Merge branch 'from-linus' into upstream
[linux-2.6/sactl.git] / kernel / exit.c
blobe95b932822109e6bd517eee9a67876fedc91b426
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/config.h>
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/interrupt.h>
11 #include <linux/smp_lock.h>
12 #include <linux/module.h>
13 #include <linux/capability.h>
14 #include <linux/completion.h>
15 #include <linux/personality.h>
16 #include <linux/tty.h>
17 #include <linux/namespace.h>
18 #include <linux/key.h>
19 #include <linux/security.h>
20 #include <linux/cpu.h>
21 #include <linux/acct.h>
22 #include <linux/file.h>
23 #include <linux/binfmts.h>
24 #include <linux/ptrace.h>
25 #include <linux/profile.h>
26 #include <linux/mount.h>
27 #include <linux/proc_fs.h>
28 #include <linux/mempolicy.h>
29 #include <linux/cpuset.h>
30 #include <linux/syscalls.h>
31 #include <linux/signal.h>
32 #include <linux/posix-timers.h>
33 #include <linux/cn_proc.h>
34 #include <linux/mutex.h>
35 #include <linux/futex.h>
36 #include <linux/compat.h>
37 #include <linux/pipe_fs_i.h>
38 #include <linux/audit.h> /* for audit_free() */
40 #include <asm/uaccess.h>
41 #include <asm/unistd.h>
42 #include <asm/pgtable.h>
43 #include <asm/mmu_context.h>
45 extern void sem_exit (void);
46 extern struct task_struct *child_reaper;
48 int getrusage(struct task_struct *, int, struct rusage __user *);
50 static void exit_mm(struct task_struct * tsk);
52 static void __unhash_process(struct task_struct *p)
54 nr_threads--;
55 detach_pid(p, PIDTYPE_PID);
56 if (thread_group_leader(p)) {
57 detach_pid(p, PIDTYPE_PGID);
58 detach_pid(p, PIDTYPE_SID);
60 list_del_rcu(&p->tasks);
61 __get_cpu_var(process_counts)--;
63 list_del_rcu(&p->thread_group);
64 remove_parent(p);
68 * This function expects the tasklist_lock write-locked.
70 static void __exit_signal(struct task_struct *tsk)
72 struct signal_struct *sig = tsk->signal;
73 struct sighand_struct *sighand;
75 BUG_ON(!sig);
76 BUG_ON(!atomic_read(&sig->count));
78 rcu_read_lock();
79 sighand = rcu_dereference(tsk->sighand);
80 spin_lock(&sighand->siglock);
82 posix_cpu_timers_exit(tsk);
83 if (atomic_dec_and_test(&sig->count))
84 posix_cpu_timers_exit_group(tsk);
85 else {
87 * If there is any task waiting for the group exit
88 * then notify it:
90 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
91 wake_up_process(sig->group_exit_task);
92 sig->group_exit_task = NULL;
94 if (tsk == sig->curr_target)
95 sig->curr_target = next_thread(tsk);
97 * Accumulate here the counters for all threads but the
98 * group leader as they die, so they can be added into
99 * the process-wide totals when those are taken.
100 * The group leader stays around as a zombie as long
101 * as there are other threads. When it gets reaped,
102 * the exit.c code will add its counts into these totals.
103 * We won't ever get here for the group leader, since it
104 * will have been the last reference on the signal_struct.
106 sig->utime = cputime_add(sig->utime, tsk->utime);
107 sig->stime = cputime_add(sig->stime, tsk->stime);
108 sig->min_flt += tsk->min_flt;
109 sig->maj_flt += tsk->maj_flt;
110 sig->nvcsw += tsk->nvcsw;
111 sig->nivcsw += tsk->nivcsw;
112 sig->sched_time += tsk->sched_time;
113 sig = NULL; /* Marker for below. */
116 __unhash_process(tsk);
118 tsk->signal = NULL;
119 tsk->sighand = NULL;
120 spin_unlock(&sighand->siglock);
121 rcu_read_unlock();
123 __cleanup_sighand(sighand);
124 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
125 flush_sigqueue(&tsk->pending);
126 if (sig) {
127 flush_sigqueue(&sig->shared_pending);
128 __cleanup_signal(sig);
132 static void delayed_put_task_struct(struct rcu_head *rhp)
134 put_task_struct(container_of(rhp, struct task_struct, rcu));
137 void release_task(struct task_struct * p)
139 int zap_leader;
140 task_t *leader;
141 struct dentry *proc_dentry;
143 repeat:
144 atomic_dec(&p->user->processes);
145 spin_lock(&p->proc_lock);
146 proc_dentry = proc_pid_unhash(p);
147 write_lock_irq(&tasklist_lock);
148 ptrace_unlink(p);
149 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
150 __exit_signal(p);
153 * If we are the last non-leader member of the thread
154 * group, and the leader is zombie, then notify the
155 * group leader's parent process. (if it wants notification.)
157 zap_leader = 0;
158 leader = p->group_leader;
159 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
160 BUG_ON(leader->exit_signal == -1);
161 do_notify_parent(leader, leader->exit_signal);
163 * If we were the last child thread and the leader has
164 * exited already, and the leader's parent ignores SIGCHLD,
165 * then we are the one who should release the leader.
167 * do_notify_parent() will have marked it self-reaping in
168 * that case.
170 zap_leader = (leader->exit_signal == -1);
173 sched_exit(p);
174 write_unlock_irq(&tasklist_lock);
175 spin_unlock(&p->proc_lock);
176 proc_pid_flush(proc_dentry);
177 release_thread(p);
178 call_rcu(&p->rcu, delayed_put_task_struct);
180 p = leader;
181 if (unlikely(zap_leader))
182 goto repeat;
186 * This checks not only the pgrp, but falls back on the pid if no
187 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
188 * without this...
190 int session_of_pgrp(int pgrp)
192 struct task_struct *p;
193 int sid = -1;
195 read_lock(&tasklist_lock);
196 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
197 if (p->signal->session > 0) {
198 sid = p->signal->session;
199 goto out;
201 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
202 p = find_task_by_pid(pgrp);
203 if (p)
204 sid = p->signal->session;
205 out:
206 read_unlock(&tasklist_lock);
208 return sid;
212 * Determine if a process group is "orphaned", according to the POSIX
213 * definition in 2.2.2.52. Orphaned process groups are not to be affected
214 * by terminal-generated stop signals. Newly orphaned process groups are
215 * to receive a SIGHUP and a SIGCONT.
217 * "I ask you, have you ever known what it is to be an orphan?"
219 static int will_become_orphaned_pgrp(int pgrp, task_t *ignored_task)
221 struct task_struct *p;
222 int ret = 1;
224 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
225 if (p == ignored_task
226 || p->exit_state
227 || p->real_parent->pid == 1)
228 continue;
229 if (process_group(p->real_parent) != pgrp
230 && p->real_parent->signal->session == p->signal->session) {
231 ret = 0;
232 break;
234 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
235 return ret; /* (sighing) "Often!" */
238 int is_orphaned_pgrp(int pgrp)
240 int retval;
242 read_lock(&tasklist_lock);
243 retval = will_become_orphaned_pgrp(pgrp, NULL);
244 read_unlock(&tasklist_lock);
246 return retval;
249 static int has_stopped_jobs(int pgrp)
251 int retval = 0;
252 struct task_struct *p;
254 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
255 if (p->state != TASK_STOPPED)
256 continue;
258 /* If p is stopped by a debugger on a signal that won't
259 stop it, then don't count p as stopped. This isn't
260 perfect but it's a good approximation. */
261 if (unlikely (p->ptrace)
262 && p->exit_code != SIGSTOP
263 && p->exit_code != SIGTSTP
264 && p->exit_code != SIGTTOU
265 && p->exit_code != SIGTTIN)
266 continue;
268 retval = 1;
269 break;
270 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
271 return retval;
275 * reparent_to_init - Reparent the calling kernel thread to the init task.
277 * If a kernel thread is launched as a result of a system call, or if
278 * it ever exits, it should generally reparent itself to init so that
279 * it is correctly cleaned up on exit.
281 * The various task state such as scheduling policy and priority may have
282 * been inherited from a user process, so we reset them to sane values here.
284 * NOTE that reparent_to_init() gives the caller full capabilities.
286 static void reparent_to_init(void)
288 write_lock_irq(&tasklist_lock);
290 ptrace_unlink(current);
291 /* Reparent to init */
292 remove_parent(current);
293 current->parent = child_reaper;
294 current->real_parent = child_reaper;
295 add_parent(current);
297 /* Set the exit signal to SIGCHLD so we signal init on exit */
298 current->exit_signal = SIGCHLD;
300 if ((current->policy == SCHED_NORMAL ||
301 current->policy == SCHED_BATCH)
302 && (task_nice(current) < 0))
303 set_user_nice(current, 0);
304 /* cpus_allowed? */
305 /* rt_priority? */
306 /* signals? */
307 security_task_reparent_to_init(current);
308 memcpy(current->signal->rlim, init_task.signal->rlim,
309 sizeof(current->signal->rlim));
310 atomic_inc(&(INIT_USER->__count));
311 write_unlock_irq(&tasklist_lock);
312 switch_uid(INIT_USER);
315 void __set_special_pids(pid_t session, pid_t pgrp)
317 struct task_struct *curr = current->group_leader;
319 if (curr->signal->session != session) {
320 detach_pid(curr, PIDTYPE_SID);
321 curr->signal->session = session;
322 attach_pid(curr, PIDTYPE_SID, session);
324 if (process_group(curr) != pgrp) {
325 detach_pid(curr, PIDTYPE_PGID);
326 curr->signal->pgrp = pgrp;
327 attach_pid(curr, PIDTYPE_PGID, pgrp);
331 void set_special_pids(pid_t session, pid_t pgrp)
333 write_lock_irq(&tasklist_lock);
334 __set_special_pids(session, pgrp);
335 write_unlock_irq(&tasklist_lock);
339 * Let kernel threads use this to say that they
340 * allow a certain signal (since daemonize() will
341 * have disabled all of them by default).
343 int allow_signal(int sig)
345 if (!valid_signal(sig) || sig < 1)
346 return -EINVAL;
348 spin_lock_irq(&current->sighand->siglock);
349 sigdelset(&current->blocked, sig);
350 if (!current->mm) {
351 /* Kernel threads handle their own signals.
352 Let the signal code know it'll be handled, so
353 that they don't get converted to SIGKILL or
354 just silently dropped */
355 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
357 recalc_sigpending();
358 spin_unlock_irq(&current->sighand->siglock);
359 return 0;
362 EXPORT_SYMBOL(allow_signal);
364 int disallow_signal(int sig)
366 if (!valid_signal(sig) || sig < 1)
367 return -EINVAL;
369 spin_lock_irq(&current->sighand->siglock);
370 sigaddset(&current->blocked, sig);
371 recalc_sigpending();
372 spin_unlock_irq(&current->sighand->siglock);
373 return 0;
376 EXPORT_SYMBOL(disallow_signal);
379 * Put all the gunge required to become a kernel thread without
380 * attached user resources in one place where it belongs.
383 void daemonize(const char *name, ...)
385 va_list args;
386 struct fs_struct *fs;
387 sigset_t blocked;
389 va_start(args, name);
390 vsnprintf(current->comm, sizeof(current->comm), name, args);
391 va_end(args);
394 * If we were started as result of loading a module, close all of the
395 * user space pages. We don't need them, and if we didn't close them
396 * they would be locked into memory.
398 exit_mm(current);
400 set_special_pids(1, 1);
401 mutex_lock(&tty_mutex);
402 current->signal->tty = NULL;
403 mutex_unlock(&tty_mutex);
405 /* Block and flush all signals */
406 sigfillset(&blocked);
407 sigprocmask(SIG_BLOCK, &blocked, NULL);
408 flush_signals(current);
410 /* Become as one with the init task */
412 exit_fs(current); /* current->fs->count--; */
413 fs = init_task.fs;
414 current->fs = fs;
415 atomic_inc(&fs->count);
416 exit_namespace(current);
417 current->namespace = init_task.namespace;
418 get_namespace(current->namespace);
419 exit_files(current);
420 current->files = init_task.files;
421 atomic_inc(&current->files->count);
423 reparent_to_init();
426 EXPORT_SYMBOL(daemonize);
428 static void close_files(struct files_struct * files)
430 int i, j;
431 struct fdtable *fdt;
433 j = 0;
436 * It is safe to dereference the fd table without RCU or
437 * ->file_lock because this is the last reference to the
438 * files structure.
440 fdt = files_fdtable(files);
441 for (;;) {
442 unsigned long set;
443 i = j * __NFDBITS;
444 if (i >= fdt->max_fdset || i >= fdt->max_fds)
445 break;
446 set = fdt->open_fds->fds_bits[j++];
447 while (set) {
448 if (set & 1) {
449 struct file * file = xchg(&fdt->fd[i], NULL);
450 if (file)
451 filp_close(file, files);
453 i++;
454 set >>= 1;
459 struct files_struct *get_files_struct(struct task_struct *task)
461 struct files_struct *files;
463 task_lock(task);
464 files = task->files;
465 if (files)
466 atomic_inc(&files->count);
467 task_unlock(task);
469 return files;
472 void fastcall put_files_struct(struct files_struct *files)
474 struct fdtable *fdt;
476 if (atomic_dec_and_test(&files->count)) {
477 close_files(files);
479 * Free the fd and fdset arrays if we expanded them.
480 * If the fdtable was embedded, pass files for freeing
481 * at the end of the RCU grace period. Otherwise,
482 * you can free files immediately.
484 fdt = files_fdtable(files);
485 if (fdt == &files->fdtab)
486 fdt->free_files = files;
487 else
488 kmem_cache_free(files_cachep, files);
489 free_fdtable(fdt);
493 EXPORT_SYMBOL(put_files_struct);
495 static inline void __exit_files(struct task_struct *tsk)
497 struct files_struct * files = tsk->files;
499 if (files) {
500 task_lock(tsk);
501 tsk->files = NULL;
502 task_unlock(tsk);
503 put_files_struct(files);
507 void exit_files(struct task_struct *tsk)
509 __exit_files(tsk);
512 static inline void __put_fs_struct(struct fs_struct *fs)
514 /* No need to hold fs->lock if we are killing it */
515 if (atomic_dec_and_test(&fs->count)) {
516 dput(fs->root);
517 mntput(fs->rootmnt);
518 dput(fs->pwd);
519 mntput(fs->pwdmnt);
520 if (fs->altroot) {
521 dput(fs->altroot);
522 mntput(fs->altrootmnt);
524 kmem_cache_free(fs_cachep, fs);
528 void put_fs_struct(struct fs_struct *fs)
530 __put_fs_struct(fs);
533 static inline void __exit_fs(struct task_struct *tsk)
535 struct fs_struct * fs = tsk->fs;
537 if (fs) {
538 task_lock(tsk);
539 tsk->fs = NULL;
540 task_unlock(tsk);
541 __put_fs_struct(fs);
545 void exit_fs(struct task_struct *tsk)
547 __exit_fs(tsk);
550 EXPORT_SYMBOL_GPL(exit_fs);
553 * Turn us into a lazy TLB process if we
554 * aren't already..
556 static void exit_mm(struct task_struct * tsk)
558 struct mm_struct *mm = tsk->mm;
560 mm_release(tsk, mm);
561 if (!mm)
562 return;
564 * Serialize with any possible pending coredump.
565 * We must hold mmap_sem around checking core_waiters
566 * and clearing tsk->mm. The core-inducing thread
567 * will increment core_waiters for each thread in the
568 * group with ->mm != NULL.
570 down_read(&mm->mmap_sem);
571 if (mm->core_waiters) {
572 up_read(&mm->mmap_sem);
573 down_write(&mm->mmap_sem);
574 if (!--mm->core_waiters)
575 complete(mm->core_startup_done);
576 up_write(&mm->mmap_sem);
578 wait_for_completion(&mm->core_done);
579 down_read(&mm->mmap_sem);
581 atomic_inc(&mm->mm_count);
582 if (mm != tsk->active_mm) BUG();
583 /* more a memory barrier than a real lock */
584 task_lock(tsk);
585 tsk->mm = NULL;
586 up_read(&mm->mmap_sem);
587 enter_lazy_tlb(mm, current);
588 task_unlock(tsk);
589 mmput(mm);
592 static inline void choose_new_parent(task_t *p, task_t *reaper)
595 * Make sure we're not reparenting to ourselves and that
596 * the parent is not a zombie.
598 BUG_ON(p == reaper || reaper->exit_state);
599 p->real_parent = reaper;
602 static void reparent_thread(task_t *p, task_t *father, int traced)
604 /* We don't want people slaying init. */
605 if (p->exit_signal != -1)
606 p->exit_signal = SIGCHLD;
608 if (p->pdeath_signal)
609 /* We already hold the tasklist_lock here. */
610 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
612 /* Move the child from its dying parent to the new one. */
613 if (unlikely(traced)) {
614 /* Preserve ptrace links if someone else is tracing this child. */
615 list_del_init(&p->ptrace_list);
616 if (p->parent != p->real_parent)
617 list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
618 } else {
619 /* If this child is being traced, then we're the one tracing it
620 * anyway, so let go of it.
622 p->ptrace = 0;
623 remove_parent(p);
624 p->parent = p->real_parent;
625 add_parent(p);
627 /* If we'd notified the old parent about this child's death,
628 * also notify the new parent.
630 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
631 thread_group_empty(p))
632 do_notify_parent(p, p->exit_signal);
633 else if (p->state == TASK_TRACED) {
635 * If it was at a trace stop, turn it into
636 * a normal stop since it's no longer being
637 * traced.
639 ptrace_untrace(p);
644 * process group orphan check
645 * Case ii: Our child is in a different pgrp
646 * than we are, and it was the only connection
647 * outside, so the child pgrp is now orphaned.
649 if ((process_group(p) != process_group(father)) &&
650 (p->signal->session == father->signal->session)) {
651 int pgrp = process_group(p);
653 if (will_become_orphaned_pgrp(pgrp, NULL) && has_stopped_jobs(pgrp)) {
654 __kill_pg_info(SIGHUP, SEND_SIG_PRIV, pgrp);
655 __kill_pg_info(SIGCONT, SEND_SIG_PRIV, pgrp);
661 * When we die, we re-parent all our children.
662 * Try to give them to another thread in our thread
663 * group, and if no such member exists, give it to
664 * the global child reaper process (ie "init")
666 static void forget_original_parent(struct task_struct * father,
667 struct list_head *to_release)
669 struct task_struct *p, *reaper = father;
670 struct list_head *_p, *_n;
672 do {
673 reaper = next_thread(reaper);
674 if (reaper == father) {
675 reaper = child_reaper;
676 break;
678 } while (reaper->exit_state);
681 * There are only two places where our children can be:
683 * - in our child list
684 * - in our ptraced child list
686 * Search them and reparent children.
688 list_for_each_safe(_p, _n, &father->children) {
689 int ptrace;
690 p = list_entry(_p,struct task_struct,sibling);
692 ptrace = p->ptrace;
694 /* if father isn't the real parent, then ptrace must be enabled */
695 BUG_ON(father != p->real_parent && !ptrace);
697 if (father == p->real_parent) {
698 /* reparent with a reaper, real father it's us */
699 choose_new_parent(p, reaper);
700 reparent_thread(p, father, 0);
701 } else {
702 /* reparent ptraced task to its real parent */
703 __ptrace_unlink (p);
704 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
705 thread_group_empty(p))
706 do_notify_parent(p, p->exit_signal);
710 * if the ptraced child is a zombie with exit_signal == -1
711 * we must collect it before we exit, or it will remain
712 * zombie forever since we prevented it from self-reap itself
713 * while it was being traced by us, to be able to see it in wait4.
715 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
716 list_add(&p->ptrace_list, to_release);
718 list_for_each_safe(_p, _n, &father->ptrace_children) {
719 p = list_entry(_p,struct task_struct,ptrace_list);
720 choose_new_parent(p, reaper);
721 reparent_thread(p, father, 1);
726 * Send signals to all our closest relatives so that they know
727 * to properly mourn us..
729 static void exit_notify(struct task_struct *tsk)
731 int state;
732 struct task_struct *t;
733 struct list_head ptrace_dead, *_p, *_n;
735 if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
736 && !thread_group_empty(tsk)) {
738 * This occurs when there was a race between our exit
739 * syscall and a group signal choosing us as the one to
740 * wake up. It could be that we are the only thread
741 * alerted to check for pending signals, but another thread
742 * should be woken now to take the signal since we will not.
743 * Now we'll wake all the threads in the group just to make
744 * sure someone gets all the pending signals.
746 read_lock(&tasklist_lock);
747 spin_lock_irq(&tsk->sighand->siglock);
748 for (t = next_thread(tsk); t != tsk; t = next_thread(t))
749 if (!signal_pending(t) && !(t->flags & PF_EXITING)) {
750 recalc_sigpending_tsk(t);
751 if (signal_pending(t))
752 signal_wake_up(t, 0);
754 spin_unlock_irq(&tsk->sighand->siglock);
755 read_unlock(&tasklist_lock);
758 write_lock_irq(&tasklist_lock);
761 * This does two things:
763 * A. Make init inherit all the child processes
764 * B. Check to see if any process groups have become orphaned
765 * as a result of our exiting, and if they have any stopped
766 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
769 INIT_LIST_HEAD(&ptrace_dead);
770 forget_original_parent(tsk, &ptrace_dead);
771 BUG_ON(!list_empty(&tsk->children));
772 BUG_ON(!list_empty(&tsk->ptrace_children));
775 * Check to see if any process groups have become orphaned
776 * as a result of our exiting, and if they have any stopped
777 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
779 * Case i: Our father is in a different pgrp than we are
780 * and we were the only connection outside, so our pgrp
781 * is about to become orphaned.
784 t = tsk->real_parent;
786 if ((process_group(t) != process_group(tsk)) &&
787 (t->signal->session == tsk->signal->session) &&
788 will_become_orphaned_pgrp(process_group(tsk), tsk) &&
789 has_stopped_jobs(process_group(tsk))) {
790 __kill_pg_info(SIGHUP, SEND_SIG_PRIV, process_group(tsk));
791 __kill_pg_info(SIGCONT, SEND_SIG_PRIV, process_group(tsk));
794 /* Let father know we died
796 * Thread signals are configurable, but you aren't going to use
797 * that to send signals to arbitary processes.
798 * That stops right now.
800 * If the parent exec id doesn't match the exec id we saved
801 * when we started then we know the parent has changed security
802 * domain.
804 * If our self_exec id doesn't match our parent_exec_id then
805 * we have changed execution domain as these two values started
806 * the same after a fork.
810 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
811 ( tsk->parent_exec_id != t->self_exec_id ||
812 tsk->self_exec_id != tsk->parent_exec_id)
813 && !capable(CAP_KILL))
814 tsk->exit_signal = SIGCHLD;
817 /* If something other than our normal parent is ptracing us, then
818 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
819 * only has special meaning to our real parent.
821 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
822 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
823 do_notify_parent(tsk, signal);
824 } else if (tsk->ptrace) {
825 do_notify_parent(tsk, SIGCHLD);
828 state = EXIT_ZOMBIE;
829 if (tsk->exit_signal == -1 &&
830 (likely(tsk->ptrace == 0) ||
831 unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT)))
832 state = EXIT_DEAD;
833 tsk->exit_state = state;
835 write_unlock_irq(&tasklist_lock);
837 list_for_each_safe(_p, _n, &ptrace_dead) {
838 list_del_init(_p);
839 t = list_entry(_p,struct task_struct,ptrace_list);
840 release_task(t);
843 /* If the process is dead, release it - nobody will wait for it */
844 if (state == EXIT_DEAD)
845 release_task(tsk);
848 fastcall NORET_TYPE void do_exit(long code)
850 struct task_struct *tsk = current;
851 int group_dead;
853 profile_task_exit(tsk);
855 WARN_ON(atomic_read(&tsk->fs_excl));
857 if (unlikely(in_interrupt()))
858 panic("Aiee, killing interrupt handler!");
859 if (unlikely(!tsk->pid))
860 panic("Attempted to kill the idle task!");
861 if (unlikely(tsk == child_reaper))
862 panic("Attempted to kill init!");
864 if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
865 current->ptrace_message = code;
866 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
870 * We're taking recursive faults here in do_exit. Safest is to just
871 * leave this task alone and wait for reboot.
873 if (unlikely(tsk->flags & PF_EXITING)) {
874 printk(KERN_ALERT
875 "Fixing recursive fault but reboot is needed!\n");
876 if (tsk->io_context)
877 exit_io_context();
878 set_current_state(TASK_UNINTERRUPTIBLE);
879 schedule();
882 tsk->flags |= PF_EXITING;
885 * Make sure we don't try to process any timer firings
886 * while we are already exiting.
888 tsk->it_virt_expires = cputime_zero;
889 tsk->it_prof_expires = cputime_zero;
890 tsk->it_sched_expires = 0;
892 if (unlikely(in_atomic()))
893 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
894 current->comm, current->pid,
895 preempt_count());
897 acct_update_integrals(tsk);
898 if (tsk->mm) {
899 update_hiwater_rss(tsk->mm);
900 update_hiwater_vm(tsk->mm);
902 group_dead = atomic_dec_and_test(&tsk->signal->live);
903 if (group_dead) {
904 hrtimer_cancel(&tsk->signal->real_timer);
905 exit_itimers(tsk->signal);
906 acct_process(code);
908 if (unlikely(tsk->robust_list))
909 exit_robust_list(tsk);
910 #ifdef CONFIG_COMPAT
911 if (unlikely(tsk->compat_robust_list))
912 compat_exit_robust_list(tsk);
913 #endif
914 if (unlikely(tsk->audit_context))
915 audit_free(tsk);
916 exit_mm(tsk);
918 exit_sem(tsk);
919 __exit_files(tsk);
920 __exit_fs(tsk);
921 exit_namespace(tsk);
922 exit_thread();
923 cpuset_exit(tsk);
924 exit_keys(tsk);
926 if (group_dead && tsk->signal->leader)
927 disassociate_ctty(1);
929 module_put(task_thread_info(tsk)->exec_domain->module);
930 if (tsk->binfmt)
931 module_put(tsk->binfmt->module);
933 tsk->exit_code = code;
934 proc_exit_connector(tsk);
935 exit_notify(tsk);
936 #ifdef CONFIG_NUMA
937 mpol_free(tsk->mempolicy);
938 tsk->mempolicy = NULL;
939 #endif
941 * If DEBUG_MUTEXES is on, make sure we are holding no locks:
943 mutex_debug_check_no_locks_held(tsk);
945 if (tsk->io_context)
946 exit_io_context();
948 if (tsk->splice_pipe)
949 __free_pipe_info(tsk->splice_pipe);
951 /* PF_DEAD causes final put_task_struct after we schedule. */
952 preempt_disable();
953 BUG_ON(tsk->flags & PF_DEAD);
954 tsk->flags |= PF_DEAD;
956 schedule();
957 BUG();
958 /* Avoid "noreturn function does return". */
959 for (;;) ;
962 EXPORT_SYMBOL_GPL(do_exit);
964 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
966 if (comp)
967 complete(comp);
969 do_exit(code);
972 EXPORT_SYMBOL(complete_and_exit);
974 asmlinkage long sys_exit(int error_code)
976 do_exit((error_code&0xff)<<8);
980 * Take down every thread in the group. This is called by fatal signals
981 * as well as by sys_exit_group (below).
983 NORET_TYPE void
984 do_group_exit(int exit_code)
986 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
988 if (current->signal->flags & SIGNAL_GROUP_EXIT)
989 exit_code = current->signal->group_exit_code;
990 else if (!thread_group_empty(current)) {
991 struct signal_struct *const sig = current->signal;
992 struct sighand_struct *const sighand = current->sighand;
993 spin_lock_irq(&sighand->siglock);
994 if (sig->flags & SIGNAL_GROUP_EXIT)
995 /* Another thread got here before we took the lock. */
996 exit_code = sig->group_exit_code;
997 else {
998 sig->group_exit_code = exit_code;
999 zap_other_threads(current);
1001 spin_unlock_irq(&sighand->siglock);
1004 do_exit(exit_code);
1005 /* NOTREACHED */
1009 * this kills every thread in the thread group. Note that any externally
1010 * wait4()-ing process will get the correct exit code - even if this
1011 * thread is not the thread group leader.
1013 asmlinkage void sys_exit_group(int error_code)
1015 do_group_exit((error_code & 0xff) << 8);
1018 static int eligible_child(pid_t pid, int options, task_t *p)
1020 if (pid > 0) {
1021 if (p->pid != pid)
1022 return 0;
1023 } else if (!pid) {
1024 if (process_group(p) != process_group(current))
1025 return 0;
1026 } else if (pid != -1) {
1027 if (process_group(p) != -pid)
1028 return 0;
1032 * Do not consider detached threads that are
1033 * not ptraced:
1035 if (p->exit_signal == -1 && !p->ptrace)
1036 return 0;
1038 /* Wait for all children (clone and not) if __WALL is set;
1039 * otherwise, wait for clone children *only* if __WCLONE is
1040 * set; otherwise, wait for non-clone children *only*. (Note:
1041 * A "clone" child here is one that reports to its parent
1042 * using a signal other than SIGCHLD.) */
1043 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1044 && !(options & __WALL))
1045 return 0;
1047 * Do not consider thread group leaders that are
1048 * in a non-empty thread group:
1050 if (current->tgid != p->tgid && delay_group_leader(p))
1051 return 2;
1053 if (security_task_wait(p))
1054 return 0;
1056 return 1;
1059 static int wait_noreap_copyout(task_t *p, pid_t pid, uid_t uid,
1060 int why, int status,
1061 struct siginfo __user *infop,
1062 struct rusage __user *rusagep)
1064 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1065 put_task_struct(p);
1066 if (!retval)
1067 retval = put_user(SIGCHLD, &infop->si_signo);
1068 if (!retval)
1069 retval = put_user(0, &infop->si_errno);
1070 if (!retval)
1071 retval = put_user((short)why, &infop->si_code);
1072 if (!retval)
1073 retval = put_user(pid, &infop->si_pid);
1074 if (!retval)
1075 retval = put_user(uid, &infop->si_uid);
1076 if (!retval)
1077 retval = put_user(status, &infop->si_status);
1078 if (!retval)
1079 retval = pid;
1080 return retval;
1084 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1085 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1086 * the lock and this task is uninteresting. If we return nonzero, we have
1087 * released the lock and the system call should return.
1089 static int wait_task_zombie(task_t *p, int noreap,
1090 struct siginfo __user *infop,
1091 int __user *stat_addr, struct rusage __user *ru)
1093 unsigned long state;
1094 int retval;
1095 int status;
1097 if (unlikely(noreap)) {
1098 pid_t pid = p->pid;
1099 uid_t uid = p->uid;
1100 int exit_code = p->exit_code;
1101 int why, status;
1103 if (unlikely(p->exit_state != EXIT_ZOMBIE))
1104 return 0;
1105 if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1106 return 0;
1107 get_task_struct(p);
1108 read_unlock(&tasklist_lock);
1109 if ((exit_code & 0x7f) == 0) {
1110 why = CLD_EXITED;
1111 status = exit_code >> 8;
1112 } else {
1113 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1114 status = exit_code & 0x7f;
1116 return wait_noreap_copyout(p, pid, uid, why,
1117 status, infop, ru);
1121 * Try to move the task's state to DEAD
1122 * only one thread is allowed to do this:
1124 state = xchg(&p->exit_state, EXIT_DEAD);
1125 if (state != EXIT_ZOMBIE) {
1126 BUG_ON(state != EXIT_DEAD);
1127 return 0;
1129 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1131 * This can only happen in a race with a ptraced thread
1132 * dying on another processor.
1134 return 0;
1137 if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1138 struct signal_struct *psig;
1139 struct signal_struct *sig;
1142 * The resource counters for the group leader are in its
1143 * own task_struct. Those for dead threads in the group
1144 * are in its signal_struct, as are those for the child
1145 * processes it has previously reaped. All these
1146 * accumulate in the parent's signal_struct c* fields.
1148 * We don't bother to take a lock here to protect these
1149 * p->signal fields, because they are only touched by
1150 * __exit_signal, which runs with tasklist_lock
1151 * write-locked anyway, and so is excluded here. We do
1152 * need to protect the access to p->parent->signal fields,
1153 * as other threads in the parent group can be right
1154 * here reaping other children at the same time.
1156 spin_lock_irq(&p->parent->sighand->siglock);
1157 psig = p->parent->signal;
1158 sig = p->signal;
1159 psig->cutime =
1160 cputime_add(psig->cutime,
1161 cputime_add(p->utime,
1162 cputime_add(sig->utime,
1163 sig->cutime)));
1164 psig->cstime =
1165 cputime_add(psig->cstime,
1166 cputime_add(p->stime,
1167 cputime_add(sig->stime,
1168 sig->cstime)));
1169 psig->cmin_flt +=
1170 p->min_flt + sig->min_flt + sig->cmin_flt;
1171 psig->cmaj_flt +=
1172 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1173 psig->cnvcsw +=
1174 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1175 psig->cnivcsw +=
1176 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1177 spin_unlock_irq(&p->parent->sighand->siglock);
1181 * Now we are sure this task is interesting, and no other
1182 * thread can reap it because we set its state to EXIT_DEAD.
1184 read_unlock(&tasklist_lock);
1186 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1187 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1188 ? p->signal->group_exit_code : p->exit_code;
1189 if (!retval && stat_addr)
1190 retval = put_user(status, stat_addr);
1191 if (!retval && infop)
1192 retval = put_user(SIGCHLD, &infop->si_signo);
1193 if (!retval && infop)
1194 retval = put_user(0, &infop->si_errno);
1195 if (!retval && infop) {
1196 int why;
1198 if ((status & 0x7f) == 0) {
1199 why = CLD_EXITED;
1200 status >>= 8;
1201 } else {
1202 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1203 status &= 0x7f;
1205 retval = put_user((short)why, &infop->si_code);
1206 if (!retval)
1207 retval = put_user(status, &infop->si_status);
1209 if (!retval && infop)
1210 retval = put_user(p->pid, &infop->si_pid);
1211 if (!retval && infop)
1212 retval = put_user(p->uid, &infop->si_uid);
1213 if (retval) {
1214 // TODO: is this safe?
1215 p->exit_state = EXIT_ZOMBIE;
1216 return retval;
1218 retval = p->pid;
1219 if (p->real_parent != p->parent) {
1220 write_lock_irq(&tasklist_lock);
1221 /* Double-check with lock held. */
1222 if (p->real_parent != p->parent) {
1223 __ptrace_unlink(p);
1224 // TODO: is this safe?
1225 p->exit_state = EXIT_ZOMBIE;
1227 * If this is not a detached task, notify the parent.
1228 * If it's still not detached after that, don't release
1229 * it now.
1231 if (p->exit_signal != -1) {
1232 do_notify_parent(p, p->exit_signal);
1233 if (p->exit_signal != -1)
1234 p = NULL;
1237 write_unlock_irq(&tasklist_lock);
1239 if (p != NULL)
1240 release_task(p);
1241 BUG_ON(!retval);
1242 return retval;
1246 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1247 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1248 * the lock and this task is uninteresting. If we return nonzero, we have
1249 * released the lock and the system call should return.
1251 static int wait_task_stopped(task_t *p, int delayed_group_leader, int noreap,
1252 struct siginfo __user *infop,
1253 int __user *stat_addr, struct rusage __user *ru)
1255 int retval, exit_code;
1257 if (!p->exit_code)
1258 return 0;
1259 if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1260 p->signal && p->signal->group_stop_count > 0)
1262 * A group stop is in progress and this is the group leader.
1263 * We won't report until all threads have stopped.
1265 return 0;
1268 * Now we are pretty sure this task is interesting.
1269 * Make sure it doesn't get reaped out from under us while we
1270 * give up the lock and then examine it below. We don't want to
1271 * keep holding onto the tasklist_lock while we call getrusage and
1272 * possibly take page faults for user memory.
1274 get_task_struct(p);
1275 read_unlock(&tasklist_lock);
1277 if (unlikely(noreap)) {
1278 pid_t pid = p->pid;
1279 uid_t uid = p->uid;
1280 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1282 exit_code = p->exit_code;
1283 if (unlikely(!exit_code) ||
1284 unlikely(p->state & TASK_TRACED))
1285 goto bail_ref;
1286 return wait_noreap_copyout(p, pid, uid,
1287 why, (exit_code << 8) | 0x7f,
1288 infop, ru);
1291 write_lock_irq(&tasklist_lock);
1294 * This uses xchg to be atomic with the thread resuming and setting
1295 * it. It must also be done with the write lock held to prevent a
1296 * race with the EXIT_ZOMBIE case.
1298 exit_code = xchg(&p->exit_code, 0);
1299 if (unlikely(p->exit_state)) {
1301 * The task resumed and then died. Let the next iteration
1302 * catch it in EXIT_ZOMBIE. Note that exit_code might
1303 * already be zero here if it resumed and did _exit(0).
1304 * The task itself is dead and won't touch exit_code again;
1305 * other processors in this function are locked out.
1307 p->exit_code = exit_code;
1308 exit_code = 0;
1310 if (unlikely(exit_code == 0)) {
1312 * Another thread in this function got to it first, or it
1313 * resumed, or it resumed and then died.
1315 write_unlock_irq(&tasklist_lock);
1316 bail_ref:
1317 put_task_struct(p);
1319 * We are returning to the wait loop without having successfully
1320 * removed the process and having released the lock. We cannot
1321 * continue, since the "p" task pointer is potentially stale.
1323 * Return -EAGAIN, and do_wait() will restart the loop from the
1324 * beginning. Do _not_ re-acquire the lock.
1326 return -EAGAIN;
1329 /* move to end of parent's list to avoid starvation */
1330 remove_parent(p);
1331 add_parent(p);
1333 write_unlock_irq(&tasklist_lock);
1335 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1336 if (!retval && stat_addr)
1337 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1338 if (!retval && infop)
1339 retval = put_user(SIGCHLD, &infop->si_signo);
1340 if (!retval && infop)
1341 retval = put_user(0, &infop->si_errno);
1342 if (!retval && infop)
1343 retval = put_user((short)((p->ptrace & PT_PTRACED)
1344 ? CLD_TRAPPED : CLD_STOPPED),
1345 &infop->si_code);
1346 if (!retval && infop)
1347 retval = put_user(exit_code, &infop->si_status);
1348 if (!retval && infop)
1349 retval = put_user(p->pid, &infop->si_pid);
1350 if (!retval && infop)
1351 retval = put_user(p->uid, &infop->si_uid);
1352 if (!retval)
1353 retval = p->pid;
1354 put_task_struct(p);
1356 BUG_ON(!retval);
1357 return retval;
1361 * Handle do_wait work for one task in a live, non-stopped state.
1362 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1363 * the lock and this task is uninteresting. If we return nonzero, we have
1364 * released the lock and the system call should return.
1366 static int wait_task_continued(task_t *p, int noreap,
1367 struct siginfo __user *infop,
1368 int __user *stat_addr, struct rusage __user *ru)
1370 int retval;
1371 pid_t pid;
1372 uid_t uid;
1374 if (unlikely(!p->signal))
1375 return 0;
1377 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1378 return 0;
1380 spin_lock_irq(&p->sighand->siglock);
1381 /* Re-check with the lock held. */
1382 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1383 spin_unlock_irq(&p->sighand->siglock);
1384 return 0;
1386 if (!noreap)
1387 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1388 spin_unlock_irq(&p->sighand->siglock);
1390 pid = p->pid;
1391 uid = p->uid;
1392 get_task_struct(p);
1393 read_unlock(&tasklist_lock);
1395 if (!infop) {
1396 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1397 put_task_struct(p);
1398 if (!retval && stat_addr)
1399 retval = put_user(0xffff, stat_addr);
1400 if (!retval)
1401 retval = p->pid;
1402 } else {
1403 retval = wait_noreap_copyout(p, pid, uid,
1404 CLD_CONTINUED, SIGCONT,
1405 infop, ru);
1406 BUG_ON(retval == 0);
1409 return retval;
1413 static inline int my_ptrace_child(struct task_struct *p)
1415 if (!(p->ptrace & PT_PTRACED))
1416 return 0;
1417 if (!(p->ptrace & PT_ATTACHED))
1418 return 1;
1420 * This child was PTRACE_ATTACH'd. We should be seeing it only if
1421 * we are the attacher. If we are the real parent, this is a race
1422 * inside ptrace_attach. It is waiting for the tasklist_lock,
1423 * which we have to switch the parent links, but has already set
1424 * the flags in p->ptrace.
1426 return (p->parent != p->real_parent);
1429 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1430 int __user *stat_addr, struct rusage __user *ru)
1432 DECLARE_WAITQUEUE(wait, current);
1433 struct task_struct *tsk;
1434 int flag, retval;
1436 add_wait_queue(&current->signal->wait_chldexit,&wait);
1437 repeat:
1439 * We will set this flag if we see any child that might later
1440 * match our criteria, even if we are not able to reap it yet.
1442 flag = 0;
1443 current->state = TASK_INTERRUPTIBLE;
1444 read_lock(&tasklist_lock);
1445 tsk = current;
1446 do {
1447 struct task_struct *p;
1448 struct list_head *_p;
1449 int ret;
1451 list_for_each(_p,&tsk->children) {
1452 p = list_entry(_p,struct task_struct,sibling);
1454 ret = eligible_child(pid, options, p);
1455 if (!ret)
1456 continue;
1458 switch (p->state) {
1459 case TASK_TRACED:
1461 * When we hit the race with PTRACE_ATTACH,
1462 * we will not report this child. But the
1463 * race means it has not yet been moved to
1464 * our ptrace_children list, so we need to
1465 * set the flag here to avoid a spurious ECHILD
1466 * when the race happens with the only child.
1468 flag = 1;
1469 if (!my_ptrace_child(p))
1470 continue;
1471 /*FALLTHROUGH*/
1472 case TASK_STOPPED:
1474 * It's stopped now, so it might later
1475 * continue, exit, or stop again.
1477 flag = 1;
1478 if (!(options & WUNTRACED) &&
1479 !my_ptrace_child(p))
1480 continue;
1481 retval = wait_task_stopped(p, ret == 2,
1482 (options & WNOWAIT),
1483 infop,
1484 stat_addr, ru);
1485 if (retval == -EAGAIN)
1486 goto repeat;
1487 if (retval != 0) /* He released the lock. */
1488 goto end;
1489 break;
1490 default:
1491 // case EXIT_DEAD:
1492 if (p->exit_state == EXIT_DEAD)
1493 continue;
1494 // case EXIT_ZOMBIE:
1495 if (p->exit_state == EXIT_ZOMBIE) {
1497 * Eligible but we cannot release
1498 * it yet:
1500 if (ret == 2)
1501 goto check_continued;
1502 if (!likely(options & WEXITED))
1503 continue;
1504 retval = wait_task_zombie(
1505 p, (options & WNOWAIT),
1506 infop, stat_addr, ru);
1507 /* He released the lock. */
1508 if (retval != 0)
1509 goto end;
1510 break;
1512 check_continued:
1514 * It's running now, so it might later
1515 * exit, stop, or stop and then continue.
1517 flag = 1;
1518 if (!unlikely(options & WCONTINUED))
1519 continue;
1520 retval = wait_task_continued(
1521 p, (options & WNOWAIT),
1522 infop, stat_addr, ru);
1523 if (retval != 0) /* He released the lock. */
1524 goto end;
1525 break;
1528 if (!flag) {
1529 list_for_each(_p, &tsk->ptrace_children) {
1530 p = list_entry(_p, struct task_struct,
1531 ptrace_list);
1532 if (!eligible_child(pid, options, p))
1533 continue;
1534 flag = 1;
1535 break;
1538 if (options & __WNOTHREAD)
1539 break;
1540 tsk = next_thread(tsk);
1541 if (tsk->signal != current->signal)
1542 BUG();
1543 } while (tsk != current);
1545 read_unlock(&tasklist_lock);
1546 if (flag) {
1547 retval = 0;
1548 if (options & WNOHANG)
1549 goto end;
1550 retval = -ERESTARTSYS;
1551 if (signal_pending(current))
1552 goto end;
1553 schedule();
1554 goto repeat;
1556 retval = -ECHILD;
1557 end:
1558 current->state = TASK_RUNNING;
1559 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1560 if (infop) {
1561 if (retval > 0)
1562 retval = 0;
1563 else {
1565 * For a WNOHANG return, clear out all the fields
1566 * we would set so the user can easily tell the
1567 * difference.
1569 if (!retval)
1570 retval = put_user(0, &infop->si_signo);
1571 if (!retval)
1572 retval = put_user(0, &infop->si_errno);
1573 if (!retval)
1574 retval = put_user(0, &infop->si_code);
1575 if (!retval)
1576 retval = put_user(0, &infop->si_pid);
1577 if (!retval)
1578 retval = put_user(0, &infop->si_uid);
1579 if (!retval)
1580 retval = put_user(0, &infop->si_status);
1583 return retval;
1586 asmlinkage long sys_waitid(int which, pid_t pid,
1587 struct siginfo __user *infop, int options,
1588 struct rusage __user *ru)
1590 long ret;
1592 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1593 return -EINVAL;
1594 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1595 return -EINVAL;
1597 switch (which) {
1598 case P_ALL:
1599 pid = -1;
1600 break;
1601 case P_PID:
1602 if (pid <= 0)
1603 return -EINVAL;
1604 break;
1605 case P_PGID:
1606 if (pid <= 0)
1607 return -EINVAL;
1608 pid = -pid;
1609 break;
1610 default:
1611 return -EINVAL;
1614 ret = do_wait(pid, options, infop, NULL, ru);
1616 /* avoid REGPARM breakage on x86: */
1617 prevent_tail_call(ret);
1618 return ret;
1621 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1622 int options, struct rusage __user *ru)
1624 long ret;
1626 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1627 __WNOTHREAD|__WCLONE|__WALL))
1628 return -EINVAL;
1629 ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1631 /* avoid REGPARM breakage on x86: */
1632 prevent_tail_call(ret);
1633 return ret;
1636 #ifdef __ARCH_WANT_SYS_WAITPID
1639 * sys_waitpid() remains for compatibility. waitpid() should be
1640 * implemented by calling sys_wait4() from libc.a.
1642 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1644 return sys_wait4(pid, stat_addr, options, NULL);
1647 #endif