4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/smp.h>
49 #include <linux/threads.h>
50 #include <linux/timer.h>
51 #include <linux/rcupdate.h>
52 #include <linux/cpu.h>
53 #include <linux/cpuset.h>
54 #include <linux/percpu.h>
55 #include <linux/kthread.h>
56 #include <linux/seq_file.h>
57 #include <linux/sysctl.h>
58 #include <linux/syscalls.h>
59 #include <linux/times.h>
60 #include <linux/tsacct_kern.h>
61 #include <linux/kprobes.h>
62 #include <linux/delayacct.h>
63 #include <linux/reciprocal_div.h>
64 #include <linux/unistd.h>
65 #include <linux/pagemap.h>
68 #include <asm/irq_regs.h>
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
75 unsigned long long __attribute__((weak
)) sched_clock(void)
77 return (unsigned long long)jiffies
* (NSEC_PER_SEC
/ HZ
);
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
94 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99 * Some helpers for converting nanosecond timing to jiffy resolution
101 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102 #define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
104 #define NICE_0_LOAD SCHED_LOAD_SCALE
105 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108 * These are the 'tuning knobs' of the scheduler:
110 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
111 * Timeslices get refilled after they expire.
113 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
122 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
129 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
131 sg
->__cpu_power
+= val
;
132 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
136 static inline int rt_policy(int policy
)
138 if (unlikely(policy
== SCHED_FIFO
) || unlikely(policy
== SCHED_RR
))
143 static inline int task_has_rt_policy(struct task_struct
*p
)
145 return rt_policy(p
->policy
);
149 * This is the priority-queue data structure of the RT scheduling class:
151 struct rt_prio_array
{
152 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
153 struct list_head queue
[MAX_RT_PRIO
];
156 #ifdef CONFIG_FAIR_GROUP_SCHED
158 #include <linux/cgroup.h>
162 /* task group related information */
164 #ifdef CONFIG_FAIR_CGROUP_SCHED
165 struct cgroup_subsys_state css
;
167 /* schedulable entities of this group on each cpu */
168 struct sched_entity
**se
;
169 /* runqueue "owned" by this group on each cpu */
170 struct cfs_rq
**cfs_rq
;
173 * shares assigned to a task group governs how much of cpu bandwidth
174 * is allocated to the group. The more shares a group has, the more is
175 * the cpu bandwidth allocated to it.
177 * For ex, lets say that there are three task groups, A, B and C which
178 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
179 * cpu bandwidth allocated by the scheduler to task groups A, B and C
182 * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
183 * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
184 * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
186 * The weight assigned to a task group's schedulable entities on every
187 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
188 * group's shares. For ex: lets say that task group A has been
189 * assigned shares of 1000 and there are two CPUs in a system. Then,
191 * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
193 * Note: It's not necessary that each of a task's group schedulable
194 * entity have the same weight on all CPUs. If the group
195 * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
196 * better distribution of weight could be:
198 * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
199 * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
201 * rebalance_shares() is responsible for distributing the shares of a
202 * task groups like this among the group's schedulable entities across
206 unsigned long shares
;
211 /* Default task group's sched entity on each cpu */
212 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
213 /* Default task group's cfs_rq on each cpu */
214 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
216 static struct sched_entity
*init_sched_entity_p
[NR_CPUS
];
217 static struct cfs_rq
*init_cfs_rq_p
[NR_CPUS
];
219 /* task_group_mutex serializes add/remove of task groups and also changes to
220 * a task group's cpu shares.
222 static DEFINE_MUTEX(task_group_mutex
);
224 /* doms_cur_mutex serializes access to doms_cur[] array */
225 static DEFINE_MUTEX(doms_cur_mutex
);
228 /* kernel thread that runs rebalance_shares() periodically */
229 static struct task_struct
*lb_monitor_task
;
230 static int load_balance_monitor(void *unused
);
233 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
);
235 /* Default task group.
236 * Every task in system belong to this group at bootup.
238 struct task_group init_task_group
= {
239 .se
= init_sched_entity_p
,
240 .cfs_rq
= init_cfs_rq_p
,
243 #ifdef CONFIG_FAIR_USER_SCHED
244 # define INIT_TASK_GROUP_LOAD 2*NICE_0_LOAD
246 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
249 #define MIN_GROUP_SHARES 2
251 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
253 /* return group to which a task belongs */
254 static inline struct task_group
*task_group(struct task_struct
*p
)
256 struct task_group
*tg
;
258 #ifdef CONFIG_FAIR_USER_SCHED
260 #elif defined(CONFIG_FAIR_CGROUP_SCHED)
261 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
262 struct task_group
, css
);
264 tg
= &init_task_group
;
269 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
270 static inline void set_task_cfs_rq(struct task_struct
*p
, unsigned int cpu
)
272 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
273 p
->se
.parent
= task_group(p
)->se
[cpu
];
276 static inline void lock_task_group_list(void)
278 mutex_lock(&task_group_mutex
);
281 static inline void unlock_task_group_list(void)
283 mutex_unlock(&task_group_mutex
);
286 static inline void lock_doms_cur(void)
288 mutex_lock(&doms_cur_mutex
);
291 static inline void unlock_doms_cur(void)
293 mutex_unlock(&doms_cur_mutex
);
298 static inline void set_task_cfs_rq(struct task_struct
*p
, unsigned int cpu
) { }
299 static inline void lock_task_group_list(void) { }
300 static inline void unlock_task_group_list(void) { }
301 static inline void lock_doms_cur(void) { }
302 static inline void unlock_doms_cur(void) { }
304 #endif /* CONFIG_FAIR_GROUP_SCHED */
306 /* CFS-related fields in a runqueue */
308 struct load_weight load
;
309 unsigned long nr_running
;
314 struct rb_root tasks_timeline
;
315 struct rb_node
*rb_leftmost
;
316 struct rb_node
*rb_load_balance_curr
;
317 /* 'curr' points to currently running entity on this cfs_rq.
318 * It is set to NULL otherwise (i.e when none are currently running).
320 struct sched_entity
*curr
;
322 unsigned long nr_spread_over
;
324 #ifdef CONFIG_FAIR_GROUP_SCHED
325 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
328 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
329 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
330 * (like users, containers etc.)
332 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
333 * list is used during load balance.
335 struct list_head leaf_cfs_rq_list
;
336 struct task_group
*tg
; /* group that "owns" this runqueue */
340 /* Real-Time classes' related field in a runqueue: */
342 struct rt_prio_array active
;
343 int rt_load_balance_idx
;
344 struct list_head
*rt_load_balance_head
, *rt_load_balance_curr
;
345 unsigned long rt_nr_running
;
346 /* highest queued rt task prio */
351 * This is the main, per-CPU runqueue data structure.
353 * Locking rule: those places that want to lock multiple runqueues
354 * (such as the load balancing or the thread migration code), lock
355 * acquire operations must be ordered by ascending &runqueue.
362 * nr_running and cpu_load should be in the same cacheline because
363 * remote CPUs use both these fields when doing load calculation.
365 unsigned long nr_running
;
366 #define CPU_LOAD_IDX_MAX 5
367 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
368 unsigned char idle_at_tick
;
370 unsigned char in_nohz_recently
;
372 /* capture load from *all* tasks on this cpu: */
373 struct load_weight load
;
374 unsigned long nr_load_updates
;
378 #ifdef CONFIG_FAIR_GROUP_SCHED
379 /* list of leaf cfs_rq on this cpu: */
380 struct list_head leaf_cfs_rq_list
;
385 * This is part of a global counter where only the total sum
386 * over all CPUs matters. A task can increase this counter on
387 * one CPU and if it got migrated afterwards it may decrease
388 * it on another CPU. Always updated under the runqueue lock:
390 unsigned long nr_uninterruptible
;
392 struct task_struct
*curr
, *idle
;
393 unsigned long next_balance
;
394 struct mm_struct
*prev_mm
;
396 u64 clock
, prev_clock_raw
;
399 unsigned int clock_warps
, clock_overflows
;
401 unsigned int clock_deep_idle_events
;
407 struct sched_domain
*sd
;
409 /* For active balancing */
412 /* cpu of this runqueue: */
415 struct task_struct
*migration_thread
;
416 struct list_head migration_queue
;
419 #ifdef CONFIG_SCHEDSTATS
421 struct sched_info rq_sched_info
;
423 /* sys_sched_yield() stats */
424 unsigned int yld_exp_empty
;
425 unsigned int yld_act_empty
;
426 unsigned int yld_both_empty
;
427 unsigned int yld_count
;
429 /* schedule() stats */
430 unsigned int sched_switch
;
431 unsigned int sched_count
;
432 unsigned int sched_goidle
;
434 /* try_to_wake_up() stats */
435 unsigned int ttwu_count
;
436 unsigned int ttwu_local
;
439 unsigned int bkl_count
;
441 struct lock_class_key rq_lock_key
;
444 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
446 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
)
448 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
);
451 static inline int cpu_of(struct rq
*rq
)
461 * Update the per-runqueue clock, as finegrained as the platform can give
462 * us, but without assuming monotonicity, etc.:
464 static void __update_rq_clock(struct rq
*rq
)
466 u64 prev_raw
= rq
->prev_clock_raw
;
467 u64 now
= sched_clock();
468 s64 delta
= now
- prev_raw
;
469 u64 clock
= rq
->clock
;
471 #ifdef CONFIG_SCHED_DEBUG
472 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
475 * Protect against sched_clock() occasionally going backwards:
477 if (unlikely(delta
< 0)) {
482 * Catch too large forward jumps too:
484 if (unlikely(clock
+ delta
> rq
->tick_timestamp
+ TICK_NSEC
)) {
485 if (clock
< rq
->tick_timestamp
+ TICK_NSEC
)
486 clock
= rq
->tick_timestamp
+ TICK_NSEC
;
489 rq
->clock_overflows
++;
491 if (unlikely(delta
> rq
->clock_max_delta
))
492 rq
->clock_max_delta
= delta
;
497 rq
->prev_clock_raw
= now
;
501 static void update_rq_clock(struct rq
*rq
)
503 if (likely(smp_processor_id() == cpu_of(rq
)))
504 __update_rq_clock(rq
);
508 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
509 * See detach_destroy_domains: synchronize_sched for details.
511 * The domain tree of any CPU may only be accessed from within
512 * preempt-disabled sections.
514 #define for_each_domain(cpu, __sd) \
515 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
517 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
518 #define this_rq() (&__get_cpu_var(runqueues))
519 #define task_rq(p) cpu_rq(task_cpu(p))
520 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
523 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
525 #ifdef CONFIG_SCHED_DEBUG
526 # define const_debug __read_mostly
528 # define const_debug static const
532 * Debugging: various feature bits
535 SCHED_FEAT_NEW_FAIR_SLEEPERS
= 1,
536 SCHED_FEAT_WAKEUP_PREEMPT
= 2,
537 SCHED_FEAT_START_DEBIT
= 4,
538 SCHED_FEAT_TREE_AVG
= 8,
539 SCHED_FEAT_APPROX_AVG
= 16,
542 const_debug
unsigned int sysctl_sched_features
=
543 SCHED_FEAT_NEW_FAIR_SLEEPERS
* 1 |
544 SCHED_FEAT_WAKEUP_PREEMPT
* 1 |
545 SCHED_FEAT_START_DEBIT
* 1 |
546 SCHED_FEAT_TREE_AVG
* 0 |
547 SCHED_FEAT_APPROX_AVG
* 0;
549 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
552 * Number of tasks to iterate in a single balance run.
553 * Limited because this is done with IRQs disabled.
555 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
558 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
559 * clock constructed from sched_clock():
561 unsigned long long cpu_clock(int cpu
)
563 unsigned long long now
;
567 local_irq_save(flags
);
570 * Only call sched_clock() if the scheduler has already been
571 * initialized (some code might call cpu_clock() very early):
576 local_irq_restore(flags
);
580 EXPORT_SYMBOL_GPL(cpu_clock
);
582 #ifndef prepare_arch_switch
583 # define prepare_arch_switch(next) do { } while (0)
585 #ifndef finish_arch_switch
586 # define finish_arch_switch(prev) do { } while (0)
589 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
591 return rq
->curr
== p
;
594 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
595 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
597 return task_current(rq
, p
);
600 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
604 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
606 #ifdef CONFIG_DEBUG_SPINLOCK
607 /* this is a valid case when another task releases the spinlock */
608 rq
->lock
.owner
= current
;
611 * If we are tracking spinlock dependencies then we have to
612 * fix up the runqueue lock - which gets 'carried over' from
615 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
617 spin_unlock_irq(&rq
->lock
);
620 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
621 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
626 return task_current(rq
, p
);
630 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
634 * We can optimise this out completely for !SMP, because the
635 * SMP rebalancing from interrupt is the only thing that cares
640 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
641 spin_unlock_irq(&rq
->lock
);
643 spin_unlock(&rq
->lock
);
647 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
651 * After ->oncpu is cleared, the task can be moved to a different CPU.
652 * We must ensure this doesn't happen until the switch is completely
658 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
662 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
665 * __task_rq_lock - lock the runqueue a given task resides on.
666 * Must be called interrupts disabled.
668 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
672 struct rq
*rq
= task_rq(p
);
673 spin_lock(&rq
->lock
);
674 if (likely(rq
== task_rq(p
)))
676 spin_unlock(&rq
->lock
);
681 * task_rq_lock - lock the runqueue a given task resides on and disable
682 * interrupts. Note the ordering: we can safely lookup the task_rq without
683 * explicitly disabling preemption.
685 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
691 local_irq_save(*flags
);
693 spin_lock(&rq
->lock
);
694 if (likely(rq
== task_rq(p
)))
696 spin_unlock_irqrestore(&rq
->lock
, *flags
);
700 static void __task_rq_unlock(struct rq
*rq
)
703 spin_unlock(&rq
->lock
);
706 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
709 spin_unlock_irqrestore(&rq
->lock
, *flags
);
713 * this_rq_lock - lock this runqueue and disable interrupts.
715 static struct rq
*this_rq_lock(void)
722 spin_lock(&rq
->lock
);
728 * We are going deep-idle (irqs are disabled):
730 void sched_clock_idle_sleep_event(void)
732 struct rq
*rq
= cpu_rq(smp_processor_id());
734 spin_lock(&rq
->lock
);
735 __update_rq_clock(rq
);
736 spin_unlock(&rq
->lock
);
737 rq
->clock_deep_idle_events
++;
739 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event
);
742 * We just idled delta nanoseconds (called with irqs disabled):
744 void sched_clock_idle_wakeup_event(u64 delta_ns
)
746 struct rq
*rq
= cpu_rq(smp_processor_id());
747 u64 now
= sched_clock();
749 touch_softlockup_watchdog();
750 rq
->idle_clock
+= delta_ns
;
752 * Override the previous timestamp and ignore all
753 * sched_clock() deltas that occured while we idled,
754 * and use the PM-provided delta_ns to advance the
757 spin_lock(&rq
->lock
);
758 rq
->prev_clock_raw
= now
;
759 rq
->clock
+= delta_ns
;
760 spin_unlock(&rq
->lock
);
762 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event
);
765 * resched_task - mark a task 'to be rescheduled now'.
767 * On UP this means the setting of the need_resched flag, on SMP it
768 * might also involve a cross-CPU call to trigger the scheduler on
773 #ifndef tsk_is_polling
774 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
777 static void resched_task(struct task_struct
*p
)
781 assert_spin_locked(&task_rq(p
)->lock
);
783 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
786 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
789 if (cpu
== smp_processor_id())
792 /* NEED_RESCHED must be visible before we test polling */
794 if (!tsk_is_polling(p
))
795 smp_send_reschedule(cpu
);
798 static void resched_cpu(int cpu
)
800 struct rq
*rq
= cpu_rq(cpu
);
803 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
805 resched_task(cpu_curr(cpu
));
806 spin_unlock_irqrestore(&rq
->lock
, flags
);
809 static inline void resched_task(struct task_struct
*p
)
811 assert_spin_locked(&task_rq(p
)->lock
);
812 set_tsk_need_resched(p
);
816 #if BITS_PER_LONG == 32
817 # define WMULT_CONST (~0UL)
819 # define WMULT_CONST (1UL << 32)
822 #define WMULT_SHIFT 32
825 * Shift right and round:
827 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
830 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
831 struct load_weight
*lw
)
835 if (unlikely(!lw
->inv_weight
))
836 lw
->inv_weight
= (WMULT_CONST
- lw
->weight
/2) / lw
->weight
+ 1;
838 tmp
= (u64
)delta_exec
* weight
;
840 * Check whether we'd overflow the 64-bit multiplication:
842 if (unlikely(tmp
> WMULT_CONST
))
843 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
846 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
848 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
851 static inline unsigned long
852 calc_delta_fair(unsigned long delta_exec
, struct load_weight
*lw
)
854 return calc_delta_mine(delta_exec
, NICE_0_LOAD
, lw
);
857 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
862 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
868 * To aid in avoiding the subversion of "niceness" due to uneven distribution
869 * of tasks with abnormal "nice" values across CPUs the contribution that
870 * each task makes to its run queue's load is weighted according to its
871 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
872 * scaled version of the new time slice allocation that they receive on time
876 #define WEIGHT_IDLEPRIO 2
877 #define WMULT_IDLEPRIO (1 << 31)
880 * Nice levels are multiplicative, with a gentle 10% change for every
881 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
882 * nice 1, it will get ~10% less CPU time than another CPU-bound task
883 * that remained on nice 0.
885 * The "10% effect" is relative and cumulative: from _any_ nice level,
886 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
887 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
888 * If a task goes up by ~10% and another task goes down by ~10% then
889 * the relative distance between them is ~25%.)
891 static const int prio_to_weight
[40] = {
892 /* -20 */ 88761, 71755, 56483, 46273, 36291,
893 /* -15 */ 29154, 23254, 18705, 14949, 11916,
894 /* -10 */ 9548, 7620, 6100, 4904, 3906,
895 /* -5 */ 3121, 2501, 1991, 1586, 1277,
896 /* 0 */ 1024, 820, 655, 526, 423,
897 /* 5 */ 335, 272, 215, 172, 137,
898 /* 10 */ 110, 87, 70, 56, 45,
899 /* 15 */ 36, 29, 23, 18, 15,
903 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
905 * In cases where the weight does not change often, we can use the
906 * precalculated inverse to speed up arithmetics by turning divisions
907 * into multiplications:
909 static const u32 prio_to_wmult
[40] = {
910 /* -20 */ 48388, 59856, 76040, 92818, 118348,
911 /* -15 */ 147320, 184698, 229616, 287308, 360437,
912 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
913 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
914 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
915 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
916 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
917 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
920 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
923 * runqueue iterator, to support SMP load-balancing between different
924 * scheduling classes, without having to expose their internal data
925 * structures to the load-balancing proper:
929 struct task_struct
*(*start
)(void *);
930 struct task_struct
*(*next
)(void *);
935 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
936 unsigned long max_load_move
, struct sched_domain
*sd
,
937 enum cpu_idle_type idle
, int *all_pinned
,
938 int *this_best_prio
, struct rq_iterator
*iterator
);
941 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
942 struct sched_domain
*sd
, enum cpu_idle_type idle
,
943 struct rq_iterator
*iterator
);
946 #ifdef CONFIG_CGROUP_CPUACCT
947 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
949 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
952 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
954 update_load_add(&rq
->load
, load
);
957 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
959 update_load_sub(&rq
->load
, load
);
962 #include "sched_stats.h"
963 #include "sched_idletask.c"
964 #include "sched_fair.c"
965 #include "sched_rt.c"
966 #ifdef CONFIG_SCHED_DEBUG
967 # include "sched_debug.c"
970 #define sched_class_highest (&rt_sched_class)
972 static void inc_nr_running(struct task_struct
*p
, struct rq
*rq
)
977 static void dec_nr_running(struct task_struct
*p
, struct rq
*rq
)
982 static void set_load_weight(struct task_struct
*p
)
984 if (task_has_rt_policy(p
)) {
985 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
986 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
991 * SCHED_IDLE tasks get minimal weight:
993 if (p
->policy
== SCHED_IDLE
) {
994 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
995 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
999 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1000 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1003 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1005 sched_info_queued(p
);
1006 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
1010 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1012 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1017 * __normal_prio - return the priority that is based on the static prio
1019 static inline int __normal_prio(struct task_struct
*p
)
1021 return p
->static_prio
;
1025 * Calculate the expected normal priority: i.e. priority
1026 * without taking RT-inheritance into account. Might be
1027 * boosted by interactivity modifiers. Changes upon fork,
1028 * setprio syscalls, and whenever the interactivity
1029 * estimator recalculates.
1031 static inline int normal_prio(struct task_struct
*p
)
1035 if (task_has_rt_policy(p
))
1036 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1038 prio
= __normal_prio(p
);
1043 * Calculate the current priority, i.e. the priority
1044 * taken into account by the scheduler. This value might
1045 * be boosted by RT tasks, or might be boosted by
1046 * interactivity modifiers. Will be RT if the task got
1047 * RT-boosted. If not then it returns p->normal_prio.
1049 static int effective_prio(struct task_struct
*p
)
1051 p
->normal_prio
= normal_prio(p
);
1053 * If we are RT tasks or we were boosted to RT priority,
1054 * keep the priority unchanged. Otherwise, update priority
1055 * to the normal priority:
1057 if (!rt_prio(p
->prio
))
1058 return p
->normal_prio
;
1063 * activate_task - move a task to the runqueue.
1065 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1067 if (p
->state
== TASK_UNINTERRUPTIBLE
)
1068 rq
->nr_uninterruptible
--;
1070 enqueue_task(rq
, p
, wakeup
);
1071 inc_nr_running(p
, rq
);
1075 * deactivate_task - remove a task from the runqueue.
1077 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1079 if (p
->state
== TASK_UNINTERRUPTIBLE
)
1080 rq
->nr_uninterruptible
++;
1082 dequeue_task(rq
, p
, sleep
);
1083 dec_nr_running(p
, rq
);
1087 * task_curr - is this task currently executing on a CPU?
1088 * @p: the task in question.
1090 inline int task_curr(const struct task_struct
*p
)
1092 return cpu_curr(task_cpu(p
)) == p
;
1095 /* Used instead of source_load when we know the type == 0 */
1096 unsigned long weighted_cpuload(const int cpu
)
1098 return cpu_rq(cpu
)->load
.weight
;
1101 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1103 set_task_cfs_rq(p
, cpu
);
1106 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1107 * successfuly executed on another CPU. We must ensure that updates of
1108 * per-task data have been completed by this moment.
1111 task_thread_info(p
)->cpu
= cpu
;
1118 * Is this task likely cache-hot:
1121 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1125 if (p
->sched_class
!= &fair_sched_class
)
1128 if (sysctl_sched_migration_cost
== -1)
1130 if (sysctl_sched_migration_cost
== 0)
1133 delta
= now
- p
->se
.exec_start
;
1135 return delta
< (s64
)sysctl_sched_migration_cost
;
1139 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1141 int old_cpu
= task_cpu(p
);
1142 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1143 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
1144 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
1147 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1149 #ifdef CONFIG_SCHEDSTATS
1150 if (p
->se
.wait_start
)
1151 p
->se
.wait_start
-= clock_offset
;
1152 if (p
->se
.sleep_start
)
1153 p
->se
.sleep_start
-= clock_offset
;
1154 if (p
->se
.block_start
)
1155 p
->se
.block_start
-= clock_offset
;
1156 if (old_cpu
!= new_cpu
) {
1157 schedstat_inc(p
, se
.nr_migrations
);
1158 if (task_hot(p
, old_rq
->clock
, NULL
))
1159 schedstat_inc(p
, se
.nr_forced2_migrations
);
1162 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
1163 new_cfsrq
->min_vruntime
;
1165 __set_task_cpu(p
, new_cpu
);
1168 struct migration_req
{
1169 struct list_head list
;
1171 struct task_struct
*task
;
1174 struct completion done
;
1178 * The task's runqueue lock must be held.
1179 * Returns true if you have to wait for migration thread.
1182 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1184 struct rq
*rq
= task_rq(p
);
1187 * If the task is not on a runqueue (and not running), then
1188 * it is sufficient to simply update the task's cpu field.
1190 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1191 set_task_cpu(p
, dest_cpu
);
1195 init_completion(&req
->done
);
1197 req
->dest_cpu
= dest_cpu
;
1198 list_add(&req
->list
, &rq
->migration_queue
);
1204 * wait_task_inactive - wait for a thread to unschedule.
1206 * The caller must ensure that the task *will* unschedule sometime soon,
1207 * else this function might spin for a *long* time. This function can't
1208 * be called with interrupts off, or it may introduce deadlock with
1209 * smp_call_function() if an IPI is sent by the same process we are
1210 * waiting to become inactive.
1212 void wait_task_inactive(struct task_struct
*p
)
1214 unsigned long flags
;
1220 * We do the initial early heuristics without holding
1221 * any task-queue locks at all. We'll only try to get
1222 * the runqueue lock when things look like they will
1228 * If the task is actively running on another CPU
1229 * still, just relax and busy-wait without holding
1232 * NOTE! Since we don't hold any locks, it's not
1233 * even sure that "rq" stays as the right runqueue!
1234 * But we don't care, since "task_running()" will
1235 * return false if the runqueue has changed and p
1236 * is actually now running somewhere else!
1238 while (task_running(rq
, p
))
1242 * Ok, time to look more closely! We need the rq
1243 * lock now, to be *sure*. If we're wrong, we'll
1244 * just go back and repeat.
1246 rq
= task_rq_lock(p
, &flags
);
1247 running
= task_running(rq
, p
);
1248 on_rq
= p
->se
.on_rq
;
1249 task_rq_unlock(rq
, &flags
);
1252 * Was it really running after all now that we
1253 * checked with the proper locks actually held?
1255 * Oops. Go back and try again..
1257 if (unlikely(running
)) {
1263 * It's not enough that it's not actively running,
1264 * it must be off the runqueue _entirely_, and not
1267 * So if it wa still runnable (but just not actively
1268 * running right now), it's preempted, and we should
1269 * yield - it could be a while.
1271 if (unlikely(on_rq
)) {
1272 schedule_timeout_uninterruptible(1);
1277 * Ahh, all good. It wasn't running, and it wasn't
1278 * runnable, which means that it will never become
1279 * running in the future either. We're all done!
1286 * kick_process - kick a running thread to enter/exit the kernel
1287 * @p: the to-be-kicked thread
1289 * Cause a process which is running on another CPU to enter
1290 * kernel-mode, without any delay. (to get signals handled.)
1292 * NOTE: this function doesnt have to take the runqueue lock,
1293 * because all it wants to ensure is that the remote task enters
1294 * the kernel. If the IPI races and the task has been migrated
1295 * to another CPU then no harm is done and the purpose has been
1298 void kick_process(struct task_struct
*p
)
1304 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1305 smp_send_reschedule(cpu
);
1310 * Return a low guess at the load of a migration-source cpu weighted
1311 * according to the scheduling class and "nice" value.
1313 * We want to under-estimate the load of migration sources, to
1314 * balance conservatively.
1316 static unsigned long source_load(int cpu
, int type
)
1318 struct rq
*rq
= cpu_rq(cpu
);
1319 unsigned long total
= weighted_cpuload(cpu
);
1324 return min(rq
->cpu_load
[type
-1], total
);
1328 * Return a high guess at the load of a migration-target cpu weighted
1329 * according to the scheduling class and "nice" value.
1331 static unsigned long target_load(int cpu
, int type
)
1333 struct rq
*rq
= cpu_rq(cpu
);
1334 unsigned long total
= weighted_cpuload(cpu
);
1339 return max(rq
->cpu_load
[type
-1], total
);
1343 * Return the average load per task on the cpu's run queue
1345 static inline unsigned long cpu_avg_load_per_task(int cpu
)
1347 struct rq
*rq
= cpu_rq(cpu
);
1348 unsigned long total
= weighted_cpuload(cpu
);
1349 unsigned long n
= rq
->nr_running
;
1351 return n
? total
/ n
: SCHED_LOAD_SCALE
;
1355 * find_idlest_group finds and returns the least busy CPU group within the
1358 static struct sched_group
*
1359 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
1361 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1362 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1363 int load_idx
= sd
->forkexec_idx
;
1364 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1367 unsigned long load
, avg_load
;
1371 /* Skip over this group if it has no CPUs allowed */
1372 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
1375 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1377 /* Tally up the load of all CPUs in the group */
1380 for_each_cpu_mask(i
, group
->cpumask
) {
1381 /* Bias balancing toward cpus of our domain */
1383 load
= source_load(i
, load_idx
);
1385 load
= target_load(i
, load_idx
);
1390 /* Adjust by relative CPU power of the group */
1391 avg_load
= sg_div_cpu_power(group
,
1392 avg_load
* SCHED_LOAD_SCALE
);
1395 this_load
= avg_load
;
1397 } else if (avg_load
< min_load
) {
1398 min_load
= avg_load
;
1401 } while (group
= group
->next
, group
!= sd
->groups
);
1403 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1409 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1412 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1415 unsigned long load
, min_load
= ULONG_MAX
;
1419 /* Traverse only the allowed CPUs */
1420 cpus_and(tmp
, group
->cpumask
, p
->cpus_allowed
);
1422 for_each_cpu_mask(i
, tmp
) {
1423 load
= weighted_cpuload(i
);
1425 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1435 * sched_balance_self: balance the current task (running on cpu) in domains
1436 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1439 * Balance, ie. select the least loaded group.
1441 * Returns the target CPU number, or the same CPU if no balancing is needed.
1443 * preempt must be disabled.
1445 static int sched_balance_self(int cpu
, int flag
)
1447 struct task_struct
*t
= current
;
1448 struct sched_domain
*tmp
, *sd
= NULL
;
1450 for_each_domain(cpu
, tmp
) {
1452 * If power savings logic is enabled for a domain, stop there.
1454 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1456 if (tmp
->flags
& flag
)
1462 struct sched_group
*group
;
1463 int new_cpu
, weight
;
1465 if (!(sd
->flags
& flag
)) {
1471 group
= find_idlest_group(sd
, t
, cpu
);
1477 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
1478 if (new_cpu
== -1 || new_cpu
== cpu
) {
1479 /* Now try balancing at a lower domain level of cpu */
1484 /* Now try balancing at a lower domain level of new_cpu */
1487 weight
= cpus_weight(span
);
1488 for_each_domain(cpu
, tmp
) {
1489 if (weight
<= cpus_weight(tmp
->span
))
1491 if (tmp
->flags
& flag
)
1494 /* while loop will break here if sd == NULL */
1500 #endif /* CONFIG_SMP */
1503 * wake_idle() will wake a task on an idle cpu if task->cpu is
1504 * not idle and an idle cpu is available. The span of cpus to
1505 * search starts with cpus closest then further out as needed,
1506 * so we always favor a closer, idle cpu.
1508 * Returns the CPU we should wake onto.
1510 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1511 static int wake_idle(int cpu
, struct task_struct
*p
)
1514 struct sched_domain
*sd
;
1518 * If it is idle, then it is the best cpu to run this task.
1520 * This cpu is also the best, if it has more than one task already.
1521 * Siblings must be also busy(in most cases) as they didn't already
1522 * pickup the extra load from this cpu and hence we need not check
1523 * sibling runqueue info. This will avoid the checks and cache miss
1524 * penalities associated with that.
1526 if (idle_cpu(cpu
) || cpu_rq(cpu
)->nr_running
> 1)
1529 for_each_domain(cpu
, sd
) {
1530 if (sd
->flags
& SD_WAKE_IDLE
) {
1531 cpus_and(tmp
, sd
->span
, p
->cpus_allowed
);
1532 for_each_cpu_mask(i
, tmp
) {
1534 if (i
!= task_cpu(p
)) {
1536 se
.nr_wakeups_idle
);
1548 static inline int wake_idle(int cpu
, struct task_struct
*p
)
1555 * try_to_wake_up - wake up a thread
1556 * @p: the to-be-woken-up thread
1557 * @state: the mask of task states that can be woken
1558 * @sync: do a synchronous wakeup?
1560 * Put it on the run-queue if it's not already there. The "current"
1561 * thread is always on the run-queue (except when the actual
1562 * re-schedule is in progress), and as such you're allowed to do
1563 * the simpler "current->state = TASK_RUNNING" to mark yourself
1564 * runnable without the overhead of this.
1566 * returns failure only if the task is already active.
1568 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
1570 int cpu
, orig_cpu
, this_cpu
, success
= 0;
1571 unsigned long flags
;
1575 struct sched_domain
*sd
, *this_sd
= NULL
;
1576 unsigned long load
, this_load
;
1580 rq
= task_rq_lock(p
, &flags
);
1581 old_state
= p
->state
;
1582 if (!(old_state
& state
))
1590 this_cpu
= smp_processor_id();
1593 if (unlikely(task_running(rq
, p
)))
1598 schedstat_inc(rq
, ttwu_count
);
1599 if (cpu
== this_cpu
) {
1600 schedstat_inc(rq
, ttwu_local
);
1604 for_each_domain(this_cpu
, sd
) {
1605 if (cpu_isset(cpu
, sd
->span
)) {
1606 schedstat_inc(sd
, ttwu_wake_remote
);
1612 if (unlikely(!cpu_isset(this_cpu
, p
->cpus_allowed
)))
1616 * Check for affine wakeup and passive balancing possibilities.
1619 int idx
= this_sd
->wake_idx
;
1620 unsigned int imbalance
;
1622 imbalance
= 100 + (this_sd
->imbalance_pct
- 100) / 2;
1624 load
= source_load(cpu
, idx
);
1625 this_load
= target_load(this_cpu
, idx
);
1627 new_cpu
= this_cpu
; /* Wake to this CPU if we can */
1629 if (this_sd
->flags
& SD_WAKE_AFFINE
) {
1630 unsigned long tl
= this_load
;
1631 unsigned long tl_per_task
;
1634 * Attract cache-cold tasks on sync wakeups:
1636 if (sync
&& !task_hot(p
, rq
->clock
, this_sd
))
1639 schedstat_inc(p
, se
.nr_wakeups_affine_attempts
);
1640 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1643 * If sync wakeup then subtract the (maximum possible)
1644 * effect of the currently running task from the load
1645 * of the current CPU:
1648 tl
-= current
->se
.load
.weight
;
1651 tl
+ target_load(cpu
, idx
) <= tl_per_task
) ||
1652 100*(tl
+ p
->se
.load
.weight
) <= imbalance
*load
) {
1654 * This domain has SD_WAKE_AFFINE and
1655 * p is cache cold in this domain, and
1656 * there is no bad imbalance.
1658 schedstat_inc(this_sd
, ttwu_move_affine
);
1659 schedstat_inc(p
, se
.nr_wakeups_affine
);
1665 * Start passive balancing when half the imbalance_pct
1668 if (this_sd
->flags
& SD_WAKE_BALANCE
) {
1669 if (imbalance
*this_load
<= 100*load
) {
1670 schedstat_inc(this_sd
, ttwu_move_balance
);
1671 schedstat_inc(p
, se
.nr_wakeups_passive
);
1677 new_cpu
= cpu
; /* Could not wake to this_cpu. Wake to cpu instead */
1679 new_cpu
= wake_idle(new_cpu
, p
);
1680 if (new_cpu
!= cpu
) {
1681 set_task_cpu(p
, new_cpu
);
1682 task_rq_unlock(rq
, &flags
);
1683 /* might preempt at this point */
1684 rq
= task_rq_lock(p
, &flags
);
1685 old_state
= p
->state
;
1686 if (!(old_state
& state
))
1691 this_cpu
= smp_processor_id();
1696 #endif /* CONFIG_SMP */
1697 schedstat_inc(p
, se
.nr_wakeups
);
1699 schedstat_inc(p
, se
.nr_wakeups_sync
);
1700 if (orig_cpu
!= cpu
)
1701 schedstat_inc(p
, se
.nr_wakeups_migrate
);
1702 if (cpu
== this_cpu
)
1703 schedstat_inc(p
, se
.nr_wakeups_local
);
1705 schedstat_inc(p
, se
.nr_wakeups_remote
);
1706 update_rq_clock(rq
);
1707 activate_task(rq
, p
, 1);
1708 check_preempt_curr(rq
, p
);
1712 p
->state
= TASK_RUNNING
;
1714 task_rq_unlock(rq
, &flags
);
1719 int fastcall
wake_up_process(struct task_struct
*p
)
1721 return try_to_wake_up(p
, TASK_STOPPED
| TASK_TRACED
|
1722 TASK_INTERRUPTIBLE
| TASK_UNINTERRUPTIBLE
, 0);
1724 EXPORT_SYMBOL(wake_up_process
);
1726 int fastcall
wake_up_state(struct task_struct
*p
, unsigned int state
)
1728 return try_to_wake_up(p
, state
, 0);
1732 * Perform scheduler related setup for a newly forked process p.
1733 * p is forked by current.
1735 * __sched_fork() is basic setup used by init_idle() too:
1737 static void __sched_fork(struct task_struct
*p
)
1739 p
->se
.exec_start
= 0;
1740 p
->se
.sum_exec_runtime
= 0;
1741 p
->se
.prev_sum_exec_runtime
= 0;
1743 #ifdef CONFIG_SCHEDSTATS
1744 p
->se
.wait_start
= 0;
1745 p
->se
.sum_sleep_runtime
= 0;
1746 p
->se
.sleep_start
= 0;
1747 p
->se
.block_start
= 0;
1748 p
->se
.sleep_max
= 0;
1749 p
->se
.block_max
= 0;
1751 p
->se
.slice_max
= 0;
1755 INIT_LIST_HEAD(&p
->run_list
);
1758 #ifdef CONFIG_PREEMPT_NOTIFIERS
1759 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
1763 * We mark the process as running here, but have not actually
1764 * inserted it onto the runqueue yet. This guarantees that
1765 * nobody will actually run it, and a signal or other external
1766 * event cannot wake it up and insert it on the runqueue either.
1768 p
->state
= TASK_RUNNING
;
1772 * fork()/clone()-time setup:
1774 void sched_fork(struct task_struct
*p
, int clone_flags
)
1776 int cpu
= get_cpu();
1781 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
1783 set_task_cpu(p
, cpu
);
1786 * Make sure we do not leak PI boosting priority to the child:
1788 p
->prio
= current
->normal_prio
;
1789 if (!rt_prio(p
->prio
))
1790 p
->sched_class
= &fair_sched_class
;
1792 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1793 if (likely(sched_info_on()))
1794 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1796 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1799 #ifdef CONFIG_PREEMPT
1800 /* Want to start with kernel preemption disabled. */
1801 task_thread_info(p
)->preempt_count
= 1;
1807 * wake_up_new_task - wake up a newly created task for the first time.
1809 * This function will do some initial scheduler statistics housekeeping
1810 * that must be done for every newly created context, then puts the task
1811 * on the runqueue and wakes it.
1813 void fastcall
wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
1815 unsigned long flags
;
1818 rq
= task_rq_lock(p
, &flags
);
1819 BUG_ON(p
->state
!= TASK_RUNNING
);
1820 update_rq_clock(rq
);
1822 p
->prio
= effective_prio(p
);
1824 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
1825 activate_task(rq
, p
, 0);
1828 * Let the scheduling class do new task startup
1829 * management (if any):
1831 p
->sched_class
->task_new(rq
, p
);
1832 inc_nr_running(p
, rq
);
1834 check_preempt_curr(rq
, p
);
1835 task_rq_unlock(rq
, &flags
);
1838 #ifdef CONFIG_PREEMPT_NOTIFIERS
1841 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1842 * @notifier: notifier struct to register
1844 void preempt_notifier_register(struct preempt_notifier
*notifier
)
1846 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
1848 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
1851 * preempt_notifier_unregister - no longer interested in preemption notifications
1852 * @notifier: notifier struct to unregister
1854 * This is safe to call from within a preemption notifier.
1856 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
1858 hlist_del(¬ifier
->link
);
1860 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
1862 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1864 struct preempt_notifier
*notifier
;
1865 struct hlist_node
*node
;
1867 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1868 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
1872 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1873 struct task_struct
*next
)
1875 struct preempt_notifier
*notifier
;
1876 struct hlist_node
*node
;
1878 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1879 notifier
->ops
->sched_out(notifier
, next
);
1884 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1889 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1890 struct task_struct
*next
)
1897 * prepare_task_switch - prepare to switch tasks
1898 * @rq: the runqueue preparing to switch
1899 * @prev: the current task that is being switched out
1900 * @next: the task we are going to switch to.
1902 * This is called with the rq lock held and interrupts off. It must
1903 * be paired with a subsequent finish_task_switch after the context
1906 * prepare_task_switch sets up locking and calls architecture specific
1910 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
1911 struct task_struct
*next
)
1913 fire_sched_out_preempt_notifiers(prev
, next
);
1914 prepare_lock_switch(rq
, next
);
1915 prepare_arch_switch(next
);
1919 * finish_task_switch - clean up after a task-switch
1920 * @rq: runqueue associated with task-switch
1921 * @prev: the thread we just switched away from.
1923 * finish_task_switch must be called after the context switch, paired
1924 * with a prepare_task_switch call before the context switch.
1925 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1926 * and do any other architecture-specific cleanup actions.
1928 * Note that we may have delayed dropping an mm in context_switch(). If
1929 * so, we finish that here outside of the runqueue lock. (Doing it
1930 * with the lock held can cause deadlocks; see schedule() for
1933 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
1934 __releases(rq
->lock
)
1936 struct mm_struct
*mm
= rq
->prev_mm
;
1942 * A task struct has one reference for the use as "current".
1943 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1944 * schedule one last time. The schedule call will never return, and
1945 * the scheduled task must drop that reference.
1946 * The test for TASK_DEAD must occur while the runqueue locks are
1947 * still held, otherwise prev could be scheduled on another cpu, die
1948 * there before we look at prev->state, and then the reference would
1950 * Manfred Spraul <manfred@colorfullife.com>
1952 prev_state
= prev
->state
;
1953 finish_arch_switch(prev
);
1954 finish_lock_switch(rq
, prev
);
1955 schedule_tail_balance_rt(rq
);
1957 fire_sched_in_preempt_notifiers(current
);
1960 if (unlikely(prev_state
== TASK_DEAD
)) {
1962 * Remove function-return probe instances associated with this
1963 * task and put them back on the free list.
1965 kprobe_flush_task(prev
);
1966 put_task_struct(prev
);
1971 * schedule_tail - first thing a freshly forked thread must call.
1972 * @prev: the thread we just switched away from.
1974 asmlinkage
void schedule_tail(struct task_struct
*prev
)
1975 __releases(rq
->lock
)
1977 struct rq
*rq
= this_rq();
1979 finish_task_switch(rq
, prev
);
1980 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1981 /* In this case, finish_task_switch does not reenable preemption */
1984 if (current
->set_child_tid
)
1985 put_user(task_pid_vnr(current
), current
->set_child_tid
);
1989 * context_switch - switch to the new MM and the new
1990 * thread's register state.
1993 context_switch(struct rq
*rq
, struct task_struct
*prev
,
1994 struct task_struct
*next
)
1996 struct mm_struct
*mm
, *oldmm
;
1998 prepare_task_switch(rq
, prev
, next
);
2000 oldmm
= prev
->active_mm
;
2002 * For paravirt, this is coupled with an exit in switch_to to
2003 * combine the page table reload and the switch backend into
2006 arch_enter_lazy_cpu_mode();
2008 if (unlikely(!mm
)) {
2009 next
->active_mm
= oldmm
;
2010 atomic_inc(&oldmm
->mm_count
);
2011 enter_lazy_tlb(oldmm
, next
);
2013 switch_mm(oldmm
, mm
, next
);
2015 if (unlikely(!prev
->mm
)) {
2016 prev
->active_mm
= NULL
;
2017 rq
->prev_mm
= oldmm
;
2020 * Since the runqueue lock will be released by the next
2021 * task (which is an invalid locking op but in the case
2022 * of the scheduler it's an obvious special-case), so we
2023 * do an early lockdep release here:
2025 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2026 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2029 /* Here we just switch the register state and the stack. */
2030 switch_to(prev
, next
, prev
);
2034 * this_rq must be evaluated again because prev may have moved
2035 * CPUs since it called schedule(), thus the 'rq' on its stack
2036 * frame will be invalid.
2038 finish_task_switch(this_rq(), prev
);
2042 * nr_running, nr_uninterruptible and nr_context_switches:
2044 * externally visible scheduler statistics: current number of runnable
2045 * threads, current number of uninterruptible-sleeping threads, total
2046 * number of context switches performed since bootup.
2048 unsigned long nr_running(void)
2050 unsigned long i
, sum
= 0;
2052 for_each_online_cpu(i
)
2053 sum
+= cpu_rq(i
)->nr_running
;
2058 unsigned long nr_uninterruptible(void)
2060 unsigned long i
, sum
= 0;
2062 for_each_possible_cpu(i
)
2063 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2066 * Since we read the counters lockless, it might be slightly
2067 * inaccurate. Do not allow it to go below zero though:
2069 if (unlikely((long)sum
< 0))
2075 unsigned long long nr_context_switches(void)
2078 unsigned long long sum
= 0;
2080 for_each_possible_cpu(i
)
2081 sum
+= cpu_rq(i
)->nr_switches
;
2086 unsigned long nr_iowait(void)
2088 unsigned long i
, sum
= 0;
2090 for_each_possible_cpu(i
)
2091 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2096 unsigned long nr_active(void)
2098 unsigned long i
, running
= 0, uninterruptible
= 0;
2100 for_each_online_cpu(i
) {
2101 running
+= cpu_rq(i
)->nr_running
;
2102 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
2105 if (unlikely((long)uninterruptible
< 0))
2106 uninterruptible
= 0;
2108 return running
+ uninterruptible
;
2112 * Update rq->cpu_load[] statistics. This function is usually called every
2113 * scheduler tick (TICK_NSEC).
2115 static void update_cpu_load(struct rq
*this_rq
)
2117 unsigned long this_load
= this_rq
->load
.weight
;
2120 this_rq
->nr_load_updates
++;
2122 /* Update our load: */
2123 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2124 unsigned long old_load
, new_load
;
2126 /* scale is effectively 1 << i now, and >> i divides by scale */
2128 old_load
= this_rq
->cpu_load
[i
];
2129 new_load
= this_load
;
2131 * Round up the averaging division if load is increasing. This
2132 * prevents us from getting stuck on 9 if the load is 10, for
2135 if (new_load
> old_load
)
2136 new_load
+= scale
-1;
2137 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2144 * double_rq_lock - safely lock two runqueues
2146 * Note this does not disable interrupts like task_rq_lock,
2147 * you need to do so manually before calling.
2149 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2150 __acquires(rq1
->lock
)
2151 __acquires(rq2
->lock
)
2153 BUG_ON(!irqs_disabled());
2155 spin_lock(&rq1
->lock
);
2156 __acquire(rq2
->lock
); /* Fake it out ;) */
2159 spin_lock(&rq1
->lock
);
2160 spin_lock(&rq2
->lock
);
2162 spin_lock(&rq2
->lock
);
2163 spin_lock(&rq1
->lock
);
2166 update_rq_clock(rq1
);
2167 update_rq_clock(rq2
);
2171 * double_rq_unlock - safely unlock two runqueues
2173 * Note this does not restore interrupts like task_rq_unlock,
2174 * you need to do so manually after calling.
2176 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2177 __releases(rq1
->lock
)
2178 __releases(rq2
->lock
)
2180 spin_unlock(&rq1
->lock
);
2182 spin_unlock(&rq2
->lock
);
2184 __release(rq2
->lock
);
2188 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2190 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2191 __releases(this_rq
->lock
)
2192 __acquires(busiest
->lock
)
2193 __acquires(this_rq
->lock
)
2197 if (unlikely(!irqs_disabled())) {
2198 /* printk() doesn't work good under rq->lock */
2199 spin_unlock(&this_rq
->lock
);
2202 if (unlikely(!spin_trylock(&busiest
->lock
))) {
2203 if (busiest
< this_rq
) {
2204 spin_unlock(&this_rq
->lock
);
2205 spin_lock(&busiest
->lock
);
2206 spin_lock(&this_rq
->lock
);
2209 spin_lock(&busiest
->lock
);
2215 * If dest_cpu is allowed for this process, migrate the task to it.
2216 * This is accomplished by forcing the cpu_allowed mask to only
2217 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2218 * the cpu_allowed mask is restored.
2220 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2222 struct migration_req req
;
2223 unsigned long flags
;
2226 rq
= task_rq_lock(p
, &flags
);
2227 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
2228 || unlikely(cpu_is_offline(dest_cpu
)))
2231 /* force the process onto the specified CPU */
2232 if (migrate_task(p
, dest_cpu
, &req
)) {
2233 /* Need to wait for migration thread (might exit: take ref). */
2234 struct task_struct
*mt
= rq
->migration_thread
;
2236 get_task_struct(mt
);
2237 task_rq_unlock(rq
, &flags
);
2238 wake_up_process(mt
);
2239 put_task_struct(mt
);
2240 wait_for_completion(&req
.done
);
2245 task_rq_unlock(rq
, &flags
);
2249 * sched_exec - execve() is a valuable balancing opportunity, because at
2250 * this point the task has the smallest effective memory and cache footprint.
2252 void sched_exec(void)
2254 int new_cpu
, this_cpu
= get_cpu();
2255 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2257 if (new_cpu
!= this_cpu
)
2258 sched_migrate_task(current
, new_cpu
);
2262 * pull_task - move a task from a remote runqueue to the local runqueue.
2263 * Both runqueues must be locked.
2265 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2266 struct rq
*this_rq
, int this_cpu
)
2268 deactivate_task(src_rq
, p
, 0);
2269 set_task_cpu(p
, this_cpu
);
2270 activate_task(this_rq
, p
, 0);
2272 * Note that idle threads have a prio of MAX_PRIO, for this test
2273 * to be always true for them.
2275 check_preempt_curr(this_rq
, p
);
2279 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2282 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2283 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2287 * We do not migrate tasks that are:
2288 * 1) running (obviously), or
2289 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2290 * 3) are cache-hot on their current CPU.
2292 if (!cpu_isset(this_cpu
, p
->cpus_allowed
)) {
2293 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
2298 if (task_running(rq
, p
)) {
2299 schedstat_inc(p
, se
.nr_failed_migrations_running
);
2304 * Aggressive migration if:
2305 * 1) task is cache cold, or
2306 * 2) too many balance attempts have failed.
2309 if (!task_hot(p
, rq
->clock
, sd
) ||
2310 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
2311 #ifdef CONFIG_SCHEDSTATS
2312 if (task_hot(p
, rq
->clock
, sd
)) {
2313 schedstat_inc(sd
, lb_hot_gained
[idle
]);
2314 schedstat_inc(p
, se
.nr_forced_migrations
);
2320 if (task_hot(p
, rq
->clock
, sd
)) {
2321 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
2327 static unsigned long
2328 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2329 unsigned long max_load_move
, struct sched_domain
*sd
,
2330 enum cpu_idle_type idle
, int *all_pinned
,
2331 int *this_best_prio
, struct rq_iterator
*iterator
)
2333 int loops
= 0, pulled
= 0, pinned
= 0, skip_for_load
;
2334 struct task_struct
*p
;
2335 long rem_load_move
= max_load_move
;
2337 if (max_load_move
== 0)
2343 * Start the load-balancing iterator:
2345 p
= iterator
->start(iterator
->arg
);
2347 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
2350 * To help distribute high priority tasks across CPUs we don't
2351 * skip a task if it will be the highest priority task (i.e. smallest
2352 * prio value) on its new queue regardless of its load weight
2354 skip_for_load
= (p
->se
.load
.weight
>> 1) > rem_load_move
+
2355 SCHED_LOAD_SCALE_FUZZ
;
2356 if ((skip_for_load
&& p
->prio
>= *this_best_prio
) ||
2357 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2358 p
= iterator
->next(iterator
->arg
);
2362 pull_task(busiest
, p
, this_rq
, this_cpu
);
2364 rem_load_move
-= p
->se
.load
.weight
;
2367 * We only want to steal up to the prescribed amount of weighted load.
2369 if (rem_load_move
> 0) {
2370 if (p
->prio
< *this_best_prio
)
2371 *this_best_prio
= p
->prio
;
2372 p
= iterator
->next(iterator
->arg
);
2377 * Right now, this is one of only two places pull_task() is called,
2378 * so we can safely collect pull_task() stats here rather than
2379 * inside pull_task().
2381 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2384 *all_pinned
= pinned
;
2386 return max_load_move
- rem_load_move
;
2390 * move_tasks tries to move up to max_load_move weighted load from busiest to
2391 * this_rq, as part of a balancing operation within domain "sd".
2392 * Returns 1 if successful and 0 otherwise.
2394 * Called with both runqueues locked.
2396 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2397 unsigned long max_load_move
,
2398 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2401 const struct sched_class
*class = sched_class_highest
;
2402 unsigned long total_load_moved
= 0;
2403 int this_best_prio
= this_rq
->curr
->prio
;
2407 class->load_balance(this_rq
, this_cpu
, busiest
,
2408 max_load_move
- total_load_moved
,
2409 sd
, idle
, all_pinned
, &this_best_prio
);
2410 class = class->next
;
2411 } while (class && max_load_move
> total_load_moved
);
2413 return total_load_moved
> 0;
2417 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2418 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2419 struct rq_iterator
*iterator
)
2421 struct task_struct
*p
= iterator
->start(iterator
->arg
);
2425 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2426 pull_task(busiest
, p
, this_rq
, this_cpu
);
2428 * Right now, this is only the second place pull_task()
2429 * is called, so we can safely collect pull_task()
2430 * stats here rather than inside pull_task().
2432 schedstat_inc(sd
, lb_gained
[idle
]);
2436 p
= iterator
->next(iterator
->arg
);
2443 * move_one_task tries to move exactly one task from busiest to this_rq, as
2444 * part of active balancing operations within "domain".
2445 * Returns 1 if successful and 0 otherwise.
2447 * Called with both runqueues locked.
2449 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2450 struct sched_domain
*sd
, enum cpu_idle_type idle
)
2452 const struct sched_class
*class;
2454 for (class = sched_class_highest
; class; class = class->next
)
2455 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
2462 * find_busiest_group finds and returns the busiest CPU group within the
2463 * domain. It calculates and returns the amount of weighted load which
2464 * should be moved to restore balance via the imbalance parameter.
2466 static struct sched_group
*
2467 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
2468 unsigned long *imbalance
, enum cpu_idle_type idle
,
2469 int *sd_idle
, cpumask_t
*cpus
, int *balance
)
2471 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2472 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
2473 unsigned long max_pull
;
2474 unsigned long busiest_load_per_task
, busiest_nr_running
;
2475 unsigned long this_load_per_task
, this_nr_running
;
2476 int load_idx
, group_imb
= 0;
2477 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2478 int power_savings_balance
= 1;
2479 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
2480 unsigned long min_nr_running
= ULONG_MAX
;
2481 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
2484 max_load
= this_load
= total_load
= total_pwr
= 0;
2485 busiest_load_per_task
= busiest_nr_running
= 0;
2486 this_load_per_task
= this_nr_running
= 0;
2487 if (idle
== CPU_NOT_IDLE
)
2488 load_idx
= sd
->busy_idx
;
2489 else if (idle
== CPU_NEWLY_IDLE
)
2490 load_idx
= sd
->newidle_idx
;
2492 load_idx
= sd
->idle_idx
;
2495 unsigned long load
, group_capacity
, max_cpu_load
, min_cpu_load
;
2498 int __group_imb
= 0;
2499 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
2500 unsigned long sum_nr_running
, sum_weighted_load
;
2502 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2505 balance_cpu
= first_cpu(group
->cpumask
);
2507 /* Tally up the load of all CPUs in the group */
2508 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
2510 min_cpu_load
= ~0UL;
2512 for_each_cpu_mask(i
, group
->cpumask
) {
2515 if (!cpu_isset(i
, *cpus
))
2520 if (*sd_idle
&& rq
->nr_running
)
2523 /* Bias balancing toward cpus of our domain */
2525 if (idle_cpu(i
) && !first_idle_cpu
) {
2530 load
= target_load(i
, load_idx
);
2532 load
= source_load(i
, load_idx
);
2533 if (load
> max_cpu_load
)
2534 max_cpu_load
= load
;
2535 if (min_cpu_load
> load
)
2536 min_cpu_load
= load
;
2540 sum_nr_running
+= rq
->nr_running
;
2541 sum_weighted_load
+= weighted_cpuload(i
);
2545 * First idle cpu or the first cpu(busiest) in this sched group
2546 * is eligible for doing load balancing at this and above
2547 * domains. In the newly idle case, we will allow all the cpu's
2548 * to do the newly idle load balance.
2550 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
2551 balance_cpu
!= this_cpu
&& balance
) {
2556 total_load
+= avg_load
;
2557 total_pwr
+= group
->__cpu_power
;
2559 /* Adjust by relative CPU power of the group */
2560 avg_load
= sg_div_cpu_power(group
,
2561 avg_load
* SCHED_LOAD_SCALE
);
2563 if ((max_cpu_load
- min_cpu_load
) > SCHED_LOAD_SCALE
)
2566 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
2569 this_load
= avg_load
;
2571 this_nr_running
= sum_nr_running
;
2572 this_load_per_task
= sum_weighted_load
;
2573 } else if (avg_load
> max_load
&&
2574 (sum_nr_running
> group_capacity
|| __group_imb
)) {
2575 max_load
= avg_load
;
2577 busiest_nr_running
= sum_nr_running
;
2578 busiest_load_per_task
= sum_weighted_load
;
2579 group_imb
= __group_imb
;
2582 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2584 * Busy processors will not participate in power savings
2587 if (idle
== CPU_NOT_IDLE
||
2588 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2592 * If the local group is idle or completely loaded
2593 * no need to do power savings balance at this domain
2595 if (local_group
&& (this_nr_running
>= group_capacity
||
2597 power_savings_balance
= 0;
2600 * If a group is already running at full capacity or idle,
2601 * don't include that group in power savings calculations
2603 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
2608 * Calculate the group which has the least non-idle load.
2609 * This is the group from where we need to pick up the load
2612 if ((sum_nr_running
< min_nr_running
) ||
2613 (sum_nr_running
== min_nr_running
&&
2614 first_cpu(group
->cpumask
) <
2615 first_cpu(group_min
->cpumask
))) {
2617 min_nr_running
= sum_nr_running
;
2618 min_load_per_task
= sum_weighted_load
/
2623 * Calculate the group which is almost near its
2624 * capacity but still has some space to pick up some load
2625 * from other group and save more power
2627 if (sum_nr_running
<= group_capacity
- 1) {
2628 if (sum_nr_running
> leader_nr_running
||
2629 (sum_nr_running
== leader_nr_running
&&
2630 first_cpu(group
->cpumask
) >
2631 first_cpu(group_leader
->cpumask
))) {
2632 group_leader
= group
;
2633 leader_nr_running
= sum_nr_running
;
2638 group
= group
->next
;
2639 } while (group
!= sd
->groups
);
2641 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
2644 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
2646 if (this_load
>= avg_load
||
2647 100*max_load
<= sd
->imbalance_pct
*this_load
)
2650 busiest_load_per_task
/= busiest_nr_running
;
2652 busiest_load_per_task
= min(busiest_load_per_task
, avg_load
);
2655 * We're trying to get all the cpus to the average_load, so we don't
2656 * want to push ourselves above the average load, nor do we wish to
2657 * reduce the max loaded cpu below the average load, as either of these
2658 * actions would just result in more rebalancing later, and ping-pong
2659 * tasks around. Thus we look for the minimum possible imbalance.
2660 * Negative imbalances (*we* are more loaded than anyone else) will
2661 * be counted as no imbalance for these purposes -- we can't fix that
2662 * by pulling tasks to us. Be careful of negative numbers as they'll
2663 * appear as very large values with unsigned longs.
2665 if (max_load
<= busiest_load_per_task
)
2669 * In the presence of smp nice balancing, certain scenarios can have
2670 * max load less than avg load(as we skip the groups at or below
2671 * its cpu_power, while calculating max_load..)
2673 if (max_load
< avg_load
) {
2675 goto small_imbalance
;
2678 /* Don't want to pull so many tasks that a group would go idle */
2679 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
2681 /* How much load to actually move to equalise the imbalance */
2682 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
2683 (avg_load
- this_load
) * this->__cpu_power
)
2687 * if *imbalance is less than the average load per runnable task
2688 * there is no gaurantee that any tasks will be moved so we'll have
2689 * a think about bumping its value to force at least one task to be
2692 if (*imbalance
< busiest_load_per_task
) {
2693 unsigned long tmp
, pwr_now
, pwr_move
;
2697 pwr_move
= pwr_now
= 0;
2699 if (this_nr_running
) {
2700 this_load_per_task
/= this_nr_running
;
2701 if (busiest_load_per_task
> this_load_per_task
)
2704 this_load_per_task
= SCHED_LOAD_SCALE
;
2706 if (max_load
- this_load
+ SCHED_LOAD_SCALE_FUZZ
>=
2707 busiest_load_per_task
* imbn
) {
2708 *imbalance
= busiest_load_per_task
;
2713 * OK, we don't have enough imbalance to justify moving tasks,
2714 * however we may be able to increase total CPU power used by
2718 pwr_now
+= busiest
->__cpu_power
*
2719 min(busiest_load_per_task
, max_load
);
2720 pwr_now
+= this->__cpu_power
*
2721 min(this_load_per_task
, this_load
);
2722 pwr_now
/= SCHED_LOAD_SCALE
;
2724 /* Amount of load we'd subtract */
2725 tmp
= sg_div_cpu_power(busiest
,
2726 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2728 pwr_move
+= busiest
->__cpu_power
*
2729 min(busiest_load_per_task
, max_load
- tmp
);
2731 /* Amount of load we'd add */
2732 if (max_load
* busiest
->__cpu_power
<
2733 busiest_load_per_task
* SCHED_LOAD_SCALE
)
2734 tmp
= sg_div_cpu_power(this,
2735 max_load
* busiest
->__cpu_power
);
2737 tmp
= sg_div_cpu_power(this,
2738 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2739 pwr_move
+= this->__cpu_power
*
2740 min(this_load_per_task
, this_load
+ tmp
);
2741 pwr_move
/= SCHED_LOAD_SCALE
;
2743 /* Move if we gain throughput */
2744 if (pwr_move
> pwr_now
)
2745 *imbalance
= busiest_load_per_task
;
2751 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2752 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2755 if (this == group_leader
&& group_leader
!= group_min
) {
2756 *imbalance
= min_load_per_task
;
2766 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2769 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
2770 unsigned long imbalance
, cpumask_t
*cpus
)
2772 struct rq
*busiest
= NULL
, *rq
;
2773 unsigned long max_load
= 0;
2776 for_each_cpu_mask(i
, group
->cpumask
) {
2779 if (!cpu_isset(i
, *cpus
))
2783 wl
= weighted_cpuload(i
);
2785 if (rq
->nr_running
== 1 && wl
> imbalance
)
2788 if (wl
> max_load
) {
2798 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2799 * so long as it is large enough.
2801 #define MAX_PINNED_INTERVAL 512
2804 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2805 * tasks if there is an imbalance.
2807 static int load_balance(int this_cpu
, struct rq
*this_rq
,
2808 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2811 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
2812 struct sched_group
*group
;
2813 unsigned long imbalance
;
2815 cpumask_t cpus
= CPU_MASK_ALL
;
2816 unsigned long flags
;
2819 * When power savings policy is enabled for the parent domain, idle
2820 * sibling can pick up load irrespective of busy siblings. In this case,
2821 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2822 * portraying it as CPU_NOT_IDLE.
2824 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2825 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2828 schedstat_inc(sd
, lb_count
[idle
]);
2831 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
2838 schedstat_inc(sd
, lb_nobusyg
[idle
]);
2842 busiest
= find_busiest_queue(group
, idle
, imbalance
, &cpus
);
2844 schedstat_inc(sd
, lb_nobusyq
[idle
]);
2848 BUG_ON(busiest
== this_rq
);
2850 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
2853 if (busiest
->nr_running
> 1) {
2855 * Attempt to move tasks. If find_busiest_group has found
2856 * an imbalance but busiest->nr_running <= 1, the group is
2857 * still unbalanced. ld_moved simply stays zero, so it is
2858 * correctly treated as an imbalance.
2860 local_irq_save(flags
);
2861 double_rq_lock(this_rq
, busiest
);
2862 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2863 imbalance
, sd
, idle
, &all_pinned
);
2864 double_rq_unlock(this_rq
, busiest
);
2865 local_irq_restore(flags
);
2868 * some other cpu did the load balance for us.
2870 if (ld_moved
&& this_cpu
!= smp_processor_id())
2871 resched_cpu(this_cpu
);
2873 /* All tasks on this runqueue were pinned by CPU affinity */
2874 if (unlikely(all_pinned
)) {
2875 cpu_clear(cpu_of(busiest
), cpus
);
2876 if (!cpus_empty(cpus
))
2883 schedstat_inc(sd
, lb_failed
[idle
]);
2884 sd
->nr_balance_failed
++;
2886 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
2888 spin_lock_irqsave(&busiest
->lock
, flags
);
2890 /* don't kick the migration_thread, if the curr
2891 * task on busiest cpu can't be moved to this_cpu
2893 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
2894 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2896 goto out_one_pinned
;
2899 if (!busiest
->active_balance
) {
2900 busiest
->active_balance
= 1;
2901 busiest
->push_cpu
= this_cpu
;
2904 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2906 wake_up_process(busiest
->migration_thread
);
2909 * We've kicked active balancing, reset the failure
2912 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
2915 sd
->nr_balance_failed
= 0;
2917 if (likely(!active_balance
)) {
2918 /* We were unbalanced, so reset the balancing interval */
2919 sd
->balance_interval
= sd
->min_interval
;
2922 * If we've begun active balancing, start to back off. This
2923 * case may not be covered by the all_pinned logic if there
2924 * is only 1 task on the busy runqueue (because we don't call
2927 if (sd
->balance_interval
< sd
->max_interval
)
2928 sd
->balance_interval
*= 2;
2931 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2932 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2937 schedstat_inc(sd
, lb_balanced
[idle
]);
2939 sd
->nr_balance_failed
= 0;
2942 /* tune up the balancing interval */
2943 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
2944 (sd
->balance_interval
< sd
->max_interval
))
2945 sd
->balance_interval
*= 2;
2947 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2948 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2954 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2955 * tasks if there is an imbalance.
2957 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2958 * this_rq is locked.
2961 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
2963 struct sched_group
*group
;
2964 struct rq
*busiest
= NULL
;
2965 unsigned long imbalance
;
2969 cpumask_t cpus
= CPU_MASK_ALL
;
2972 * When power savings policy is enabled for the parent domain, idle
2973 * sibling can pick up load irrespective of busy siblings. In this case,
2974 * let the state of idle sibling percolate up as IDLE, instead of
2975 * portraying it as CPU_NOT_IDLE.
2977 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
2978 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2981 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
2983 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
2984 &sd_idle
, &cpus
, NULL
);
2986 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
2990 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
,
2993 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
2997 BUG_ON(busiest
== this_rq
);
2999 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
3002 if (busiest
->nr_running
> 1) {
3003 /* Attempt to move tasks */
3004 double_lock_balance(this_rq
, busiest
);
3005 /* this_rq->clock is already updated */
3006 update_rq_clock(busiest
);
3007 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3008 imbalance
, sd
, CPU_NEWLY_IDLE
,
3010 spin_unlock(&busiest
->lock
);
3012 if (unlikely(all_pinned
)) {
3013 cpu_clear(cpu_of(busiest
), cpus
);
3014 if (!cpus_empty(cpus
))
3020 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
3021 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3022 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3025 sd
->nr_balance_failed
= 0;
3030 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
3031 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3032 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3034 sd
->nr_balance_failed
= 0;
3040 * idle_balance is called by schedule() if this_cpu is about to become
3041 * idle. Attempts to pull tasks from other CPUs.
3043 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
3045 struct sched_domain
*sd
;
3046 int pulled_task
= -1;
3047 unsigned long next_balance
= jiffies
+ HZ
;
3049 for_each_domain(this_cpu
, sd
) {
3050 unsigned long interval
;
3052 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3055 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
3056 /* If we've pulled tasks over stop searching: */
3057 pulled_task
= load_balance_newidle(this_cpu
,
3060 interval
= msecs_to_jiffies(sd
->balance_interval
);
3061 if (time_after(next_balance
, sd
->last_balance
+ interval
))
3062 next_balance
= sd
->last_balance
+ interval
;
3066 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
3068 * We are going idle. next_balance may be set based on
3069 * a busy processor. So reset next_balance.
3071 this_rq
->next_balance
= next_balance
;
3076 * active_load_balance is run by migration threads. It pushes running tasks
3077 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3078 * running on each physical CPU where possible, and avoids physical /
3079 * logical imbalances.
3081 * Called with busiest_rq locked.
3083 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
3085 int target_cpu
= busiest_rq
->push_cpu
;
3086 struct sched_domain
*sd
;
3087 struct rq
*target_rq
;
3089 /* Is there any task to move? */
3090 if (busiest_rq
->nr_running
<= 1)
3093 target_rq
= cpu_rq(target_cpu
);
3096 * This condition is "impossible", if it occurs
3097 * we need to fix it. Originally reported by
3098 * Bjorn Helgaas on a 128-cpu setup.
3100 BUG_ON(busiest_rq
== target_rq
);
3102 /* move a task from busiest_rq to target_rq */
3103 double_lock_balance(busiest_rq
, target_rq
);
3104 update_rq_clock(busiest_rq
);
3105 update_rq_clock(target_rq
);
3107 /* Search for an sd spanning us and the target CPU. */
3108 for_each_domain(target_cpu
, sd
) {
3109 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
3110 cpu_isset(busiest_cpu
, sd
->span
))
3115 schedstat_inc(sd
, alb_count
);
3117 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
3119 schedstat_inc(sd
, alb_pushed
);
3121 schedstat_inc(sd
, alb_failed
);
3123 spin_unlock(&target_rq
->lock
);
3128 atomic_t load_balancer
;
3130 } nohz ____cacheline_aligned
= {
3131 .load_balancer
= ATOMIC_INIT(-1),
3132 .cpu_mask
= CPU_MASK_NONE
,
3136 * This routine will try to nominate the ilb (idle load balancing)
3137 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3138 * load balancing on behalf of all those cpus. If all the cpus in the system
3139 * go into this tickless mode, then there will be no ilb owner (as there is
3140 * no need for one) and all the cpus will sleep till the next wakeup event
3143 * For the ilb owner, tick is not stopped. And this tick will be used
3144 * for idle load balancing. ilb owner will still be part of
3147 * While stopping the tick, this cpu will become the ilb owner if there
3148 * is no other owner. And will be the owner till that cpu becomes busy
3149 * or if all cpus in the system stop their ticks at which point
3150 * there is no need for ilb owner.
3152 * When the ilb owner becomes busy, it nominates another owner, during the
3153 * next busy scheduler_tick()
3155 int select_nohz_load_balancer(int stop_tick
)
3157 int cpu
= smp_processor_id();
3160 cpu_set(cpu
, nohz
.cpu_mask
);
3161 cpu_rq(cpu
)->in_nohz_recently
= 1;
3164 * If we are going offline and still the leader, give up!
3166 if (cpu_is_offline(cpu
) &&
3167 atomic_read(&nohz
.load_balancer
) == cpu
) {
3168 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3173 /* time for ilb owner also to sleep */
3174 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3175 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3176 atomic_set(&nohz
.load_balancer
, -1);
3180 if (atomic_read(&nohz
.load_balancer
) == -1) {
3181 /* make me the ilb owner */
3182 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
3184 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
3187 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
3190 cpu_clear(cpu
, nohz
.cpu_mask
);
3192 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3193 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3200 static DEFINE_SPINLOCK(balancing
);
3203 * It checks each scheduling domain to see if it is due to be balanced,
3204 * and initiates a balancing operation if so.
3206 * Balancing parameters are set up in arch_init_sched_domains.
3208 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3211 struct rq
*rq
= cpu_rq(cpu
);
3212 unsigned long interval
;
3213 struct sched_domain
*sd
;
3214 /* Earliest time when we have to do rebalance again */
3215 unsigned long next_balance
= jiffies
+ 60*HZ
;
3216 int update_next_balance
= 0;
3218 for_each_domain(cpu
, sd
) {
3219 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3222 interval
= sd
->balance_interval
;
3223 if (idle
!= CPU_IDLE
)
3224 interval
*= sd
->busy_factor
;
3226 /* scale ms to jiffies */
3227 interval
= msecs_to_jiffies(interval
);
3228 if (unlikely(!interval
))
3230 if (interval
> HZ
*NR_CPUS
/10)
3231 interval
= HZ
*NR_CPUS
/10;
3234 if (sd
->flags
& SD_SERIALIZE
) {
3235 if (!spin_trylock(&balancing
))
3239 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3240 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
3242 * We've pulled tasks over so either we're no
3243 * longer idle, or one of our SMT siblings is
3246 idle
= CPU_NOT_IDLE
;
3248 sd
->last_balance
= jiffies
;
3250 if (sd
->flags
& SD_SERIALIZE
)
3251 spin_unlock(&balancing
);
3253 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3254 next_balance
= sd
->last_balance
+ interval
;
3255 update_next_balance
= 1;
3259 * Stop the load balance at this level. There is another
3260 * CPU in our sched group which is doing load balancing more
3268 * next_balance will be updated only when there is a need.
3269 * When the cpu is attached to null domain for ex, it will not be
3272 if (likely(update_next_balance
))
3273 rq
->next_balance
= next_balance
;
3277 * run_rebalance_domains is triggered when needed from the scheduler tick.
3278 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3279 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3281 static void run_rebalance_domains(struct softirq_action
*h
)
3283 int this_cpu
= smp_processor_id();
3284 struct rq
*this_rq
= cpu_rq(this_cpu
);
3285 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
3286 CPU_IDLE
: CPU_NOT_IDLE
;
3288 rebalance_domains(this_cpu
, idle
);
3292 * If this cpu is the owner for idle load balancing, then do the
3293 * balancing on behalf of the other idle cpus whose ticks are
3296 if (this_rq
->idle_at_tick
&&
3297 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
3298 cpumask_t cpus
= nohz
.cpu_mask
;
3302 cpu_clear(this_cpu
, cpus
);
3303 for_each_cpu_mask(balance_cpu
, cpus
) {
3305 * If this cpu gets work to do, stop the load balancing
3306 * work being done for other cpus. Next load
3307 * balancing owner will pick it up.
3312 rebalance_domains(balance_cpu
, CPU_IDLE
);
3314 rq
= cpu_rq(balance_cpu
);
3315 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3316 this_rq
->next_balance
= rq
->next_balance
;
3323 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3325 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3326 * idle load balancing owner or decide to stop the periodic load balancing,
3327 * if the whole system is idle.
3329 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
3333 * If we were in the nohz mode recently and busy at the current
3334 * scheduler tick, then check if we need to nominate new idle
3337 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
3338 rq
->in_nohz_recently
= 0;
3340 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
3341 cpu_clear(cpu
, nohz
.cpu_mask
);
3342 atomic_set(&nohz
.load_balancer
, -1);
3345 if (atomic_read(&nohz
.load_balancer
) == -1) {
3347 * simple selection for now: Nominate the
3348 * first cpu in the nohz list to be the next
3351 * TBD: Traverse the sched domains and nominate
3352 * the nearest cpu in the nohz.cpu_mask.
3354 int ilb
= first_cpu(nohz
.cpu_mask
);
3362 * If this cpu is idle and doing idle load balancing for all the
3363 * cpus with ticks stopped, is it time for that to stop?
3365 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
3366 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3372 * If this cpu is idle and the idle load balancing is done by
3373 * someone else, then no need raise the SCHED_SOFTIRQ
3375 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
3376 cpu_isset(cpu
, nohz
.cpu_mask
))
3379 if (time_after_eq(jiffies
, rq
->next_balance
))
3380 raise_softirq(SCHED_SOFTIRQ
);
3383 #else /* CONFIG_SMP */
3386 * on UP we do not need to balance between CPUs:
3388 static inline void idle_balance(int cpu
, struct rq
*rq
)
3394 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3396 EXPORT_PER_CPU_SYMBOL(kstat
);
3399 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3400 * that have not yet been banked in case the task is currently running.
3402 unsigned long long task_sched_runtime(struct task_struct
*p
)
3404 unsigned long flags
;
3408 rq
= task_rq_lock(p
, &flags
);
3409 ns
= p
->se
.sum_exec_runtime
;
3410 if (task_current(rq
, p
)) {
3411 update_rq_clock(rq
);
3412 delta_exec
= rq
->clock
- p
->se
.exec_start
;
3413 if ((s64
)delta_exec
> 0)
3416 task_rq_unlock(rq
, &flags
);
3422 * Account user cpu time to a process.
3423 * @p: the process that the cpu time gets accounted to
3424 * @cputime: the cpu time spent in user space since the last update
3426 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
3428 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3431 p
->utime
= cputime_add(p
->utime
, cputime
);
3433 /* Add user time to cpustat. */
3434 tmp
= cputime_to_cputime64(cputime
);
3435 if (TASK_NICE(p
) > 0)
3436 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3438 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3442 * Account guest cpu time to a process.
3443 * @p: the process that the cpu time gets accounted to
3444 * @cputime: the cpu time spent in virtual machine since the last update
3446 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
)
3449 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3451 tmp
= cputime_to_cputime64(cputime
);
3453 p
->utime
= cputime_add(p
->utime
, cputime
);
3454 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3456 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3457 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3461 * Account scaled user cpu time to a process.
3462 * @p: the process that the cpu time gets accounted to
3463 * @cputime: the cpu time spent in user space since the last update
3465 void account_user_time_scaled(struct task_struct
*p
, cputime_t cputime
)
3467 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime
);
3471 * Account system cpu time to a process.
3472 * @p: the process that the cpu time gets accounted to
3473 * @hardirq_offset: the offset to subtract from hardirq_count()
3474 * @cputime: the cpu time spent in kernel space since the last update
3476 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3479 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3480 struct rq
*rq
= this_rq();
3483 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0))
3484 return account_guest_time(p
, cputime
);
3486 p
->stime
= cputime_add(p
->stime
, cputime
);
3488 /* Add system time to cpustat. */
3489 tmp
= cputime_to_cputime64(cputime
);
3490 if (hardirq_count() - hardirq_offset
)
3491 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3492 else if (softirq_count())
3493 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3494 else if (p
!= rq
->idle
)
3495 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3496 else if (atomic_read(&rq
->nr_iowait
) > 0)
3497 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3499 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3500 /* Account for system time used */
3501 acct_update_integrals(p
);
3505 * Account scaled system cpu time to a process.
3506 * @p: the process that the cpu time gets accounted to
3507 * @hardirq_offset: the offset to subtract from hardirq_count()
3508 * @cputime: the cpu time spent in kernel space since the last update
3510 void account_system_time_scaled(struct task_struct
*p
, cputime_t cputime
)
3512 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime
);
3516 * Account for involuntary wait time.
3517 * @p: the process from which the cpu time has been stolen
3518 * @steal: the cpu time spent in involuntary wait
3520 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
3522 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3523 cputime64_t tmp
= cputime_to_cputime64(steal
);
3524 struct rq
*rq
= this_rq();
3526 if (p
== rq
->idle
) {
3527 p
->stime
= cputime_add(p
->stime
, steal
);
3528 if (atomic_read(&rq
->nr_iowait
) > 0)
3529 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3531 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3533 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
3537 * This function gets called by the timer code, with HZ frequency.
3538 * We call it with interrupts disabled.
3540 * It also gets called by the fork code, when changing the parent's
3543 void scheduler_tick(void)
3545 int cpu
= smp_processor_id();
3546 struct rq
*rq
= cpu_rq(cpu
);
3547 struct task_struct
*curr
= rq
->curr
;
3548 u64 next_tick
= rq
->tick_timestamp
+ TICK_NSEC
;
3550 spin_lock(&rq
->lock
);
3551 __update_rq_clock(rq
);
3553 * Let rq->clock advance by at least TICK_NSEC:
3555 if (unlikely(rq
->clock
< next_tick
))
3556 rq
->clock
= next_tick
;
3557 rq
->tick_timestamp
= rq
->clock
;
3558 update_cpu_load(rq
);
3559 if (curr
!= rq
->idle
) /* FIXME: needed? */
3560 curr
->sched_class
->task_tick(rq
, curr
);
3561 spin_unlock(&rq
->lock
);
3564 rq
->idle_at_tick
= idle_cpu(cpu
);
3565 trigger_load_balance(rq
, cpu
);
3569 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3571 void fastcall
add_preempt_count(int val
)
3576 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3578 preempt_count() += val
;
3580 * Spinlock count overflowing soon?
3582 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3585 EXPORT_SYMBOL(add_preempt_count
);
3587 void fastcall
sub_preempt_count(int val
)
3592 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3595 * Is the spinlock portion underflowing?
3597 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3598 !(preempt_count() & PREEMPT_MASK
)))
3601 preempt_count() -= val
;
3603 EXPORT_SYMBOL(sub_preempt_count
);
3608 * Print scheduling while atomic bug:
3610 static noinline
void __schedule_bug(struct task_struct
*prev
)
3612 struct pt_regs
*regs
= get_irq_regs();
3614 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
3615 prev
->comm
, prev
->pid
, preempt_count());
3617 debug_show_held_locks(prev
);
3618 if (irqs_disabled())
3619 print_irqtrace_events(prev
);
3628 * Various schedule()-time debugging checks and statistics:
3630 static inline void schedule_debug(struct task_struct
*prev
)
3633 * Test if we are atomic. Since do_exit() needs to call into
3634 * schedule() atomically, we ignore that path for now.
3635 * Otherwise, whine if we are scheduling when we should not be.
3637 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev
->exit_state
))
3638 __schedule_bug(prev
);
3640 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3642 schedstat_inc(this_rq(), sched_count
);
3643 #ifdef CONFIG_SCHEDSTATS
3644 if (unlikely(prev
->lock_depth
>= 0)) {
3645 schedstat_inc(this_rq(), bkl_count
);
3646 schedstat_inc(prev
, sched_info
.bkl_count
);
3652 * Pick up the highest-prio task:
3654 static inline struct task_struct
*
3655 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
3657 const struct sched_class
*class;
3658 struct task_struct
*p
;
3661 * Optimization: we know that if all tasks are in
3662 * the fair class we can call that function directly:
3664 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3665 p
= fair_sched_class
.pick_next_task(rq
);
3670 class = sched_class_highest
;
3672 p
= class->pick_next_task(rq
);
3676 * Will never be NULL as the idle class always
3677 * returns a non-NULL p:
3679 class = class->next
;
3684 * schedule() is the main scheduler function.
3686 asmlinkage
void __sched
schedule(void)
3688 struct task_struct
*prev
, *next
;
3695 cpu
= smp_processor_id();
3699 switch_count
= &prev
->nivcsw
;
3701 release_kernel_lock(prev
);
3702 need_resched_nonpreemptible
:
3704 schedule_debug(prev
);
3707 * Do the rq-clock update outside the rq lock:
3709 local_irq_disable();
3710 __update_rq_clock(rq
);
3711 spin_lock(&rq
->lock
);
3712 clear_tsk_need_resched(prev
);
3714 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3715 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
3716 unlikely(signal_pending(prev
)))) {
3717 prev
->state
= TASK_RUNNING
;
3719 deactivate_task(rq
, prev
, 1);
3721 switch_count
= &prev
->nvcsw
;
3724 schedule_balance_rt(rq
, prev
);
3726 if (unlikely(!rq
->nr_running
))
3727 idle_balance(cpu
, rq
);
3729 prev
->sched_class
->put_prev_task(rq
, prev
);
3730 next
= pick_next_task(rq
, prev
);
3732 sched_info_switch(prev
, next
);
3734 if (likely(prev
!= next
)) {
3739 context_switch(rq
, prev
, next
); /* unlocks the rq */
3741 spin_unlock_irq(&rq
->lock
);
3743 if (unlikely(reacquire_kernel_lock(current
) < 0)) {
3744 cpu
= smp_processor_id();
3746 goto need_resched_nonpreemptible
;
3748 preempt_enable_no_resched();
3749 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3752 EXPORT_SYMBOL(schedule
);
3754 #ifdef CONFIG_PREEMPT
3756 * this is the entry point to schedule() from in-kernel preemption
3757 * off of preempt_enable. Kernel preemptions off return from interrupt
3758 * occur there and call schedule directly.
3760 asmlinkage
void __sched
preempt_schedule(void)
3762 struct thread_info
*ti
= current_thread_info();
3763 #ifdef CONFIG_PREEMPT_BKL
3764 struct task_struct
*task
= current
;
3765 int saved_lock_depth
;
3768 * If there is a non-zero preempt_count or interrupts are disabled,
3769 * we do not want to preempt the current task. Just return..
3771 if (likely(ti
->preempt_count
|| irqs_disabled()))
3775 add_preempt_count(PREEMPT_ACTIVE
);
3778 * We keep the big kernel semaphore locked, but we
3779 * clear ->lock_depth so that schedule() doesnt
3780 * auto-release the semaphore:
3782 #ifdef CONFIG_PREEMPT_BKL
3783 saved_lock_depth
= task
->lock_depth
;
3784 task
->lock_depth
= -1;
3787 #ifdef CONFIG_PREEMPT_BKL
3788 task
->lock_depth
= saved_lock_depth
;
3790 sub_preempt_count(PREEMPT_ACTIVE
);
3793 * Check again in case we missed a preemption opportunity
3794 * between schedule and now.
3797 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
3799 EXPORT_SYMBOL(preempt_schedule
);
3802 * this is the entry point to schedule() from kernel preemption
3803 * off of irq context.
3804 * Note, that this is called and return with irqs disabled. This will
3805 * protect us against recursive calling from irq.
3807 asmlinkage
void __sched
preempt_schedule_irq(void)
3809 struct thread_info
*ti
= current_thread_info();
3810 #ifdef CONFIG_PREEMPT_BKL
3811 struct task_struct
*task
= current
;
3812 int saved_lock_depth
;
3814 /* Catch callers which need to be fixed */
3815 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3818 add_preempt_count(PREEMPT_ACTIVE
);
3821 * We keep the big kernel semaphore locked, but we
3822 * clear ->lock_depth so that schedule() doesnt
3823 * auto-release the semaphore:
3825 #ifdef CONFIG_PREEMPT_BKL
3826 saved_lock_depth
= task
->lock_depth
;
3827 task
->lock_depth
= -1;
3831 local_irq_disable();
3832 #ifdef CONFIG_PREEMPT_BKL
3833 task
->lock_depth
= saved_lock_depth
;
3835 sub_preempt_count(PREEMPT_ACTIVE
);
3838 * Check again in case we missed a preemption opportunity
3839 * between schedule and now.
3842 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
3845 #endif /* CONFIG_PREEMPT */
3847 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
3850 return try_to_wake_up(curr
->private, mode
, sync
);
3852 EXPORT_SYMBOL(default_wake_function
);
3855 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3856 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3857 * number) then we wake all the non-exclusive tasks and one exclusive task.
3859 * There are circumstances in which we can try to wake a task which has already
3860 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3861 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3863 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3864 int nr_exclusive
, int sync
, void *key
)
3866 wait_queue_t
*curr
, *next
;
3868 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
3869 unsigned flags
= curr
->flags
;
3871 if (curr
->func(curr
, mode
, sync
, key
) &&
3872 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
3878 * __wake_up - wake up threads blocked on a waitqueue.
3880 * @mode: which threads
3881 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3882 * @key: is directly passed to the wakeup function
3884 void fastcall
__wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3885 int nr_exclusive
, void *key
)
3887 unsigned long flags
;
3889 spin_lock_irqsave(&q
->lock
, flags
);
3890 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3891 spin_unlock_irqrestore(&q
->lock
, flags
);
3893 EXPORT_SYMBOL(__wake_up
);
3896 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3898 void fastcall
__wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3900 __wake_up_common(q
, mode
, 1, 0, NULL
);
3904 * __wake_up_sync - wake up threads blocked on a waitqueue.
3906 * @mode: which threads
3907 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3909 * The sync wakeup differs that the waker knows that it will schedule
3910 * away soon, so while the target thread will be woken up, it will not
3911 * be migrated to another CPU - ie. the two threads are 'synchronized'
3912 * with each other. This can prevent needless bouncing between CPUs.
3914 * On UP it can prevent extra preemption.
3917 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3919 unsigned long flags
;
3925 if (unlikely(!nr_exclusive
))
3928 spin_lock_irqsave(&q
->lock
, flags
);
3929 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
3930 spin_unlock_irqrestore(&q
->lock
, flags
);
3932 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3934 void complete(struct completion
*x
)
3936 unsigned long flags
;
3938 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3940 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3942 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3944 EXPORT_SYMBOL(complete
);
3946 void complete_all(struct completion
*x
)
3948 unsigned long flags
;
3950 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3951 x
->done
+= UINT_MAX
/2;
3952 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3954 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3956 EXPORT_SYMBOL(complete_all
);
3958 static inline long __sched
3959 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
3962 DECLARE_WAITQUEUE(wait
, current
);
3964 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3965 __add_wait_queue_tail(&x
->wait
, &wait
);
3967 if (state
== TASK_INTERRUPTIBLE
&&
3968 signal_pending(current
)) {
3969 __remove_wait_queue(&x
->wait
, &wait
);
3970 return -ERESTARTSYS
;
3972 __set_current_state(state
);
3973 spin_unlock_irq(&x
->wait
.lock
);
3974 timeout
= schedule_timeout(timeout
);
3975 spin_lock_irq(&x
->wait
.lock
);
3977 __remove_wait_queue(&x
->wait
, &wait
);
3981 __remove_wait_queue(&x
->wait
, &wait
);
3988 wait_for_common(struct completion
*x
, long timeout
, int state
)
3992 spin_lock_irq(&x
->wait
.lock
);
3993 timeout
= do_wait_for_common(x
, timeout
, state
);
3994 spin_unlock_irq(&x
->wait
.lock
);
3998 void __sched
wait_for_completion(struct completion
*x
)
4000 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4002 EXPORT_SYMBOL(wait_for_completion
);
4004 unsigned long __sched
4005 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4007 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4009 EXPORT_SYMBOL(wait_for_completion_timeout
);
4011 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4013 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4014 if (t
== -ERESTARTSYS
)
4018 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4020 unsigned long __sched
4021 wait_for_completion_interruptible_timeout(struct completion
*x
,
4022 unsigned long timeout
)
4024 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4026 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4029 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4031 unsigned long flags
;
4034 init_waitqueue_entry(&wait
, current
);
4036 __set_current_state(state
);
4038 spin_lock_irqsave(&q
->lock
, flags
);
4039 __add_wait_queue(q
, &wait
);
4040 spin_unlock(&q
->lock
);
4041 timeout
= schedule_timeout(timeout
);
4042 spin_lock_irq(&q
->lock
);
4043 __remove_wait_queue(q
, &wait
);
4044 spin_unlock_irqrestore(&q
->lock
, flags
);
4049 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4051 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4053 EXPORT_SYMBOL(interruptible_sleep_on
);
4056 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4058 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4060 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4062 void __sched
sleep_on(wait_queue_head_t
*q
)
4064 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4066 EXPORT_SYMBOL(sleep_on
);
4068 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4070 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4072 EXPORT_SYMBOL(sleep_on_timeout
);
4074 #ifdef CONFIG_RT_MUTEXES
4077 * rt_mutex_setprio - set the current priority of a task
4079 * @prio: prio value (kernel-internal form)
4081 * This function changes the 'effective' priority of a task. It does
4082 * not touch ->normal_prio like __setscheduler().
4084 * Used by the rt_mutex code to implement priority inheritance logic.
4086 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4088 unsigned long flags
;
4089 int oldprio
, on_rq
, running
;
4092 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4094 rq
= task_rq_lock(p
, &flags
);
4095 update_rq_clock(rq
);
4098 on_rq
= p
->se
.on_rq
;
4099 running
= task_current(rq
, p
);
4101 dequeue_task(rq
, p
, 0);
4103 p
->sched_class
->put_prev_task(rq
, p
);
4107 p
->sched_class
= &rt_sched_class
;
4109 p
->sched_class
= &fair_sched_class
;
4115 p
->sched_class
->set_curr_task(rq
);
4116 enqueue_task(rq
, p
, 0);
4118 * Reschedule if we are currently running on this runqueue and
4119 * our priority decreased, or if we are not currently running on
4120 * this runqueue and our priority is higher than the current's
4123 if (p
->prio
> oldprio
)
4124 resched_task(rq
->curr
);
4126 check_preempt_curr(rq
, p
);
4129 task_rq_unlock(rq
, &flags
);
4134 void set_user_nice(struct task_struct
*p
, long nice
)
4136 int old_prio
, delta
, on_rq
;
4137 unsigned long flags
;
4140 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4143 * We have to be careful, if called from sys_setpriority(),
4144 * the task might be in the middle of scheduling on another CPU.
4146 rq
= task_rq_lock(p
, &flags
);
4147 update_rq_clock(rq
);
4149 * The RT priorities are set via sched_setscheduler(), but we still
4150 * allow the 'normal' nice value to be set - but as expected
4151 * it wont have any effect on scheduling until the task is
4152 * SCHED_FIFO/SCHED_RR:
4154 if (task_has_rt_policy(p
)) {
4155 p
->static_prio
= NICE_TO_PRIO(nice
);
4158 on_rq
= p
->se
.on_rq
;
4160 dequeue_task(rq
, p
, 0);
4162 p
->static_prio
= NICE_TO_PRIO(nice
);
4165 p
->prio
= effective_prio(p
);
4166 delta
= p
->prio
- old_prio
;
4169 enqueue_task(rq
, p
, 0);
4171 * If the task increased its priority or is running and
4172 * lowered its priority, then reschedule its CPU:
4174 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4175 resched_task(rq
->curr
);
4178 task_rq_unlock(rq
, &flags
);
4180 EXPORT_SYMBOL(set_user_nice
);
4183 * can_nice - check if a task can reduce its nice value
4187 int can_nice(const struct task_struct
*p
, const int nice
)
4189 /* convert nice value [19,-20] to rlimit style value [1,40] */
4190 int nice_rlim
= 20 - nice
;
4192 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
4193 capable(CAP_SYS_NICE
));
4196 #ifdef __ARCH_WANT_SYS_NICE
4199 * sys_nice - change the priority of the current process.
4200 * @increment: priority increment
4202 * sys_setpriority is a more generic, but much slower function that
4203 * does similar things.
4205 asmlinkage
long sys_nice(int increment
)
4210 * Setpriority might change our priority at the same moment.
4211 * We don't have to worry. Conceptually one call occurs first
4212 * and we have a single winner.
4214 if (increment
< -40)
4219 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
4225 if (increment
< 0 && !can_nice(current
, nice
))
4228 retval
= security_task_setnice(current
, nice
);
4232 set_user_nice(current
, nice
);
4239 * task_prio - return the priority value of a given task.
4240 * @p: the task in question.
4242 * This is the priority value as seen by users in /proc.
4243 * RT tasks are offset by -200. Normal tasks are centered
4244 * around 0, value goes from -16 to +15.
4246 int task_prio(const struct task_struct
*p
)
4248 return p
->prio
- MAX_RT_PRIO
;
4252 * task_nice - return the nice value of a given task.
4253 * @p: the task in question.
4255 int task_nice(const struct task_struct
*p
)
4257 return TASK_NICE(p
);
4259 EXPORT_SYMBOL_GPL(task_nice
);
4262 * idle_cpu - is a given cpu idle currently?
4263 * @cpu: the processor in question.
4265 int idle_cpu(int cpu
)
4267 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4271 * idle_task - return the idle task for a given cpu.
4272 * @cpu: the processor in question.
4274 struct task_struct
*idle_task(int cpu
)
4276 return cpu_rq(cpu
)->idle
;
4280 * find_process_by_pid - find a process with a matching PID value.
4281 * @pid: the pid in question.
4283 static struct task_struct
*find_process_by_pid(pid_t pid
)
4285 return pid
? find_task_by_vpid(pid
) : current
;
4288 /* Actually do priority change: must hold rq lock. */
4290 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4292 BUG_ON(p
->se
.on_rq
);
4295 switch (p
->policy
) {
4299 p
->sched_class
= &fair_sched_class
;
4303 p
->sched_class
= &rt_sched_class
;
4307 p
->rt_priority
= prio
;
4308 p
->normal_prio
= normal_prio(p
);
4309 /* we are holding p->pi_lock already */
4310 p
->prio
= rt_mutex_getprio(p
);
4315 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4316 * @p: the task in question.
4317 * @policy: new policy.
4318 * @param: structure containing the new RT priority.
4320 * NOTE that the task may be already dead.
4322 int sched_setscheduler(struct task_struct
*p
, int policy
,
4323 struct sched_param
*param
)
4325 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4326 unsigned long flags
;
4329 /* may grab non-irq protected spin_locks */
4330 BUG_ON(in_interrupt());
4332 /* double check policy once rq lock held */
4334 policy
= oldpolicy
= p
->policy
;
4335 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4336 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4337 policy
!= SCHED_IDLE
)
4340 * Valid priorities for SCHED_FIFO and SCHED_RR are
4341 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4342 * SCHED_BATCH and SCHED_IDLE is 0.
4344 if (param
->sched_priority
< 0 ||
4345 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4346 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4348 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4352 * Allow unprivileged RT tasks to decrease priority:
4354 if (!capable(CAP_SYS_NICE
)) {
4355 if (rt_policy(policy
)) {
4356 unsigned long rlim_rtprio
;
4358 if (!lock_task_sighand(p
, &flags
))
4360 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
4361 unlock_task_sighand(p
, &flags
);
4363 /* can't set/change the rt policy */
4364 if (policy
!= p
->policy
&& !rlim_rtprio
)
4367 /* can't increase priority */
4368 if (param
->sched_priority
> p
->rt_priority
&&
4369 param
->sched_priority
> rlim_rtprio
)
4373 * Like positive nice levels, dont allow tasks to
4374 * move out of SCHED_IDLE either:
4376 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4379 /* can't change other user's priorities */
4380 if ((current
->euid
!= p
->euid
) &&
4381 (current
->euid
!= p
->uid
))
4385 retval
= security_task_setscheduler(p
, policy
, param
);
4389 * make sure no PI-waiters arrive (or leave) while we are
4390 * changing the priority of the task:
4392 spin_lock_irqsave(&p
->pi_lock
, flags
);
4394 * To be able to change p->policy safely, the apropriate
4395 * runqueue lock must be held.
4397 rq
= __task_rq_lock(p
);
4398 /* recheck policy now with rq lock held */
4399 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4400 policy
= oldpolicy
= -1;
4401 __task_rq_unlock(rq
);
4402 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4405 update_rq_clock(rq
);
4406 on_rq
= p
->se
.on_rq
;
4407 running
= task_current(rq
, p
);
4409 deactivate_task(rq
, p
, 0);
4411 p
->sched_class
->put_prev_task(rq
, p
);
4415 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4419 p
->sched_class
->set_curr_task(rq
);
4420 activate_task(rq
, p
, 0);
4422 * Reschedule if we are currently running on this runqueue and
4423 * our priority decreased, or if we are not currently running on
4424 * this runqueue and our priority is higher than the current's
4427 if (p
->prio
> oldprio
)
4428 resched_task(rq
->curr
);
4430 check_preempt_curr(rq
, p
);
4433 __task_rq_unlock(rq
);
4434 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4436 rt_mutex_adjust_pi(p
);
4440 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4443 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4445 struct sched_param lparam
;
4446 struct task_struct
*p
;
4449 if (!param
|| pid
< 0)
4451 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4456 p
= find_process_by_pid(pid
);
4458 retval
= sched_setscheduler(p
, policy
, &lparam
);
4465 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4466 * @pid: the pid in question.
4467 * @policy: new policy.
4468 * @param: structure containing the new RT priority.
4471 sys_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4473 /* negative values for policy are not valid */
4477 return do_sched_setscheduler(pid
, policy
, param
);
4481 * sys_sched_setparam - set/change the RT priority of a thread
4482 * @pid: the pid in question.
4483 * @param: structure containing the new RT priority.
4485 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
4487 return do_sched_setscheduler(pid
, -1, param
);
4491 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4492 * @pid: the pid in question.
4494 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
4496 struct task_struct
*p
;
4503 read_lock(&tasklist_lock
);
4504 p
= find_process_by_pid(pid
);
4506 retval
= security_task_getscheduler(p
);
4510 read_unlock(&tasklist_lock
);
4515 * sys_sched_getscheduler - get the RT priority of a thread
4516 * @pid: the pid in question.
4517 * @param: structure containing the RT priority.
4519 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
4521 struct sched_param lp
;
4522 struct task_struct
*p
;
4525 if (!param
|| pid
< 0)
4528 read_lock(&tasklist_lock
);
4529 p
= find_process_by_pid(pid
);
4534 retval
= security_task_getscheduler(p
);
4538 lp
.sched_priority
= p
->rt_priority
;
4539 read_unlock(&tasklist_lock
);
4542 * This one might sleep, we cannot do it with a spinlock held ...
4544 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4549 read_unlock(&tasklist_lock
);
4553 long sched_setaffinity(pid_t pid
, cpumask_t new_mask
)
4555 cpumask_t cpus_allowed
;
4556 struct task_struct
*p
;
4560 read_lock(&tasklist_lock
);
4562 p
= find_process_by_pid(pid
);
4564 read_unlock(&tasklist_lock
);
4570 * It is not safe to call set_cpus_allowed with the
4571 * tasklist_lock held. We will bump the task_struct's
4572 * usage count and then drop tasklist_lock.
4575 read_unlock(&tasklist_lock
);
4578 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
4579 !capable(CAP_SYS_NICE
))
4582 retval
= security_task_setscheduler(p
, 0, NULL
);
4586 cpus_allowed
= cpuset_cpus_allowed(p
);
4587 cpus_and(new_mask
, new_mask
, cpus_allowed
);
4589 retval
= set_cpus_allowed(p
, new_mask
);
4592 cpus_allowed
= cpuset_cpus_allowed(p
);
4593 if (!cpus_subset(new_mask
, cpus_allowed
)) {
4595 * We must have raced with a concurrent cpuset
4596 * update. Just reset the cpus_allowed to the
4597 * cpuset's cpus_allowed
4599 new_mask
= cpus_allowed
;
4609 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4610 cpumask_t
*new_mask
)
4612 if (len
< sizeof(cpumask_t
)) {
4613 memset(new_mask
, 0, sizeof(cpumask_t
));
4614 } else if (len
> sizeof(cpumask_t
)) {
4615 len
= sizeof(cpumask_t
);
4617 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4621 * sys_sched_setaffinity - set the cpu affinity of a process
4622 * @pid: pid of the process
4623 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4624 * @user_mask_ptr: user-space pointer to the new cpu mask
4626 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
4627 unsigned long __user
*user_mask_ptr
)
4632 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
4636 return sched_setaffinity(pid
, new_mask
);
4640 * Represents all cpu's present in the system
4641 * In systems capable of hotplug, this map could dynamically grow
4642 * as new cpu's are detected in the system via any platform specific
4643 * method, such as ACPI for e.g.
4646 cpumask_t cpu_present_map __read_mostly
;
4647 EXPORT_SYMBOL(cpu_present_map
);
4650 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
4651 EXPORT_SYMBOL(cpu_online_map
);
4653 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
4654 EXPORT_SYMBOL(cpu_possible_map
);
4657 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
4659 struct task_struct
*p
;
4663 read_lock(&tasklist_lock
);
4666 p
= find_process_by_pid(pid
);
4670 retval
= security_task_getscheduler(p
);
4674 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
4677 read_unlock(&tasklist_lock
);
4684 * sys_sched_getaffinity - get the cpu affinity of a process
4685 * @pid: pid of the process
4686 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4687 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4689 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
4690 unsigned long __user
*user_mask_ptr
)
4695 if (len
< sizeof(cpumask_t
))
4698 ret
= sched_getaffinity(pid
, &mask
);
4702 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
4705 return sizeof(cpumask_t
);
4709 * sys_sched_yield - yield the current processor to other threads.
4711 * This function yields the current CPU to other tasks. If there are no
4712 * other threads running on this CPU then this function will return.
4714 asmlinkage
long sys_sched_yield(void)
4716 struct rq
*rq
= this_rq_lock();
4718 schedstat_inc(rq
, yld_count
);
4719 current
->sched_class
->yield_task(rq
);
4722 * Since we are going to call schedule() anyway, there's
4723 * no need to preempt or enable interrupts:
4725 __release(rq
->lock
);
4726 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4727 _raw_spin_unlock(&rq
->lock
);
4728 preempt_enable_no_resched();
4735 static void __cond_resched(void)
4737 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4738 __might_sleep(__FILE__
, __LINE__
);
4741 * The BKS might be reacquired before we have dropped
4742 * PREEMPT_ACTIVE, which could trigger a second
4743 * cond_resched() call.
4746 add_preempt_count(PREEMPT_ACTIVE
);
4748 sub_preempt_count(PREEMPT_ACTIVE
);
4749 } while (need_resched());
4752 int __sched
cond_resched(void)
4754 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
4755 system_state
== SYSTEM_RUNNING
) {
4761 EXPORT_SYMBOL(cond_resched
);
4764 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4765 * call schedule, and on return reacquire the lock.
4767 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4768 * operations here to prevent schedule() from being called twice (once via
4769 * spin_unlock(), once by hand).
4771 int cond_resched_lock(spinlock_t
*lock
)
4775 if (need_lockbreak(lock
)) {
4781 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4782 spin_release(&lock
->dep_map
, 1, _THIS_IP_
);
4783 _raw_spin_unlock(lock
);
4784 preempt_enable_no_resched();
4791 EXPORT_SYMBOL(cond_resched_lock
);
4793 int __sched
cond_resched_softirq(void)
4795 BUG_ON(!in_softirq());
4797 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4805 EXPORT_SYMBOL(cond_resched_softirq
);
4808 * yield - yield the current processor to other threads.
4810 * This is a shortcut for kernel-space yielding - it marks the
4811 * thread runnable and calls sys_sched_yield().
4813 void __sched
yield(void)
4815 set_current_state(TASK_RUNNING
);
4818 EXPORT_SYMBOL(yield
);
4821 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4822 * that process accounting knows that this is a task in IO wait state.
4824 * But don't do that if it is a deliberate, throttling IO wait (this task
4825 * has set its backing_dev_info: the queue against which it should throttle)
4827 void __sched
io_schedule(void)
4829 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4831 delayacct_blkio_start();
4832 atomic_inc(&rq
->nr_iowait
);
4834 atomic_dec(&rq
->nr_iowait
);
4835 delayacct_blkio_end();
4837 EXPORT_SYMBOL(io_schedule
);
4839 long __sched
io_schedule_timeout(long timeout
)
4841 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4844 delayacct_blkio_start();
4845 atomic_inc(&rq
->nr_iowait
);
4846 ret
= schedule_timeout(timeout
);
4847 atomic_dec(&rq
->nr_iowait
);
4848 delayacct_blkio_end();
4853 * sys_sched_get_priority_max - return maximum RT priority.
4854 * @policy: scheduling class.
4856 * this syscall returns the maximum rt_priority that can be used
4857 * by a given scheduling class.
4859 asmlinkage
long sys_sched_get_priority_max(int policy
)
4866 ret
= MAX_USER_RT_PRIO
-1;
4878 * sys_sched_get_priority_min - return minimum RT priority.
4879 * @policy: scheduling class.
4881 * this syscall returns the minimum rt_priority that can be used
4882 * by a given scheduling class.
4884 asmlinkage
long sys_sched_get_priority_min(int policy
)
4902 * sys_sched_rr_get_interval - return the default timeslice of a process.
4903 * @pid: pid of the process.
4904 * @interval: userspace pointer to the timeslice value.
4906 * this syscall writes the default timeslice value of a given process
4907 * into the user-space timespec buffer. A value of '0' means infinity.
4910 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
4912 struct task_struct
*p
;
4913 unsigned int time_slice
;
4921 read_lock(&tasklist_lock
);
4922 p
= find_process_by_pid(pid
);
4926 retval
= security_task_getscheduler(p
);
4931 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
4932 * tasks that are on an otherwise idle runqueue:
4935 if (p
->policy
== SCHED_RR
) {
4936 time_slice
= DEF_TIMESLICE
;
4938 struct sched_entity
*se
= &p
->se
;
4939 unsigned long flags
;
4942 rq
= task_rq_lock(p
, &flags
);
4943 if (rq
->cfs
.load
.weight
)
4944 time_slice
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
4945 task_rq_unlock(rq
, &flags
);
4947 read_unlock(&tasklist_lock
);
4948 jiffies_to_timespec(time_slice
, &t
);
4949 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4953 read_unlock(&tasklist_lock
);
4957 static const char stat_nam
[] = "RSDTtZX";
4959 void sched_show_task(struct task_struct
*p
)
4961 unsigned long free
= 0;
4964 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
4965 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
4966 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
4967 #if BITS_PER_LONG == 32
4968 if (state
== TASK_RUNNING
)
4969 printk(KERN_CONT
" running ");
4971 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
4973 if (state
== TASK_RUNNING
)
4974 printk(KERN_CONT
" running task ");
4976 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
4978 #ifdef CONFIG_DEBUG_STACK_USAGE
4980 unsigned long *n
= end_of_stack(p
);
4983 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
4986 printk(KERN_CONT
"%5lu %5d %6d\n", free
,
4987 task_pid_nr(p
), task_pid_nr(p
->real_parent
));
4989 if (state
!= TASK_RUNNING
)
4990 show_stack(p
, NULL
);
4993 void show_state_filter(unsigned long state_filter
)
4995 struct task_struct
*g
, *p
;
4997 #if BITS_PER_LONG == 32
4999 " task PC stack pid father\n");
5002 " task PC stack pid father\n");
5004 read_lock(&tasklist_lock
);
5005 do_each_thread(g
, p
) {
5007 * reset the NMI-timeout, listing all files on a slow
5008 * console might take alot of time:
5010 touch_nmi_watchdog();
5011 if (!state_filter
|| (p
->state
& state_filter
))
5013 } while_each_thread(g
, p
);
5015 touch_all_softlockup_watchdogs();
5017 #ifdef CONFIG_SCHED_DEBUG
5018 sysrq_sched_debug_show();
5020 read_unlock(&tasklist_lock
);
5022 * Only show locks if all tasks are dumped:
5024 if (state_filter
== -1)
5025 debug_show_all_locks();
5028 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5030 idle
->sched_class
= &idle_sched_class
;
5034 * init_idle - set up an idle thread for a given CPU
5035 * @idle: task in question
5036 * @cpu: cpu the idle task belongs to
5038 * NOTE: this function does not set the idle thread's NEED_RESCHED
5039 * flag, to make booting more robust.
5041 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5043 struct rq
*rq
= cpu_rq(cpu
);
5044 unsigned long flags
;
5047 idle
->se
.exec_start
= sched_clock();
5049 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
5050 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
5051 __set_task_cpu(idle
, cpu
);
5053 spin_lock_irqsave(&rq
->lock
, flags
);
5054 rq
->curr
= rq
->idle
= idle
;
5055 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5058 spin_unlock_irqrestore(&rq
->lock
, flags
);
5060 /* Set the preempt count _outside_ the spinlocks! */
5061 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
5062 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
5064 task_thread_info(idle
)->preempt_count
= 0;
5067 * The idle tasks have their own, simple scheduling class:
5069 idle
->sched_class
= &idle_sched_class
;
5073 * In a system that switches off the HZ timer nohz_cpu_mask
5074 * indicates which cpus entered this state. This is used
5075 * in the rcu update to wait only for active cpus. For system
5076 * which do not switch off the HZ timer nohz_cpu_mask should
5077 * always be CPU_MASK_NONE.
5079 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
5082 * Increase the granularity value when there are more CPUs,
5083 * because with more CPUs the 'effective latency' as visible
5084 * to users decreases. But the relationship is not linear,
5085 * so pick a second-best guess by going with the log2 of the
5088 * This idea comes from the SD scheduler of Con Kolivas:
5090 static inline void sched_init_granularity(void)
5092 unsigned int factor
= 1 + ilog2(num_online_cpus());
5093 const unsigned long limit
= 200000000;
5095 sysctl_sched_min_granularity
*= factor
;
5096 if (sysctl_sched_min_granularity
> limit
)
5097 sysctl_sched_min_granularity
= limit
;
5099 sysctl_sched_latency
*= factor
;
5100 if (sysctl_sched_latency
> limit
)
5101 sysctl_sched_latency
= limit
;
5103 sysctl_sched_wakeup_granularity
*= factor
;
5104 sysctl_sched_batch_wakeup_granularity
*= factor
;
5109 * This is how migration works:
5111 * 1) we queue a struct migration_req structure in the source CPU's
5112 * runqueue and wake up that CPU's migration thread.
5113 * 2) we down() the locked semaphore => thread blocks.
5114 * 3) migration thread wakes up (implicitly it forces the migrated
5115 * thread off the CPU)
5116 * 4) it gets the migration request and checks whether the migrated
5117 * task is still in the wrong runqueue.
5118 * 5) if it's in the wrong runqueue then the migration thread removes
5119 * it and puts it into the right queue.
5120 * 6) migration thread up()s the semaphore.
5121 * 7) we wake up and the migration is done.
5125 * Change a given task's CPU affinity. Migrate the thread to a
5126 * proper CPU and schedule it away if the CPU it's executing on
5127 * is removed from the allowed bitmask.
5129 * NOTE: the caller must have a valid reference to the task, the
5130 * task must not exit() & deallocate itself prematurely. The
5131 * call is not atomic; no spinlocks may be held.
5133 int set_cpus_allowed(struct task_struct
*p
, cpumask_t new_mask
)
5135 struct migration_req req
;
5136 unsigned long flags
;
5140 rq
= task_rq_lock(p
, &flags
);
5141 if (!cpus_intersects(new_mask
, cpu_online_map
)) {
5146 p
->cpus_allowed
= new_mask
;
5147 /* Can the task run on the task's current CPU? If so, we're done */
5148 if (cpu_isset(task_cpu(p
), new_mask
))
5151 if (migrate_task(p
, any_online_cpu(new_mask
), &req
)) {
5152 /* Need help from migration thread: drop lock and wait. */
5153 task_rq_unlock(rq
, &flags
);
5154 wake_up_process(rq
->migration_thread
);
5155 wait_for_completion(&req
.done
);
5156 tlb_migrate_finish(p
->mm
);
5160 task_rq_unlock(rq
, &flags
);
5164 EXPORT_SYMBOL_GPL(set_cpus_allowed
);
5167 * Move (not current) task off this cpu, onto dest cpu. We're doing
5168 * this because either it can't run here any more (set_cpus_allowed()
5169 * away from this CPU, or CPU going down), or because we're
5170 * attempting to rebalance this task on exec (sched_exec).
5172 * So we race with normal scheduler movements, but that's OK, as long
5173 * as the task is no longer on this CPU.
5175 * Returns non-zero if task was successfully migrated.
5177 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5179 struct rq
*rq_dest
, *rq_src
;
5182 if (unlikely(cpu_is_offline(dest_cpu
)))
5185 rq_src
= cpu_rq(src_cpu
);
5186 rq_dest
= cpu_rq(dest_cpu
);
5188 double_rq_lock(rq_src
, rq_dest
);
5189 /* Already moved. */
5190 if (task_cpu(p
) != src_cpu
)
5192 /* Affinity changed (again). */
5193 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
5196 on_rq
= p
->se
.on_rq
;
5198 deactivate_task(rq_src
, p
, 0);
5200 set_task_cpu(p
, dest_cpu
);
5202 activate_task(rq_dest
, p
, 0);
5203 check_preempt_curr(rq_dest
, p
);
5207 double_rq_unlock(rq_src
, rq_dest
);
5212 * migration_thread - this is a highprio system thread that performs
5213 * thread migration by bumping thread off CPU then 'pushing' onto
5216 static int migration_thread(void *data
)
5218 int cpu
= (long)data
;
5222 BUG_ON(rq
->migration_thread
!= current
);
5224 set_current_state(TASK_INTERRUPTIBLE
);
5225 while (!kthread_should_stop()) {
5226 struct migration_req
*req
;
5227 struct list_head
*head
;
5229 spin_lock_irq(&rq
->lock
);
5231 if (cpu_is_offline(cpu
)) {
5232 spin_unlock_irq(&rq
->lock
);
5236 if (rq
->active_balance
) {
5237 active_load_balance(rq
, cpu
);
5238 rq
->active_balance
= 0;
5241 head
= &rq
->migration_queue
;
5243 if (list_empty(head
)) {
5244 spin_unlock_irq(&rq
->lock
);
5246 set_current_state(TASK_INTERRUPTIBLE
);
5249 req
= list_entry(head
->next
, struct migration_req
, list
);
5250 list_del_init(head
->next
);
5252 spin_unlock(&rq
->lock
);
5253 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
5256 complete(&req
->done
);
5258 __set_current_state(TASK_RUNNING
);
5262 /* Wait for kthread_stop */
5263 set_current_state(TASK_INTERRUPTIBLE
);
5264 while (!kthread_should_stop()) {
5266 set_current_state(TASK_INTERRUPTIBLE
);
5268 __set_current_state(TASK_RUNNING
);
5272 #ifdef CONFIG_HOTPLUG_CPU
5274 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5278 local_irq_disable();
5279 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
5285 * Figure out where task on dead CPU should go, use force if necessary.
5286 * NOTE: interrupts should be disabled by the caller
5288 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5290 unsigned long flags
;
5297 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
5298 cpus_and(mask
, mask
, p
->cpus_allowed
);
5299 dest_cpu
= any_online_cpu(mask
);
5301 /* On any allowed CPU? */
5302 if (dest_cpu
== NR_CPUS
)
5303 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5305 /* No more Mr. Nice Guy. */
5306 if (dest_cpu
== NR_CPUS
) {
5307 cpumask_t cpus_allowed
= cpuset_cpus_allowed_locked(p
);
5309 * Try to stay on the same cpuset, where the
5310 * current cpuset may be a subset of all cpus.
5311 * The cpuset_cpus_allowed_locked() variant of
5312 * cpuset_cpus_allowed() will not block. It must be
5313 * called within calls to cpuset_lock/cpuset_unlock.
5315 rq
= task_rq_lock(p
, &flags
);
5316 p
->cpus_allowed
= cpus_allowed
;
5317 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5318 task_rq_unlock(rq
, &flags
);
5321 * Don't tell them about moving exiting tasks or
5322 * kernel threads (both mm NULL), since they never
5325 if (p
->mm
&& printk_ratelimit()) {
5326 printk(KERN_INFO
"process %d (%s) no "
5327 "longer affine to cpu%d\n",
5328 task_pid_nr(p
), p
->comm
, dead_cpu
);
5331 } while (!__migrate_task_irq(p
, dead_cpu
, dest_cpu
));
5335 * While a dead CPU has no uninterruptible tasks queued at this point,
5336 * it might still have a nonzero ->nr_uninterruptible counter, because
5337 * for performance reasons the counter is not stricly tracking tasks to
5338 * their home CPUs. So we just add the counter to another CPU's counter,
5339 * to keep the global sum constant after CPU-down:
5341 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5343 struct rq
*rq_dest
= cpu_rq(any_online_cpu(CPU_MASK_ALL
));
5344 unsigned long flags
;
5346 local_irq_save(flags
);
5347 double_rq_lock(rq_src
, rq_dest
);
5348 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5349 rq_src
->nr_uninterruptible
= 0;
5350 double_rq_unlock(rq_src
, rq_dest
);
5351 local_irq_restore(flags
);
5354 /* Run through task list and migrate tasks from the dead cpu. */
5355 static void migrate_live_tasks(int src_cpu
)
5357 struct task_struct
*p
, *t
;
5359 read_lock(&tasklist_lock
);
5361 do_each_thread(t
, p
) {
5365 if (task_cpu(p
) == src_cpu
)
5366 move_task_off_dead_cpu(src_cpu
, p
);
5367 } while_each_thread(t
, p
);
5369 read_unlock(&tasklist_lock
);
5373 * Schedules idle task to be the next runnable task on current CPU.
5374 * It does so by boosting its priority to highest possible.
5375 * Used by CPU offline code.
5377 void sched_idle_next(void)
5379 int this_cpu
= smp_processor_id();
5380 struct rq
*rq
= cpu_rq(this_cpu
);
5381 struct task_struct
*p
= rq
->idle
;
5382 unsigned long flags
;
5384 /* cpu has to be offline */
5385 BUG_ON(cpu_online(this_cpu
));
5388 * Strictly not necessary since rest of the CPUs are stopped by now
5389 * and interrupts disabled on the current cpu.
5391 spin_lock_irqsave(&rq
->lock
, flags
);
5393 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5395 update_rq_clock(rq
);
5396 activate_task(rq
, p
, 0);
5398 spin_unlock_irqrestore(&rq
->lock
, flags
);
5402 * Ensures that the idle task is using init_mm right before its cpu goes
5405 void idle_task_exit(void)
5407 struct mm_struct
*mm
= current
->active_mm
;
5409 BUG_ON(cpu_online(smp_processor_id()));
5412 switch_mm(mm
, &init_mm
, current
);
5416 /* called under rq->lock with disabled interrupts */
5417 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5419 struct rq
*rq
= cpu_rq(dead_cpu
);
5421 /* Must be exiting, otherwise would be on tasklist. */
5422 BUG_ON(!p
->exit_state
);
5424 /* Cannot have done final schedule yet: would have vanished. */
5425 BUG_ON(p
->state
== TASK_DEAD
);
5430 * Drop lock around migration; if someone else moves it,
5431 * that's OK. No task can be added to this CPU, so iteration is
5434 spin_unlock_irq(&rq
->lock
);
5435 move_task_off_dead_cpu(dead_cpu
, p
);
5436 spin_lock_irq(&rq
->lock
);
5441 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5442 static void migrate_dead_tasks(unsigned int dead_cpu
)
5444 struct rq
*rq
= cpu_rq(dead_cpu
);
5445 struct task_struct
*next
;
5448 if (!rq
->nr_running
)
5450 update_rq_clock(rq
);
5451 next
= pick_next_task(rq
, rq
->curr
);
5454 migrate_dead(dead_cpu
, next
);
5458 #endif /* CONFIG_HOTPLUG_CPU */
5460 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5462 static struct ctl_table sd_ctl_dir
[] = {
5464 .procname
= "sched_domain",
5470 static struct ctl_table sd_ctl_root
[] = {
5472 .ctl_name
= CTL_KERN
,
5473 .procname
= "kernel",
5475 .child
= sd_ctl_dir
,
5480 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5482 struct ctl_table
*entry
=
5483 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
5488 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
5490 struct ctl_table
*entry
;
5493 * In the intermediate directories, both the child directory and
5494 * procname are dynamically allocated and could fail but the mode
5495 * will always be set. In the lowest directory the names are
5496 * static strings and all have proc handlers.
5498 for (entry
= *tablep
; entry
->mode
; entry
++) {
5500 sd_free_ctl_entry(&entry
->child
);
5501 if (entry
->proc_handler
== NULL
)
5502 kfree(entry
->procname
);
5510 set_table_entry(struct ctl_table
*entry
,
5511 const char *procname
, void *data
, int maxlen
,
5512 mode_t mode
, proc_handler
*proc_handler
)
5514 entry
->procname
= procname
;
5516 entry
->maxlen
= maxlen
;
5518 entry
->proc_handler
= proc_handler
;
5521 static struct ctl_table
*
5522 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5524 struct ctl_table
*table
= sd_alloc_ctl_entry(12);
5529 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5530 sizeof(long), 0644, proc_doulongvec_minmax
);
5531 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5532 sizeof(long), 0644, proc_doulongvec_minmax
);
5533 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5534 sizeof(int), 0644, proc_dointvec_minmax
);
5535 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5536 sizeof(int), 0644, proc_dointvec_minmax
);
5537 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5538 sizeof(int), 0644, proc_dointvec_minmax
);
5539 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5540 sizeof(int), 0644, proc_dointvec_minmax
);
5541 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5542 sizeof(int), 0644, proc_dointvec_minmax
);
5543 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5544 sizeof(int), 0644, proc_dointvec_minmax
);
5545 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5546 sizeof(int), 0644, proc_dointvec_minmax
);
5547 set_table_entry(&table
[9], "cache_nice_tries",
5548 &sd
->cache_nice_tries
,
5549 sizeof(int), 0644, proc_dointvec_minmax
);
5550 set_table_entry(&table
[10], "flags", &sd
->flags
,
5551 sizeof(int), 0644, proc_dointvec_minmax
);
5552 /* &table[11] is terminator */
5557 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5559 struct ctl_table
*entry
, *table
;
5560 struct sched_domain
*sd
;
5561 int domain_num
= 0, i
;
5564 for_each_domain(cpu
, sd
)
5566 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5571 for_each_domain(cpu
, sd
) {
5572 snprintf(buf
, 32, "domain%d", i
);
5573 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5575 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5582 static struct ctl_table_header
*sd_sysctl_header
;
5583 static void register_sched_domain_sysctl(void)
5585 int i
, cpu_num
= num_online_cpus();
5586 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5589 WARN_ON(sd_ctl_dir
[0].child
);
5590 sd_ctl_dir
[0].child
= entry
;
5595 for_each_online_cpu(i
) {
5596 snprintf(buf
, 32, "cpu%d", i
);
5597 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5599 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5603 WARN_ON(sd_sysctl_header
);
5604 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5607 /* may be called multiple times per register */
5608 static void unregister_sched_domain_sysctl(void)
5610 if (sd_sysctl_header
)
5611 unregister_sysctl_table(sd_sysctl_header
);
5612 sd_sysctl_header
= NULL
;
5613 if (sd_ctl_dir
[0].child
)
5614 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
5617 static void register_sched_domain_sysctl(void)
5620 static void unregister_sched_domain_sysctl(void)
5626 * migration_call - callback that gets triggered when a CPU is added.
5627 * Here we can start up the necessary migration thread for the new CPU.
5629 static int __cpuinit
5630 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5632 struct task_struct
*p
;
5633 int cpu
= (long)hcpu
;
5634 unsigned long flags
;
5639 case CPU_UP_PREPARE
:
5640 case CPU_UP_PREPARE_FROZEN
:
5641 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
5644 kthread_bind(p
, cpu
);
5645 /* Must be high prio: stop_machine expects to yield to it. */
5646 rq
= task_rq_lock(p
, &flags
);
5647 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5648 task_rq_unlock(rq
, &flags
);
5649 cpu_rq(cpu
)->migration_thread
= p
;
5653 case CPU_ONLINE_FROZEN
:
5654 /* Strictly unnecessary, as first user will wake it. */
5655 wake_up_process(cpu_rq(cpu
)->migration_thread
);
5658 #ifdef CONFIG_HOTPLUG_CPU
5659 case CPU_UP_CANCELED
:
5660 case CPU_UP_CANCELED_FROZEN
:
5661 if (!cpu_rq(cpu
)->migration_thread
)
5663 /* Unbind it from offline cpu so it can run. Fall thru. */
5664 kthread_bind(cpu_rq(cpu
)->migration_thread
,
5665 any_online_cpu(cpu_online_map
));
5666 kthread_stop(cpu_rq(cpu
)->migration_thread
);
5667 cpu_rq(cpu
)->migration_thread
= NULL
;
5671 case CPU_DEAD_FROZEN
:
5672 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5673 migrate_live_tasks(cpu
);
5675 kthread_stop(rq
->migration_thread
);
5676 rq
->migration_thread
= NULL
;
5677 /* Idle task back to normal (off runqueue, low prio) */
5678 spin_lock_irq(&rq
->lock
);
5679 update_rq_clock(rq
);
5680 deactivate_task(rq
, rq
->idle
, 0);
5681 rq
->idle
->static_prio
= MAX_PRIO
;
5682 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
5683 rq
->idle
->sched_class
= &idle_sched_class
;
5684 migrate_dead_tasks(cpu
);
5685 spin_unlock_irq(&rq
->lock
);
5687 migrate_nr_uninterruptible(rq
);
5688 BUG_ON(rq
->nr_running
!= 0);
5691 * No need to migrate the tasks: it was best-effort if
5692 * they didn't take sched_hotcpu_mutex. Just wake up
5695 spin_lock_irq(&rq
->lock
);
5696 while (!list_empty(&rq
->migration_queue
)) {
5697 struct migration_req
*req
;
5699 req
= list_entry(rq
->migration_queue
.next
,
5700 struct migration_req
, list
);
5701 list_del_init(&req
->list
);
5702 complete(&req
->done
);
5704 spin_unlock_irq(&rq
->lock
);
5711 /* Register at highest priority so that task migration (migrate_all_tasks)
5712 * happens before everything else.
5714 static struct notifier_block __cpuinitdata migration_notifier
= {
5715 .notifier_call
= migration_call
,
5719 void __init
migration_init(void)
5721 void *cpu
= (void *)(long)smp_processor_id();
5724 /* Start one for the boot CPU: */
5725 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5726 BUG_ON(err
== NOTIFY_BAD
);
5727 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5728 register_cpu_notifier(&migration_notifier
);
5734 /* Number of possible processor ids */
5735 int nr_cpu_ids __read_mostly
= NR_CPUS
;
5736 EXPORT_SYMBOL(nr_cpu_ids
);
5738 #ifdef CONFIG_SCHED_DEBUG
5740 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
)
5742 struct sched_group
*group
= sd
->groups
;
5743 cpumask_t groupmask
;
5746 cpumask_scnprintf(str
, NR_CPUS
, sd
->span
);
5747 cpus_clear(groupmask
);
5749 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
5751 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5752 printk("does not load-balance\n");
5754 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5759 printk(KERN_CONT
"span %s\n", str
);
5761 if (!cpu_isset(cpu
, sd
->span
)) {
5762 printk(KERN_ERR
"ERROR: domain->span does not contain "
5765 if (!cpu_isset(cpu
, group
->cpumask
)) {
5766 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5770 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
5774 printk(KERN_ERR
"ERROR: group is NULL\n");
5778 if (!group
->__cpu_power
) {
5779 printk(KERN_CONT
"\n");
5780 printk(KERN_ERR
"ERROR: domain->cpu_power not "
5785 if (!cpus_weight(group
->cpumask
)) {
5786 printk(KERN_CONT
"\n");
5787 printk(KERN_ERR
"ERROR: empty group\n");
5791 if (cpus_intersects(groupmask
, group
->cpumask
)) {
5792 printk(KERN_CONT
"\n");
5793 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5797 cpus_or(groupmask
, groupmask
, group
->cpumask
);
5799 cpumask_scnprintf(str
, NR_CPUS
, group
->cpumask
);
5800 printk(KERN_CONT
" %s", str
);
5802 group
= group
->next
;
5803 } while (group
!= sd
->groups
);
5804 printk(KERN_CONT
"\n");
5806 if (!cpus_equal(sd
->span
, groupmask
))
5807 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
5809 if (sd
->parent
&& !cpus_subset(groupmask
, sd
->parent
->span
))
5810 printk(KERN_ERR
"ERROR: parent span is not a superset "
5811 "of domain->span\n");
5815 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
5820 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
5824 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
5827 if (sched_domain_debug_one(sd
, cpu
, level
))
5836 # define sched_domain_debug(sd, cpu) do { } while (0)
5839 static int sd_degenerate(struct sched_domain
*sd
)
5841 if (cpus_weight(sd
->span
) == 1)
5844 /* Following flags need at least 2 groups */
5845 if (sd
->flags
& (SD_LOAD_BALANCE
|
5846 SD_BALANCE_NEWIDLE
|
5850 SD_SHARE_PKG_RESOURCES
)) {
5851 if (sd
->groups
!= sd
->groups
->next
)
5855 /* Following flags don't use groups */
5856 if (sd
->flags
& (SD_WAKE_IDLE
|
5865 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
5867 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
5869 if (sd_degenerate(parent
))
5872 if (!cpus_equal(sd
->span
, parent
->span
))
5875 /* Does parent contain flags not in child? */
5876 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5877 if (cflags
& SD_WAKE_AFFINE
)
5878 pflags
&= ~SD_WAKE_BALANCE
;
5879 /* Flags needing groups don't count if only 1 group in parent */
5880 if (parent
->groups
== parent
->groups
->next
) {
5881 pflags
&= ~(SD_LOAD_BALANCE
|
5882 SD_BALANCE_NEWIDLE
|
5886 SD_SHARE_PKG_RESOURCES
);
5888 if (~cflags
& pflags
)
5895 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5896 * hold the hotplug lock.
5898 static void cpu_attach_domain(struct sched_domain
*sd
, int cpu
)
5900 struct rq
*rq
= cpu_rq(cpu
);
5901 struct sched_domain
*tmp
;
5903 /* Remove the sched domains which do not contribute to scheduling. */
5904 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
5905 struct sched_domain
*parent
= tmp
->parent
;
5908 if (sd_parent_degenerate(tmp
, parent
)) {
5909 tmp
->parent
= parent
->parent
;
5911 parent
->parent
->child
= tmp
;
5915 if (sd
&& sd_degenerate(sd
)) {
5921 sched_domain_debug(sd
, cpu
);
5923 rcu_assign_pointer(rq
->sd
, sd
);
5926 /* cpus with isolated domains */
5927 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
5929 /* Setup the mask of cpus configured for isolated domains */
5930 static int __init
isolated_cpu_setup(char *str
)
5932 int ints
[NR_CPUS
], i
;
5934 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
5935 cpus_clear(cpu_isolated_map
);
5936 for (i
= 1; i
<= ints
[0]; i
++)
5937 if (ints
[i
] < NR_CPUS
)
5938 cpu_set(ints
[i
], cpu_isolated_map
);
5942 __setup("isolcpus=", isolated_cpu_setup
);
5945 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5946 * to a function which identifies what group(along with sched group) a CPU
5947 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5948 * (due to the fact that we keep track of groups covered with a cpumask_t).
5950 * init_sched_build_groups will build a circular linked list of the groups
5951 * covered by the given span, and will set each group's ->cpumask correctly,
5952 * and ->cpu_power to 0.
5955 init_sched_build_groups(cpumask_t span
, const cpumask_t
*cpu_map
,
5956 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
5957 struct sched_group
**sg
))
5959 struct sched_group
*first
= NULL
, *last
= NULL
;
5960 cpumask_t covered
= CPU_MASK_NONE
;
5963 for_each_cpu_mask(i
, span
) {
5964 struct sched_group
*sg
;
5965 int group
= group_fn(i
, cpu_map
, &sg
);
5968 if (cpu_isset(i
, covered
))
5971 sg
->cpumask
= CPU_MASK_NONE
;
5972 sg
->__cpu_power
= 0;
5974 for_each_cpu_mask(j
, span
) {
5975 if (group_fn(j
, cpu_map
, NULL
) != group
)
5978 cpu_set(j
, covered
);
5979 cpu_set(j
, sg
->cpumask
);
5990 #define SD_NODES_PER_DOMAIN 16
5995 * find_next_best_node - find the next node to include in a sched_domain
5996 * @node: node whose sched_domain we're building
5997 * @used_nodes: nodes already in the sched_domain
5999 * Find the next node to include in a given scheduling domain. Simply
6000 * finds the closest node not already in the @used_nodes map.
6002 * Should use nodemask_t.
6004 static int find_next_best_node(int node
, unsigned long *used_nodes
)
6006 int i
, n
, val
, min_val
, best_node
= 0;
6010 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6011 /* Start at @node */
6012 n
= (node
+ i
) % MAX_NUMNODES
;
6014 if (!nr_cpus_node(n
))
6017 /* Skip already used nodes */
6018 if (test_bit(n
, used_nodes
))
6021 /* Simple min distance search */
6022 val
= node_distance(node
, n
);
6024 if (val
< min_val
) {
6030 set_bit(best_node
, used_nodes
);
6035 * sched_domain_node_span - get a cpumask for a node's sched_domain
6036 * @node: node whose cpumask we're constructing
6037 * @size: number of nodes to include in this span
6039 * Given a node, construct a good cpumask for its sched_domain to span. It
6040 * should be one that prevents unnecessary balancing, but also spreads tasks
6043 static cpumask_t
sched_domain_node_span(int node
)
6045 DECLARE_BITMAP(used_nodes
, MAX_NUMNODES
);
6046 cpumask_t span
, nodemask
;
6050 bitmap_zero(used_nodes
, MAX_NUMNODES
);
6052 nodemask
= node_to_cpumask(node
);
6053 cpus_or(span
, span
, nodemask
);
6054 set_bit(node
, used_nodes
);
6056 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
6057 int next_node
= find_next_best_node(node
, used_nodes
);
6059 nodemask
= node_to_cpumask(next_node
);
6060 cpus_or(span
, span
, nodemask
);
6067 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
6070 * SMT sched-domains:
6072 #ifdef CONFIG_SCHED_SMT
6073 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
6074 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
6077 cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6080 *sg
= &per_cpu(sched_group_cpus
, cpu
);
6086 * multi-core sched-domains:
6088 #ifdef CONFIG_SCHED_MC
6089 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
6090 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
6093 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6095 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6098 cpumask_t mask
= per_cpu(cpu_sibling_map
, cpu
);
6099 cpus_and(mask
, mask
, *cpu_map
);
6100 group
= first_cpu(mask
);
6102 *sg
= &per_cpu(sched_group_core
, group
);
6105 #elif defined(CONFIG_SCHED_MC)
6107 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6110 *sg
= &per_cpu(sched_group_core
, cpu
);
6115 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
6116 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
6119 cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6122 #ifdef CONFIG_SCHED_MC
6123 cpumask_t mask
= cpu_coregroup_map(cpu
);
6124 cpus_and(mask
, mask
, *cpu_map
);
6125 group
= first_cpu(mask
);
6126 #elif defined(CONFIG_SCHED_SMT)
6127 cpumask_t mask
= per_cpu(cpu_sibling_map
, cpu
);
6128 cpus_and(mask
, mask
, *cpu_map
);
6129 group
= first_cpu(mask
);
6134 *sg
= &per_cpu(sched_group_phys
, group
);
6140 * The init_sched_build_groups can't handle what we want to do with node
6141 * groups, so roll our own. Now each node has its own list of groups which
6142 * gets dynamically allocated.
6144 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
6145 static struct sched_group
**sched_group_nodes_bycpu
[NR_CPUS
];
6147 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
6148 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
6150 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
6151 struct sched_group
**sg
)
6153 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(cpu
));
6156 cpus_and(nodemask
, nodemask
, *cpu_map
);
6157 group
= first_cpu(nodemask
);
6160 *sg
= &per_cpu(sched_group_allnodes
, group
);
6164 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
6166 struct sched_group
*sg
= group_head
;
6172 for_each_cpu_mask(j
, sg
->cpumask
) {
6173 struct sched_domain
*sd
;
6175 sd
= &per_cpu(phys_domains
, j
);
6176 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
6178 * Only add "power" once for each
6184 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
6187 } while (sg
!= group_head
);
6192 /* Free memory allocated for various sched_group structures */
6193 static void free_sched_groups(const cpumask_t
*cpu_map
)
6197 for_each_cpu_mask(cpu
, *cpu_map
) {
6198 struct sched_group
**sched_group_nodes
6199 = sched_group_nodes_bycpu
[cpu
];
6201 if (!sched_group_nodes
)
6204 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6205 cpumask_t nodemask
= node_to_cpumask(i
);
6206 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
6208 cpus_and(nodemask
, nodemask
, *cpu_map
);
6209 if (cpus_empty(nodemask
))
6219 if (oldsg
!= sched_group_nodes
[i
])
6222 kfree(sched_group_nodes
);
6223 sched_group_nodes_bycpu
[cpu
] = NULL
;
6227 static void free_sched_groups(const cpumask_t
*cpu_map
)
6233 * Initialize sched groups cpu_power.
6235 * cpu_power indicates the capacity of sched group, which is used while
6236 * distributing the load between different sched groups in a sched domain.
6237 * Typically cpu_power for all the groups in a sched domain will be same unless
6238 * there are asymmetries in the topology. If there are asymmetries, group
6239 * having more cpu_power will pickup more load compared to the group having
6242 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6243 * the maximum number of tasks a group can handle in the presence of other idle
6244 * or lightly loaded groups in the same sched domain.
6246 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
6248 struct sched_domain
*child
;
6249 struct sched_group
*group
;
6251 WARN_ON(!sd
|| !sd
->groups
);
6253 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
6258 sd
->groups
->__cpu_power
= 0;
6261 * For perf policy, if the groups in child domain share resources
6262 * (for example cores sharing some portions of the cache hierarchy
6263 * or SMT), then set this domain groups cpu_power such that each group
6264 * can handle only one task, when there are other idle groups in the
6265 * same sched domain.
6267 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
6269 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
6270 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
6275 * add cpu_power of each child group to this groups cpu_power
6277 group
= child
->groups
;
6279 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
6280 group
= group
->next
;
6281 } while (group
!= child
->groups
);
6285 * Build sched domains for a given set of cpus and attach the sched domains
6286 * to the individual cpus
6288 static int build_sched_domains(const cpumask_t
*cpu_map
)
6292 struct sched_group
**sched_group_nodes
= NULL
;
6293 int sd_allnodes
= 0;
6296 * Allocate the per-node list of sched groups
6298 sched_group_nodes
= kcalloc(MAX_NUMNODES
, sizeof(struct sched_group
*),
6300 if (!sched_group_nodes
) {
6301 printk(KERN_WARNING
"Can not alloc sched group node list\n");
6304 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
6308 * Set up domains for cpus specified by the cpu_map.
6310 for_each_cpu_mask(i
, *cpu_map
) {
6311 struct sched_domain
*sd
= NULL
, *p
;
6312 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(i
));
6314 cpus_and(nodemask
, nodemask
, *cpu_map
);
6317 if (cpus_weight(*cpu_map
) >
6318 SD_NODES_PER_DOMAIN
*cpus_weight(nodemask
)) {
6319 sd
= &per_cpu(allnodes_domains
, i
);
6320 *sd
= SD_ALLNODES_INIT
;
6321 sd
->span
= *cpu_map
;
6322 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
);
6328 sd
= &per_cpu(node_domains
, i
);
6330 sd
->span
= sched_domain_node_span(cpu_to_node(i
));
6334 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6338 sd
= &per_cpu(phys_domains
, i
);
6340 sd
->span
= nodemask
;
6344 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
);
6346 #ifdef CONFIG_SCHED_MC
6348 sd
= &per_cpu(core_domains
, i
);
6350 sd
->span
= cpu_coregroup_map(i
);
6351 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6354 cpu_to_core_group(i
, cpu_map
, &sd
->groups
);
6357 #ifdef CONFIG_SCHED_SMT
6359 sd
= &per_cpu(cpu_domains
, i
);
6360 *sd
= SD_SIBLING_INIT
;
6361 sd
->span
= per_cpu(cpu_sibling_map
, i
);
6362 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6365 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
);
6369 #ifdef CONFIG_SCHED_SMT
6370 /* Set up CPU (sibling) groups */
6371 for_each_cpu_mask(i
, *cpu_map
) {
6372 cpumask_t this_sibling_map
= per_cpu(cpu_sibling_map
, i
);
6373 cpus_and(this_sibling_map
, this_sibling_map
, *cpu_map
);
6374 if (i
!= first_cpu(this_sibling_map
))
6377 init_sched_build_groups(this_sibling_map
, cpu_map
,
6382 #ifdef CONFIG_SCHED_MC
6383 /* Set up multi-core groups */
6384 for_each_cpu_mask(i
, *cpu_map
) {
6385 cpumask_t this_core_map
= cpu_coregroup_map(i
);
6386 cpus_and(this_core_map
, this_core_map
, *cpu_map
);
6387 if (i
!= first_cpu(this_core_map
))
6389 init_sched_build_groups(this_core_map
, cpu_map
,
6390 &cpu_to_core_group
);
6394 /* Set up physical groups */
6395 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6396 cpumask_t nodemask
= node_to_cpumask(i
);
6398 cpus_and(nodemask
, nodemask
, *cpu_map
);
6399 if (cpus_empty(nodemask
))
6402 init_sched_build_groups(nodemask
, cpu_map
, &cpu_to_phys_group
);
6406 /* Set up node groups */
6408 init_sched_build_groups(*cpu_map
, cpu_map
,
6409 &cpu_to_allnodes_group
);
6411 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6412 /* Set up node groups */
6413 struct sched_group
*sg
, *prev
;
6414 cpumask_t nodemask
= node_to_cpumask(i
);
6415 cpumask_t domainspan
;
6416 cpumask_t covered
= CPU_MASK_NONE
;
6419 cpus_and(nodemask
, nodemask
, *cpu_map
);
6420 if (cpus_empty(nodemask
)) {
6421 sched_group_nodes
[i
] = NULL
;
6425 domainspan
= sched_domain_node_span(i
);
6426 cpus_and(domainspan
, domainspan
, *cpu_map
);
6428 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
6430 printk(KERN_WARNING
"Can not alloc domain group for "
6434 sched_group_nodes
[i
] = sg
;
6435 for_each_cpu_mask(j
, nodemask
) {
6436 struct sched_domain
*sd
;
6438 sd
= &per_cpu(node_domains
, j
);
6441 sg
->__cpu_power
= 0;
6442 sg
->cpumask
= nodemask
;
6444 cpus_or(covered
, covered
, nodemask
);
6447 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
6448 cpumask_t tmp
, notcovered
;
6449 int n
= (i
+ j
) % MAX_NUMNODES
;
6451 cpus_complement(notcovered
, covered
);
6452 cpus_and(tmp
, notcovered
, *cpu_map
);
6453 cpus_and(tmp
, tmp
, domainspan
);
6454 if (cpus_empty(tmp
))
6457 nodemask
= node_to_cpumask(n
);
6458 cpus_and(tmp
, tmp
, nodemask
);
6459 if (cpus_empty(tmp
))
6462 sg
= kmalloc_node(sizeof(struct sched_group
),
6466 "Can not alloc domain group for node %d\n", j
);
6469 sg
->__cpu_power
= 0;
6471 sg
->next
= prev
->next
;
6472 cpus_or(covered
, covered
, tmp
);
6479 /* Calculate CPU power for physical packages and nodes */
6480 #ifdef CONFIG_SCHED_SMT
6481 for_each_cpu_mask(i
, *cpu_map
) {
6482 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
6484 init_sched_groups_power(i
, sd
);
6487 #ifdef CONFIG_SCHED_MC
6488 for_each_cpu_mask(i
, *cpu_map
) {
6489 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
6491 init_sched_groups_power(i
, sd
);
6495 for_each_cpu_mask(i
, *cpu_map
) {
6496 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
6498 init_sched_groups_power(i
, sd
);
6502 for (i
= 0; i
< MAX_NUMNODES
; i
++)
6503 init_numa_sched_groups_power(sched_group_nodes
[i
]);
6506 struct sched_group
*sg
;
6508 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
);
6509 init_numa_sched_groups_power(sg
);
6513 /* Attach the domains */
6514 for_each_cpu_mask(i
, *cpu_map
) {
6515 struct sched_domain
*sd
;
6516 #ifdef CONFIG_SCHED_SMT
6517 sd
= &per_cpu(cpu_domains
, i
);
6518 #elif defined(CONFIG_SCHED_MC)
6519 sd
= &per_cpu(core_domains
, i
);
6521 sd
= &per_cpu(phys_domains
, i
);
6523 cpu_attach_domain(sd
, i
);
6530 free_sched_groups(cpu_map
);
6535 static cpumask_t
*doms_cur
; /* current sched domains */
6536 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
6539 * Special case: If a kmalloc of a doms_cur partition (array of
6540 * cpumask_t) fails, then fallback to a single sched domain,
6541 * as determined by the single cpumask_t fallback_doms.
6543 static cpumask_t fallback_doms
;
6546 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6547 * For now this just excludes isolated cpus, but could be used to
6548 * exclude other special cases in the future.
6550 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
6555 doms_cur
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
6557 doms_cur
= &fallback_doms
;
6558 cpus_andnot(*doms_cur
, *cpu_map
, cpu_isolated_map
);
6559 err
= build_sched_domains(doms_cur
);
6560 register_sched_domain_sysctl();
6565 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
)
6567 free_sched_groups(cpu_map
);
6571 * Detach sched domains from a group of cpus specified in cpu_map
6572 * These cpus will now be attached to the NULL domain
6574 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
6578 unregister_sched_domain_sysctl();
6580 for_each_cpu_mask(i
, *cpu_map
)
6581 cpu_attach_domain(NULL
, i
);
6582 synchronize_sched();
6583 arch_destroy_sched_domains(cpu_map
);
6587 * Partition sched domains as specified by the 'ndoms_new'
6588 * cpumasks in the array doms_new[] of cpumasks. This compares
6589 * doms_new[] to the current sched domain partitioning, doms_cur[].
6590 * It destroys each deleted domain and builds each new domain.
6592 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6593 * The masks don't intersect (don't overlap.) We should setup one
6594 * sched domain for each mask. CPUs not in any of the cpumasks will
6595 * not be load balanced. If the same cpumask appears both in the
6596 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6599 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6600 * ownership of it and will kfree it when done with it. If the caller
6601 * failed the kmalloc call, then it can pass in doms_new == NULL,
6602 * and partition_sched_domains() will fallback to the single partition
6605 * Call with hotplug lock held
6607 void partition_sched_domains(int ndoms_new
, cpumask_t
*doms_new
)
6613 /* always unregister in case we don't destroy any domains */
6614 unregister_sched_domain_sysctl();
6616 if (doms_new
== NULL
) {
6618 doms_new
= &fallback_doms
;
6619 cpus_andnot(doms_new
[0], cpu_online_map
, cpu_isolated_map
);
6622 /* Destroy deleted domains */
6623 for (i
= 0; i
< ndoms_cur
; i
++) {
6624 for (j
= 0; j
< ndoms_new
; j
++) {
6625 if (cpus_equal(doms_cur
[i
], doms_new
[j
]))
6628 /* no match - a current sched domain not in new doms_new[] */
6629 detach_destroy_domains(doms_cur
+ i
);
6634 /* Build new domains */
6635 for (i
= 0; i
< ndoms_new
; i
++) {
6636 for (j
= 0; j
< ndoms_cur
; j
++) {
6637 if (cpus_equal(doms_new
[i
], doms_cur
[j
]))
6640 /* no match - add a new doms_new */
6641 build_sched_domains(doms_new
+ i
);
6646 /* Remember the new sched domains */
6647 if (doms_cur
!= &fallback_doms
)
6649 doms_cur
= doms_new
;
6650 ndoms_cur
= ndoms_new
;
6652 register_sched_domain_sysctl();
6657 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6658 static int arch_reinit_sched_domains(void)
6663 detach_destroy_domains(&cpu_online_map
);
6664 err
= arch_init_sched_domains(&cpu_online_map
);
6670 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
6674 if (buf
[0] != '0' && buf
[0] != '1')
6678 sched_smt_power_savings
= (buf
[0] == '1');
6680 sched_mc_power_savings
= (buf
[0] == '1');
6682 ret
= arch_reinit_sched_domains();
6684 return ret
? ret
: count
;
6687 #ifdef CONFIG_SCHED_MC
6688 static ssize_t
sched_mc_power_savings_show(struct sys_device
*dev
, char *page
)
6690 return sprintf(page
, "%u\n", sched_mc_power_savings
);
6692 static ssize_t
sched_mc_power_savings_store(struct sys_device
*dev
,
6693 const char *buf
, size_t count
)
6695 return sched_power_savings_store(buf
, count
, 0);
6697 static SYSDEV_ATTR(sched_mc_power_savings
, 0644, sched_mc_power_savings_show
,
6698 sched_mc_power_savings_store
);
6701 #ifdef CONFIG_SCHED_SMT
6702 static ssize_t
sched_smt_power_savings_show(struct sys_device
*dev
, char *page
)
6704 return sprintf(page
, "%u\n", sched_smt_power_savings
);
6706 static ssize_t
sched_smt_power_savings_store(struct sys_device
*dev
,
6707 const char *buf
, size_t count
)
6709 return sched_power_savings_store(buf
, count
, 1);
6711 static SYSDEV_ATTR(sched_smt_power_savings
, 0644, sched_smt_power_savings_show
,
6712 sched_smt_power_savings_store
);
6715 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
6719 #ifdef CONFIG_SCHED_SMT
6721 err
= sysfs_create_file(&cls
->kset
.kobj
,
6722 &attr_sched_smt_power_savings
.attr
);
6724 #ifdef CONFIG_SCHED_MC
6725 if (!err
&& mc_capable())
6726 err
= sysfs_create_file(&cls
->kset
.kobj
,
6727 &attr_sched_mc_power_savings
.attr
);
6734 * Force a reinitialization of the sched domains hierarchy. The domains
6735 * and groups cannot be updated in place without racing with the balancing
6736 * code, so we temporarily attach all running cpus to the NULL domain
6737 * which will prevent rebalancing while the sched domains are recalculated.
6739 static int update_sched_domains(struct notifier_block
*nfb
,
6740 unsigned long action
, void *hcpu
)
6743 case CPU_UP_PREPARE
:
6744 case CPU_UP_PREPARE_FROZEN
:
6745 case CPU_DOWN_PREPARE
:
6746 case CPU_DOWN_PREPARE_FROZEN
:
6747 detach_destroy_domains(&cpu_online_map
);
6750 case CPU_UP_CANCELED
:
6751 case CPU_UP_CANCELED_FROZEN
:
6752 case CPU_DOWN_FAILED
:
6753 case CPU_DOWN_FAILED_FROZEN
:
6755 case CPU_ONLINE_FROZEN
:
6757 case CPU_DEAD_FROZEN
:
6759 * Fall through and re-initialise the domains.
6766 /* The hotplug lock is already held by cpu_up/cpu_down */
6767 arch_init_sched_domains(&cpu_online_map
);
6772 void __init
sched_init_smp(void)
6774 cpumask_t non_isolated_cpus
;
6777 arch_init_sched_domains(&cpu_online_map
);
6778 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
6779 if (cpus_empty(non_isolated_cpus
))
6780 cpu_set(smp_processor_id(), non_isolated_cpus
);
6782 /* XXX: Theoretical race here - CPU may be hotplugged now */
6783 hotcpu_notifier(update_sched_domains
, 0);
6785 /* Move init over to a non-isolated CPU */
6786 if (set_cpus_allowed(current
, non_isolated_cpus
) < 0)
6788 sched_init_granularity();
6790 #ifdef CONFIG_FAIR_GROUP_SCHED
6791 if (nr_cpu_ids
== 1)
6794 lb_monitor_task
= kthread_create(load_balance_monitor
, NULL
,
6796 if (!IS_ERR(lb_monitor_task
)) {
6797 lb_monitor_task
->flags
|= PF_NOFREEZE
;
6798 wake_up_process(lb_monitor_task
);
6800 printk(KERN_ERR
"Could not create load balance monitor thread"
6801 "(error = %ld) \n", PTR_ERR(lb_monitor_task
));
6806 void __init
sched_init_smp(void)
6808 sched_init_granularity();
6810 #endif /* CONFIG_SMP */
6812 int in_sched_functions(unsigned long addr
)
6814 return in_lock_functions(addr
) ||
6815 (addr
>= (unsigned long)__sched_text_start
6816 && addr
< (unsigned long)__sched_text_end
);
6819 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
6821 cfs_rq
->tasks_timeline
= RB_ROOT
;
6822 #ifdef CONFIG_FAIR_GROUP_SCHED
6825 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
6828 void __init
sched_init(void)
6830 int highest_cpu
= 0;
6833 for_each_possible_cpu(i
) {
6834 struct rt_prio_array
*array
;
6838 spin_lock_init(&rq
->lock
);
6839 lockdep_set_class(&rq
->lock
, &rq
->rq_lock_key
);
6842 init_cfs_rq(&rq
->cfs
, rq
);
6843 #ifdef CONFIG_FAIR_GROUP_SCHED
6844 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
6846 struct cfs_rq
*cfs_rq
= &per_cpu(init_cfs_rq
, i
);
6847 struct sched_entity
*se
=
6848 &per_cpu(init_sched_entity
, i
);
6850 init_cfs_rq_p
[i
] = cfs_rq
;
6851 init_cfs_rq(cfs_rq
, rq
);
6852 cfs_rq
->tg
= &init_task_group
;
6853 list_add(&cfs_rq
->leaf_cfs_rq_list
,
6854 &rq
->leaf_cfs_rq_list
);
6856 init_sched_entity_p
[i
] = se
;
6857 se
->cfs_rq
= &rq
->cfs
;
6859 se
->load
.weight
= init_task_group_load
;
6860 se
->load
.inv_weight
=
6861 div64_64(1ULL<<32, init_task_group_load
);
6864 init_task_group
.shares
= init_task_group_load
;
6867 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
6868 rq
->cpu_load
[j
] = 0;
6871 rq
->active_balance
= 0;
6872 rq
->next_balance
= jiffies
;
6875 rq
->migration_thread
= NULL
;
6876 INIT_LIST_HEAD(&rq
->migration_queue
);
6877 rq
->rt
.highest_prio
= MAX_RT_PRIO
;
6879 atomic_set(&rq
->nr_iowait
, 0);
6881 array
= &rq
->rt
.active
;
6882 for (j
= 0; j
< MAX_RT_PRIO
; j
++) {
6883 INIT_LIST_HEAD(array
->queue
+ j
);
6884 __clear_bit(j
, array
->bitmap
);
6887 /* delimiter for bitsearch: */
6888 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
6891 set_load_weight(&init_task
);
6893 #ifdef CONFIG_PREEMPT_NOTIFIERS
6894 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
6898 nr_cpu_ids
= highest_cpu
+ 1;
6899 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
, NULL
);
6902 #ifdef CONFIG_RT_MUTEXES
6903 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
6907 * The boot idle thread does lazy MMU switching as well:
6909 atomic_inc(&init_mm
.mm_count
);
6910 enter_lazy_tlb(&init_mm
, current
);
6913 * Make us the idle thread. Technically, schedule() should not be
6914 * called from this thread, however somewhere below it might be,
6915 * but because we are the idle thread, we just pick up running again
6916 * when this runqueue becomes "idle".
6918 init_idle(current
, smp_processor_id());
6920 * During early bootup we pretend to be a normal task:
6922 current
->sched_class
= &fair_sched_class
;
6925 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6926 void __might_sleep(char *file
, int line
)
6929 static unsigned long prev_jiffy
; /* ratelimiting */
6931 if ((in_atomic() || irqs_disabled()) &&
6932 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
6933 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
6935 prev_jiffy
= jiffies
;
6936 printk(KERN_ERR
"BUG: sleeping function called from invalid"
6937 " context at %s:%d\n", file
, line
);
6938 printk("in_atomic():%d, irqs_disabled():%d\n",
6939 in_atomic(), irqs_disabled());
6940 debug_show_held_locks(current
);
6941 if (irqs_disabled())
6942 print_irqtrace_events(current
);
6947 EXPORT_SYMBOL(__might_sleep
);
6950 #ifdef CONFIG_MAGIC_SYSRQ
6951 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
6954 update_rq_clock(rq
);
6955 on_rq
= p
->se
.on_rq
;
6957 deactivate_task(rq
, p
, 0);
6958 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
6960 activate_task(rq
, p
, 0);
6961 resched_task(rq
->curr
);
6965 void normalize_rt_tasks(void)
6967 struct task_struct
*g
, *p
;
6968 unsigned long flags
;
6971 read_lock_irq(&tasklist_lock
);
6972 do_each_thread(g
, p
) {
6974 * Only normalize user tasks:
6979 p
->se
.exec_start
= 0;
6980 #ifdef CONFIG_SCHEDSTATS
6981 p
->se
.wait_start
= 0;
6982 p
->se
.sleep_start
= 0;
6983 p
->se
.block_start
= 0;
6985 task_rq(p
)->clock
= 0;
6989 * Renice negative nice level userspace
6992 if (TASK_NICE(p
) < 0 && p
->mm
)
6993 set_user_nice(p
, 0);
6997 spin_lock_irqsave(&p
->pi_lock
, flags
);
6998 rq
= __task_rq_lock(p
);
7000 normalize_task(rq
, p
);
7002 __task_rq_unlock(rq
);
7003 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
7004 } while_each_thread(g
, p
);
7006 read_unlock_irq(&tasklist_lock
);
7009 #endif /* CONFIG_MAGIC_SYSRQ */
7013 * These functions are only useful for the IA64 MCA handling.
7015 * They can only be called when the whole system has been
7016 * stopped - every CPU needs to be quiescent, and no scheduling
7017 * activity can take place. Using them for anything else would
7018 * be a serious bug, and as a result, they aren't even visible
7019 * under any other configuration.
7023 * curr_task - return the current task for a given cpu.
7024 * @cpu: the processor in question.
7026 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7028 struct task_struct
*curr_task(int cpu
)
7030 return cpu_curr(cpu
);
7034 * set_curr_task - set the current task for a given cpu.
7035 * @cpu: the processor in question.
7036 * @p: the task pointer to set.
7038 * Description: This function must only be used when non-maskable interrupts
7039 * are serviced on a separate stack. It allows the architecture to switch the
7040 * notion of the current task on a cpu in a non-blocking manner. This function
7041 * must be called with all CPU's synchronized, and interrupts disabled, the
7042 * and caller must save the original value of the current task (see
7043 * curr_task() above) and restore that value before reenabling interrupts and
7044 * re-starting the system.
7046 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7048 void set_curr_task(int cpu
, struct task_struct
*p
)
7055 #ifdef CONFIG_FAIR_GROUP_SCHED
7059 * distribute shares of all task groups among their schedulable entities,
7060 * to reflect load distrbution across cpus.
7062 static int rebalance_shares(struct sched_domain
*sd
, int this_cpu
)
7064 struct cfs_rq
*cfs_rq
;
7065 struct rq
*rq
= cpu_rq(this_cpu
);
7066 cpumask_t sdspan
= sd
->span
;
7069 /* Walk thr' all the task groups that we have */
7070 for_each_leaf_cfs_rq(rq
, cfs_rq
) {
7072 unsigned long total_load
= 0, total_shares
;
7073 struct task_group
*tg
= cfs_rq
->tg
;
7075 /* Gather total task load of this group across cpus */
7076 for_each_cpu_mask(i
, sdspan
)
7077 total_load
+= tg
->cfs_rq
[i
]->load
.weight
;
7079 /* Nothing to do if this group has no load */
7084 * tg->shares represents the number of cpu shares the task group
7085 * is eligible to hold on a single cpu. On N cpus, it is
7086 * eligible to hold (N * tg->shares) number of cpu shares.
7088 total_shares
= tg
->shares
* cpus_weight(sdspan
);
7091 * redistribute total_shares across cpus as per the task load
7094 for_each_cpu_mask(i
, sdspan
) {
7095 unsigned long local_load
, local_shares
;
7097 local_load
= tg
->cfs_rq
[i
]->load
.weight
;
7098 local_shares
= (local_load
* total_shares
) / total_load
;
7100 local_shares
= MIN_GROUP_SHARES
;
7101 if (local_shares
== tg
->se
[i
]->load
.weight
)
7104 spin_lock_irq(&cpu_rq(i
)->lock
);
7105 set_se_shares(tg
->se
[i
], local_shares
);
7106 spin_unlock_irq(&cpu_rq(i
)->lock
);
7115 * How frequently should we rebalance_shares() across cpus?
7117 * The more frequently we rebalance shares, the more accurate is the fairness
7118 * of cpu bandwidth distribution between task groups. However higher frequency
7119 * also implies increased scheduling overhead.
7121 * sysctl_sched_min_bal_int_shares represents the minimum interval between
7122 * consecutive calls to rebalance_shares() in the same sched domain.
7124 * sysctl_sched_max_bal_int_shares represents the maximum interval between
7125 * consecutive calls to rebalance_shares() in the same sched domain.
7127 * These settings allows for the appropriate tradeoff between accuracy of
7128 * fairness and the associated overhead.
7132 /* default: 8ms, units: milliseconds */
7133 const_debug
unsigned int sysctl_sched_min_bal_int_shares
= 8;
7135 /* default: 128ms, units: milliseconds */
7136 const_debug
unsigned int sysctl_sched_max_bal_int_shares
= 128;
7138 /* kernel thread that runs rebalance_shares() periodically */
7139 static int load_balance_monitor(void *unused
)
7141 unsigned int timeout
= sysctl_sched_min_bal_int_shares
;
7142 struct sched_param schedparm
;
7146 * We don't want this thread's execution to be limited by the shares
7147 * assigned to default group (init_task_group). Hence make it run
7148 * as a SCHED_RR RT task at the lowest priority.
7150 schedparm
.sched_priority
= 1;
7151 ret
= sched_setscheduler(current
, SCHED_RR
, &schedparm
);
7153 printk(KERN_ERR
"Couldn't set SCHED_RR policy for load balance"
7154 " monitor thread (error = %d) \n", ret
);
7156 while (!kthread_should_stop()) {
7157 int i
, cpu
, balanced
= 1;
7159 /* Prevent cpus going down or coming up */
7161 /* lockout changes to doms_cur[] array */
7164 * Enter a rcu read-side critical section to safely walk rq->sd
7165 * chain on various cpus and to walk task group list
7166 * (rq->leaf_cfs_rq_list) in rebalance_shares().
7170 for (i
= 0; i
< ndoms_cur
; i
++) {
7171 cpumask_t cpumap
= doms_cur
[i
];
7172 struct sched_domain
*sd
= NULL
, *sd_prev
= NULL
;
7174 cpu
= first_cpu(cpumap
);
7176 /* Find the highest domain at which to balance shares */
7177 for_each_domain(cpu
, sd
) {
7178 if (!(sd
->flags
& SD_LOAD_BALANCE
))
7184 /* sd == NULL? No load balance reqd in this domain */
7188 balanced
&= rebalance_shares(sd
, cpu
);
7197 timeout
= sysctl_sched_min_bal_int_shares
;
7198 else if (timeout
< sysctl_sched_max_bal_int_shares
)
7201 msleep_interruptible(timeout
);
7206 #endif /* CONFIG_SMP */
7208 /* allocate runqueue etc for a new task group */
7209 struct task_group
*sched_create_group(void)
7211 struct task_group
*tg
;
7212 struct cfs_rq
*cfs_rq
;
7213 struct sched_entity
*se
;
7217 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
7219 return ERR_PTR(-ENOMEM
);
7221 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * NR_CPUS
, GFP_KERNEL
);
7224 tg
->se
= kzalloc(sizeof(se
) * NR_CPUS
, GFP_KERNEL
);
7228 for_each_possible_cpu(i
) {
7231 cfs_rq
= kmalloc_node(sizeof(struct cfs_rq
), GFP_KERNEL
,
7236 se
= kmalloc_node(sizeof(struct sched_entity
), GFP_KERNEL
,
7241 memset(cfs_rq
, 0, sizeof(struct cfs_rq
));
7242 memset(se
, 0, sizeof(struct sched_entity
));
7244 tg
->cfs_rq
[i
] = cfs_rq
;
7245 init_cfs_rq(cfs_rq
, rq
);
7249 se
->cfs_rq
= &rq
->cfs
;
7251 se
->load
.weight
= NICE_0_LOAD
;
7252 se
->load
.inv_weight
= div64_64(1ULL<<32, NICE_0_LOAD
);
7256 tg
->shares
= NICE_0_LOAD
;
7258 lock_task_group_list();
7259 for_each_possible_cpu(i
) {
7261 cfs_rq
= tg
->cfs_rq
[i
];
7262 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
7264 unlock_task_group_list();
7269 for_each_possible_cpu(i
) {
7271 kfree(tg
->cfs_rq
[i
]);
7279 return ERR_PTR(-ENOMEM
);
7282 /* rcu callback to free various structures associated with a task group */
7283 static void free_sched_group(struct rcu_head
*rhp
)
7285 struct task_group
*tg
= container_of(rhp
, struct task_group
, rcu
);
7286 struct cfs_rq
*cfs_rq
;
7287 struct sched_entity
*se
;
7290 /* now it should be safe to free those cfs_rqs */
7291 for_each_possible_cpu(i
) {
7292 cfs_rq
= tg
->cfs_rq
[i
];
7304 /* Destroy runqueue etc associated with a task group */
7305 void sched_destroy_group(struct task_group
*tg
)
7307 struct cfs_rq
*cfs_rq
= NULL
;
7310 lock_task_group_list();
7311 for_each_possible_cpu(i
) {
7312 cfs_rq
= tg
->cfs_rq
[i
];
7313 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
7315 unlock_task_group_list();
7319 /* wait for possible concurrent references to cfs_rqs complete */
7320 call_rcu(&tg
->rcu
, free_sched_group
);
7323 /* change task's runqueue when it moves between groups.
7324 * The caller of this function should have put the task in its new group
7325 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7326 * reflect its new group.
7328 void sched_move_task(struct task_struct
*tsk
)
7331 unsigned long flags
;
7334 rq
= task_rq_lock(tsk
, &flags
);
7336 if (tsk
->sched_class
!= &fair_sched_class
) {
7337 set_task_cfs_rq(tsk
, task_cpu(tsk
));
7341 update_rq_clock(rq
);
7343 running
= task_current(rq
, tsk
);
7344 on_rq
= tsk
->se
.on_rq
;
7347 dequeue_task(rq
, tsk
, 0);
7348 if (unlikely(running
))
7349 tsk
->sched_class
->put_prev_task(rq
, tsk
);
7352 set_task_cfs_rq(tsk
, task_cpu(tsk
));
7355 if (unlikely(running
))
7356 tsk
->sched_class
->set_curr_task(rq
);
7357 enqueue_task(rq
, tsk
, 0);
7361 task_rq_unlock(rq
, &flags
);
7364 /* rq->lock to be locked by caller */
7365 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
7367 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
7368 struct rq
*rq
= cfs_rq
->rq
;
7372 shares
= MIN_GROUP_SHARES
;
7376 dequeue_entity(cfs_rq
, se
, 0);
7377 dec_cpu_load(rq
, se
->load
.weight
);
7380 se
->load
.weight
= shares
;
7381 se
->load
.inv_weight
= div64_64((1ULL<<32), shares
);
7384 enqueue_entity(cfs_rq
, se
, 0);
7385 inc_cpu_load(rq
, se
->load
.weight
);
7389 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
7392 struct cfs_rq
*cfs_rq
;
7395 lock_task_group_list();
7396 if (tg
->shares
== shares
)
7399 if (shares
< MIN_GROUP_SHARES
)
7400 shares
= MIN_GROUP_SHARES
;
7403 * Prevent any load balance activity (rebalance_shares,
7404 * load_balance_fair) from referring to this group first,
7405 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
7407 for_each_possible_cpu(i
) {
7408 cfs_rq
= tg
->cfs_rq
[i
];
7409 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
7412 /* wait for any ongoing reference to this group to finish */
7413 synchronize_sched();
7416 * Now we are free to modify the group's share on each cpu
7417 * w/o tripping rebalance_share or load_balance_fair.
7419 tg
->shares
= shares
;
7420 for_each_possible_cpu(i
) {
7421 spin_lock_irq(&cpu_rq(i
)->lock
);
7422 set_se_shares(tg
->se
[i
], shares
);
7423 spin_unlock_irq(&cpu_rq(i
)->lock
);
7427 * Enable load balance activity on this group, by inserting it back on
7428 * each cpu's rq->leaf_cfs_rq_list.
7430 for_each_possible_cpu(i
) {
7432 cfs_rq
= tg
->cfs_rq
[i
];
7433 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
7436 unlock_task_group_list();
7440 unsigned long sched_group_shares(struct task_group
*tg
)
7445 #endif /* CONFIG_FAIR_GROUP_SCHED */
7447 #ifdef CONFIG_FAIR_CGROUP_SCHED
7449 /* return corresponding task_group object of a cgroup */
7450 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
7452 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
7453 struct task_group
, css
);
7456 static struct cgroup_subsys_state
*
7457 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
7459 struct task_group
*tg
;
7461 if (!cgrp
->parent
) {
7462 /* This is early initialization for the top cgroup */
7463 init_task_group
.css
.cgroup
= cgrp
;
7464 return &init_task_group
.css
;
7467 /* we support only 1-level deep hierarchical scheduler atm */
7468 if (cgrp
->parent
->parent
)
7469 return ERR_PTR(-EINVAL
);
7471 tg
= sched_create_group();
7473 return ERR_PTR(-ENOMEM
);
7475 /* Bind the cgroup to task_group object we just created */
7476 tg
->css
.cgroup
= cgrp
;
7482 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
7484 struct task_group
*tg
= cgroup_tg(cgrp
);
7486 sched_destroy_group(tg
);
7490 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
7491 struct task_struct
*tsk
)
7493 /* We don't support RT-tasks being in separate groups */
7494 if (tsk
->sched_class
!= &fair_sched_class
)
7501 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
7502 struct cgroup
*old_cont
, struct task_struct
*tsk
)
7504 sched_move_task(tsk
);
7507 static int cpu_shares_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
7510 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
7513 static u64
cpu_shares_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
7515 struct task_group
*tg
= cgroup_tg(cgrp
);
7517 return (u64
) tg
->shares
;
7520 static struct cftype cpu_files
[] = {
7523 .read_uint
= cpu_shares_read_uint
,
7524 .write_uint
= cpu_shares_write_uint
,
7528 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
7530 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
7533 struct cgroup_subsys cpu_cgroup_subsys
= {
7535 .create
= cpu_cgroup_create
,
7536 .destroy
= cpu_cgroup_destroy
,
7537 .can_attach
= cpu_cgroup_can_attach
,
7538 .attach
= cpu_cgroup_attach
,
7539 .populate
= cpu_cgroup_populate
,
7540 .subsys_id
= cpu_cgroup_subsys_id
,
7544 #endif /* CONFIG_FAIR_CGROUP_SCHED */
7546 #ifdef CONFIG_CGROUP_CPUACCT
7549 * CPU accounting code for task groups.
7551 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7552 * (balbir@in.ibm.com).
7555 /* track cpu usage of a group of tasks */
7557 struct cgroup_subsys_state css
;
7558 /* cpuusage holds pointer to a u64-type object on every cpu */
7562 struct cgroup_subsys cpuacct_subsys
;
7564 /* return cpu accounting group corresponding to this container */
7565 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cont
)
7567 return container_of(cgroup_subsys_state(cont
, cpuacct_subsys_id
),
7568 struct cpuacct
, css
);
7571 /* return cpu accounting group to which this task belongs */
7572 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
7574 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
7575 struct cpuacct
, css
);
7578 /* create a new cpu accounting group */
7579 static struct cgroup_subsys_state
*cpuacct_create(
7580 struct cgroup_subsys
*ss
, struct cgroup
*cont
)
7582 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
7585 return ERR_PTR(-ENOMEM
);
7587 ca
->cpuusage
= alloc_percpu(u64
);
7588 if (!ca
->cpuusage
) {
7590 return ERR_PTR(-ENOMEM
);
7596 /* destroy an existing cpu accounting group */
7598 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
7600 struct cpuacct
*ca
= cgroup_ca(cont
);
7602 free_percpu(ca
->cpuusage
);
7606 /* return total cpu usage (in nanoseconds) of a group */
7607 static u64
cpuusage_read(struct cgroup
*cont
, struct cftype
*cft
)
7609 struct cpuacct
*ca
= cgroup_ca(cont
);
7610 u64 totalcpuusage
= 0;
7613 for_each_possible_cpu(i
) {
7614 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, i
);
7617 * Take rq->lock to make 64-bit addition safe on 32-bit
7620 spin_lock_irq(&cpu_rq(i
)->lock
);
7621 totalcpuusage
+= *cpuusage
;
7622 spin_unlock_irq(&cpu_rq(i
)->lock
);
7625 return totalcpuusage
;
7628 static struct cftype files
[] = {
7631 .read_uint
= cpuusage_read
,
7635 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
7637 return cgroup_add_files(cont
, ss
, files
, ARRAY_SIZE(files
));
7641 * charge this task's execution time to its accounting group.
7643 * called with rq->lock held.
7645 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
7649 if (!cpuacct_subsys
.active
)
7654 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, task_cpu(tsk
));
7656 *cpuusage
+= cputime
;
7660 struct cgroup_subsys cpuacct_subsys
= {
7662 .create
= cpuacct_create
,
7663 .destroy
= cpuacct_destroy
,
7664 .populate
= cpuacct_populate
,
7665 .subsys_id
= cpuacct_subsys_id
,
7667 #endif /* CONFIG_CGROUP_CPUACCT */