used_nodes: nodes already in the sched_domain
5999 * Find the next node to include in a given scheduling domain. Simply
6000 * finds the closest node not already in the @used_nodes map.
6002 * Should use nodemask_t.
6004 static int find_next_best_node(int node, unsigned long *used_nodes)
6006 int i, n, val, min_val, best_node = 0;
6008 min_val = INT_MAX;
6010 for (i = 0; i < MAX_NUMNODES; i++) {
6011 /* Start at @node */
6012 n = (node + i) % MAX_NUMNODES;
6014 if (!nr_cpus_node(n))
6015 continue;
6017 /* Skip already used nodes */
6018 if (test_bit(n, used_nodes))
6019 continue;
6021 /* Simple min distance search */
6022 val = node_distance(node, n);
6024 if (val < min_val) {
6025 min_val = val;
6026 best_node = n;
6030 set_bit(best_node, used_nodes);
6031 return best_node;
6035 * sched_domain_node_span - get a cpumask for a node's sched_domain
6036 * @node: node whose cpumask we're constructing
6037 * @size: number of nodes to include in this span
6039 * Given a node, construct a good cpumask for its sched_domain to span. It
6040 * should be one that prevents unnecessary balancing, but also spreads tasks
6041 * out optimally.
6043 static cpumask_t sched_domain_node_span(int node)
6045 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6046 cpumask_t span, nodemask;
6047 int i;
6049 cpus_clear(span);
6050 bitmap_zero(used_nodes, MAX_NUMNODES);
6052 nodemask = node_to_cpumask(node);
6053 cpus_or(span, span, nodemask);
6054 set_bit(node, used_nodes);
6056 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6057 int next_node = find_next_best_node(node, used_nodes);
6059 nodemask = node_to_cpumask(next_node);
6060 cpus_or(span, span, nodemask);
6063 return span;
6065 #endif
6067 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6070 * SMT sched-domains:
6072 #ifdef CONFIG_SCHED_SMT
6073 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6074 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6076 static int
6077 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6079 if (sg)
6080 *sg = &per_cpu(sched_group_cpus, cpu);
6081 return cpu;
6083 #endif
6086 * multi-core sched-domains:
6088 #ifdef CONFIG_SCHED_MC
6089 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6090 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6091 #endif
6093 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6094 static int
6095 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6097 int group;
6098 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6099 cpus_and(mask, mask, *cpu_map);
6100 group = first_cpu(mask);
6101 if (sg)
6102 *sg = &per_cpu(sched_group_core, group);
6103 return group;
6105 #elif defined(CONFIG_SCHED_MC)
6106 static int
6107 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6109 if (sg)
6110 *sg = &per_cpu(sched_group_core, cpu);
6111 return cpu;
6113 #endif
6115 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6116 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6118 static int
6119 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6121 int group;
6122 #ifdef CONFIG_SCHED_MC
6123 cpumask_t mask = cpu_coregroup_map(cpu);
6124 cpus_and(mask, mask, *cpu_map);
6125 group = first_cpu(mask);
6126 #elif defined(CONFIG_SCHED_SMT)
6127 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6128 cpus_and(mask, mask, *cpu_map);
6129 group = first_cpu(mask);
6130 #else
6131 group = cpu;
6132 #endif
6133 if (sg)
6134 *sg = &per_cpu(sched_group_phys, group);
6135 return group;
6138 #ifdef CONFIG_NUMA
6140 * The init_sched_build_groups can't handle what we want to do with node
6141 * groups, so roll our own. Now each node has its own list of groups which
6142 * gets dynamically allocated.
6144 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6145 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6147 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6148 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6150 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6151 struct sched_group **sg)
6153 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6154 int group;
6156 cpus_and(nodemask, nodemask, *cpu_map);
6157 group = first_cpu(nodemask);
6159 if (sg)
6160 *sg = &per_cpu(sched_group_allnodes, group);
6161 return group;
6164 static void init_numa_sched_groups_power(struct sched_group *group_head)
6166 struct sched_group *sg = group_head;
6167 int j;
6169 if (!sg)
6170 return;
6171 do {
6172 for_each_cpu_mask(j, sg->cpumask) {
6173 struct sched_domain *sd;
6175 sd = &per_cpu(phys_domains, j);
6176 if (j != first_cpu(sd->groups->cpumask)) {
6178 * Only add "power" once for each
6179 * physical package.
6181 continue;
6184 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6186 sg = sg->next;
6187 } while (sg != group_head);
6189 #endif
6191 #ifdef CONFIG_NUMA
6192 /* Free memory allocated for various sched_group structures */
6193 static void free_sched_groups(const cpumask_t *cpu_map)
6195 int cpu, i;
6197 for_each_cpu_mask(cpu, *cpu_map) {
6198 struct sched_group **sched_group_nodes
6199 = sched_group_nodes_bycpu[cpu];
6201 if (!sched_group_nodes)
6202 continue;
6204 for (i = 0; i < MAX_NUMNODES; i++) {
6205 cpumask_t nodemask = node_to_cpumask(i);
6206 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6208 cpus_and(nodemask, nodemask, *cpu_map);
6209 if (cpus_empty(nodemask))
6210 continue;
6212 if (sg == NULL)
6213 continue;
6214 sg = sg->next;
6215 next_sg:
6216 oldsg = sg;
6217 sg = sg->next;
6218 kfree(oldsg);
6219 if (oldsg != sched_group_nodes[i])
6220 goto next_sg;
6222 kfree(sched_group_nodes);
6223 sched_group_nodes_bycpu[cpu] = NULL;
6226 #else
6227 static void free_sched_groups(const cpumask_t *cpu_map)
6230 #endif
6233 * Initialize sched groups cpu_power.
6235 * cpu_power indicates the capacity of sched group, which is used while
6236 * distributing the load between different sched groups in a sched domain.
6237 * Typically cpu_power for all the groups in a sched domain will be same unless
6238 * there are asymmetries in the topology. If there are asymmetries, group
6239 * having more cpu_power will pickup more load compared to the group having
6240 * less cpu_power.
6242 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6243 * the maximum number of tasks a group can handle in the presence of other idle
6244 * or lightly loaded groups in the same sched domain.
6246 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6248 struct sched_domain *child;
6249 struct sched_group *group;
6251 WARN_ON(!sd || !sd->groups);
6253 if (cpu != first_cpu(sd->groups->cpumask))
6254 return;
6256 child = sd->child;
6258 sd->groups->__cpu_power = 0;
6261 * For perf policy, if the groups in child domain share resources
6262 * (for example cores sharing some portions of the cache hierarchy
6263 * or SMT), then set this domain groups cpu_power such that each group
6264 * can handle only one task, when there are other idle groups in the
6265 * same sched domain.
6267 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6268 (child->flags &
6269 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6270 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6271 return;
6275 * add cpu_power of each child group to this groups cpu_power
6277 group = child->groups;
6278 do {
6279 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6280 group = group->next;
6281 } while (group != child->groups);
6285 * Build sched domains for a given set of cpus and attach the sched domains
6286 * to the individual cpus
6288 static int build_sched_domains(const cpumask_t *cpu_map)
6290 int i;
6291 #ifdef CONFIG_NUMA
6292 struct sched_group **sched_group_nodes = NULL;
6293 int sd_allnodes = 0;
6296 * Allocate the per-node list of sched groups
6298 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6299 GFP_KERNEL);
6300 if (!sched_group_nodes) {
6301 printk(KERN_WARNING "Can not alloc sched group node list\n");
6302 return -ENOMEM;
6304 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6305 #endif
6308 * Set up domains for cpus specified by the cpu_map.
6310 for_each_cpu_mask(i, *cpu_map) {
6311 struct sched_domain *sd = NULL, *p;
6312 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6314 cpus_and(nodemask, nodemask, *cpu_map);
6316 #ifdef CONFIG_NUMA
6317 if (cpus_weight(*cpu_map) >
6318 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6319 sd = &per_cpu(allnodes_domains, i);
6320 *sd = SD_ALLNODES_INIT;
6321 sd->span = *cpu_map;
6322 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6323 p = sd;
6324 sd_allnodes = 1;
6325 } else
6326 p = NULL;
6328 sd = &per_cpu(node_domains, i);
6329 *sd = SD_NODE_INIT;
6330 sd->span = sched_domain_node_span(cpu_to_node(i));
6331 sd->parent = p;
6332 if (p)
6333 p->child = sd;
6334 cpus_and(sd->span, sd->span, *cpu_map);
6335 #endif
6337 p = sd;
6338 sd = &per_cpu(phys_domains, i);
6339 *sd = SD_CPU_INIT;
6340 sd->span = nodemask;
6341 sd->parent = p;
6342 if (p)
6343 p->child = sd;
6344 cpu_to_phys_group(i, cpu_map, &sd->groups);
6346 #ifdef CONFIG_SCHED_MC
6347 p = sd;
6348 sd = &per_cpu(core_domains, i);
6349 *sd = SD_MC_INIT;
6350 sd->span = cpu_coregroup_map(i);
6351 cpus_and(sd->span, sd->span, *cpu_map);
6352 sd->parent = p;
6353 p->child = sd;
6354 cpu_to_core_group(i, cpu_map, &sd->groups);
6355 #endif
6357 #ifdef CONFIG_SCHED_SMT
6358 p = sd;
6359 sd = &per_cpu(cpu_domains, i);
6360 *sd = SD_SIBLING_INIT;
6361 sd->span = per_cpu(cpu_sibling_map, i);
6362 cpus_and(sd->span, sd->span, *cpu_map);
6363 sd->parent = p;
6364 p->child = sd;
6365 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6366 #endif
6369 #ifdef CONFIG_SCHED_SMT
6370 /* Set up CPU (sibling) groups */
6371 for_each_cpu_mask(i, *cpu_map) {
6372 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6373 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6374 if (i != first_cpu(this_sibling_map))
6375 continue;
6377 init_sched_build_groups(this_sibling_map, cpu_map,
6378 &cpu_to_cpu_group);
6380 #endif
6382 #ifdef CONFIG_SCHED_MC
6383 /* Set up multi-core groups */
6384 for_each_cpu_mask(i, *cpu_map) {
6385 cpumask_t this_core_map = cpu_coregroup_map(i);
6386 cpus_and(this_core_map, this_core_map, *cpu_map);
6387 if (i != first_cpu(this_core_map))
6388 continue;
6389 init_sched_build_groups(this_core_map, cpu_map,
6390 &cpu_to_core_group);
6392 #endif
6394 /* Set up physical groups */
6395 for (i = 0; i < MAX_NUMNODES; i++) {
6396 cpumask_t nodemask = node_to_cpumask(i);
6398 cpus_and(nodemask, nodemask, *cpu_map);
6399 if (cpus_empty(nodemask))
6400 continue;
6402 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6405 #ifdef CONFIG_NUMA
6406 /* Set up node groups */
6407 if (sd_allnodes)
6408 init_sched_build_groups(*cpu_map, cpu_map,
6409 &cpu_to_allnodes_group);
6411 for (i = 0; i < MAX_NUMNODES; i++) {
6412 /* Set up node groups */
6413 struct sched_group *sg, *prev;
6414 cpumask_t nodemask = node_to_cpumask(i);
6415 cpumask_t domainspan;
6416 cpumask_t covered = CPU_MASK_NONE;
6417 int j;
6419 cpus_and(nodemask, nodemask, *cpu_map);
6420 if (cpus_empty(nodemask)) {
6421 sched_group_nodes[i] = NULL;
6422 continue;
6425 domainspan = sched_domain_node_span(i);
6426 cpus_and(domainspan, domainspan, *cpu_map);
6428 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6429 if (!sg) {
6430 printk(KERN_WARNING "Can not alloc domain group for "
6431 "node %d\n", i);
6432 goto error;
6434 sched_group_nodes[i] = sg;
6435 for_each_cpu_mask(j, nodemask) {
6436 struct sched_domain *sd;
6438 sd = &per_cpu(node_domains, j);
6439 sd->groups = sg;
6441 sg->__cpu_power = 0;
6442 sg->cpumask = nodemask;
6443 sg->next = sg;
6444 cpus_or(covered, covered, nodemask);
6445 prev = sg;
6447 for (j = 0; j < MAX_NUMNODES; j++) {
6448 cpumask_t tmp, notcovered;
6449 int n = (i + j) % MAX_NUMNODES;
6451 cpus_complement(notcovered, covered);
6452 cpus_and(tmp, notcovered, *cpu_map);
6453 cpus_and(tmp, tmp, domainspan);
6454 if (cpus_empty(tmp))
6455 break;
6457 nodemask = node_to_cpumask(n);
6458 cpus_and(tmp, tmp, nodemask);
6459 if (cpus_empty(tmp))
6460 continue;
6462 sg = kmalloc_node(sizeof(struct sched_group),
6463 GFP_KERNEL, i);
6464 if (!sg) {
6465 printk(KERN_WARNING
6466 "Can not alloc domain group for node %d\n", j);
6467 goto error;
6469 sg->__cpu_power = 0;
6470 sg->cpumask = tmp;
6471 sg->next = prev->next;
6472 cpus_or(covered, covered, tmp);
6473 prev->next = sg;
6474 prev = sg;
6477 #endif
6479 /* Calculate CPU power for physical packages and nodes */
6480 #ifdef CONFIG_SCHED_SMT
6481 for_each_cpu_mask(i, *cpu_map) {
6482 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6484 init_sched_groups_power(i, sd);
6486 #endif
6487 #ifdef CONFIG_SCHED_MC
6488 for_each_cpu_mask(i, *cpu_map) {
6489 struct sched_domain *sd = &per_cpu(core_domains, i);
6491 init_sched_groups_power(i, sd);
6493 #endif
6495 for_each_cpu_mask(i, *cpu_map) {
6496 struct sched_domain *sd = &per_cpu(phys_domains, i);
6498 init_sched_groups_power(i, sd);
6501 #ifdef CONFIG_NUMA
6502 for (i = 0; i < MAX_NUMNODES; i++)
6503 init_numa_sched_groups_power(sched_group_nodes[i]);
6505 if (sd_allnodes) {
6506 struct sched_group *sg;
6508 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6509 init_numa_sched_groups_power(sg);
6511 #endif
6513 /* Attach the domains */
6514 for_each_cpu_mask(i, *cpu_map) {
6515 struct sched_domain *sd;
6516 #ifdef CONFIG_SCHED_SMT
6517 sd = &per_cpu(cpu_domains, i);
6518 #elif defined(CONFIG_SCHED_MC)
6519 sd = &per_cpu(core_domains, i);
6520 #else
6521 sd = &per_cpu(phys_domains, i);
6522 #endif
6523 cpu_attach_domain(sd, i);
6526 return 0;
6528 #ifdef CONFIG_NUMA
6529 error:
6530 free_sched_groups(cpu_map);
6531 return -ENOMEM;
6532 #endif
6535 static cpumask_t *doms_cur; /* current sched domains */
6536 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6539 * Special case: If a kmalloc of a doms_cur partition (array of
6540 * cpumask_t) fails, then fallback to a single sched domain,
6541 * as determined by the single cpumask_t fallback_doms.
6543 static cpumask_t fallback_doms;
6546 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6547 * For now this just excludes isolated cpus, but could be used to
6548 * exclude other special cases in the future.
6550 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6552 int err;
6554 ndoms_cur = 1;
6555 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6556 if (!doms_cur)
6557 doms_cur = &fallback_doms;
6558 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6559 err = build_sched_domains(doms_cur);
6560 register_sched_domain_sysctl();
6562 return err;
6565 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6567 free_sched_groups(cpu_map);
6571 * Detach sched domains from a group of cpus specified in cpu_map
6572 * These cpus will now be attached to the NULL domain
6574 static void detach_destroy_domains(const cpumask_t *cpu_map)
6576 int i;
6578 unregister_sched_domain_sysctl();
6580 for_each_cpu_mask(i, *cpu_map)
6581 cpu_attach_domain(NULL, i);
6582 synchronize_sched();
6583 arch_destroy_sched_domains(cpu_map);
6587 * Partition sched domains as specified by the 'ndoms_new'
6588 * cpumasks in the array doms_new[] of cpumasks. This compares
6589 * doms_new[] to the current sched domain partitioning, doms_cur[].
6590 * It destroys each deleted domain and builds each new domain.
6592 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6593 * The masks don't intersect (don't overlap.) We should setup one
6594 * sched domain for each mask. CPUs not in any of the cpumasks will
6595 * not be load balanced. If the same cpumask appears both in the
6596 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6597 * it as it is.
6599 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6600 * ownership of it and will kfree it when done with it. If the caller
6601 * failed the kmalloc call, then it can pass in doms_new == NULL,
6602 * and partition_sched_domains() will fallback to the single partition
6603 * 'fallback_doms'.
6605 * Call with hotplug lock held
6607 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6609 int i, j;
6611 lock_doms_cur();
6613 /* always unregister in case we don't destroy any domains */
6614 unregister_sched_domain_sysctl();
6616 if (doms_new == NULL) {
6617 ndoms_new = 1;
6618 doms_new = &fallback_doms;
6619 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6622 /* Destroy deleted domains */
6623 for (i = 0; i < ndoms_cur; i++) {
6624 for (j = 0; j < ndoms_new; j++) {
6625 if (cpus_equal(doms_cur[i], doms_new[j]))
6626 goto match1;
6628 /* no match - a current sched domain not in new doms_new[] */
6629 detach_destroy_domains(doms_cur + i);
6630 match1:
6634 /* Build new domains */
6635 for (i = 0; i < ndoms_new; i++) {
6636 for (j = 0; j < ndoms_cur; j++) {
6637 if (cpus_equal(doms_new[i], doms_cur[j]))
6638 goto match2;
6640 /* no match - add a new doms_new */
6641 build_sched_domains(doms_new + i);
6642 match2:
6646 /* Remember the new sched domains */
6647 if (doms_cur != &fallback_doms)
6648 kfree(doms_cur);
6649 doms_cur = doms_new;
6650 ndoms_cur = ndoms_new;
6652 register_sched_domain_sysctl();
6654 unlock_doms_cur();
6657 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6658 static int arch_reinit_sched_domains(void)
6660 int err;
6662 get_online_cpus();
6663 detach_destroy_domains(&cpu_online_map);
6664 err = arch_init_sched_domains(&cpu_online_map);
6665 put_online_cpus();
6667 return err;
6670 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6672 int ret;
6674 if (buf[0] != '0' && buf[0] != '1')
6675 return -EINVAL;
6677 if (smt)
6678 sched_smt_power_savings = (buf[0] == '1');
6679 else
6680 sched_mc_power_savings = (buf[0] == '1');
6682 ret = arch_reinit_sched_domains();
6684 return ret ? ret : count;
6687 #ifdef CONFIG_SCHED_MC
6688 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6690 return sprintf(page, "%u\n", sched_mc_power_savings);
6692 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6693 const char *buf, size_t count)
6695 return sched_power_savings_store(buf, count, 0);
6697 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6698 sched_mc_power_savings_store);
6699 #endif
6701 #ifdef CONFIG_SCHED_SMT
6702 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6704 return sprintf(page, "%u\n", sched_smt_power_savings);
6706 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6707 const char *buf, size_t count)
6709 return sched_power_savings_store(buf, count, 1);
6711 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6712 sched_smt_power_savings_store);
6713 #endif
6715 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6717 int err = 0;
6719 #ifdef CONFIG_SCHED_SMT
6720 if (smt_capable())
6721 err = sysfs_create_file(&cls->kset.kobj,
6722 &attr_sched_smt_power_savings.attr);
6723 #endif
6724 #ifdef CONFIG_SCHED_MC
6725 if (!err && mc_capable())
6726 err = sysfs_create_file(&cls->kset.kobj,
6727 &attr_sched_mc_power_savings.attr);
6728 #endif
6729 return err;
6731 #endif
6734 * Force a reinitialization of the sched domains hierarchy. The domains
6735 * and groups cannot be updated in place without racing with the balancing
6736 * code, so we temporarily attach all running cpus to the NULL domain
6737 * which will prevent rebalancing while the sched domains are recalculated.
6739 static int update_sched_domains(struct notifier_block *nfb,
6740 unsigned long action, void *hcpu)
6742 switch (action) {
6743 case CPU_UP_PREPARE:
6744 case CPU_UP_PREPARE_FROZEN:
6745 case CPU_DOWN_PREPARE:
6746 case CPU_DOWN_PREPARE_FROZEN:
6747 detach_destroy_domains(&cpu_online_map);
6748 return NOTIFY_OK;
6750 case CPU_UP_CANCELED:
6751 case CPU_UP_CANCELED_FROZEN:
6752 case CPU_DOWN_FAILED:
6753 case CPU_DOWN_FAILED_FROZEN:
6754 case CPU_ONLINE:
6755 case CPU_ONLINE_FROZEN:
6756 case CPU_DEAD:
6757 case CPU_DEAD_FROZEN:
6759 * Fall through and re-initialise the domains.
6761 break;
6762 default:
6763 return NOTIFY_DONE;
6766 /* The hotplug lock is already held by cpu_up/cpu_down */
6767 arch_init_sched_domains(&cpu_online_map);
6769 return NOTIFY_OK;
6772 void __init sched_init_smp(void)
6774 cpumask_t non_isolated_cpus;
6776 get_online_cpus();
6777 arch_init_sched_domains(&cpu_online_map);
6778 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6779 if (cpus_empty(non_isolated_cpus))
6780 cpu_set(smp_processor_id(), non_isolated_cpus);
6781 put_online_cpus();
6782 /* XXX: Theoretical race here - CPU may be hotplugged now */
6783 hotcpu_notifier(update_sched_domains, 0);
6785 /* Move init over to a non-isolated CPU */
6786 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6787 BUG();
6788 sched_init_granularity();
6790 #ifdef CONFIG_FAIR_GROUP_SCHED
6791 if (nr_cpu_ids == 1)
6792 return;
6794 lb_monitor_task = kthread_create(load_balance_monitor, NULL,
6795 "group_balance");
6796 if (!IS_ERR(lb_monitor_task)) {
6797 lb_monitor_task->flags |= PF_NOFREEZE;
6798 wake_up_process(lb_monitor_task);
6799 } else {
6800 printk(KERN_ERR "Could not create load balance monitor thread"
6801 "(error = %ld) \n", PTR_ERR(lb_monitor_task));
6803 #endif
6805 #else
6806 void __init sched_init_smp(void)
6808 sched_init_granularity();
6810 #endif /* CONFIG_SMP */
6812 int in_sched_functions(unsigned long addr)
6814 return in_lock_functions(addr) ||
6815 (addr >= (unsigned long)__sched_text_start
6816 && addr < (unsigned long)__sched_text_end);
6819 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6821 cfs_rq->tasks_timeline = RB_ROOT;
6822 #ifdef CONFIG_FAIR_GROUP_SCHED
6823 cfs_rq->rq = rq;
6824 #endif
6825 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6828 void __init sched_init(void)
6830 int highest_cpu = 0;
6831 int i, j;
6833 for_each_possible_cpu(i) {
6834 struct rt_prio_array *array;
6835 struct rq *rq;
6837 rq = cpu_rq(i);
6838 spin_lock_init(&rq->lock);
6839 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6840 rq->nr_running = 0;
6841 rq->clock = 1;
6842 init_cfs_rq(&rq->cfs, rq);
6843 #ifdef CONFIG_FAIR_GROUP_SCHED
6844 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6846 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6847 struct sched_entity *se =
6848 &per_cpu(init_sched_entity, i);
6850 init_cfs_rq_p[i] = cfs_rq;
6851 init_cfs_rq(cfs_rq, rq);
6852 cfs_rq->tg = &init_task_group;
6853 list_add(&cfs_rq->leaf_cfs_rq_list,
6854 &rq->leaf_cfs_rq_list);
6856 init_sched_entity_p[i] = se;
6857 se->cfs_rq = &rq->cfs;
6858 se->my_q = cfs_rq;
6859 se->load.weight = init_task_group_load;
6860 se->load.inv_weight =
6861 div64_64(1ULL<<32, init_task_group_load);
6862 se->parent = NULL;
6864 init_task_group.shares = init_task_group_load;
6865 #endif
6867 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6868 rq->cpu_load[j] = 0;
6869 #ifdef CONFIG_SMP
6870 rq->sd = NULL;
6871 rq->active_balance = 0;
6872 rq->next_balance = jiffies;
6873 rq->push_cpu = 0;
6874 rq->cpu = i;
6875 rq->migration_thread = NULL;
6876 INIT_LIST_HEAD(&rq->migration_queue);
6877 rq->rt.highest_prio = MAX_RT_PRIO;
6878 #endif
6879 atomic_set(&rq->nr_iowait, 0);
6881 array = &rq->rt.active;
6882 for (j = 0; j < MAX_RT_PRIO; j++) {
6883 INIT_LIST_HEAD(array->queue + j);
6884 __clear_bit(j, array->bitmap);
6886 highest_cpu = i;
6887 /* delimiter for bitsearch: */
6888 __set_bit(MAX_RT_PRIO, array->bitmap);
6891 set_load_weight(&init_task);
6893 #ifdef CONFIG_PREEMPT_NOTIFIERS
6894 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6895 #endif
6897 #ifdef CONFIG_SMP
6898 nr_cpu_ids = highest_cpu + 1;
6899 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6900 #endif
6902 #ifdef CONFIG_RT_MUTEXES
6903 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6904 #endif
6907 * The boot idle thread does lazy MMU switching as well:
6909 atomic_inc(&init_mm.mm_count);
6910 enter_lazy_tlb(&init_mm, current);
6913 * Make us the idle thread. Technically, schedule() should not be
6914 * called from this thread, however somewhere below it might be,
6915 * but because we are the idle thread, we just pick up running again
6916 * when this runqueue becomes "idle".
6918 init_idle(current, smp_processor_id());
6920 * During early bootup we pretend to be a normal task:
6922 current->sched_class = &fair_sched_class;
6925 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6926 void __might_sleep(char *file, int line)
6928 #ifdef in_atomic
6929 static unsigned long prev_jiffy; /* ratelimiting */
6931 if ((in_atomic() || irqs_disabled()) &&
6932 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6933 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6934 return;
6935 prev_jiffy = jiffies;
6936 printk(KERN_ERR "BUG: sleeping function called from invalid"
6937 " context at %s:%d\n", file, line);
6938 printk("in_atomic():%d, irqs_disabled():%d\n",
6939 in_atomic(), irqs_disabled());
6940 debug_show_held_locks(current);
6941 if (irqs_disabled())
6942 print_irqtrace_events(current);
6943 dump_stack();
6945 #endif
6947 EXPORT_SYMBOL(__might_sleep);
6948 #endif
6950 #ifdef CONFIG_MAGIC_SYSRQ
6951 static void normalize_task(struct rq *rq, struct task_struct *p)
6953 int on_rq;
6954 update_rq_clock(rq);
6955 on_rq = p->se.on_rq;
6956 if (on_rq)
6957 deactivate_task(rq, p, 0);
6958 __setscheduler(rq, p, SCHED_NORMAL, 0);
6959 if (on_rq) {
6960 activate_task(rq, p, 0);
6961 resched_task(rq->curr);
6965 void normalize_rt_tasks(void)
6967 struct task_struct *g, *p;
6968 unsigned long flags;
6969 struct rq *rq;
6971 read_lock_irq(&tasklist_lock);
6972 do_each_thread(g, p) {
6974 * Only normalize user tasks:
6976 if (!p->mm)
6977 continue;
6979 p->se.exec_start = 0;
6980 #ifdef CONFIG_SCHEDSTATS
6981 p->se.wait_start = 0;
6982 p->se.sleep_start = 0;
6983 p->se.block_start = 0;
6984 #endif
6985 task_rq(p)->clock = 0;
6987 if (!rt_task(p)) {
6989 * Renice negative nice level userspace
6990 * tasks back to 0:
6992 if (TASK_NICE(p) < 0 && p->mm)
6993 set_user_nice(p, 0);
6994 continue;
6997 spin_lock_irqsave(&p->pi_lock, flags);
6998 rq = __task_rq_lock(p);
7000 normalize_task(rq, p);
7002 __task_rq_unlock(rq);
7003 spin_unlock_irqrestore(&p->pi_lock, flags);
7004 } while_each_thread(g, p);
7006 read_unlock_irq(&tasklist_lock);
7009 #endif /* CONFIG_MAGIC_SYSRQ */
7011 #ifdef CONFIG_IA64
7013 * These functions are only useful for the IA64 MCA handling.
7015 * They can only be called when the whole system has been
7016 * stopped - every CPU needs to be quiescent, and no scheduling
7017 * activity can take place. Using them for anything else would
7018 * be a serious bug, and as a result, they aren't even visible
7019 * under any other configuration.
7023 * curr_task - return the current task for a given cpu.
7024 * @cpu: the processor in question.
7026 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7028 struct task_struct *curr_task(int cpu)
7030 return cpu_curr(cpu);
7034 * set_curr_task - set the current task for a given cpu.
7035 * @cpu: the processor in question.
7036 * @p: the task pointer to set.
7038 * Description: This function must only be used when non-maskable interrupts
7039 * are serviced on a separate stack. It allows the architecture to switch the
7040 * notion of the current task on a cpu in a non-blocking manner. This function
7041 * must be called with all CPU's synchronized, and interrupts disabled, the
7042 * and caller must save the original value of the current task (see
7043 * curr_task() above) and restore that value before reenabling interrupts and
7044 * re-starting the system.
7046 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7048 void set_curr_task(int cpu, struct task_struct *p)
7050 cpu_curr(cpu) = p;
7053 #endif
7055 #ifdef CONFIG_FAIR_GROUP_SCHED
7057 #ifdef CONFIG_SMP
7059 * distribute shares of all task groups among their schedulable entities,
7060 * to reflect load distrbution across cpus.
7062 static int rebalance_shares(struct sched_domain *sd, int this_cpu)
7064 struct cfs_rq *cfs_rq;
7065 struct rq *rq = cpu_rq(this_cpu);
7066 cpumask_t sdspan = sd->span;
7067 int balanced = 1;
7069 /* Walk thr' all the task groups that we have */
7070 for_each_leaf_cfs_rq(rq, cfs_rq) {
7071 int i;
7072 unsigned long total_load = 0, total_shares;
7073 struct task_group *tg = cfs_rq->tg;
7075 /* Gather total task load of this group across cpus */
7076 for_each_cpu_mask(i, sdspan)
7077 total_load += tg->cfs_rq[i]->load.weight;
7079 /* Nothing to do if this group has no load */
7080 if (!total_load)
7081 continue;
7084 * tg->shares represents the number of cpu shares the task group
7085 * is eligible to hold on a single cpu. On N cpus, it is
7086 * eligible to hold (N * tg->shares) number of cpu shares.
7088 total_shares = tg->shares * cpus_weight(sdspan);
7091 * redistribute total_shares across cpus as per the task load
7092 * distribution.
7094 for_each_cpu_mask(i, sdspan) {
7095 unsigned long local_load, local_shares;
7097 local_load = tg->cfs_rq[i]->load.weight;
7098 local_shares = (local_load * total_shares) / total_load;
7099 if (!local_shares)
7100 local_shares = MIN_GROUP_SHARES;
7101 if (local_shares == tg->se[i]->load.weight)
7102 continue;
7104 spin_lock_irq(&cpu_rq(i)->lock);
7105 set_se_shares(tg->se[i], local_shares);
7106 spin_unlock_irq(&cpu_rq(i)->lock);
7107 balanced = 0;
7111 return balanced;
7115 * How frequently should we rebalance_shares() across cpus?
7117 * The more frequently we rebalance shares, the more accurate is the fairness
7118 * of cpu bandwidth distribution between task groups. However higher frequency
7119 * also implies increased scheduling overhead.
7121 * sysctl_sched_min_bal_int_shares represents the minimum interval between
7122 * consecutive calls to rebalance_shares() in the same sched domain.
7124 * sysctl_sched_max_bal_int_shares represents the maximum interval between
7125 * consecutive calls to rebalance_shares() in the same sched domain.
7127 * These settings allows for the appropriate tradeoff between accuracy of
7128 * fairness and the associated overhead.
7132 /* default: 8ms, units: milliseconds */
7133 const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
7135 /* default: 128ms, units: milliseconds */
7136 const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
7138 /* kernel thread that runs rebalance_shares() periodically */
7139 static int load_balance_monitor(void *unused)
7141 unsigned int timeout = sysctl_sched_min_bal_int_shares;
7142 struct sched_param schedparm;
7143 int ret;
7146 * We don't want this thread's execution to be limited by the shares
7147 * assigned to default group (init_task_group). Hence make it run
7148 * as a SCHED_RR RT task at the lowest priority.
7150 schedparm.sched_priority = 1;
7151 ret = sched_setscheduler(current, SCHED_RR, &schedparm);
7152 if (ret)
7153 printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
7154 " monitor thread (error = %d) \n", ret);
7156 while (!kthread_should_stop()) {
7157 int i, cpu, balanced = 1;
7159 /* Prevent cpus going down or coming up */
7160 get_online_cpus();
7161 /* lockout changes to doms_cur[] array */
7162 lock_doms_cur();
7164 * Enter a rcu read-side critical section to safely walk rq->sd
7165 * chain on various cpus and to walk task group list
7166 * (rq->leaf_cfs_rq_list) in rebalance_shares().
7168 rcu_read_lock();
7170 for (i = 0; i < ndoms_cur; i++) {
7171 cpumask_t cpumap = doms_cur[i];
7172 struct sched_domain *sd = NULL, *sd_prev = NULL;
7174 cpu = first_cpu(cpumap);
7176 /* Find the highest domain at which to balance shares */
7177 for_each_domain(cpu, sd) {
7178 if (!(sd->flags & SD_LOAD_BALANCE))
7179 continue;
7180 sd_prev = sd;
7183 sd = sd_prev;
7184 /* sd == NULL? No load balance reqd in this domain */
7185 if (!sd)
7186 continue;
7188 balanced &= rebalance_shares(sd, cpu);
7191 rcu_read_unlock();
7193 unlock_doms_cur();
7194 put_online_cpus();
7196 if (!balanced)
7197 timeout = sysctl_sched_min_bal_int_shares;
7198 else if (timeout < sysctl_sched_max_bal_int_shares)
7199 timeout *= 2;
7201 msleep_interruptible(timeout);
7204 return 0;
7206 #endif /* CONFIG_SMP */
7208 /* allocate runqueue etc for a new task group */
7209 struct task_group *sched_create_group(void)
7211 struct task_group *tg;
7212 struct cfs_rq *cfs_rq;
7213 struct sched_entity *se;
7214 struct rq *rq;
7215 int i;
7217 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7218 if (!tg)
7219 return ERR_PTR(-ENOMEM);
7221 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
7222 if (!tg->cfs_rq)
7223 goto err;
7224 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
7225 if (!tg->se)
7226 goto err;
7228 for_each_possible_cpu(i) {
7229 rq = cpu_rq(i);
7231 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
7232 cpu_to_node(i));
7233 if (!cfs_rq)
7234 goto err;
7236 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
7237 cpu_to_node(i));
7238 if (!se)
7239 goto err;
7241 memset(cfs_rq, 0, sizeof(struct cfs_rq));
7242 memset(se, 0, sizeof(struct sched_entity));
7244 tg->cfs_rq[i] = cfs_rq;
7245 init_cfs_rq(cfs_rq, rq);
7246 cfs_rq->tg = tg;
7248 tg->se[i] = se;
7249 se->cfs_rq = &rq->cfs;
7250 se->my_q = cfs_rq;
7251 se->load.weight = NICE_0_LOAD;
7252 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
7253 se->parent = NULL;
7256 tg->shares = NICE_0_LOAD;
7258 lock_task_group_list();
7259 for_each_possible_cpu(i) {
7260 rq = cpu_rq(i);
7261 cfs_rq = tg->cfs_rq[i];
7262 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7264 unlock_task_group_list();
7266 return tg;
7268 err:
7269 for_each_possible_cpu(i) {
7270 if (tg->cfs_rq)
7271 kfree(tg->cfs_rq[i]);
7272 if (tg->se)
7273 kfree(tg->se[i]);
7275 kfree(tg->cfs_rq);
7276 kfree(tg->se);
7277 kfree(tg);
7279 return ERR_PTR(-ENOMEM);
7282 /* rcu callback to free various structures associated with a task group */
7283 static void free_sched_group(struct rcu_head *rhp)
7285 struct task_group *tg = container_of(rhp, struct task_group, rcu);
7286 struct cfs_rq *cfs_rq;
7287 struct sched_entity *se;
7288 int i;
7290 /* now it should be safe to free those cfs_rqs */
7291 for_each_possible_cpu(i) {
7292 cfs_rq = tg->cfs_rq[i];
7293 kfree(cfs_rq);
7295 se = tg->se[i];
7296 kfree(se);
7299 kfree(tg->cfs_rq);
7300 kfree(tg->se);
7301 kfree(tg);
7304 /* Destroy runqueue etc associated with a task group */
7305 void sched_destroy_group(struct task_group *tg)
7307 struct cfs_rq *cfs_rq = NULL;
7308 int i;
7310 lock_task_group_list();
7311 for_each_possible_cpu(i) {
7312 cfs_rq = tg->cfs_rq[i];
7313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7315 unlock_task_group_list();
7317 BUG_ON(!cfs_rq);
7319 /* wait for possible concurrent references to cfs_rqs complete */
7320 call_rcu(&tg->rcu, free_sched_group);
7323 /* change task's runqueue when it moves between groups.
7324 * The caller of this function should have put the task in its new group
7325 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7326 * reflect its new group.
7328 void sched_move_task(struct task_struct *tsk)
7330 int on_rq, running;
7331 unsigned long flags;
7332 struct rq *rq;
7334 rq = task_rq_lock(tsk, &flags);
7336 if (tsk->sched_class != &fair_sched_class) {
7337 set_task_cfs_rq(tsk, task_cpu(tsk));
7338 goto done;
7341 update_rq_clock(rq);
7343 running = task_current(rq, tsk);
7344 on_rq = tsk->se.on_rq;
7346 if (on_rq) {
7347 dequeue_task(rq, tsk, 0);
7348 if (unlikely(running))
7349 tsk->sched_class->put_prev_task(rq, tsk);
7352 set_task_cfs_rq(tsk, task_cpu(tsk));
7354 if (on_rq) {
7355 if (unlikely(running))
7356 tsk->sched_class->set_curr_task(rq);
7357 enqueue_task(rq, tsk, 0);
7360 done:
7361 task_rq_unlock(rq, &flags);
7364 /* rq->lock to be locked by caller */
7365 static void set_se_shares(struct sched_entity *se, unsigned long shares)
7367 struct cfs_rq *cfs_rq = se->cfs_rq;
7368 struct rq *rq = cfs_rq->rq;
7369 int on_rq;
7371 if (!shares)
7372 shares = MIN_GROUP_SHARES;
7374 on_rq = se->on_rq;
7375 if (on_rq) {
7376 dequeue_entity(cfs_rq, se, 0);
7377 dec_cpu_load(rq, se->load.weight);
7380 se->load.weight = shares;
7381 se->load.inv_weight = div64_64((1ULL<<32), shares);
7383 if (on_rq) {
7384 enqueue_entity(cfs_rq, se, 0);
7385 inc_cpu_load(rq, se->load.weight);
7389 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7391 int i;
7392 struct cfs_rq *cfs_rq;
7393 struct rq *rq;
7395 lock_task_group_list();
7396 if (tg->shares == shares)
7397 goto done;
7399 if (shares < MIN_GROUP_SHARES)
7400 shares = MIN_GROUP_SHARES;
7403 * Prevent any load balance activity (rebalance_shares,
7404 * load_balance_fair) from referring to this group first,
7405 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
7407 for_each_possible_cpu(i) {
7408 cfs_rq = tg->cfs_rq[i];
7409 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7412 /* wait for any ongoing reference to this group to finish */
7413 synchronize_sched();
7416 * Now we are free to modify the group's share on each cpu
7417 * w/o tripping rebalance_share or load_balance_fair.
7419 tg->shares = shares;
7420 for_each_possible_cpu(i) {
7421 spin_lock_irq(&cpu_rq(i)->lock);
7422 set_se_shares(tg->se[i], shares);
7423 spin_unlock_irq(&cpu_rq(i)->lock);
7427 * Enable load balance activity on this group, by inserting it back on
7428 * each cpu's rq->leaf_cfs_rq_list.
7430 for_each_possible_cpu(i) {
7431 rq = cpu_rq(i);
7432 cfs_rq = tg->cfs_rq[i];
7433 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7435 done:
7436 unlock_task_group_list();
7437 return 0;
7440 unsigned long sched_group_shares(struct task_group *tg)
7442 return tg->shares;
7445 #endif /* CONFIG_FAIR_GROUP_SCHED */
7447 #ifdef CONFIG_FAIR_CGROUP_SCHED
7449 /* return corresponding task_group object of a cgroup */
7450 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7452 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7453 struct task_group, css);
7456 static struct cgroup_subsys_state *
7457 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7459 struct task_group *tg;
7461 if (!cgrp->parent) {
7462 /* This is early initialization for the top cgroup */
7463 init_task_group.css.cgroup = cgrp;
7464 return &init_task_group.css;
7467 /* we support only 1-level deep hierarchical scheduler atm */
7468 if (cgrp->parent->parent)
7469 return ERR_PTR(-EINVAL);
7471 tg = sched_create_group();
7472 if (IS_ERR(tg))
7473 return ERR_PTR(-ENOMEM);
7475 /* Bind the cgroup to task_group object we just created */
7476 tg->css.cgroup = cgrp;
7478 return &tg->css;
7481 static void
7482 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7484 struct task_group *tg = cgroup_tg(cgrp);
7486 sched_destroy_group(tg);
7489 static int
7490 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7491 struct task_struct *tsk)
7493 /* We don't support RT-tasks being in separate groups */
7494 if (tsk->sched_class != &fair_sched_class)
7495 return -EINVAL;
7497 return 0;
7500 static void
7501 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7502 struct cgroup *old_cont, struct task_struct *tsk)
7504 sched_move_task(tsk);
7507 static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7508 u64 shareval)
7510 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7513 static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7515 struct task_group *tg = cgroup_tg(cgrp);
7517 return (u64) tg->shares;
7520 static struct cftype cpu_files[] = {
7522 .name = "shares",
7523 .read_uint = cpu_shares_read_uint,
7524 .write_uint = cpu_shares_write_uint,
7528 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7530 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7533 struct cgroup_subsys cpu_cgroup_subsys = {
7534 .name = "cpu",
7535 .create = cpu_cgroup_create,
7536 .destroy = cpu_cgroup_destroy,
7537 .can_attach = cpu_cgroup_can_attach,
7538 .attach = cpu_cgroup_attach,
7539 .populate = cpu_cgroup_populate,
7540 .subsys_id = cpu_cgroup_subsys_id,
7541 .early_init = 1,
7544 #endif /* CONFIG_FAIR_CGROUP_SCHED */
7546 #ifdef CONFIG_CGROUP_CPUACCT
7549 * CPU accounting code for task groups.
7551 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7552 * (balbir@in.ibm.com).
7555 /* track cpu usage of a group of tasks */
7556 struct cpuacct {
7557 struct cgroup_subsys_state css;
7558 /* cpuusage holds pointer to a u64-type object on every cpu */
7559 u64 *cpuusage;
7562 struct cgroup_subsys cpuacct_subsys;
7564 /* return cpu accounting group corresponding to this container */
7565 static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7567 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7568 struct cpuacct, css);
7571 /* return cpu accounting group to which this task belongs */
7572 static inline struct cpuacct *task_ca(struct task_struct *tsk)
7574 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7575 struct cpuacct, css);
7578 /* create a new cpu accounting group */
7579 static struct cgroup_subsys_state *cpuacct_create(
7580 struct cgroup_subsys *ss, struct cgroup *cont)
7582 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7584 if (!ca)
7585 return ERR_PTR(-ENOMEM);
7587 ca->cpuusage = alloc_percpu(u64);
7588 if (!ca->cpuusage) {
7589 kfree(ca);
7590 return ERR_PTR(-ENOMEM);
7593 return &ca->css;
7596 /* destroy an existing cpu accounting group */
7597 static void
7598 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
7600 struct cpuacct *ca = cgroup_ca(cont);
7602 free_percpu(ca->cpuusage);
7603 kfree(ca);
7606 /* return total cpu usage (in nanoseconds) of a group */
7607 static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
7609 struct cpuacct *ca = cgroup_ca(cont);
7610 u64 totalcpuusage = 0;
7611 int i;
7613 for_each_possible_cpu(i) {
7614 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
7617 * Take rq->lock to make 64-bit addition safe on 32-bit
7618 * platforms.
7620 spin_lock_irq(&cpu_rq(i)->lock);
7621 totalcpuusage += *cpuusage;
7622 spin_unlock_irq(&cpu_rq(i)->lock);
7625 return totalcpuusage;
7628 static struct cftype files[] = {
7630 .name = "usage",
7631 .read_uint = cpuusage_read,
7635 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7637 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
7641 * charge this task's execution time to its accounting group.
7643 * called with rq->lock held.
7645 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
7647 struct cpuacct *ca;
7649 if (!cpuacct_subsys.active)
7650 return;
7652 ca = task_ca(tsk);
7653 if (ca) {
7654 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
7656 *cpuusage += cputime;
7660 struct cgroup_subsys cpuacct_subsys = {
7661 .name = "cpuacct",
7662 .create = cpuacct_create,
7663 .destroy = cpuacct_destroy,
7664 .populate = cpuacct_populate,
7665 .subsys_id = cpuacct_subsys_id,
7667 #endif /* CONFIG_CGROUP_CPUACCT */