2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
55 #include "scsi_priv.h"
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
64 static unsigned int ata_busy_sleep (struct ata_port
*ap
,
65 unsigned long tmout_pat
,
67 static void ata_dev_reread_id(struct ata_port
*ap
, struct ata_device
*dev
);
68 static void ata_dev_init_params(struct ata_port
*ap
, struct ata_device
*dev
);
69 static void ata_set_mode(struct ata_port
*ap
);
70 static void ata_dev_set_xfermode(struct ata_port
*ap
, struct ata_device
*dev
);
71 static unsigned int ata_get_mode_mask(const struct ata_port
*ap
, int shift
);
72 static int fgb(u32 bitmap
);
73 static int ata_choose_xfer_mode(const struct ata_port
*ap
,
75 unsigned int *xfer_shift_out
);
76 static void __ata_qc_complete(struct ata_queued_cmd
*qc
);
78 static unsigned int ata_unique_id
= 1;
79 static struct workqueue_struct
*ata_wq
;
81 int atapi_enabled
= 0;
82 module_param(atapi_enabled
, int, 0444);
83 MODULE_PARM_DESC(atapi_enabled
, "Enable discovery of ATAPI devices (0=off, 1=on)");
85 MODULE_AUTHOR("Jeff Garzik");
86 MODULE_DESCRIPTION("Library module for ATA devices");
87 MODULE_LICENSE("GPL");
88 MODULE_VERSION(DRV_VERSION
);
91 * ata_tf_load_pio - send taskfile registers to host controller
92 * @ap: Port to which output is sent
93 * @tf: ATA taskfile register set
95 * Outputs ATA taskfile to standard ATA host controller.
98 * Inherited from caller.
101 static void ata_tf_load_pio(struct ata_port
*ap
, const struct ata_taskfile
*tf
)
103 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
104 unsigned int is_addr
= tf
->flags
& ATA_TFLAG_ISADDR
;
106 if (tf
->ctl
!= ap
->last_ctl
) {
107 outb(tf
->ctl
, ioaddr
->ctl_addr
);
108 ap
->last_ctl
= tf
->ctl
;
112 if (is_addr
&& (tf
->flags
& ATA_TFLAG_LBA48
)) {
113 outb(tf
->hob_feature
, ioaddr
->feature_addr
);
114 outb(tf
->hob_nsect
, ioaddr
->nsect_addr
);
115 outb(tf
->hob_lbal
, ioaddr
->lbal_addr
);
116 outb(tf
->hob_lbam
, ioaddr
->lbam_addr
);
117 outb(tf
->hob_lbah
, ioaddr
->lbah_addr
);
118 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
127 outb(tf
->feature
, ioaddr
->feature_addr
);
128 outb(tf
->nsect
, ioaddr
->nsect_addr
);
129 outb(tf
->lbal
, ioaddr
->lbal_addr
);
130 outb(tf
->lbam
, ioaddr
->lbam_addr
);
131 outb(tf
->lbah
, ioaddr
->lbah_addr
);
132 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
140 if (tf
->flags
& ATA_TFLAG_DEVICE
) {
141 outb(tf
->device
, ioaddr
->device_addr
);
142 VPRINTK("device 0x%X\n", tf
->device
);
149 * ata_tf_load_mmio - send taskfile registers to host controller
150 * @ap: Port to which output is sent
151 * @tf: ATA taskfile register set
153 * Outputs ATA taskfile to standard ATA host controller using MMIO.
156 * Inherited from caller.
159 static void ata_tf_load_mmio(struct ata_port
*ap
, const struct ata_taskfile
*tf
)
161 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
162 unsigned int is_addr
= tf
->flags
& ATA_TFLAG_ISADDR
;
164 if (tf
->ctl
!= ap
->last_ctl
) {
165 writeb(tf
->ctl
, (void __iomem
*) ap
->ioaddr
.ctl_addr
);
166 ap
->last_ctl
= tf
->ctl
;
170 if (is_addr
&& (tf
->flags
& ATA_TFLAG_LBA48
)) {
171 writeb(tf
->hob_feature
, (void __iomem
*) ioaddr
->feature_addr
);
172 writeb(tf
->hob_nsect
, (void __iomem
*) ioaddr
->nsect_addr
);
173 writeb(tf
->hob_lbal
, (void __iomem
*) ioaddr
->lbal_addr
);
174 writeb(tf
->hob_lbam
, (void __iomem
*) ioaddr
->lbam_addr
);
175 writeb(tf
->hob_lbah
, (void __iomem
*) ioaddr
->lbah_addr
);
176 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
185 writeb(tf
->feature
, (void __iomem
*) ioaddr
->feature_addr
);
186 writeb(tf
->nsect
, (void __iomem
*) ioaddr
->nsect_addr
);
187 writeb(tf
->lbal
, (void __iomem
*) ioaddr
->lbal_addr
);
188 writeb(tf
->lbam
, (void __iomem
*) ioaddr
->lbam_addr
);
189 writeb(tf
->lbah
, (void __iomem
*) ioaddr
->lbah_addr
);
190 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
198 if (tf
->flags
& ATA_TFLAG_DEVICE
) {
199 writeb(tf
->device
, (void __iomem
*) ioaddr
->device_addr
);
200 VPRINTK("device 0x%X\n", tf
->device
);
208 * ata_tf_load - send taskfile registers to host controller
209 * @ap: Port to which output is sent
210 * @tf: ATA taskfile register set
212 * Outputs ATA taskfile to standard ATA host controller using MMIO
213 * or PIO as indicated by the ATA_FLAG_MMIO flag.
214 * Writes the control, feature, nsect, lbal, lbam, and lbah registers.
215 * Optionally (ATA_TFLAG_LBA48) writes hob_feature, hob_nsect,
216 * hob_lbal, hob_lbam, and hob_lbah.
218 * This function waits for idle (!BUSY and !DRQ) after writing
219 * registers. If the control register has a new value, this
220 * function also waits for idle after writing control and before
221 * writing the remaining registers.
223 * May be used as the tf_load() entry in ata_port_operations.
226 * Inherited from caller.
228 void ata_tf_load(struct ata_port
*ap
, const struct ata_taskfile
*tf
)
230 if (ap
->flags
& ATA_FLAG_MMIO
)
231 ata_tf_load_mmio(ap
, tf
);
233 ata_tf_load_pio(ap
, tf
);
237 * ata_exec_command_pio - issue ATA command to host controller
238 * @ap: port to which command is being issued
239 * @tf: ATA taskfile register set
241 * Issues PIO write to ATA command register, with proper
242 * synchronization with interrupt handler / other threads.
245 * spin_lock_irqsave(host_set lock)
248 static void ata_exec_command_pio(struct ata_port
*ap
, const struct ata_taskfile
*tf
)
250 DPRINTK("ata%u: cmd 0x%X\n", ap
->id
, tf
->command
);
252 outb(tf
->command
, ap
->ioaddr
.command_addr
);
258 * ata_exec_command_mmio - issue ATA command to host controller
259 * @ap: port to which command is being issued
260 * @tf: ATA taskfile register set
262 * Issues MMIO write to ATA command register, with proper
263 * synchronization with interrupt handler / other threads.
266 * spin_lock_irqsave(host_set lock)
269 static void ata_exec_command_mmio(struct ata_port
*ap
, const struct ata_taskfile
*tf
)
271 DPRINTK("ata%u: cmd 0x%X\n", ap
->id
, tf
->command
);
273 writeb(tf
->command
, (void __iomem
*) ap
->ioaddr
.command_addr
);
279 * ata_exec_command - issue ATA command to host controller
280 * @ap: port to which command is being issued
281 * @tf: ATA taskfile register set
283 * Issues PIO/MMIO write to ATA command register, with proper
284 * synchronization with interrupt handler / other threads.
287 * spin_lock_irqsave(host_set lock)
289 void ata_exec_command(struct ata_port
*ap
, const struct ata_taskfile
*tf
)
291 if (ap
->flags
& ATA_FLAG_MMIO
)
292 ata_exec_command_mmio(ap
, tf
);
294 ata_exec_command_pio(ap
, tf
);
298 * ata_tf_to_host - issue ATA taskfile to host controller
299 * @ap: port to which command is being issued
300 * @tf: ATA taskfile register set
302 * Issues ATA taskfile register set to ATA host controller,
303 * with proper synchronization with interrupt handler and
307 * spin_lock_irqsave(host_set lock)
310 static inline void ata_tf_to_host(struct ata_port
*ap
,
311 const struct ata_taskfile
*tf
)
313 ap
->ops
->tf_load(ap
, tf
);
314 ap
->ops
->exec_command(ap
, tf
);
318 * ata_tf_read_pio - input device's ATA taskfile shadow registers
319 * @ap: Port from which input is read
320 * @tf: ATA taskfile register set for storing input
322 * Reads ATA taskfile registers for currently-selected device
326 * Inherited from caller.
329 static void ata_tf_read_pio(struct ata_port
*ap
, struct ata_taskfile
*tf
)
331 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
333 tf
->command
= ata_check_status(ap
);
334 tf
->feature
= inb(ioaddr
->error_addr
);
335 tf
->nsect
= inb(ioaddr
->nsect_addr
);
336 tf
->lbal
= inb(ioaddr
->lbal_addr
);
337 tf
->lbam
= inb(ioaddr
->lbam_addr
);
338 tf
->lbah
= inb(ioaddr
->lbah_addr
);
339 tf
->device
= inb(ioaddr
->device_addr
);
341 if (tf
->flags
& ATA_TFLAG_LBA48
) {
342 outb(tf
->ctl
| ATA_HOB
, ioaddr
->ctl_addr
);
343 tf
->hob_feature
= inb(ioaddr
->error_addr
);
344 tf
->hob_nsect
= inb(ioaddr
->nsect_addr
);
345 tf
->hob_lbal
= inb(ioaddr
->lbal_addr
);
346 tf
->hob_lbam
= inb(ioaddr
->lbam_addr
);
347 tf
->hob_lbah
= inb(ioaddr
->lbah_addr
);
352 * ata_tf_read_mmio - input device's ATA taskfile shadow registers
353 * @ap: Port from which input is read
354 * @tf: ATA taskfile register set for storing input
356 * Reads ATA taskfile registers for currently-selected device
360 * Inherited from caller.
363 static void ata_tf_read_mmio(struct ata_port
*ap
, struct ata_taskfile
*tf
)
365 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
367 tf
->command
= ata_check_status(ap
);
368 tf
->feature
= readb((void __iomem
*)ioaddr
->error_addr
);
369 tf
->nsect
= readb((void __iomem
*)ioaddr
->nsect_addr
);
370 tf
->lbal
= readb((void __iomem
*)ioaddr
->lbal_addr
);
371 tf
->lbam
= readb((void __iomem
*)ioaddr
->lbam_addr
);
372 tf
->lbah
= readb((void __iomem
*)ioaddr
->lbah_addr
);
373 tf
->device
= readb((void __iomem
*)ioaddr
->device_addr
);
375 if (tf
->flags
& ATA_TFLAG_LBA48
) {
376 writeb(tf
->ctl
| ATA_HOB
, (void __iomem
*) ap
->ioaddr
.ctl_addr
);
377 tf
->hob_feature
= readb((void __iomem
*)ioaddr
->error_addr
);
378 tf
->hob_nsect
= readb((void __iomem
*)ioaddr
->nsect_addr
);
379 tf
->hob_lbal
= readb((void __iomem
*)ioaddr
->lbal_addr
);
380 tf
->hob_lbam
= readb((void __iomem
*)ioaddr
->lbam_addr
);
381 tf
->hob_lbah
= readb((void __iomem
*)ioaddr
->lbah_addr
);
387 * ata_tf_read - input device's ATA taskfile shadow registers
388 * @ap: Port from which input is read
389 * @tf: ATA taskfile register set for storing input
391 * Reads ATA taskfile registers for currently-selected device
394 * Reads nsect, lbal, lbam, lbah, and device. If ATA_TFLAG_LBA48
395 * is set, also reads the hob registers.
397 * May be used as the tf_read() entry in ata_port_operations.
400 * Inherited from caller.
402 void ata_tf_read(struct ata_port
*ap
, struct ata_taskfile
*tf
)
404 if (ap
->flags
& ATA_FLAG_MMIO
)
405 ata_tf_read_mmio(ap
, tf
);
407 ata_tf_read_pio(ap
, tf
);
411 * ata_check_status_pio - Read device status reg & clear interrupt
412 * @ap: port where the device is
414 * Reads ATA taskfile status register for currently-selected device
415 * and return its value. This also clears pending interrupts
419 * Inherited from caller.
421 static u8
ata_check_status_pio(struct ata_port
*ap
)
423 return inb(ap
->ioaddr
.status_addr
);
427 * ata_check_status_mmio - Read device status reg & clear interrupt
428 * @ap: port where the device is
430 * Reads ATA taskfile status register for currently-selected device
431 * via MMIO and return its value. This also clears pending interrupts
435 * Inherited from caller.
437 static u8
ata_check_status_mmio(struct ata_port
*ap
)
439 return readb((void __iomem
*) ap
->ioaddr
.status_addr
);
444 * ata_check_status - Read device status reg & clear interrupt
445 * @ap: port where the device is
447 * Reads ATA taskfile status register for currently-selected device
448 * and return its value. This also clears pending interrupts
451 * May be used as the check_status() entry in ata_port_operations.
454 * Inherited from caller.
456 u8
ata_check_status(struct ata_port
*ap
)
458 if (ap
->flags
& ATA_FLAG_MMIO
)
459 return ata_check_status_mmio(ap
);
460 return ata_check_status_pio(ap
);
465 * ata_altstatus - Read device alternate status reg
466 * @ap: port where the device is
468 * Reads ATA taskfile alternate status register for
469 * currently-selected device and return its value.
471 * Note: may NOT be used as the check_altstatus() entry in
472 * ata_port_operations.
475 * Inherited from caller.
477 u8
ata_altstatus(struct ata_port
*ap
)
479 if (ap
->ops
->check_altstatus
)
480 return ap
->ops
->check_altstatus(ap
);
482 if (ap
->flags
& ATA_FLAG_MMIO
)
483 return readb((void __iomem
*)ap
->ioaddr
.altstatus_addr
);
484 return inb(ap
->ioaddr
.altstatus_addr
);
489 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
490 * @tf: Taskfile to convert
491 * @fis: Buffer into which data will output
492 * @pmp: Port multiplier port
494 * Converts a standard ATA taskfile to a Serial ATA
495 * FIS structure (Register - Host to Device).
498 * Inherited from caller.
501 void ata_tf_to_fis(const struct ata_taskfile
*tf
, u8
*fis
, u8 pmp
)
503 fis
[0] = 0x27; /* Register - Host to Device FIS */
504 fis
[1] = (pmp
& 0xf) | (1 << 7); /* Port multiplier number,
505 bit 7 indicates Command FIS */
506 fis
[2] = tf
->command
;
507 fis
[3] = tf
->feature
;
514 fis
[8] = tf
->hob_lbal
;
515 fis
[9] = tf
->hob_lbam
;
516 fis
[10] = tf
->hob_lbah
;
517 fis
[11] = tf
->hob_feature
;
520 fis
[13] = tf
->hob_nsect
;
531 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
532 * @fis: Buffer from which data will be input
533 * @tf: Taskfile to output
535 * Converts a standard ATA taskfile to a Serial ATA
536 * FIS structure (Register - Host to Device).
539 * Inherited from caller.
542 void ata_tf_from_fis(const u8
*fis
, struct ata_taskfile
*tf
)
544 tf
->command
= fis
[2]; /* status */
545 tf
->feature
= fis
[3]; /* error */
552 tf
->hob_lbal
= fis
[8];
553 tf
->hob_lbam
= fis
[9];
554 tf
->hob_lbah
= fis
[10];
557 tf
->hob_nsect
= fis
[13];
560 static const u8 ata_rw_cmds
[] = {
564 ATA_CMD_READ_MULTI_EXT
,
565 ATA_CMD_WRITE_MULTI_EXT
,
569 ATA_CMD_PIO_READ_EXT
,
570 ATA_CMD_PIO_WRITE_EXT
,
579 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
580 * @qc: command to examine and configure
582 * Examine the device configuration and tf->flags to calculate
583 * the proper read/write commands and protocol to use.
588 void ata_rwcmd_protocol(struct ata_queued_cmd
*qc
)
590 struct ata_taskfile
*tf
= &qc
->tf
;
591 struct ata_device
*dev
= qc
->dev
;
593 int index
, lba48
, write
;
595 lba48
= (tf
->flags
& ATA_TFLAG_LBA48
) ? 2 : 0;
596 write
= (tf
->flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
598 if (dev
->flags
& ATA_DFLAG_PIO
) {
599 tf
->protocol
= ATA_PROT_PIO
;
600 index
= dev
->multi_count
? 0 : 4;
602 tf
->protocol
= ATA_PROT_DMA
;
606 tf
->command
= ata_rw_cmds
[index
+ lba48
+ write
];
609 static const char * xfer_mode_str
[] = {
629 * ata_udma_string - convert UDMA bit offset to string
630 * @mask: mask of bits supported; only highest bit counts.
632 * Determine string which represents the highest speed
633 * (highest bit in @udma_mask).
639 * Constant C string representing highest speed listed in
640 * @udma_mask, or the constant C string "<n/a>".
643 static const char *ata_mode_string(unsigned int mask
)
647 for (i
= 7; i
>= 0; i
--)
650 for (i
= ATA_SHIFT_MWDMA
+ 2; i
>= ATA_SHIFT_MWDMA
; i
--)
653 for (i
= ATA_SHIFT_PIO
+ 4; i
>= ATA_SHIFT_PIO
; i
--)
660 return xfer_mode_str
[i
];
664 * ata_pio_devchk - PATA device presence detection
665 * @ap: ATA channel to examine
666 * @device: Device to examine (starting at zero)
668 * This technique was originally described in
669 * Hale Landis's ATADRVR (www.ata-atapi.com), and
670 * later found its way into the ATA/ATAPI spec.
672 * Write a pattern to the ATA shadow registers,
673 * and if a device is present, it will respond by
674 * correctly storing and echoing back the
675 * ATA shadow register contents.
681 static unsigned int ata_pio_devchk(struct ata_port
*ap
,
684 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
687 ap
->ops
->dev_select(ap
, device
);
689 outb(0x55, ioaddr
->nsect_addr
);
690 outb(0xaa, ioaddr
->lbal_addr
);
692 outb(0xaa, ioaddr
->nsect_addr
);
693 outb(0x55, ioaddr
->lbal_addr
);
695 outb(0x55, ioaddr
->nsect_addr
);
696 outb(0xaa, ioaddr
->lbal_addr
);
698 nsect
= inb(ioaddr
->nsect_addr
);
699 lbal
= inb(ioaddr
->lbal_addr
);
701 if ((nsect
== 0x55) && (lbal
== 0xaa))
702 return 1; /* we found a device */
704 return 0; /* nothing found */
708 * ata_mmio_devchk - PATA device presence detection
709 * @ap: ATA channel to examine
710 * @device: Device to examine (starting at zero)
712 * This technique was originally described in
713 * Hale Landis's ATADRVR (www.ata-atapi.com), and
714 * later found its way into the ATA/ATAPI spec.
716 * Write a pattern to the ATA shadow registers,
717 * and if a device is present, it will respond by
718 * correctly storing and echoing back the
719 * ATA shadow register contents.
725 static unsigned int ata_mmio_devchk(struct ata_port
*ap
,
728 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
731 ap
->ops
->dev_select(ap
, device
);
733 writeb(0x55, (void __iomem
*) ioaddr
->nsect_addr
);
734 writeb(0xaa, (void __iomem
*) ioaddr
->lbal_addr
);
736 writeb(0xaa, (void __iomem
*) ioaddr
->nsect_addr
);
737 writeb(0x55, (void __iomem
*) ioaddr
->lbal_addr
);
739 writeb(0x55, (void __iomem
*) ioaddr
->nsect_addr
);
740 writeb(0xaa, (void __iomem
*) ioaddr
->lbal_addr
);
742 nsect
= readb((void __iomem
*) ioaddr
->nsect_addr
);
743 lbal
= readb((void __iomem
*) ioaddr
->lbal_addr
);
745 if ((nsect
== 0x55) && (lbal
== 0xaa))
746 return 1; /* we found a device */
748 return 0; /* nothing found */
752 * ata_devchk - PATA device presence detection
753 * @ap: ATA channel to examine
754 * @device: Device to examine (starting at zero)
756 * Dispatch ATA device presence detection, depending
757 * on whether we are using PIO or MMIO to talk to the
758 * ATA shadow registers.
764 static unsigned int ata_devchk(struct ata_port
*ap
,
767 if (ap
->flags
& ATA_FLAG_MMIO
)
768 return ata_mmio_devchk(ap
, device
);
769 return ata_pio_devchk(ap
, device
);
773 * ata_dev_classify - determine device type based on ATA-spec signature
774 * @tf: ATA taskfile register set for device to be identified
776 * Determine from taskfile register contents whether a device is
777 * ATA or ATAPI, as per "Signature and persistence" section
778 * of ATA/PI spec (volume 1, sect 5.14).
784 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
785 * the event of failure.
788 unsigned int ata_dev_classify(const struct ata_taskfile
*tf
)
790 /* Apple's open source Darwin code hints that some devices only
791 * put a proper signature into the LBA mid/high registers,
792 * So, we only check those. It's sufficient for uniqueness.
795 if (((tf
->lbam
== 0) && (tf
->lbah
== 0)) ||
796 ((tf
->lbam
== 0x3c) && (tf
->lbah
== 0xc3))) {
797 DPRINTK("found ATA device by sig\n");
801 if (((tf
->lbam
== 0x14) && (tf
->lbah
== 0xeb)) ||
802 ((tf
->lbam
== 0x69) && (tf
->lbah
== 0x96))) {
803 DPRINTK("found ATAPI device by sig\n");
804 return ATA_DEV_ATAPI
;
807 DPRINTK("unknown device\n");
808 return ATA_DEV_UNKNOWN
;
812 * ata_dev_try_classify - Parse returned ATA device signature
813 * @ap: ATA channel to examine
814 * @device: Device to examine (starting at zero)
816 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
817 * an ATA/ATAPI-defined set of values is placed in the ATA
818 * shadow registers, indicating the results of device detection
821 * Select the ATA device, and read the values from the ATA shadow
822 * registers. Then parse according to the Error register value,
823 * and the spec-defined values examined by ata_dev_classify().
829 static u8
ata_dev_try_classify(struct ata_port
*ap
, unsigned int device
)
831 struct ata_device
*dev
= &ap
->device
[device
];
832 struct ata_taskfile tf
;
836 ap
->ops
->dev_select(ap
, device
);
838 memset(&tf
, 0, sizeof(tf
));
840 ap
->ops
->tf_read(ap
, &tf
);
843 dev
->class = ATA_DEV_NONE
;
845 /* see if device passed diags */
848 else if ((device
== 0) && (err
== 0x81))
853 /* determine if device if ATA or ATAPI */
854 class = ata_dev_classify(&tf
);
855 if (class == ATA_DEV_UNKNOWN
)
857 if ((class == ATA_DEV_ATA
) && (ata_chk_status(ap
) == 0))
866 * ata_dev_id_string - Convert IDENTIFY DEVICE page into string
867 * @id: IDENTIFY DEVICE results we will examine
868 * @s: string into which data is output
869 * @ofs: offset into identify device page
870 * @len: length of string to return. must be an even number.
872 * The strings in the IDENTIFY DEVICE page are broken up into
873 * 16-bit chunks. Run through the string, and output each
874 * 8-bit chunk linearly, regardless of platform.
880 void ata_dev_id_string(const u16
*id
, unsigned char *s
,
881 unsigned int ofs
, unsigned int len
)
901 * ata_noop_dev_select - Select device 0/1 on ATA bus
902 * @ap: ATA channel to manipulate
903 * @device: ATA device (numbered from zero) to select
905 * This function performs no actual function.
907 * May be used as the dev_select() entry in ata_port_operations.
912 void ata_noop_dev_select (struct ata_port
*ap
, unsigned int device
)
918 * ata_std_dev_select - Select device 0/1 on ATA bus
919 * @ap: ATA channel to manipulate
920 * @device: ATA device (numbered from zero) to select
922 * Use the method defined in the ATA specification to
923 * make either device 0, or device 1, active on the
924 * ATA channel. Works with both PIO and MMIO.
926 * May be used as the dev_select() entry in ata_port_operations.
932 void ata_std_dev_select (struct ata_port
*ap
, unsigned int device
)
937 tmp
= ATA_DEVICE_OBS
;
939 tmp
= ATA_DEVICE_OBS
| ATA_DEV1
;
941 if (ap
->flags
& ATA_FLAG_MMIO
) {
942 writeb(tmp
, (void __iomem
*) ap
->ioaddr
.device_addr
);
944 outb(tmp
, ap
->ioaddr
.device_addr
);
946 ata_pause(ap
); /* needed; also flushes, for mmio */
950 * ata_dev_select - Select device 0/1 on ATA bus
951 * @ap: ATA channel to manipulate
952 * @device: ATA device (numbered from zero) to select
953 * @wait: non-zero to wait for Status register BSY bit to clear
954 * @can_sleep: non-zero if context allows sleeping
956 * Use the method defined in the ATA specification to
957 * make either device 0, or device 1, active on the
960 * This is a high-level version of ata_std_dev_select(),
961 * which additionally provides the services of inserting
962 * the proper pauses and status polling, where needed.
968 void ata_dev_select(struct ata_port
*ap
, unsigned int device
,
969 unsigned int wait
, unsigned int can_sleep
)
971 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
972 ap
->id
, device
, wait
);
977 ap
->ops
->dev_select(ap
, device
);
980 if (can_sleep
&& ap
->device
[device
].class == ATA_DEV_ATAPI
)
987 * ata_dump_id - IDENTIFY DEVICE info debugging output
988 * @dev: Device whose IDENTIFY DEVICE page we will dump
990 * Dump selected 16-bit words from a detected device's
991 * IDENTIFY PAGE page.
997 static inline void ata_dump_id(const struct ata_device
*dev
)
999 DPRINTK("49==0x%04x "
1009 DPRINTK("80==0x%04x "
1019 DPRINTK("88==0x%04x "
1026 * Compute the PIO modes available for this device. This is not as
1027 * trivial as it seems if we must consider early devices correctly.
1029 * FIXME: pre IDE drive timing (do we care ?).
1032 static unsigned int ata_pio_modes(const struct ata_device
*adev
)
1036 /* Usual case. Word 53 indicates word 88 is valid */
1037 if (adev
->id
[ATA_ID_FIELD_VALID
] & (1 << 2)) {
1038 modes
= adev
->id
[ATA_ID_PIO_MODES
] & 0x03;
1044 /* If word 88 isn't valid then Word 51 holds the PIO timing number
1045 for the maximum. Turn it into a mask and return it */
1046 modes
= (2 << (adev
->id
[ATA_ID_OLD_PIO_MODES
] & 0xFF)) - 1 ;
1051 * ata_dev_identify - obtain IDENTIFY x DEVICE page
1052 * @ap: port on which device we wish to probe resides
1053 * @device: device bus address, starting at zero
1055 * Following bus reset, we issue the IDENTIFY [PACKET] DEVICE
1056 * command, and read back the 512-byte device information page.
1057 * The device information page is fed to us via the standard
1058 * PIO-IN protocol, but we hand-code it here. (TODO: investigate
1059 * using standard PIO-IN paths)
1061 * After reading the device information page, we use several
1062 * bits of information from it to initialize data structures
1063 * that will be used during the lifetime of the ata_device.
1064 * Other data from the info page is used to disqualify certain
1065 * older ATA devices we do not wish to support.
1068 * Inherited from caller. Some functions called by this function
1069 * obtain the host_set lock.
1072 static void ata_dev_identify(struct ata_port
*ap
, unsigned int device
)
1074 struct ata_device
*dev
= &ap
->device
[device
];
1075 unsigned int major_version
;
1077 unsigned long xfer_modes
;
1078 unsigned int using_edd
;
1079 DECLARE_COMPLETION(wait
);
1080 struct ata_queued_cmd
*qc
;
1081 unsigned long flags
;
1084 if (!ata_dev_present(dev
)) {
1085 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1090 if (ap
->flags
& (ATA_FLAG_SRST
| ATA_FLAG_SATA_RESET
))
1095 DPRINTK("ENTER, host %u, dev %u\n", ap
->id
, device
);
1097 assert (dev
->class == ATA_DEV_ATA
|| dev
->class == ATA_DEV_ATAPI
||
1098 dev
->class == ATA_DEV_NONE
);
1100 ata_dev_select(ap
, device
, 1, 1); /* select device 0/1 */
1102 qc
= ata_qc_new_init(ap
, dev
);
1105 ata_sg_init_one(qc
, dev
->id
, sizeof(dev
->id
));
1106 qc
->dma_dir
= DMA_FROM_DEVICE
;
1107 qc
->tf
.protocol
= ATA_PROT_PIO
;
1111 if (dev
->class == ATA_DEV_ATA
) {
1112 qc
->tf
.command
= ATA_CMD_ID_ATA
;
1113 DPRINTK("do ATA identify\n");
1115 qc
->tf
.command
= ATA_CMD_ID_ATAPI
;
1116 DPRINTK("do ATAPI identify\n");
1119 qc
->waiting
= &wait
;
1120 qc
->complete_fn
= ata_qc_complete_noop
;
1122 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
1123 rc
= ata_qc_issue(qc
);
1124 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
1129 wait_for_completion(&wait
);
1131 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
1132 ap
->ops
->tf_read(ap
, &qc
->tf
);
1133 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
1135 if (qc
->tf
.command
& ATA_ERR
) {
1137 * arg! EDD works for all test cases, but seems to return
1138 * the ATA signature for some ATAPI devices. Until the
1139 * reason for this is found and fixed, we fix up the mess
1140 * here. If IDENTIFY DEVICE returns command aborted
1141 * (as ATAPI devices do), then we issue an
1142 * IDENTIFY PACKET DEVICE.
1144 * ATA software reset (SRST, the default) does not appear
1145 * to have this problem.
1147 if ((using_edd
) && (qc
->tf
.command
== ATA_CMD_ID_ATA
)) {
1148 u8 err
= qc
->tf
.feature
;
1149 if (err
& ATA_ABORTED
) {
1150 dev
->class = ATA_DEV_ATAPI
;
1161 swap_buf_le16(dev
->id
, ATA_ID_WORDS
);
1163 /* print device capabilities */
1164 printk(KERN_DEBUG
"ata%u: dev %u cfg "
1165 "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1166 ap
->id
, device
, dev
->id
[49],
1167 dev
->id
[82], dev
->id
[83], dev
->id
[84],
1168 dev
->id
[85], dev
->id
[86], dev
->id
[87],
1172 * common ATA, ATAPI feature tests
1175 /* we require DMA support (bits 8 of word 49) */
1176 if (!ata_id_has_dma(dev
->id
)) {
1177 printk(KERN_DEBUG
"ata%u: no dma\n", ap
->id
);
1181 /* quick-n-dirty find max transfer mode; for printk only */
1182 xfer_modes
= dev
->id
[ATA_ID_UDMA_MODES
];
1184 xfer_modes
= (dev
->id
[ATA_ID_MWDMA_MODES
]) << ATA_SHIFT_MWDMA
;
1186 xfer_modes
= ata_pio_modes(dev
);
1190 /* ATA-specific feature tests */
1191 if (dev
->class == ATA_DEV_ATA
) {
1192 if (!ata_id_is_ata(dev
->id
)) /* sanity check */
1195 /* get major version */
1196 tmp
= dev
->id
[ATA_ID_MAJOR_VER
];
1197 for (major_version
= 14; major_version
>= 1; major_version
--)
1198 if (tmp
& (1 << major_version
))
1202 * The exact sequence expected by certain pre-ATA4 drives is:
1205 * INITIALIZE DEVICE PARAMETERS
1207 * Some drives were very specific about that exact sequence.
1209 if (major_version
< 4 || (!ata_id_has_lba(dev
->id
))) {
1210 ata_dev_init_params(ap
, dev
);
1212 /* current CHS translation info (id[53-58]) might be
1213 * changed. reread the identify device info.
1215 ata_dev_reread_id(ap
, dev
);
1218 if (ata_id_has_lba(dev
->id
)) {
1219 dev
->flags
|= ATA_DFLAG_LBA
;
1221 if (ata_id_has_lba48(dev
->id
)) {
1222 dev
->flags
|= ATA_DFLAG_LBA48
;
1223 dev
->n_sectors
= ata_id_u64(dev
->id
, 100);
1225 dev
->n_sectors
= ata_id_u32(dev
->id
, 60);
1228 /* print device info to dmesg */
1229 printk(KERN_INFO
"ata%u: dev %u ATA-%d, max %s, %Lu sectors:%s\n",
1232 ata_mode_string(xfer_modes
),
1233 (unsigned long long)dev
->n_sectors
,
1234 dev
->flags
& ATA_DFLAG_LBA48
? " LBA48" : " LBA");
1238 /* Default translation */
1239 dev
->cylinders
= dev
->id
[1];
1240 dev
->heads
= dev
->id
[3];
1241 dev
->sectors
= dev
->id
[6];
1242 dev
->n_sectors
= dev
->cylinders
* dev
->heads
* dev
->sectors
;
1244 if (ata_id_current_chs_valid(dev
->id
)) {
1245 /* Current CHS translation is valid. */
1246 dev
->cylinders
= dev
->id
[54];
1247 dev
->heads
= dev
->id
[55];
1248 dev
->sectors
= dev
->id
[56];
1250 dev
->n_sectors
= ata_id_u32(dev
->id
, 57);
1253 /* print device info to dmesg */
1254 printk(KERN_INFO
"ata%u: dev %u ATA-%d, max %s, %Lu sectors: CHS %d/%d/%d\n",
1257 ata_mode_string(xfer_modes
),
1258 (unsigned long long)dev
->n_sectors
,
1259 (int)dev
->cylinders
, (int)dev
->heads
, (int)dev
->sectors
);
1263 ap
->host
->max_cmd_len
= 16;
1266 /* ATAPI-specific feature tests */
1268 if (ata_id_is_ata(dev
->id
)) /* sanity check */
1271 rc
= atapi_cdb_len(dev
->id
);
1272 if ((rc
< 12) || (rc
> ATAPI_CDB_LEN
)) {
1273 printk(KERN_WARNING
"ata%u: unsupported CDB len\n", ap
->id
);
1276 ap
->cdb_len
= (unsigned int) rc
;
1277 ap
->host
->max_cmd_len
= (unsigned char) ap
->cdb_len
;
1279 /* print device info to dmesg */
1280 printk(KERN_INFO
"ata%u: dev %u ATAPI, max %s\n",
1282 ata_mode_string(xfer_modes
));
1285 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap
));
1289 printk(KERN_WARNING
"ata%u: dev %u not supported, ignoring\n",
1292 dev
->class++; /* converts ATA_DEV_xxx into ATA_DEV_xxx_UNSUP */
1293 DPRINTK("EXIT, err\n");
1297 static inline u8
ata_dev_knobble(const struct ata_port
*ap
)
1299 return ((ap
->cbl
== ATA_CBL_SATA
) && (!ata_id_is_sata(ap
->device
->id
)));
1303 * ata_dev_config - Run device specific handlers and check for
1304 * SATA->PATA bridges
1311 void ata_dev_config(struct ata_port
*ap
, unsigned int i
)
1313 /* limit bridge transfers to udma5, 200 sectors */
1314 if (ata_dev_knobble(ap
)) {
1315 printk(KERN_INFO
"ata%u(%u): applying bridge limits\n",
1316 ap
->id
, ap
->device
->devno
);
1317 ap
->udma_mask
&= ATA_UDMA5
;
1318 ap
->host
->max_sectors
= ATA_MAX_SECTORS
;
1319 ap
->host
->hostt
->max_sectors
= ATA_MAX_SECTORS
;
1320 ap
->device
->flags
|= ATA_DFLAG_LOCK_SECTORS
;
1323 if (ap
->ops
->dev_config
)
1324 ap
->ops
->dev_config(ap
, &ap
->device
[i
]);
1328 * ata_bus_probe - Reset and probe ATA bus
1331 * Master ATA bus probing function. Initiates a hardware-dependent
1332 * bus reset, then attempts to identify any devices found on
1336 * PCI/etc. bus probe sem.
1339 * Zero on success, non-zero on error.
1342 static int ata_bus_probe(struct ata_port
*ap
)
1344 unsigned int i
, found
= 0;
1346 ap
->ops
->phy_reset(ap
);
1347 if (ap
->flags
& ATA_FLAG_PORT_DISABLED
)
1350 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
1351 ata_dev_identify(ap
, i
);
1352 if (ata_dev_present(&ap
->device
[i
])) {
1354 ata_dev_config(ap
,i
);
1358 if ((!found
) || (ap
->flags
& ATA_FLAG_PORT_DISABLED
))
1359 goto err_out_disable
;
1362 if (ap
->flags
& ATA_FLAG_PORT_DISABLED
)
1363 goto err_out_disable
;
1368 ap
->ops
->port_disable(ap
);
1374 * ata_port_probe - Mark port as enabled
1375 * @ap: Port for which we indicate enablement
1377 * Modify @ap data structure such that the system
1378 * thinks that the entire port is enabled.
1380 * LOCKING: host_set lock, or some other form of
1384 void ata_port_probe(struct ata_port
*ap
)
1386 ap
->flags
&= ~ATA_FLAG_PORT_DISABLED
;
1390 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1391 * @ap: SATA port associated with target SATA PHY.
1393 * This function issues commands to standard SATA Sxxx
1394 * PHY registers, to wake up the phy (and device), and
1395 * clear any reset condition.
1398 * PCI/etc. bus probe sem.
1401 void __sata_phy_reset(struct ata_port
*ap
)
1404 unsigned long timeout
= jiffies
+ (HZ
* 5);
1406 if (ap
->flags
& ATA_FLAG_SATA_RESET
) {
1407 /* issue phy wake/reset */
1408 scr_write_flush(ap
, SCR_CONTROL
, 0x301);
1409 /* Couldn't find anything in SATA I/II specs, but
1410 * AHCI-1.1 10.4.2 says at least 1 ms. */
1413 scr_write_flush(ap
, SCR_CONTROL
, 0x300); /* phy wake/clear reset */
1415 /* wait for phy to become ready, if necessary */
1418 sstatus
= scr_read(ap
, SCR_STATUS
);
1419 if ((sstatus
& 0xf) != 1)
1421 } while (time_before(jiffies
, timeout
));
1423 /* TODO: phy layer with polling, timeouts, etc. */
1424 if (sata_dev_present(ap
))
1427 sstatus
= scr_read(ap
, SCR_STATUS
);
1428 printk(KERN_INFO
"ata%u: no device found (phy stat %08x)\n",
1430 ata_port_disable(ap
);
1433 if (ap
->flags
& ATA_FLAG_PORT_DISABLED
)
1436 if (ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
)) {
1437 ata_port_disable(ap
);
1441 ap
->cbl
= ATA_CBL_SATA
;
1445 * sata_phy_reset - Reset SATA bus.
1446 * @ap: SATA port associated with target SATA PHY.
1448 * This function resets the SATA bus, and then probes
1449 * the bus for devices.
1452 * PCI/etc. bus probe sem.
1455 void sata_phy_reset(struct ata_port
*ap
)
1457 __sata_phy_reset(ap
);
1458 if (ap
->flags
& ATA_FLAG_PORT_DISABLED
)
1464 * ata_port_disable - Disable port.
1465 * @ap: Port to be disabled.
1467 * Modify @ap data structure such that the system
1468 * thinks that the entire port is disabled, and should
1469 * never attempt to probe or communicate with devices
1472 * LOCKING: host_set lock, or some other form of
1476 void ata_port_disable(struct ata_port
*ap
)
1478 ap
->device
[0].class = ATA_DEV_NONE
;
1479 ap
->device
[1].class = ATA_DEV_NONE
;
1480 ap
->flags
|= ATA_FLAG_PORT_DISABLED
;
1484 * This mode timing computation functionality is ported over from
1485 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1488 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1489 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1490 * for PIO 5, which is a nonstandard extension and UDMA6, which
1491 * is currently supported only by Maxtor drives.
1494 static const struct ata_timing ata_timing
[] = {
1496 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 15 },
1497 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 20 },
1498 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 30 },
1499 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 45 },
1501 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 60 },
1502 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 80 },
1503 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 120 },
1505 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1507 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 120, 0 },
1508 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 150, 0 },
1509 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 480, 0 },
1511 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 240, 0 },
1512 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 480, 0 },
1513 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 960, 0 },
1515 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1516 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 120, 0 },
1517 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 180, 0 },
1519 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 240, 0 },
1520 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 383, 0 },
1521 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 600, 0 },
1523 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1528 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1529 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1531 static void ata_timing_quantize(const struct ata_timing
*t
, struct ata_timing
*q
, int T
, int UT
)
1533 q
->setup
= EZ(t
->setup
* 1000, T
);
1534 q
->act8b
= EZ(t
->act8b
* 1000, T
);
1535 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
1536 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
1537 q
->active
= EZ(t
->active
* 1000, T
);
1538 q
->recover
= EZ(t
->recover
* 1000, T
);
1539 q
->cycle
= EZ(t
->cycle
* 1000, T
);
1540 q
->udma
= EZ(t
->udma
* 1000, UT
);
1543 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
1544 struct ata_timing
*m
, unsigned int what
)
1546 if (what
& ATA_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
1547 if (what
& ATA_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
1548 if (what
& ATA_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
1549 if (what
& ATA_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
1550 if (what
& ATA_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
1551 if (what
& ATA_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
1552 if (what
& ATA_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
1553 if (what
& ATA_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
1556 static const struct ata_timing
* ata_timing_find_mode(unsigned short speed
)
1558 const struct ata_timing
*t
;
1560 for (t
= ata_timing
; t
->mode
!= speed
; t
++)
1561 if (t
->mode
== 0xFF)
1566 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
1567 struct ata_timing
*t
, int T
, int UT
)
1569 const struct ata_timing
*s
;
1570 struct ata_timing p
;
1576 if (!(s
= ata_timing_find_mode(speed
)))
1580 * If the drive is an EIDE drive, it can tell us it needs extended
1581 * PIO/MW_DMA cycle timing.
1584 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
1585 memset(&p
, 0, sizeof(p
));
1586 if(speed
>= XFER_PIO_0
&& speed
<= XFER_SW_DMA_0
) {
1587 if (speed
<= XFER_PIO_2
) p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO
];
1588 else p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO_IORDY
];
1589 } else if(speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
) {
1590 p
.cycle
= adev
->id
[ATA_ID_EIDE_DMA_MIN
];
1592 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
1596 * Convert the timing to bus clock counts.
1599 ata_timing_quantize(s
, t
, T
, UT
);
1602 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, S.M.A.R.T
1603 * and some other commands. We have to ensure that the DMA cycle timing is
1604 * slower/equal than the fastest PIO timing.
1607 if (speed
> XFER_PIO_4
) {
1608 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
1609 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
1613 * Lenghten active & recovery time so that cycle time is correct.
1616 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
1617 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
1618 t
->rec8b
= t
->cyc8b
- t
->act8b
;
1621 if (t
->active
+ t
->recover
< t
->cycle
) {
1622 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
1623 t
->recover
= t
->cycle
- t
->active
;
1629 static const struct {
1632 } xfer_mode_classes
[] = {
1633 { ATA_SHIFT_UDMA
, XFER_UDMA_0
},
1634 { ATA_SHIFT_MWDMA
, XFER_MW_DMA_0
},
1635 { ATA_SHIFT_PIO
, XFER_PIO_0
},
1638 static inline u8
base_from_shift(unsigned int shift
)
1642 for (i
= 0; i
< ARRAY_SIZE(xfer_mode_classes
); i
++)
1643 if (xfer_mode_classes
[i
].shift
== shift
)
1644 return xfer_mode_classes
[i
].base
;
1649 static void ata_dev_set_mode(struct ata_port
*ap
, struct ata_device
*dev
)
1654 if (!ata_dev_present(dev
) || (ap
->flags
& ATA_FLAG_PORT_DISABLED
))
1657 if (dev
->xfer_shift
== ATA_SHIFT_PIO
)
1658 dev
->flags
|= ATA_DFLAG_PIO
;
1660 ata_dev_set_xfermode(ap
, dev
);
1662 base
= base_from_shift(dev
->xfer_shift
);
1663 ofs
= dev
->xfer_mode
- base
;
1664 idx
= ofs
+ dev
->xfer_shift
;
1665 WARN_ON(idx
>= ARRAY_SIZE(xfer_mode_str
));
1667 DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
1668 idx
, dev
->xfer_shift
, (int)dev
->xfer_mode
, (int)base
, ofs
);
1670 printk(KERN_INFO
"ata%u: dev %u configured for %s\n",
1671 ap
->id
, dev
->devno
, xfer_mode_str
[idx
]);
1674 static int ata_host_set_pio(struct ata_port
*ap
)
1680 mask
= ata_get_mode_mask(ap
, ATA_SHIFT_PIO
);
1683 printk(KERN_WARNING
"ata%u: no PIO support\n", ap
->id
);
1687 base
= base_from_shift(ATA_SHIFT_PIO
);
1688 xfer_mode
= base
+ x
;
1690 DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
1691 (int)base
, (int)xfer_mode
, mask
, x
);
1693 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
1694 struct ata_device
*dev
= &ap
->device
[i
];
1695 if (ata_dev_present(dev
)) {
1696 dev
->pio_mode
= xfer_mode
;
1697 dev
->xfer_mode
= xfer_mode
;
1698 dev
->xfer_shift
= ATA_SHIFT_PIO
;
1699 if (ap
->ops
->set_piomode
)
1700 ap
->ops
->set_piomode(ap
, dev
);
1707 static void ata_host_set_dma(struct ata_port
*ap
, u8 xfer_mode
,
1708 unsigned int xfer_shift
)
1712 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
1713 struct ata_device
*dev
= &ap
->device
[i
];
1714 if (ata_dev_present(dev
)) {
1715 dev
->dma_mode
= xfer_mode
;
1716 dev
->xfer_mode
= xfer_mode
;
1717 dev
->xfer_shift
= xfer_shift
;
1718 if (ap
->ops
->set_dmamode
)
1719 ap
->ops
->set_dmamode(ap
, dev
);
1725 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1726 * @ap: port on which timings will be programmed
1728 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1731 * PCI/etc. bus probe sem.
1734 static void ata_set_mode(struct ata_port
*ap
)
1736 unsigned int xfer_shift
;
1740 /* step 1: always set host PIO timings */
1741 rc
= ata_host_set_pio(ap
);
1745 /* step 2: choose the best data xfer mode */
1746 xfer_mode
= xfer_shift
= 0;
1747 rc
= ata_choose_xfer_mode(ap
, &xfer_mode
, &xfer_shift
);
1751 /* step 3: if that xfer mode isn't PIO, set host DMA timings */
1752 if (xfer_shift
!= ATA_SHIFT_PIO
)
1753 ata_host_set_dma(ap
, xfer_mode
, xfer_shift
);
1755 /* step 4: update devices' xfer mode */
1756 ata_dev_set_mode(ap
, &ap
->device
[0]);
1757 ata_dev_set_mode(ap
, &ap
->device
[1]);
1759 if (ap
->flags
& ATA_FLAG_PORT_DISABLED
)
1762 if (ap
->ops
->post_set_mode
)
1763 ap
->ops
->post_set_mode(ap
);
1768 ata_port_disable(ap
);
1772 * ata_busy_sleep - sleep until BSY clears, or timeout
1773 * @ap: port containing status register to be polled
1774 * @tmout_pat: impatience timeout
1775 * @tmout: overall timeout
1777 * Sleep until ATA Status register bit BSY clears,
1778 * or a timeout occurs.
1784 static unsigned int ata_busy_sleep (struct ata_port
*ap
,
1785 unsigned long tmout_pat
,
1786 unsigned long tmout
)
1788 unsigned long timer_start
, timeout
;
1791 status
= ata_busy_wait(ap
, ATA_BUSY
, 300);
1792 timer_start
= jiffies
;
1793 timeout
= timer_start
+ tmout_pat
;
1794 while ((status
& ATA_BUSY
) && (time_before(jiffies
, timeout
))) {
1796 status
= ata_busy_wait(ap
, ATA_BUSY
, 3);
1799 if (status
& ATA_BUSY
)
1800 printk(KERN_WARNING
"ata%u is slow to respond, "
1801 "please be patient\n", ap
->id
);
1803 timeout
= timer_start
+ tmout
;
1804 while ((status
& ATA_BUSY
) && (time_before(jiffies
, timeout
))) {
1806 status
= ata_chk_status(ap
);
1809 if (status
& ATA_BUSY
) {
1810 printk(KERN_ERR
"ata%u failed to respond (%lu secs)\n",
1811 ap
->id
, tmout
/ HZ
);
1818 static void ata_bus_post_reset(struct ata_port
*ap
, unsigned int devmask
)
1820 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1821 unsigned int dev0
= devmask
& (1 << 0);
1822 unsigned int dev1
= devmask
& (1 << 1);
1823 unsigned long timeout
;
1825 /* if device 0 was found in ata_devchk, wait for its
1829 ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
);
1831 /* if device 1 was found in ata_devchk, wait for
1832 * register access, then wait for BSY to clear
1834 timeout
= jiffies
+ ATA_TMOUT_BOOT
;
1838 ap
->ops
->dev_select(ap
, 1);
1839 if (ap
->flags
& ATA_FLAG_MMIO
) {
1840 nsect
= readb((void __iomem
*) ioaddr
->nsect_addr
);
1841 lbal
= readb((void __iomem
*) ioaddr
->lbal_addr
);
1843 nsect
= inb(ioaddr
->nsect_addr
);
1844 lbal
= inb(ioaddr
->lbal_addr
);
1846 if ((nsect
== 1) && (lbal
== 1))
1848 if (time_after(jiffies
, timeout
)) {
1852 msleep(50); /* give drive a breather */
1855 ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
);
1857 /* is all this really necessary? */
1858 ap
->ops
->dev_select(ap
, 0);
1860 ap
->ops
->dev_select(ap
, 1);
1862 ap
->ops
->dev_select(ap
, 0);
1866 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
1867 * @ap: Port to reset and probe
1869 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
1870 * probe the bus. Not often used these days.
1873 * PCI/etc. bus probe sem.
1874 * Obtains host_set lock.
1878 static unsigned int ata_bus_edd(struct ata_port
*ap
)
1880 struct ata_taskfile tf
;
1881 unsigned long flags
;
1883 /* set up execute-device-diag (bus reset) taskfile */
1884 /* also, take interrupts to a known state (disabled) */
1885 DPRINTK("execute-device-diag\n");
1886 ata_tf_init(ap
, &tf
, 0);
1888 tf
.command
= ATA_CMD_EDD
;
1889 tf
.protocol
= ATA_PROT_NODATA
;
1892 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
1893 ata_tf_to_host(ap
, &tf
);
1894 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
1896 /* spec says at least 2ms. but who knows with those
1897 * crazy ATAPI devices...
1901 return ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
);
1904 static unsigned int ata_bus_softreset(struct ata_port
*ap
,
1905 unsigned int devmask
)
1907 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1909 DPRINTK("ata%u: bus reset via SRST\n", ap
->id
);
1911 /* software reset. causes dev0 to be selected */
1912 if (ap
->flags
& ATA_FLAG_MMIO
) {
1913 writeb(ap
->ctl
, (void __iomem
*) ioaddr
->ctl_addr
);
1914 udelay(20); /* FIXME: flush */
1915 writeb(ap
->ctl
| ATA_SRST
, (void __iomem
*) ioaddr
->ctl_addr
);
1916 udelay(20); /* FIXME: flush */
1917 writeb(ap
->ctl
, (void __iomem
*) ioaddr
->ctl_addr
);
1919 outb(ap
->ctl
, ioaddr
->ctl_addr
);
1921 outb(ap
->ctl
| ATA_SRST
, ioaddr
->ctl_addr
);
1923 outb(ap
->ctl
, ioaddr
->ctl_addr
);
1926 /* spec mandates ">= 2ms" before checking status.
1927 * We wait 150ms, because that was the magic delay used for
1928 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
1929 * between when the ATA command register is written, and then
1930 * status is checked. Because waiting for "a while" before
1931 * checking status is fine, post SRST, we perform this magic
1932 * delay here as well.
1936 ata_bus_post_reset(ap
, devmask
);
1942 * ata_bus_reset - reset host port and associated ATA channel
1943 * @ap: port to reset
1945 * This is typically the first time we actually start issuing
1946 * commands to the ATA channel. We wait for BSY to clear, then
1947 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
1948 * result. Determine what devices, if any, are on the channel
1949 * by looking at the device 0/1 error register. Look at the signature
1950 * stored in each device's taskfile registers, to determine if
1951 * the device is ATA or ATAPI.
1954 * PCI/etc. bus probe sem.
1955 * Obtains host_set lock.
1958 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
1961 void ata_bus_reset(struct ata_port
*ap
)
1963 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1964 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
1966 unsigned int dev0
, dev1
= 0, rc
= 0, devmask
= 0;
1968 DPRINTK("ENTER, host %u, port %u\n", ap
->id
, ap
->port_no
);
1970 /* determine if device 0/1 are present */
1971 if (ap
->flags
& ATA_FLAG_SATA_RESET
)
1974 dev0
= ata_devchk(ap
, 0);
1976 dev1
= ata_devchk(ap
, 1);
1980 devmask
|= (1 << 0);
1982 devmask
|= (1 << 1);
1984 /* select device 0 again */
1985 ap
->ops
->dev_select(ap
, 0);
1987 /* issue bus reset */
1988 if (ap
->flags
& ATA_FLAG_SRST
)
1989 rc
= ata_bus_softreset(ap
, devmask
);
1990 else if ((ap
->flags
& ATA_FLAG_SATA_RESET
) == 0) {
1991 /* set up device control */
1992 if (ap
->flags
& ATA_FLAG_MMIO
)
1993 writeb(ap
->ctl
, (void __iomem
*) ioaddr
->ctl_addr
);
1995 outb(ap
->ctl
, ioaddr
->ctl_addr
);
1996 rc
= ata_bus_edd(ap
);
2003 * determine by signature whether we have ATA or ATAPI devices
2005 err
= ata_dev_try_classify(ap
, 0);
2006 if ((slave_possible
) && (err
!= 0x81))
2007 ata_dev_try_classify(ap
, 1);
2009 /* re-enable interrupts */
2010 if (ap
->ioaddr
.ctl_addr
) /* FIXME: hack. create a hook instead */
2013 /* is double-select really necessary? */
2014 if (ap
->device
[1].class != ATA_DEV_NONE
)
2015 ap
->ops
->dev_select(ap
, 1);
2016 if (ap
->device
[0].class != ATA_DEV_NONE
)
2017 ap
->ops
->dev_select(ap
, 0);
2019 /* if no devices were detected, disable this port */
2020 if ((ap
->device
[0].class == ATA_DEV_NONE
) &&
2021 (ap
->device
[1].class == ATA_DEV_NONE
))
2024 if (ap
->flags
& (ATA_FLAG_SATA_RESET
| ATA_FLAG_SRST
)) {
2025 /* set up device control for ATA_FLAG_SATA_RESET */
2026 if (ap
->flags
& ATA_FLAG_MMIO
)
2027 writeb(ap
->ctl
, (void __iomem
*) ioaddr
->ctl_addr
);
2029 outb(ap
->ctl
, ioaddr
->ctl_addr
);
2036 printk(KERN_ERR
"ata%u: disabling port\n", ap
->id
);
2037 ap
->ops
->port_disable(ap
);
2042 static void ata_pr_blacklisted(const struct ata_port
*ap
,
2043 const struct ata_device
*dev
)
2045 printk(KERN_WARNING
"ata%u: dev %u is on DMA blacklist, disabling DMA\n",
2046 ap
->id
, dev
->devno
);
2049 static const char * ata_dma_blacklist
[] = {
2068 "Toshiba CD-ROM XM-6202B",
2069 "TOSHIBA CD-ROM XM-1702BC",
2071 "E-IDE CD-ROM CR-840",
2074 "SAMSUNG CD-ROM SC-148C",
2075 "SAMSUNG CD-ROM SC",
2077 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
2081 static int ata_dma_blacklisted(const struct ata_device
*dev
)
2083 unsigned char model_num
[40];
2088 ata_dev_id_string(dev
->id
, model_num
, ATA_ID_PROD_OFS
,
2091 len
= strnlen(s
, sizeof(model_num
));
2093 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2094 while ((len
> 0) && (s
[len
- 1] == ' ')) {
2099 for (i
= 0; i
< ARRAY_SIZE(ata_dma_blacklist
); i
++)
2100 if (!strncmp(ata_dma_blacklist
[i
], s
, len
))
2106 static unsigned int ata_get_mode_mask(const struct ata_port
*ap
, int shift
)
2108 const struct ata_device
*master
, *slave
;
2111 master
= &ap
->device
[0];
2112 slave
= &ap
->device
[1];
2114 assert (ata_dev_present(master
) || ata_dev_present(slave
));
2116 if (shift
== ATA_SHIFT_UDMA
) {
2117 mask
= ap
->udma_mask
;
2118 if (ata_dev_present(master
)) {
2119 mask
&= (master
->id
[ATA_ID_UDMA_MODES
] & 0xff);
2120 if (ata_dma_blacklisted(master
)) {
2122 ata_pr_blacklisted(ap
, master
);
2125 if (ata_dev_present(slave
)) {
2126 mask
&= (slave
->id
[ATA_ID_UDMA_MODES
] & 0xff);
2127 if (ata_dma_blacklisted(slave
)) {
2129 ata_pr_blacklisted(ap
, slave
);
2133 else if (shift
== ATA_SHIFT_MWDMA
) {
2134 mask
= ap
->mwdma_mask
;
2135 if (ata_dev_present(master
)) {
2136 mask
&= (master
->id
[ATA_ID_MWDMA_MODES
] & 0x07);
2137 if (ata_dma_blacklisted(master
)) {
2139 ata_pr_blacklisted(ap
, master
);
2142 if (ata_dev_present(slave
)) {
2143 mask
&= (slave
->id
[ATA_ID_MWDMA_MODES
] & 0x07);
2144 if (ata_dma_blacklisted(slave
)) {
2146 ata_pr_blacklisted(ap
, slave
);
2150 else if (shift
== ATA_SHIFT_PIO
) {
2151 mask
= ap
->pio_mask
;
2152 if (ata_dev_present(master
)) {
2153 /* spec doesn't return explicit support for
2154 * PIO0-2, so we fake it
2156 u16 tmp_mode
= master
->id
[ATA_ID_PIO_MODES
] & 0x03;
2161 if (ata_dev_present(slave
)) {
2162 /* spec doesn't return explicit support for
2163 * PIO0-2, so we fake it
2165 u16 tmp_mode
= slave
->id
[ATA_ID_PIO_MODES
] & 0x03;
2172 mask
= 0xffffffff; /* shut up compiler warning */
2179 /* find greatest bit */
2180 static int fgb(u32 bitmap
)
2185 for (i
= 0; i
< 32; i
++)
2186 if (bitmap
& (1 << i
))
2193 * ata_choose_xfer_mode - attempt to find best transfer mode
2194 * @ap: Port for which an xfer mode will be selected
2195 * @xfer_mode_out: (output) SET FEATURES - XFER MODE code
2196 * @xfer_shift_out: (output) bit shift that selects this mode
2198 * Based on host and device capabilities, determine the
2199 * maximum transfer mode that is amenable to all.
2202 * PCI/etc. bus probe sem.
2205 * Zero on success, negative on error.
2208 static int ata_choose_xfer_mode(const struct ata_port
*ap
,
2210 unsigned int *xfer_shift_out
)
2212 unsigned int mask
, shift
;
2215 for (i
= 0; i
< ARRAY_SIZE(xfer_mode_classes
); i
++) {
2216 shift
= xfer_mode_classes
[i
].shift
;
2217 mask
= ata_get_mode_mask(ap
, shift
);
2221 *xfer_mode_out
= xfer_mode_classes
[i
].base
+ x
;
2222 *xfer_shift_out
= shift
;
2231 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2232 * @ap: Port associated with device @dev
2233 * @dev: Device to which command will be sent
2235 * Issue SET FEATURES - XFER MODE command to device @dev
2239 * PCI/etc. bus probe sem.
2242 static void ata_dev_set_xfermode(struct ata_port
*ap
, struct ata_device
*dev
)
2244 DECLARE_COMPLETION(wait
);
2245 struct ata_queued_cmd
*qc
;
2247 unsigned long flags
;
2249 /* set up set-features taskfile */
2250 DPRINTK("set features - xfer mode\n");
2252 qc
= ata_qc_new_init(ap
, dev
);
2255 qc
->tf
.command
= ATA_CMD_SET_FEATURES
;
2256 qc
->tf
.feature
= SETFEATURES_XFER
;
2257 qc
->tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
2258 qc
->tf
.protocol
= ATA_PROT_NODATA
;
2259 qc
->tf
.nsect
= dev
->xfer_mode
;
2261 qc
->waiting
= &wait
;
2262 qc
->complete_fn
= ata_qc_complete_noop
;
2264 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
2265 rc
= ata_qc_issue(qc
);
2266 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
2269 ata_port_disable(ap
);
2271 wait_for_completion(&wait
);
2277 * ata_dev_reread_id - Reread the device identify device info
2278 * @ap: port where the device is
2279 * @dev: device to reread the identify device info
2284 static void ata_dev_reread_id(struct ata_port
*ap
, struct ata_device
*dev
)
2286 DECLARE_COMPLETION(wait
);
2287 struct ata_queued_cmd
*qc
;
2288 unsigned long flags
;
2291 qc
= ata_qc_new_init(ap
, dev
);
2294 ata_sg_init_one(qc
, dev
->id
, sizeof(dev
->id
));
2295 qc
->dma_dir
= DMA_FROM_DEVICE
;
2297 if (dev
->class == ATA_DEV_ATA
) {
2298 qc
->tf
.command
= ATA_CMD_ID_ATA
;
2299 DPRINTK("do ATA identify\n");
2301 qc
->tf
.command
= ATA_CMD_ID_ATAPI
;
2302 DPRINTK("do ATAPI identify\n");
2305 qc
->tf
.flags
|= ATA_TFLAG_DEVICE
;
2306 qc
->tf
.protocol
= ATA_PROT_PIO
;
2309 qc
->waiting
= &wait
;
2310 qc
->complete_fn
= ata_qc_complete_noop
;
2312 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
2313 rc
= ata_qc_issue(qc
);
2314 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
2319 wait_for_completion(&wait
);
2321 swap_buf_le16(dev
->id
, ATA_ID_WORDS
);
2329 ata_port_disable(ap
);
2333 * ata_dev_init_params - Issue INIT DEV PARAMS command
2334 * @ap: Port associated with device @dev
2335 * @dev: Device to which command will be sent
2340 static void ata_dev_init_params(struct ata_port
*ap
, struct ata_device
*dev
)
2342 DECLARE_COMPLETION(wait
);
2343 struct ata_queued_cmd
*qc
;
2345 unsigned long flags
;
2346 u16 sectors
= dev
->id
[6];
2347 u16 heads
= dev
->id
[3];
2349 /* Number of sectors per track 1-255. Number of heads 1-16 */
2350 if (sectors
< 1 || sectors
> 255 || heads
< 1 || heads
> 16)
2353 /* set up init dev params taskfile */
2354 DPRINTK("init dev params \n");
2356 qc
= ata_qc_new_init(ap
, dev
);
2359 qc
->tf
.command
= ATA_CMD_INIT_DEV_PARAMS
;
2360 qc
->tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
2361 qc
->tf
.protocol
= ATA_PROT_NODATA
;
2362 qc
->tf
.nsect
= sectors
;
2363 qc
->tf
.device
|= (heads
- 1) & 0x0f; /* max head = num. of heads - 1 */
2365 qc
->waiting
= &wait
;
2366 qc
->complete_fn
= ata_qc_complete_noop
;
2368 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
2369 rc
= ata_qc_issue(qc
);
2370 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
2373 ata_port_disable(ap
);
2375 wait_for_completion(&wait
);
2381 * ata_sg_clean - Unmap DMA memory associated with command
2382 * @qc: Command containing DMA memory to be released
2384 * Unmap all mapped DMA memory associated with this command.
2387 * spin_lock_irqsave(host_set lock)
2390 static void ata_sg_clean(struct ata_queued_cmd
*qc
)
2392 struct ata_port
*ap
= qc
->ap
;
2393 struct scatterlist
*sg
= qc
->__sg
;
2394 int dir
= qc
->dma_dir
;
2395 void *pad_buf
= NULL
;
2397 assert(qc
->flags
& ATA_QCFLAG_DMAMAP
);
2400 if (qc
->flags
& ATA_QCFLAG_SINGLE
)
2401 assert(qc
->n_elem
== 1);
2403 DPRINTK("unmapping %u sg elements\n", qc
->n_elem
);
2405 /* if we padded the buffer out to 32-bit bound, and data
2406 * xfer direction is from-device, we must copy from the
2407 * pad buffer back into the supplied buffer
2409 if (qc
->pad_len
&& !(qc
->tf
.flags
& ATA_TFLAG_WRITE
))
2410 pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
2412 if (qc
->flags
& ATA_QCFLAG_SG
) {
2413 dma_unmap_sg(ap
->host_set
->dev
, sg
, qc
->n_elem
, dir
);
2414 /* restore last sg */
2415 sg
[qc
->orig_n_elem
- 1].length
+= qc
->pad_len
;
2417 struct scatterlist
*psg
= &qc
->pad_sgent
;
2418 void *addr
= kmap_atomic(psg
->page
, KM_IRQ0
);
2419 memcpy(addr
+ psg
->offset
, pad_buf
, qc
->pad_len
);
2420 kunmap_atomic(psg
->page
, KM_IRQ0
);
2423 dma_unmap_single(ap
->host_set
->dev
, sg_dma_address(&sg
[0]),
2424 sg_dma_len(&sg
[0]), dir
);
2426 sg
->length
+= qc
->pad_len
;
2428 memcpy(qc
->buf_virt
+ sg
->length
- qc
->pad_len
,
2429 pad_buf
, qc
->pad_len
);
2432 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
2437 * ata_fill_sg - Fill PCI IDE PRD table
2438 * @qc: Metadata associated with taskfile to be transferred
2440 * Fill PCI IDE PRD (scatter-gather) table with segments
2441 * associated with the current disk command.
2444 * spin_lock_irqsave(host_set lock)
2447 static void ata_fill_sg(struct ata_queued_cmd
*qc
)
2449 struct ata_port
*ap
= qc
->ap
;
2450 struct scatterlist
*sg
;
2453 assert(qc
->__sg
!= NULL
);
2454 assert(qc
->n_elem
> 0);
2457 ata_for_each_sg(sg
, qc
) {
2461 /* determine if physical DMA addr spans 64K boundary.
2462 * Note h/w doesn't support 64-bit, so we unconditionally
2463 * truncate dma_addr_t to u32.
2465 addr
= (u32
) sg_dma_address(sg
);
2466 sg_len
= sg_dma_len(sg
);
2469 offset
= addr
& 0xffff;
2471 if ((offset
+ sg_len
) > 0x10000)
2472 len
= 0x10000 - offset
;
2474 ap
->prd
[idx
].addr
= cpu_to_le32(addr
);
2475 ap
->prd
[idx
].flags_len
= cpu_to_le32(len
& 0xffff);
2476 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx
, addr
, len
);
2485 ap
->prd
[idx
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
2488 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2489 * @qc: Metadata associated with taskfile to check
2491 * Allow low-level driver to filter ATA PACKET commands, returning
2492 * a status indicating whether or not it is OK to use DMA for the
2493 * supplied PACKET command.
2496 * spin_lock_irqsave(host_set lock)
2498 * RETURNS: 0 when ATAPI DMA can be used
2501 int ata_check_atapi_dma(struct ata_queued_cmd
*qc
)
2503 struct ata_port
*ap
= qc
->ap
;
2504 int rc
= 0; /* Assume ATAPI DMA is OK by default */
2506 if (ap
->ops
->check_atapi_dma
)
2507 rc
= ap
->ops
->check_atapi_dma(qc
);
2512 * ata_qc_prep - Prepare taskfile for submission
2513 * @qc: Metadata associated with taskfile to be prepared
2515 * Prepare ATA taskfile for submission.
2518 * spin_lock_irqsave(host_set lock)
2520 void ata_qc_prep(struct ata_queued_cmd
*qc
)
2522 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
2529 * ata_sg_init_one - Associate command with memory buffer
2530 * @qc: Command to be associated
2531 * @buf: Memory buffer
2532 * @buflen: Length of memory buffer, in bytes.
2534 * Initialize the data-related elements of queued_cmd @qc
2535 * to point to a single memory buffer, @buf of byte length @buflen.
2538 * spin_lock_irqsave(host_set lock)
2541 void ata_sg_init_one(struct ata_queued_cmd
*qc
, void *buf
, unsigned int buflen
)
2543 struct scatterlist
*sg
;
2545 qc
->flags
|= ATA_QCFLAG_SINGLE
;
2547 memset(&qc
->sgent
, 0, sizeof(qc
->sgent
));
2548 qc
->__sg
= &qc
->sgent
;
2550 qc
->orig_n_elem
= 1;
2554 sg_init_one(sg
, buf
, buflen
);
2558 * ata_sg_init - Associate command with scatter-gather table.
2559 * @qc: Command to be associated
2560 * @sg: Scatter-gather table.
2561 * @n_elem: Number of elements in s/g table.
2563 * Initialize the data-related elements of queued_cmd @qc
2564 * to point to a scatter-gather table @sg, containing @n_elem
2568 * spin_lock_irqsave(host_set lock)
2571 void ata_sg_init(struct ata_queued_cmd
*qc
, struct scatterlist
*sg
,
2572 unsigned int n_elem
)
2574 qc
->flags
|= ATA_QCFLAG_SG
;
2576 qc
->n_elem
= n_elem
;
2577 qc
->orig_n_elem
= n_elem
;
2581 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2582 * @qc: Command with memory buffer to be mapped.
2584 * DMA-map the memory buffer associated with queued_cmd @qc.
2587 * spin_lock_irqsave(host_set lock)
2590 * Zero on success, negative on error.
2593 static int ata_sg_setup_one(struct ata_queued_cmd
*qc
)
2595 struct ata_port
*ap
= qc
->ap
;
2596 int dir
= qc
->dma_dir
;
2597 struct scatterlist
*sg
= qc
->__sg
;
2598 dma_addr_t dma_address
;
2600 /* we must lengthen transfers to end on a 32-bit boundary */
2601 qc
->pad_len
= sg
->length
& 3;
2603 void *pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
2604 struct scatterlist
*psg
= &qc
->pad_sgent
;
2606 assert(qc
->dev
->class == ATA_DEV_ATAPI
);
2608 memset(pad_buf
, 0, ATA_DMA_PAD_SZ
);
2610 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
)
2611 memcpy(pad_buf
, qc
->buf_virt
+ sg
->length
- qc
->pad_len
,
2614 sg_dma_address(psg
) = ap
->pad_dma
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
2615 sg_dma_len(psg
) = ATA_DMA_PAD_SZ
;
2617 sg
->length
-= qc
->pad_len
;
2619 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
2620 sg
->length
, qc
->pad_len
);
2623 dma_address
= dma_map_single(ap
->host_set
->dev
, qc
->buf_virt
,
2625 if (dma_mapping_error(dma_address
)) {
2627 sg
->length
+= qc
->pad_len
;
2631 sg_dma_address(sg
) = dma_address
;
2632 sg_dma_len(sg
) = sg
->length
;
2634 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg
),
2635 qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
2641 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
2642 * @qc: Command with scatter-gather table to be mapped.
2644 * DMA-map the scatter-gather table associated with queued_cmd @qc.
2647 * spin_lock_irqsave(host_set lock)
2650 * Zero on success, negative on error.
2654 static int ata_sg_setup(struct ata_queued_cmd
*qc
)
2656 struct ata_port
*ap
= qc
->ap
;
2657 struct scatterlist
*sg
= qc
->__sg
;
2658 struct scatterlist
*lsg
= &sg
[qc
->n_elem
- 1];
2661 VPRINTK("ENTER, ata%u\n", ap
->id
);
2662 assert(qc
->flags
& ATA_QCFLAG_SG
);
2664 /* we must lengthen transfers to end on a 32-bit boundary */
2665 qc
->pad_len
= lsg
->length
& 3;
2667 void *pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
2668 struct scatterlist
*psg
= &qc
->pad_sgent
;
2669 unsigned int offset
;
2671 assert(qc
->dev
->class == ATA_DEV_ATAPI
);
2673 memset(pad_buf
, 0, ATA_DMA_PAD_SZ
);
2676 * psg->page/offset are used to copy to-be-written
2677 * data in this function or read data in ata_sg_clean.
2679 offset
= lsg
->offset
+ lsg
->length
- qc
->pad_len
;
2680 psg
->page
= nth_page(lsg
->page
, offset
>> PAGE_SHIFT
);
2681 psg
->offset
= offset_in_page(offset
);
2683 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
2684 void *addr
= kmap_atomic(psg
->page
, KM_IRQ0
);
2685 memcpy(pad_buf
, addr
+ psg
->offset
, qc
->pad_len
);
2686 kunmap_atomic(psg
->page
, KM_IRQ0
);
2689 sg_dma_address(psg
) = ap
->pad_dma
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
2690 sg_dma_len(psg
) = ATA_DMA_PAD_SZ
;
2692 lsg
->length
-= qc
->pad_len
;
2694 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
2695 qc
->n_elem
- 1, lsg
->length
, qc
->pad_len
);
2699 n_elem
= dma_map_sg(ap
->host_set
->dev
, sg
, qc
->n_elem
, dir
);
2701 /* restore last sg */
2702 lsg
->length
+= qc
->pad_len
;
2706 DPRINTK("%d sg elements mapped\n", n_elem
);
2708 qc
->n_elem
= n_elem
;
2714 * ata_poll_qc_complete - turn irq back on and finish qc
2715 * @qc: Command to complete
2716 * @drv_stat: ATA status register content
2719 * None. (grabs host lock)
2722 void ata_poll_qc_complete(struct ata_queued_cmd
*qc
, unsigned int err_mask
)
2724 struct ata_port
*ap
= qc
->ap
;
2725 unsigned long flags
;
2727 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
2728 ap
->flags
&= ~ATA_FLAG_NOINTR
;
2730 ata_qc_complete(qc
, err_mask
);
2731 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
2736 * @ap: the target ata_port
2739 * None. (executing in kernel thread context)
2742 * timeout value to use
2745 static unsigned long ata_pio_poll(struct ata_port
*ap
)
2748 unsigned int poll_state
= HSM_ST_UNKNOWN
;
2749 unsigned int reg_state
= HSM_ST_UNKNOWN
;
2750 const unsigned int tmout_state
= HSM_ST_TMOUT
;
2752 switch (ap
->hsm_task_state
) {
2755 poll_state
= HSM_ST_POLL
;
2759 case HSM_ST_LAST_POLL
:
2760 poll_state
= HSM_ST_LAST_POLL
;
2761 reg_state
= HSM_ST_LAST
;
2768 status
= ata_chk_status(ap
);
2769 if (status
& ATA_BUSY
) {
2770 if (time_after(jiffies
, ap
->pio_task_timeout
)) {
2771 ap
->hsm_task_state
= tmout_state
;
2774 ap
->hsm_task_state
= poll_state
;
2775 return ATA_SHORT_PAUSE
;
2778 ap
->hsm_task_state
= reg_state
;
2783 * ata_pio_complete - check if drive is busy or idle
2784 * @ap: the target ata_port
2787 * None. (executing in kernel thread context)
2790 * Non-zero if qc completed, zero otherwise.
2793 static int ata_pio_complete (struct ata_port
*ap
)
2795 struct ata_queued_cmd
*qc
;
2799 * This is purely heuristic. This is a fast path. Sometimes when
2800 * we enter, BSY will be cleared in a chk-status or two. If not,
2801 * the drive is probably seeking or something. Snooze for a couple
2802 * msecs, then chk-status again. If still busy, fall back to
2803 * HSM_ST_POLL state.
2805 drv_stat
= ata_busy_wait(ap
, ATA_BUSY
| ATA_DRQ
, 10);
2806 if (drv_stat
& (ATA_BUSY
| ATA_DRQ
)) {
2808 drv_stat
= ata_busy_wait(ap
, ATA_BUSY
| ATA_DRQ
, 10);
2809 if (drv_stat
& (ATA_BUSY
| ATA_DRQ
)) {
2810 ap
->hsm_task_state
= HSM_ST_LAST_POLL
;
2811 ap
->pio_task_timeout
= jiffies
+ ATA_TMOUT_PIO
;
2816 drv_stat
= ata_wait_idle(ap
);
2817 if (!ata_ok(drv_stat
)) {
2818 ap
->hsm_task_state
= HSM_ST_ERR
;
2822 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
2825 ap
->hsm_task_state
= HSM_ST_IDLE
;
2827 ata_poll_qc_complete(qc
, 0);
2829 /* another command may start at this point */
2836 * swap_buf_le16 - swap halves of 16-words in place
2837 * @buf: Buffer to swap
2838 * @buf_words: Number of 16-bit words in buffer.
2840 * Swap halves of 16-bit words if needed to convert from
2841 * little-endian byte order to native cpu byte order, or
2845 * Inherited from caller.
2847 void swap_buf_le16(u16
*buf
, unsigned int buf_words
)
2852 for (i
= 0; i
< buf_words
; i
++)
2853 buf
[i
] = le16_to_cpu(buf
[i
]);
2854 #endif /* __BIG_ENDIAN */
2858 * ata_mmio_data_xfer - Transfer data by MMIO
2859 * @ap: port to read/write
2861 * @buflen: buffer length
2862 * @write_data: read/write
2864 * Transfer data from/to the device data register by MMIO.
2867 * Inherited from caller.
2870 static void ata_mmio_data_xfer(struct ata_port
*ap
, unsigned char *buf
,
2871 unsigned int buflen
, int write_data
)
2874 unsigned int words
= buflen
>> 1;
2875 u16
*buf16
= (u16
*) buf
;
2876 void __iomem
*mmio
= (void __iomem
*)ap
->ioaddr
.data_addr
;
2878 /* Transfer multiple of 2 bytes */
2880 for (i
= 0; i
< words
; i
++)
2881 writew(le16_to_cpu(buf16
[i
]), mmio
);
2883 for (i
= 0; i
< words
; i
++)
2884 buf16
[i
] = cpu_to_le16(readw(mmio
));
2887 /* Transfer trailing 1 byte, if any. */
2888 if (unlikely(buflen
& 0x01)) {
2889 u16 align_buf
[1] = { 0 };
2890 unsigned char *trailing_buf
= buf
+ buflen
- 1;
2893 memcpy(align_buf
, trailing_buf
, 1);
2894 writew(le16_to_cpu(align_buf
[0]), mmio
);
2896 align_buf
[0] = cpu_to_le16(readw(mmio
));
2897 memcpy(trailing_buf
, align_buf
, 1);
2903 * ata_pio_data_xfer - Transfer data by PIO
2904 * @ap: port to read/write
2906 * @buflen: buffer length
2907 * @write_data: read/write
2909 * Transfer data from/to the device data register by PIO.
2912 * Inherited from caller.
2915 static void ata_pio_data_xfer(struct ata_port
*ap
, unsigned char *buf
,
2916 unsigned int buflen
, int write_data
)
2918 unsigned int words
= buflen
>> 1;
2920 /* Transfer multiple of 2 bytes */
2922 outsw(ap
->ioaddr
.data_addr
, buf
, words
);
2924 insw(ap
->ioaddr
.data_addr
, buf
, words
);
2926 /* Transfer trailing 1 byte, if any. */
2927 if (unlikely(buflen
& 0x01)) {
2928 u16 align_buf
[1] = { 0 };
2929 unsigned char *trailing_buf
= buf
+ buflen
- 1;
2932 memcpy(align_buf
, trailing_buf
, 1);
2933 outw(le16_to_cpu(align_buf
[0]), ap
->ioaddr
.data_addr
);
2935 align_buf
[0] = cpu_to_le16(inw(ap
->ioaddr
.data_addr
));
2936 memcpy(trailing_buf
, align_buf
, 1);
2942 * ata_data_xfer - Transfer data from/to the data register.
2943 * @ap: port to read/write
2945 * @buflen: buffer length
2946 * @do_write: read/write
2948 * Transfer data from/to the device data register.
2951 * Inherited from caller.
2954 static void ata_data_xfer(struct ata_port
*ap
, unsigned char *buf
,
2955 unsigned int buflen
, int do_write
)
2957 if (ap
->flags
& ATA_FLAG_MMIO
)
2958 ata_mmio_data_xfer(ap
, buf
, buflen
, do_write
);
2960 ata_pio_data_xfer(ap
, buf
, buflen
, do_write
);
2964 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
2965 * @qc: Command on going
2967 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
2970 * Inherited from caller.
2973 static void ata_pio_sector(struct ata_queued_cmd
*qc
)
2975 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
2976 struct scatterlist
*sg
= qc
->__sg
;
2977 struct ata_port
*ap
= qc
->ap
;
2979 unsigned int offset
;
2982 if (qc
->cursect
== (qc
->nsect
- 1))
2983 ap
->hsm_task_state
= HSM_ST_LAST
;
2985 page
= sg
[qc
->cursg
].page
;
2986 offset
= sg
[qc
->cursg
].offset
+ qc
->cursg_ofs
* ATA_SECT_SIZE
;
2988 /* get the current page and offset */
2989 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
2990 offset
%= PAGE_SIZE
;
2992 buf
= kmap(page
) + offset
;
2997 if ((qc
->cursg_ofs
* ATA_SECT_SIZE
) == (&sg
[qc
->cursg
])->length
) {
3002 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
3004 /* do the actual data transfer */
3005 do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
3006 ata_data_xfer(ap
, buf
, ATA_SECT_SIZE
, do_write
);
3012 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3013 * @qc: Command on going
3014 * @bytes: number of bytes
3016 * Transfer Transfer data from/to the ATAPI device.
3019 * Inherited from caller.
3023 static void __atapi_pio_bytes(struct ata_queued_cmd
*qc
, unsigned int bytes
)
3025 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
3026 struct scatterlist
*sg
= qc
->__sg
;
3027 struct ata_port
*ap
= qc
->ap
;
3030 unsigned int offset
, count
;
3032 if (qc
->curbytes
+ bytes
>= qc
->nbytes
)
3033 ap
->hsm_task_state
= HSM_ST_LAST
;
3036 if (unlikely(qc
->cursg
>= qc
->n_elem
)) {
3038 * The end of qc->sg is reached and the device expects
3039 * more data to transfer. In order not to overrun qc->sg
3040 * and fulfill length specified in the byte count register,
3041 * - for read case, discard trailing data from the device
3042 * - for write case, padding zero data to the device
3044 u16 pad_buf
[1] = { 0 };
3045 unsigned int words
= bytes
>> 1;
3048 if (words
) /* warning if bytes > 1 */
3049 printk(KERN_WARNING
"ata%u: %u bytes trailing data\n",
3052 for (i
= 0; i
< words
; i
++)
3053 ata_data_xfer(ap
, (unsigned char*)pad_buf
, 2, do_write
);
3055 ap
->hsm_task_state
= HSM_ST_LAST
;
3059 sg
= &qc
->__sg
[qc
->cursg
];
3062 offset
= sg
->offset
+ qc
->cursg_ofs
;
3064 /* get the current page and offset */
3065 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
3066 offset
%= PAGE_SIZE
;
3068 /* don't overrun current sg */
3069 count
= min(sg
->length
- qc
->cursg_ofs
, bytes
);
3071 /* don't cross page boundaries */
3072 count
= min(count
, (unsigned int)PAGE_SIZE
- offset
);
3074 buf
= kmap(page
) + offset
;
3077 qc
->curbytes
+= count
;
3078 qc
->cursg_ofs
+= count
;
3080 if (qc
->cursg_ofs
== sg
->length
) {
3085 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
3087 /* do the actual data transfer */
3088 ata_data_xfer(ap
, buf
, count
, do_write
);
3097 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3098 * @qc: Command on going
3100 * Transfer Transfer data from/to the ATAPI device.
3103 * Inherited from caller.
3106 static void atapi_pio_bytes(struct ata_queued_cmd
*qc
)
3108 struct ata_port
*ap
= qc
->ap
;
3109 struct ata_device
*dev
= qc
->dev
;
3110 unsigned int ireason
, bc_lo
, bc_hi
, bytes
;
3111 int i_write
, do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
3113 ap
->ops
->tf_read(ap
, &qc
->tf
);
3114 ireason
= qc
->tf
.nsect
;
3115 bc_lo
= qc
->tf
.lbam
;
3116 bc_hi
= qc
->tf
.lbah
;
3117 bytes
= (bc_hi
<< 8) | bc_lo
;
3119 /* shall be cleared to zero, indicating xfer of data */
3120 if (ireason
& (1 << 0))
3123 /* make sure transfer direction matches expected */
3124 i_write
= ((ireason
& (1 << 1)) == 0) ? 1 : 0;
3125 if (do_write
!= i_write
)
3128 __atapi_pio_bytes(qc
, bytes
);
3133 printk(KERN_INFO
"ata%u: dev %u: ATAPI check failed\n",
3134 ap
->id
, dev
->devno
);
3135 ap
->hsm_task_state
= HSM_ST_ERR
;
3139 * ata_pio_block - start PIO on a block
3140 * @ap: the target ata_port
3143 * None. (executing in kernel thread context)
3146 static void ata_pio_block(struct ata_port
*ap
)
3148 struct ata_queued_cmd
*qc
;
3152 * This is purely heuristic. This is a fast path.
3153 * Sometimes when we enter, BSY will be cleared in
3154 * a chk-status or two. If not, the drive is probably seeking
3155 * or something. Snooze for a couple msecs, then
3156 * chk-status again. If still busy, fall back to
3157 * HSM_ST_POLL state.
3159 status
= ata_busy_wait(ap
, ATA_BUSY
, 5);
3160 if (status
& ATA_BUSY
) {
3162 status
= ata_busy_wait(ap
, ATA_BUSY
, 10);
3163 if (status
& ATA_BUSY
) {
3164 ap
->hsm_task_state
= HSM_ST_POLL
;
3165 ap
->pio_task_timeout
= jiffies
+ ATA_TMOUT_PIO
;
3170 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
3173 if (is_atapi_taskfile(&qc
->tf
)) {
3174 /* no more data to transfer or unsupported ATAPI command */
3175 if ((status
& ATA_DRQ
) == 0) {
3176 ap
->hsm_task_state
= HSM_ST_LAST
;
3180 atapi_pio_bytes(qc
);
3182 /* handle BSY=0, DRQ=0 as error */
3183 if ((status
& ATA_DRQ
) == 0) {
3184 ap
->hsm_task_state
= HSM_ST_ERR
;
3192 static void ata_pio_error(struct ata_port
*ap
)
3194 struct ata_queued_cmd
*qc
;
3196 printk(KERN_WARNING
"ata%u: PIO error\n", ap
->id
);
3198 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
3201 ap
->hsm_task_state
= HSM_ST_IDLE
;
3203 ata_poll_qc_complete(qc
, AC_ERR_ATA_BUS
);
3206 static void ata_pio_task(void *_data
)
3208 struct ata_port
*ap
= _data
;
3209 unsigned long timeout
;
3216 switch (ap
->hsm_task_state
) {
3225 qc_completed
= ata_pio_complete(ap
);
3229 case HSM_ST_LAST_POLL
:
3230 timeout
= ata_pio_poll(ap
);
3240 queue_delayed_work(ata_wq
, &ap
->pio_task
, timeout
);
3241 else if (!qc_completed
)
3246 * ata_qc_timeout - Handle timeout of queued command
3247 * @qc: Command that timed out
3249 * Some part of the kernel (currently, only the SCSI layer)
3250 * has noticed that the active command on port @ap has not
3251 * completed after a specified length of time. Handle this
3252 * condition by disabling DMA (if necessary) and completing
3253 * transactions, with error if necessary.
3255 * This also handles the case of the "lost interrupt", where
3256 * for some reason (possibly hardware bug, possibly driver bug)
3257 * an interrupt was not delivered to the driver, even though the
3258 * transaction completed successfully.
3261 * Inherited from SCSI layer (none, can sleep)
3264 static void ata_qc_timeout(struct ata_queued_cmd
*qc
)
3266 struct ata_port
*ap
= qc
->ap
;
3267 struct ata_host_set
*host_set
= ap
->host_set
;
3268 struct ata_device
*dev
= qc
->dev
;
3269 u8 host_stat
= 0, drv_stat
;
3270 unsigned long flags
;
3274 /* FIXME: doesn't this conflict with timeout handling? */
3275 if (qc
->dev
->class == ATA_DEV_ATAPI
&& qc
->scsicmd
) {
3276 struct scsi_cmnd
*cmd
= qc
->scsicmd
;
3278 if (!(cmd
->eh_eflags
& SCSI_EH_CANCEL_CMD
)) {
3280 /* finish completing original command */
3281 spin_lock_irqsave(&host_set
->lock
, flags
);
3282 __ata_qc_complete(qc
);
3283 spin_unlock_irqrestore(&host_set
->lock
, flags
);
3285 atapi_request_sense(ap
, dev
, cmd
);
3287 cmd
->result
= (CHECK_CONDITION
<< 1) | (DID_OK
<< 16);
3288 scsi_finish_command(cmd
);
3294 spin_lock_irqsave(&host_set
->lock
, flags
);
3296 /* hack alert! We cannot use the supplied completion
3297 * function from inside the ->eh_strategy_handler() thread.
3298 * libata is the only user of ->eh_strategy_handler() in
3299 * any kernel, so the default scsi_done() assumes it is
3300 * not being called from the SCSI EH.
3302 qc
->scsidone
= scsi_finish_command
;
3304 switch (qc
->tf
.protocol
) {
3307 case ATA_PROT_ATAPI_DMA
:
3308 host_stat
= ap
->ops
->bmdma_status(ap
);
3310 /* before we do anything else, clear DMA-Start bit */
3311 ap
->ops
->bmdma_stop(qc
);
3317 drv_stat
= ata_chk_status(ap
);
3319 /* ack bmdma irq events */
3320 ap
->ops
->irq_clear(ap
);
3322 printk(KERN_ERR
"ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3323 ap
->id
, qc
->tf
.command
, drv_stat
, host_stat
);
3325 /* complete taskfile transaction */
3326 ata_qc_complete(qc
, ac_err_mask(drv_stat
));
3330 spin_unlock_irqrestore(&host_set
->lock
, flags
);
3337 * ata_eng_timeout - Handle timeout of queued command
3338 * @ap: Port on which timed-out command is active
3340 * Some part of the kernel (currently, only the SCSI layer)
3341 * has noticed that the active command on port @ap has not
3342 * completed after a specified length of time. Handle this
3343 * condition by disabling DMA (if necessary) and completing
3344 * transactions, with error if necessary.
3346 * This also handles the case of the "lost interrupt", where
3347 * for some reason (possibly hardware bug, possibly driver bug)
3348 * an interrupt was not delivered to the driver, even though the
3349 * transaction completed successfully.
3352 * Inherited from SCSI layer (none, can sleep)
3355 void ata_eng_timeout(struct ata_port
*ap
)
3357 struct ata_queued_cmd
*qc
;
3361 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
3365 printk(KERN_ERR
"ata%u: BUG: timeout without command\n",
3375 * ata_qc_new - Request an available ATA command, for queueing
3376 * @ap: Port associated with device @dev
3377 * @dev: Device from whom we request an available command structure
3383 static struct ata_queued_cmd
*ata_qc_new(struct ata_port
*ap
)
3385 struct ata_queued_cmd
*qc
= NULL
;
3388 for (i
= 0; i
< ATA_MAX_QUEUE
; i
++)
3389 if (!test_and_set_bit(i
, &ap
->qactive
)) {
3390 qc
= ata_qc_from_tag(ap
, i
);
3401 * ata_qc_new_init - Request an available ATA command, and initialize it
3402 * @ap: Port associated with device @dev
3403 * @dev: Device from whom we request an available command structure
3409 struct ata_queued_cmd
*ata_qc_new_init(struct ata_port
*ap
,
3410 struct ata_device
*dev
)
3412 struct ata_queued_cmd
*qc
;
3414 qc
= ata_qc_new(ap
);
3421 qc
->cursect
= qc
->cursg
= qc
->cursg_ofs
= 0;
3423 qc
->nbytes
= qc
->curbytes
= 0;
3425 ata_tf_init(ap
, &qc
->tf
, dev
->devno
);
3431 int ata_qc_complete_noop(struct ata_queued_cmd
*qc
, unsigned int err_mask
)
3436 static void __ata_qc_complete(struct ata_queued_cmd
*qc
)
3438 struct ata_port
*ap
= qc
->ap
;
3439 unsigned int tag
, do_clear
= 0;
3443 if (likely(ata_tag_valid(tag
))) {
3444 if (tag
== ap
->active_tag
)
3445 ap
->active_tag
= ATA_TAG_POISON
;
3446 qc
->tag
= ATA_TAG_POISON
;
3451 struct completion
*waiting
= qc
->waiting
;
3456 if (likely(do_clear
))
3457 clear_bit(tag
, &ap
->qactive
);
3461 * ata_qc_free - free unused ata_queued_cmd
3462 * @qc: Command to complete
3464 * Designed to free unused ata_queued_cmd object
3465 * in case something prevents using it.
3468 * spin_lock_irqsave(host_set lock)
3470 void ata_qc_free(struct ata_queued_cmd
*qc
)
3472 assert(qc
!= NULL
); /* ata_qc_from_tag _might_ return NULL */
3473 assert(qc
->waiting
== NULL
); /* nothing should be waiting */
3475 __ata_qc_complete(qc
);
3479 * ata_qc_complete - Complete an active ATA command
3480 * @qc: Command to complete
3481 * @drv_stat: ATA Status register contents
3483 * Indicate to the mid and upper layers that an ATA
3484 * command has completed, with either an ok or not-ok status.
3487 * spin_lock_irqsave(host_set lock)
3490 void ata_qc_complete(struct ata_queued_cmd
*qc
, unsigned int err_mask
)
3494 assert(qc
!= NULL
); /* ata_qc_from_tag _might_ return NULL */
3495 assert(qc
->flags
& ATA_QCFLAG_ACTIVE
);
3497 if (likely(qc
->flags
& ATA_QCFLAG_DMAMAP
))
3500 /* atapi: mark qc as inactive to prevent the interrupt handler
3501 * from completing the command twice later, before the error handler
3502 * is called. (when rc != 0 and atapi request sense is needed)
3504 qc
->flags
&= ~ATA_QCFLAG_ACTIVE
;
3506 /* call completion callback */
3507 rc
= qc
->complete_fn(qc
, err_mask
);
3509 /* if callback indicates not to complete command (non-zero),
3510 * return immediately
3515 __ata_qc_complete(qc
);
3520 static inline int ata_should_dma_map(struct ata_queued_cmd
*qc
)
3522 struct ata_port
*ap
= qc
->ap
;
3524 switch (qc
->tf
.protocol
) {
3526 case ATA_PROT_ATAPI_DMA
:
3529 case ATA_PROT_ATAPI
:
3531 case ATA_PROT_PIO_MULT
:
3532 if (ap
->flags
& ATA_FLAG_PIO_DMA
)
3545 * ata_qc_issue - issue taskfile to device
3546 * @qc: command to issue to device
3548 * Prepare an ATA command to submission to device.
3549 * This includes mapping the data into a DMA-able
3550 * area, filling in the S/G table, and finally
3551 * writing the taskfile to hardware, starting the command.
3554 * spin_lock_irqsave(host_set lock)
3557 * Zero on success, negative on error.
3560 int ata_qc_issue(struct ata_queued_cmd
*qc
)
3562 struct ata_port
*ap
= qc
->ap
;
3564 if (ata_should_dma_map(qc
)) {
3565 if (qc
->flags
& ATA_QCFLAG_SG
) {
3566 if (ata_sg_setup(qc
))
3568 } else if (qc
->flags
& ATA_QCFLAG_SINGLE
) {
3569 if (ata_sg_setup_one(qc
))
3573 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
3576 ap
->ops
->qc_prep(qc
);
3578 qc
->ap
->active_tag
= qc
->tag
;
3579 qc
->flags
|= ATA_QCFLAG_ACTIVE
;
3581 return ap
->ops
->qc_issue(qc
);
3589 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
3590 * @qc: command to issue to device
3592 * Using various libata functions and hooks, this function
3593 * starts an ATA command. ATA commands are grouped into
3594 * classes called "protocols", and issuing each type of protocol
3595 * is slightly different.
3597 * May be used as the qc_issue() entry in ata_port_operations.
3600 * spin_lock_irqsave(host_set lock)
3603 * Zero on success, negative on error.
3606 int ata_qc_issue_prot(struct ata_queued_cmd
*qc
)
3608 struct ata_port
*ap
= qc
->ap
;
3610 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
3612 switch (qc
->tf
.protocol
) {
3613 case ATA_PROT_NODATA
:
3614 ata_tf_to_host(ap
, &qc
->tf
);
3618 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
3619 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
3620 ap
->ops
->bmdma_start(qc
); /* initiate bmdma */
3623 case ATA_PROT_PIO
: /* load tf registers, initiate polling pio */
3624 ata_qc_set_polling(qc
);
3625 ata_tf_to_host(ap
, &qc
->tf
);
3626 ap
->hsm_task_state
= HSM_ST
;
3627 queue_work(ata_wq
, &ap
->pio_task
);
3630 case ATA_PROT_ATAPI
:
3631 ata_qc_set_polling(qc
);
3632 ata_tf_to_host(ap
, &qc
->tf
);
3633 queue_work(ata_wq
, &ap
->packet_task
);
3636 case ATA_PROT_ATAPI_NODATA
:
3637 ap
->flags
|= ATA_FLAG_NOINTR
;
3638 ata_tf_to_host(ap
, &qc
->tf
);
3639 queue_work(ata_wq
, &ap
->packet_task
);
3642 case ATA_PROT_ATAPI_DMA
:
3643 ap
->flags
|= ATA_FLAG_NOINTR
;
3644 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
3645 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
3646 queue_work(ata_wq
, &ap
->packet_task
);
3658 * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
3659 * @qc: Info associated with this ATA transaction.
3662 * spin_lock_irqsave(host_set lock)
3665 static void ata_bmdma_setup_mmio (struct ata_queued_cmd
*qc
)
3667 struct ata_port
*ap
= qc
->ap
;
3668 unsigned int rw
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
3670 void __iomem
*mmio
= (void __iomem
*) ap
->ioaddr
.bmdma_addr
;
3672 /* load PRD table addr. */
3673 mb(); /* make sure PRD table writes are visible to controller */
3674 writel(ap
->prd_dma
, mmio
+ ATA_DMA_TABLE_OFS
);
3676 /* specify data direction, triple-check start bit is clear */
3677 dmactl
= readb(mmio
+ ATA_DMA_CMD
);
3678 dmactl
&= ~(ATA_DMA_WR
| ATA_DMA_START
);
3680 dmactl
|= ATA_DMA_WR
;
3681 writeb(dmactl
, mmio
+ ATA_DMA_CMD
);
3683 /* issue r/w command */
3684 ap
->ops
->exec_command(ap
, &qc
->tf
);
3688 * ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction
3689 * @qc: Info associated with this ATA transaction.
3692 * spin_lock_irqsave(host_set lock)
3695 static void ata_bmdma_start_mmio (struct ata_queued_cmd
*qc
)
3697 struct ata_port
*ap
= qc
->ap
;
3698 void __iomem
*mmio
= (void __iomem
*) ap
->ioaddr
.bmdma_addr
;
3701 /* start host DMA transaction */
3702 dmactl
= readb(mmio
+ ATA_DMA_CMD
);
3703 writeb(dmactl
| ATA_DMA_START
, mmio
+ ATA_DMA_CMD
);
3705 /* Strictly, one may wish to issue a readb() here, to
3706 * flush the mmio write. However, control also passes
3707 * to the hardware at this point, and it will interrupt
3708 * us when we are to resume control. So, in effect,
3709 * we don't care when the mmio write flushes.
3710 * Further, a read of the DMA status register _immediately_
3711 * following the write may not be what certain flaky hardware
3712 * is expected, so I think it is best to not add a readb()
3713 * without first all the MMIO ATA cards/mobos.
3714 * Or maybe I'm just being paranoid.
3719 * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
3720 * @qc: Info associated with this ATA transaction.
3723 * spin_lock_irqsave(host_set lock)
3726 static void ata_bmdma_setup_pio (struct ata_queued_cmd
*qc
)
3728 struct ata_port
*ap
= qc
->ap
;
3729 unsigned int rw
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
3732 /* load PRD table addr. */
3733 outl(ap
->prd_dma
, ap
->ioaddr
.bmdma_addr
+ ATA_DMA_TABLE_OFS
);
3735 /* specify data direction, triple-check start bit is clear */
3736 dmactl
= inb(ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
3737 dmactl
&= ~(ATA_DMA_WR
| ATA_DMA_START
);
3739 dmactl
|= ATA_DMA_WR
;
3740 outb(dmactl
, ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
3742 /* issue r/w command */
3743 ap
->ops
->exec_command(ap
, &qc
->tf
);
3747 * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
3748 * @qc: Info associated with this ATA transaction.
3751 * spin_lock_irqsave(host_set lock)
3754 static void ata_bmdma_start_pio (struct ata_queued_cmd
*qc
)
3756 struct ata_port
*ap
= qc
->ap
;
3759 /* start host DMA transaction */
3760 dmactl
= inb(ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
3761 outb(dmactl
| ATA_DMA_START
,
3762 ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
3767 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3768 * @qc: Info associated with this ATA transaction.
3770 * Writes the ATA_DMA_START flag to the DMA command register.
3772 * May be used as the bmdma_start() entry in ata_port_operations.
3775 * spin_lock_irqsave(host_set lock)
3777 void ata_bmdma_start(struct ata_queued_cmd
*qc
)
3779 if (qc
->ap
->flags
& ATA_FLAG_MMIO
)
3780 ata_bmdma_start_mmio(qc
);
3782 ata_bmdma_start_pio(qc
);
3787 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3788 * @qc: Info associated with this ATA transaction.
3790 * Writes address of PRD table to device's PRD Table Address
3791 * register, sets the DMA control register, and calls
3792 * ops->exec_command() to start the transfer.
3794 * May be used as the bmdma_setup() entry in ata_port_operations.
3797 * spin_lock_irqsave(host_set lock)
3799 void ata_bmdma_setup(struct ata_queued_cmd
*qc
)
3801 if (qc
->ap
->flags
& ATA_FLAG_MMIO
)
3802 ata_bmdma_setup_mmio(qc
);
3804 ata_bmdma_setup_pio(qc
);
3809 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
3810 * @ap: Port associated with this ATA transaction.
3812 * Clear interrupt and error flags in DMA status register.
3814 * May be used as the irq_clear() entry in ata_port_operations.
3817 * spin_lock_irqsave(host_set lock)
3820 void ata_bmdma_irq_clear(struct ata_port
*ap
)
3822 if (ap
->flags
& ATA_FLAG_MMIO
) {
3823 void __iomem
*mmio
= ((void __iomem
*) ap
->ioaddr
.bmdma_addr
) + ATA_DMA_STATUS
;
3824 writeb(readb(mmio
), mmio
);
3826 unsigned long addr
= ap
->ioaddr
.bmdma_addr
+ ATA_DMA_STATUS
;
3827 outb(inb(addr
), addr
);
3834 * ata_bmdma_status - Read PCI IDE BMDMA status
3835 * @ap: Port associated with this ATA transaction.
3837 * Read and return BMDMA status register.
3839 * May be used as the bmdma_status() entry in ata_port_operations.
3842 * spin_lock_irqsave(host_set lock)
3845 u8
ata_bmdma_status(struct ata_port
*ap
)
3848 if (ap
->flags
& ATA_FLAG_MMIO
) {
3849 void __iomem
*mmio
= (void __iomem
*) ap
->ioaddr
.bmdma_addr
;
3850 host_stat
= readb(mmio
+ ATA_DMA_STATUS
);
3852 host_stat
= inb(ap
->ioaddr
.bmdma_addr
+ ATA_DMA_STATUS
);
3858 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3859 * @qc: Command we are ending DMA for
3861 * Clears the ATA_DMA_START flag in the dma control register
3863 * May be used as the bmdma_stop() entry in ata_port_operations.
3866 * spin_lock_irqsave(host_set lock)
3869 void ata_bmdma_stop(struct ata_queued_cmd
*qc
)
3871 struct ata_port
*ap
= qc
->ap
;
3872 if (ap
->flags
& ATA_FLAG_MMIO
) {
3873 void __iomem
*mmio
= (void __iomem
*) ap
->ioaddr
.bmdma_addr
;
3875 /* clear start/stop bit */
3876 writeb(readb(mmio
+ ATA_DMA_CMD
) & ~ATA_DMA_START
,
3877 mmio
+ ATA_DMA_CMD
);
3879 /* clear start/stop bit */
3880 outb(inb(ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
) & ~ATA_DMA_START
,
3881 ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
3884 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3885 ata_altstatus(ap
); /* dummy read */
3889 * ata_host_intr - Handle host interrupt for given (port, task)
3890 * @ap: Port on which interrupt arrived (possibly...)
3891 * @qc: Taskfile currently active in engine
3893 * Handle host interrupt for given queued command. Currently,
3894 * only DMA interrupts are handled. All other commands are
3895 * handled via polling with interrupts disabled (nIEN bit).
3898 * spin_lock_irqsave(host_set lock)
3901 * One if interrupt was handled, zero if not (shared irq).
3904 inline unsigned int ata_host_intr (struct ata_port
*ap
,
3905 struct ata_queued_cmd
*qc
)
3907 u8 status
, host_stat
;
3909 switch (qc
->tf
.protocol
) {
3912 case ATA_PROT_ATAPI_DMA
:
3913 case ATA_PROT_ATAPI
:
3914 /* check status of DMA engine */
3915 host_stat
= ap
->ops
->bmdma_status(ap
);
3916 VPRINTK("ata%u: host_stat 0x%X\n", ap
->id
, host_stat
);
3918 /* if it's not our irq... */
3919 if (!(host_stat
& ATA_DMA_INTR
))
3922 /* before we do anything else, clear DMA-Start bit */
3923 ap
->ops
->bmdma_stop(qc
);
3927 case ATA_PROT_ATAPI_NODATA
:
3928 case ATA_PROT_NODATA
:
3929 /* check altstatus */
3930 status
= ata_altstatus(ap
);
3931 if (status
& ATA_BUSY
)
3934 /* check main status, clearing INTRQ */
3935 status
= ata_chk_status(ap
);
3936 if (unlikely(status
& ATA_BUSY
))
3938 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
3939 ap
->id
, qc
->tf
.protocol
, status
);
3941 /* ack bmdma irq events */
3942 ap
->ops
->irq_clear(ap
);
3944 /* complete taskfile transaction */
3945 ata_qc_complete(qc
, ac_err_mask(status
));
3952 return 1; /* irq handled */
3955 ap
->stats
.idle_irq
++;
3958 if ((ap
->stats
.idle_irq
% 1000) == 0) {
3960 ata_irq_ack(ap
, 0); /* debug trap */
3961 printk(KERN_WARNING
"ata%d: irq trap\n", ap
->id
);
3964 return 0; /* irq not handled */
3968 * ata_interrupt - Default ATA host interrupt handler
3969 * @irq: irq line (unused)
3970 * @dev_instance: pointer to our ata_host_set information structure
3973 * Default interrupt handler for PCI IDE devices. Calls
3974 * ata_host_intr() for each port that is not disabled.
3977 * Obtains host_set lock during operation.
3980 * IRQ_NONE or IRQ_HANDLED.
3983 irqreturn_t
ata_interrupt (int irq
, void *dev_instance
, struct pt_regs
*regs
)
3985 struct ata_host_set
*host_set
= dev_instance
;
3987 unsigned int handled
= 0;
3988 unsigned long flags
;
3990 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
3991 spin_lock_irqsave(&host_set
->lock
, flags
);
3993 for (i
= 0; i
< host_set
->n_ports
; i
++) {
3994 struct ata_port
*ap
;
3996 ap
= host_set
->ports
[i
];
3998 !(ap
->flags
& (ATA_FLAG_PORT_DISABLED
| ATA_FLAG_NOINTR
))) {
3999 struct ata_queued_cmd
*qc
;
4001 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
4002 if (qc
&& (!(qc
->tf
.ctl
& ATA_NIEN
)) &&
4003 (qc
->flags
& ATA_QCFLAG_ACTIVE
))
4004 handled
|= ata_host_intr(ap
, qc
);
4008 spin_unlock_irqrestore(&host_set
->lock
, flags
);
4010 return IRQ_RETVAL(handled
);
4014 * atapi_packet_task - Write CDB bytes to hardware
4015 * @_data: Port to which ATAPI device is attached.
4017 * When device has indicated its readiness to accept
4018 * a CDB, this function is called. Send the CDB.
4019 * If DMA is to be performed, exit immediately.
4020 * Otherwise, we are in polling mode, so poll
4021 * status under operation succeeds or fails.
4024 * Kernel thread context (may sleep)
4027 static void atapi_packet_task(void *_data
)
4029 struct ata_port
*ap
= _data
;
4030 struct ata_queued_cmd
*qc
;
4033 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
4035 assert(qc
->flags
& ATA_QCFLAG_ACTIVE
);
4037 /* sleep-wait for BSY to clear */
4038 DPRINTK("busy wait\n");
4039 if (ata_busy_sleep(ap
, ATA_TMOUT_CDB_QUICK
, ATA_TMOUT_CDB
))
4040 goto err_out_status
;
4042 /* make sure DRQ is set */
4043 status
= ata_chk_status(ap
);
4044 if ((status
& (ATA_BUSY
| ATA_DRQ
)) != ATA_DRQ
)
4048 DPRINTK("send cdb\n");
4049 assert(ap
->cdb_len
>= 12);
4051 if (qc
->tf
.protocol
== ATA_PROT_ATAPI_DMA
||
4052 qc
->tf
.protocol
== ATA_PROT_ATAPI_NODATA
) {
4053 unsigned long flags
;
4055 /* Once we're done issuing command and kicking bmdma,
4056 * irq handler takes over. To not lose irq, we need
4057 * to clear NOINTR flag before sending cdb, but
4058 * interrupt handler shouldn't be invoked before we're
4059 * finished. Hence, the following locking.
4061 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
4062 ap
->flags
&= ~ATA_FLAG_NOINTR
;
4063 ata_data_xfer(ap
, qc
->cdb
, ap
->cdb_len
, 1);
4064 if (qc
->tf
.protocol
== ATA_PROT_ATAPI_DMA
)
4065 ap
->ops
->bmdma_start(qc
); /* initiate bmdma */
4066 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
4068 ata_data_xfer(ap
, qc
->cdb
, ap
->cdb_len
, 1);
4070 /* PIO commands are handled by polling */
4071 ap
->hsm_task_state
= HSM_ST
;
4072 queue_work(ata_wq
, &ap
->pio_task
);
4078 status
= ata_chk_status(ap
);
4080 ata_poll_qc_complete(qc
, __ac_err_mask(status
));
4085 * ata_port_start - Set port up for dma.
4086 * @ap: Port to initialize
4088 * Called just after data structures for each port are
4089 * initialized. Allocates space for PRD table.
4091 * May be used as the port_start() entry in ata_port_operations.
4094 * Inherited from caller.
4097 int ata_port_start (struct ata_port
*ap
)
4099 struct device
*dev
= ap
->host_set
->dev
;
4102 ap
->prd
= dma_alloc_coherent(dev
, ATA_PRD_TBL_SZ
, &ap
->prd_dma
, GFP_KERNEL
);
4106 rc
= ata_pad_alloc(ap
, dev
);
4108 dma_free_coherent(dev
, ATA_PRD_TBL_SZ
, ap
->prd
, ap
->prd_dma
);
4112 DPRINTK("prd alloc, virt %p, dma %llx\n", ap
->prd
, (unsigned long long) ap
->prd_dma
);
4119 * ata_port_stop - Undo ata_port_start()
4120 * @ap: Port to shut down
4122 * Frees the PRD table.
4124 * May be used as the port_stop() entry in ata_port_operations.
4127 * Inherited from caller.
4130 void ata_port_stop (struct ata_port
*ap
)
4132 struct device
*dev
= ap
->host_set
->dev
;
4134 dma_free_coherent(dev
, ATA_PRD_TBL_SZ
, ap
->prd
, ap
->prd_dma
);
4135 ata_pad_free(ap
, dev
);
4138 void ata_host_stop (struct ata_host_set
*host_set
)
4140 if (host_set
->mmio_base
)
4141 iounmap(host_set
->mmio_base
);
4146 * ata_host_remove - Unregister SCSI host structure with upper layers
4147 * @ap: Port to unregister
4148 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4151 * Inherited from caller.
4154 static void ata_host_remove(struct ata_port
*ap
, unsigned int do_unregister
)
4156 struct Scsi_Host
*sh
= ap
->host
;
4161 scsi_remove_host(sh
);
4163 ap
->ops
->port_stop(ap
);
4167 * ata_host_init - Initialize an ata_port structure
4168 * @ap: Structure to initialize
4169 * @host: associated SCSI mid-layer structure
4170 * @host_set: Collection of hosts to which @ap belongs
4171 * @ent: Probe information provided by low-level driver
4172 * @port_no: Port number associated with this ata_port
4174 * Initialize a new ata_port structure, and its associated
4178 * Inherited from caller.
4181 static void ata_host_init(struct ata_port
*ap
, struct Scsi_Host
*host
,
4182 struct ata_host_set
*host_set
,
4183 const struct ata_probe_ent
*ent
, unsigned int port_no
)
4189 host
->max_channel
= 1;
4190 host
->unique_id
= ata_unique_id
++;
4191 host
->max_cmd_len
= 12;
4193 ap
->flags
= ATA_FLAG_PORT_DISABLED
;
4194 ap
->id
= host
->unique_id
;
4196 ap
->ctl
= ATA_DEVCTL_OBS
;
4197 ap
->host_set
= host_set
;
4198 ap
->port_no
= port_no
;
4200 ent
->legacy_mode
? ent
->hard_port_no
: port_no
;
4201 ap
->pio_mask
= ent
->pio_mask
;
4202 ap
->mwdma_mask
= ent
->mwdma_mask
;
4203 ap
->udma_mask
= ent
->udma_mask
;
4204 ap
->flags
|= ent
->host_flags
;
4205 ap
->ops
= ent
->port_ops
;
4206 ap
->cbl
= ATA_CBL_NONE
;
4207 ap
->active_tag
= ATA_TAG_POISON
;
4208 ap
->last_ctl
= 0xFF;
4210 INIT_WORK(&ap
->packet_task
, atapi_packet_task
, ap
);
4211 INIT_WORK(&ap
->pio_task
, ata_pio_task
, ap
);
4213 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
4214 ap
->device
[i
].devno
= i
;
4217 ap
->stats
.unhandled_irq
= 1;
4218 ap
->stats
.idle_irq
= 1;
4221 memcpy(&ap
->ioaddr
, &ent
->port
[port_no
], sizeof(struct ata_ioports
));
4225 * ata_host_add - Attach low-level ATA driver to system
4226 * @ent: Information provided by low-level driver
4227 * @host_set: Collections of ports to which we add
4228 * @port_no: Port number associated with this host
4230 * Attach low-level ATA driver to system.
4233 * PCI/etc. bus probe sem.
4236 * New ata_port on success, for NULL on error.
4239 static struct ata_port
* ata_host_add(const struct ata_probe_ent
*ent
,
4240 struct ata_host_set
*host_set
,
4241 unsigned int port_no
)
4243 struct Scsi_Host
*host
;
4244 struct ata_port
*ap
;
4248 host
= scsi_host_alloc(ent
->sht
, sizeof(struct ata_port
));
4252 ap
= (struct ata_port
*) &host
->hostdata
[0];
4254 ata_host_init(ap
, host
, host_set
, ent
, port_no
);
4256 rc
= ap
->ops
->port_start(ap
);
4263 scsi_host_put(host
);
4268 * ata_device_add - Register hardware device with ATA and SCSI layers
4269 * @ent: Probe information describing hardware device to be registered
4271 * This function processes the information provided in the probe
4272 * information struct @ent, allocates the necessary ATA and SCSI
4273 * host information structures, initializes them, and registers
4274 * everything with requisite kernel subsystems.
4276 * This function requests irqs, probes the ATA bus, and probes
4280 * PCI/etc. bus probe sem.
4283 * Number of ports registered. Zero on error (no ports registered).
4286 int ata_device_add(const struct ata_probe_ent
*ent
)
4288 unsigned int count
= 0, i
;
4289 struct device
*dev
= ent
->dev
;
4290 struct ata_host_set
*host_set
;
4293 /* alloc a container for our list of ATA ports (buses) */
4294 host_set
= kzalloc(sizeof(struct ata_host_set
) +
4295 (ent
->n_ports
* sizeof(void *)), GFP_KERNEL
);
4298 spin_lock_init(&host_set
->lock
);
4300 host_set
->dev
= dev
;
4301 host_set
->n_ports
= ent
->n_ports
;
4302 host_set
->irq
= ent
->irq
;
4303 host_set
->mmio_base
= ent
->mmio_base
;
4304 host_set
->private_data
= ent
->private_data
;
4305 host_set
->ops
= ent
->port_ops
;
4307 /* register each port bound to this device */
4308 for (i
= 0; i
< ent
->n_ports
; i
++) {
4309 struct ata_port
*ap
;
4310 unsigned long xfer_mode_mask
;
4312 ap
= ata_host_add(ent
, host_set
, i
);
4316 host_set
->ports
[i
] = ap
;
4317 xfer_mode_mask
=(ap
->udma_mask
<< ATA_SHIFT_UDMA
) |
4318 (ap
->mwdma_mask
<< ATA_SHIFT_MWDMA
) |
4319 (ap
->pio_mask
<< ATA_SHIFT_PIO
);
4321 /* print per-port info to dmesg */
4322 printk(KERN_INFO
"ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4323 "bmdma 0x%lX irq %lu\n",
4325 ap
->flags
& ATA_FLAG_SATA
? 'S' : 'P',
4326 ata_mode_string(xfer_mode_mask
),
4327 ap
->ioaddr
.cmd_addr
,
4328 ap
->ioaddr
.ctl_addr
,
4329 ap
->ioaddr
.bmdma_addr
,
4333 host_set
->ops
->irq_clear(ap
);
4340 /* obtain irq, that is shared between channels */
4341 if (request_irq(ent
->irq
, ent
->port_ops
->irq_handler
, ent
->irq_flags
,
4342 DRV_NAME
, host_set
))
4345 /* perform each probe synchronously */
4346 DPRINTK("probe begin\n");
4347 for (i
= 0; i
< count
; i
++) {
4348 struct ata_port
*ap
;
4351 ap
= host_set
->ports
[i
];
4353 DPRINTK("ata%u: probe begin\n", ap
->id
);
4354 rc
= ata_bus_probe(ap
);
4355 DPRINTK("ata%u: probe end\n", ap
->id
);
4358 /* FIXME: do something useful here?
4359 * Current libata behavior will
4360 * tear down everything when
4361 * the module is removed
4362 * or the h/w is unplugged.
4366 rc
= scsi_add_host(ap
->host
, dev
);
4368 printk(KERN_ERR
"ata%u: scsi_add_host failed\n",
4370 /* FIXME: do something useful here */
4371 /* FIXME: handle unconditional calls to
4372 * scsi_scan_host and ata_host_remove, below,
4378 /* probes are done, now scan each port's disk(s) */
4379 DPRINTK("probe begin\n");
4380 for (i
= 0; i
< count
; i
++) {
4381 struct ata_port
*ap
= host_set
->ports
[i
];
4383 ata_scsi_scan_host(ap
);
4386 dev_set_drvdata(dev
, host_set
);
4388 VPRINTK("EXIT, returning %u\n", ent
->n_ports
);
4389 return ent
->n_ports
; /* success */
4392 for (i
= 0; i
< count
; i
++) {
4393 ata_host_remove(host_set
->ports
[i
], 1);
4394 scsi_host_put(host_set
->ports
[i
]->host
);
4398 VPRINTK("EXIT, returning 0\n");
4403 * ata_host_set_remove - PCI layer callback for device removal
4404 * @host_set: ATA host set that was removed
4406 * Unregister all objects associated with this host set. Free those
4410 * Inherited from calling layer (may sleep).
4413 void ata_host_set_remove(struct ata_host_set
*host_set
)
4415 struct ata_port
*ap
;
4418 for (i
= 0; i
< host_set
->n_ports
; i
++) {
4419 ap
= host_set
->ports
[i
];
4420 scsi_remove_host(ap
->host
);
4423 free_irq(host_set
->irq
, host_set
);
4425 for (i
= 0; i
< host_set
->n_ports
; i
++) {
4426 ap
= host_set
->ports
[i
];
4428 ata_scsi_release(ap
->host
);
4430 if ((ap
->flags
& ATA_FLAG_NO_LEGACY
) == 0) {
4431 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
4433 if (ioaddr
->cmd_addr
== 0x1f0)
4434 release_region(0x1f0, 8);
4435 else if (ioaddr
->cmd_addr
== 0x170)
4436 release_region(0x170, 8);
4439 scsi_host_put(ap
->host
);
4442 if (host_set
->ops
->host_stop
)
4443 host_set
->ops
->host_stop(host_set
);
4449 * ata_scsi_release - SCSI layer callback hook for host unload
4450 * @host: libata host to be unloaded
4452 * Performs all duties necessary to shut down a libata port...
4453 * Kill port kthread, disable port, and release resources.
4456 * Inherited from SCSI layer.
4462 int ata_scsi_release(struct Scsi_Host
*host
)
4464 struct ata_port
*ap
= (struct ata_port
*) &host
->hostdata
[0];
4468 ap
->ops
->port_disable(ap
);
4469 ata_host_remove(ap
, 0);
4476 * ata_std_ports - initialize ioaddr with standard port offsets.
4477 * @ioaddr: IO address structure to be initialized
4479 * Utility function which initializes data_addr, error_addr,
4480 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4481 * device_addr, status_addr, and command_addr to standard offsets
4482 * relative to cmd_addr.
4484 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
4487 void ata_std_ports(struct ata_ioports
*ioaddr
)
4489 ioaddr
->data_addr
= ioaddr
->cmd_addr
+ ATA_REG_DATA
;
4490 ioaddr
->error_addr
= ioaddr
->cmd_addr
+ ATA_REG_ERR
;
4491 ioaddr
->feature_addr
= ioaddr
->cmd_addr
+ ATA_REG_FEATURE
;
4492 ioaddr
->nsect_addr
= ioaddr
->cmd_addr
+ ATA_REG_NSECT
;
4493 ioaddr
->lbal_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAL
;
4494 ioaddr
->lbam_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAM
;
4495 ioaddr
->lbah_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAH
;
4496 ioaddr
->device_addr
= ioaddr
->cmd_addr
+ ATA_REG_DEVICE
;
4497 ioaddr
->status_addr
= ioaddr
->cmd_addr
+ ATA_REG_STATUS
;
4498 ioaddr
->command_addr
= ioaddr
->cmd_addr
+ ATA_REG_CMD
;
4501 static struct ata_probe_ent
*
4502 ata_probe_ent_alloc(struct device
*dev
, const struct ata_port_info
*port
)
4504 struct ata_probe_ent
*probe_ent
;
4506 probe_ent
= kzalloc(sizeof(*probe_ent
), GFP_KERNEL
);
4508 printk(KERN_ERR DRV_NAME
"(%s): out of memory\n",
4509 kobject_name(&(dev
->kobj
)));
4513 INIT_LIST_HEAD(&probe_ent
->node
);
4514 probe_ent
->dev
= dev
;
4516 probe_ent
->sht
= port
->sht
;
4517 probe_ent
->host_flags
= port
->host_flags
;
4518 probe_ent
->pio_mask
= port
->pio_mask
;
4519 probe_ent
->mwdma_mask
= port
->mwdma_mask
;
4520 probe_ent
->udma_mask
= port
->udma_mask
;
4521 probe_ent
->port_ops
= port
->port_ops
;
4530 void ata_pci_host_stop (struct ata_host_set
*host_set
)
4532 struct pci_dev
*pdev
= to_pci_dev(host_set
->dev
);
4534 pci_iounmap(pdev
, host_set
->mmio_base
);
4538 * ata_pci_init_native_mode - Initialize native-mode driver
4539 * @pdev: pci device to be initialized
4540 * @port: array[2] of pointers to port info structures.
4541 * @ports: bitmap of ports present
4543 * Utility function which allocates and initializes an
4544 * ata_probe_ent structure for a standard dual-port
4545 * PIO-based IDE controller. The returned ata_probe_ent
4546 * structure can be passed to ata_device_add(). The returned
4547 * ata_probe_ent structure should then be freed with kfree().
4549 * The caller need only pass the address of the primary port, the
4550 * secondary will be deduced automatically. If the device has non
4551 * standard secondary port mappings this function can be called twice,
4552 * once for each interface.
4555 struct ata_probe_ent
*
4556 ata_pci_init_native_mode(struct pci_dev
*pdev
, struct ata_port_info
**port
, int ports
)
4558 struct ata_probe_ent
*probe_ent
=
4559 ata_probe_ent_alloc(pci_dev_to_dev(pdev
), port
[0]);
4565 probe_ent
->irq
= pdev
->irq
;
4566 probe_ent
->irq_flags
= SA_SHIRQ
;
4568 if (ports
& ATA_PORT_PRIMARY
) {
4569 probe_ent
->port
[p
].cmd_addr
= pci_resource_start(pdev
, 0);
4570 probe_ent
->port
[p
].altstatus_addr
=
4571 probe_ent
->port
[p
].ctl_addr
=
4572 pci_resource_start(pdev
, 1) | ATA_PCI_CTL_OFS
;
4573 probe_ent
->port
[p
].bmdma_addr
= pci_resource_start(pdev
, 4);
4574 ata_std_ports(&probe_ent
->port
[p
]);
4578 if (ports
& ATA_PORT_SECONDARY
) {
4579 probe_ent
->port
[p
].cmd_addr
= pci_resource_start(pdev
, 2);
4580 probe_ent
->port
[p
].altstatus_addr
=
4581 probe_ent
->port
[p
].ctl_addr
=
4582 pci_resource_start(pdev
, 3) | ATA_PCI_CTL_OFS
;
4583 probe_ent
->port
[p
].bmdma_addr
= pci_resource_start(pdev
, 4) + 8;
4584 ata_std_ports(&probe_ent
->port
[p
]);
4588 probe_ent
->n_ports
= p
;
4592 static struct ata_probe_ent
*ata_pci_init_legacy_port(struct pci_dev
*pdev
, struct ata_port_info
*port
, int port_num
)
4594 struct ata_probe_ent
*probe_ent
;
4596 probe_ent
= ata_probe_ent_alloc(pci_dev_to_dev(pdev
), port
);
4600 probe_ent
->legacy_mode
= 1;
4601 probe_ent
->n_ports
= 1;
4602 probe_ent
->hard_port_no
= port_num
;
4607 probe_ent
->irq
= 14;
4608 probe_ent
->port
[0].cmd_addr
= 0x1f0;
4609 probe_ent
->port
[0].altstatus_addr
=
4610 probe_ent
->port
[0].ctl_addr
= 0x3f6;
4613 probe_ent
->irq
= 15;
4614 probe_ent
->port
[0].cmd_addr
= 0x170;
4615 probe_ent
->port
[0].altstatus_addr
=
4616 probe_ent
->port
[0].ctl_addr
= 0x376;
4619 probe_ent
->port
[0].bmdma_addr
= pci_resource_start(pdev
, 4) + 8 * port_num
;
4620 ata_std_ports(&probe_ent
->port
[0]);
4625 * ata_pci_init_one - Initialize/register PCI IDE host controller
4626 * @pdev: Controller to be initialized
4627 * @port_info: Information from low-level host driver
4628 * @n_ports: Number of ports attached to host controller
4630 * This is a helper function which can be called from a driver's
4631 * xxx_init_one() probe function if the hardware uses traditional
4632 * IDE taskfile registers.
4634 * This function calls pci_enable_device(), reserves its register
4635 * regions, sets the dma mask, enables bus master mode, and calls
4639 * Inherited from PCI layer (may sleep).
4642 * Zero on success, negative on errno-based value on error.
4645 int ata_pci_init_one (struct pci_dev
*pdev
, struct ata_port_info
**port_info
,
4646 unsigned int n_ports
)
4648 struct ata_probe_ent
*probe_ent
= NULL
, *probe_ent2
= NULL
;
4649 struct ata_port_info
*port
[2];
4651 unsigned int legacy_mode
= 0;
4652 int disable_dev_on_err
= 1;
4657 port
[0] = port_info
[0];
4659 port
[1] = port_info
[1];
4663 if ((port
[0]->host_flags
& ATA_FLAG_NO_LEGACY
) == 0
4664 && (pdev
->class >> 8) == PCI_CLASS_STORAGE_IDE
) {
4665 /* TODO: What if one channel is in native mode ... */
4666 pci_read_config_byte(pdev
, PCI_CLASS_PROG
, &tmp8
);
4667 mask
= (1 << 2) | (1 << 0);
4668 if ((tmp8
& mask
) != mask
)
4669 legacy_mode
= (1 << 3);
4673 if ((!legacy_mode
) && (n_ports
> 2)) {
4674 printk(KERN_ERR
"ata: BUG: native mode, n_ports > 2\n");
4679 /* FIXME: Really for ATA it isn't safe because the device may be
4680 multi-purpose and we want to leave it alone if it was already
4681 enabled. Secondly for shared use as Arjan says we want refcounting
4683 Checking dev->is_enabled is insufficient as this is not set at
4684 boot for the primary video which is BIOS enabled
4687 rc
= pci_enable_device(pdev
);
4691 rc
= pci_request_regions(pdev
, DRV_NAME
);
4693 disable_dev_on_err
= 0;
4697 /* FIXME: Should use platform specific mappers for legacy port ranges */
4699 if (!request_region(0x1f0, 8, "libata")) {
4700 struct resource
*conflict
, res
;
4702 res
.end
= 0x1f0 + 8 - 1;
4703 conflict
= ____request_resource(&ioport_resource
, &res
);
4704 if (!strcmp(conflict
->name
, "libata"))
4705 legacy_mode
|= (1 << 0);
4707 disable_dev_on_err
= 0;
4708 printk(KERN_WARNING
"ata: 0x1f0 IDE port busy\n");
4711 legacy_mode
|= (1 << 0);
4713 if (!request_region(0x170, 8, "libata")) {
4714 struct resource
*conflict
, res
;
4716 res
.end
= 0x170 + 8 - 1;
4717 conflict
= ____request_resource(&ioport_resource
, &res
);
4718 if (!strcmp(conflict
->name
, "libata"))
4719 legacy_mode
|= (1 << 1);
4721 disable_dev_on_err
= 0;
4722 printk(KERN_WARNING
"ata: 0x170 IDE port busy\n");
4725 legacy_mode
|= (1 << 1);
4728 /* we have legacy mode, but all ports are unavailable */
4729 if (legacy_mode
== (1 << 3)) {
4731 goto err_out_regions
;
4734 rc
= pci_set_dma_mask(pdev
, ATA_DMA_MASK
);
4736 goto err_out_regions
;
4737 rc
= pci_set_consistent_dma_mask(pdev
, ATA_DMA_MASK
);
4739 goto err_out_regions
;
4742 if (legacy_mode
& (1 << 0))
4743 probe_ent
= ata_pci_init_legacy_port(pdev
, port
[0], 0);
4744 if (legacy_mode
& (1 << 1))
4745 probe_ent2
= ata_pci_init_legacy_port(pdev
, port
[1], 1);
4748 probe_ent
= ata_pci_init_native_mode(pdev
, port
, ATA_PORT_PRIMARY
| ATA_PORT_SECONDARY
);
4750 probe_ent
= ata_pci_init_native_mode(pdev
, port
, ATA_PORT_PRIMARY
);
4752 if (!probe_ent
&& !probe_ent2
) {
4754 goto err_out_regions
;
4757 pci_set_master(pdev
);
4759 /* FIXME: check ata_device_add return */
4761 if (legacy_mode
& (1 << 0))
4762 ata_device_add(probe_ent
);
4763 if (legacy_mode
& (1 << 1))
4764 ata_device_add(probe_ent2
);
4766 ata_device_add(probe_ent
);
4774 if (legacy_mode
& (1 << 0))
4775 release_region(0x1f0, 8);
4776 if (legacy_mode
& (1 << 1))
4777 release_region(0x170, 8);
4778 pci_release_regions(pdev
);
4780 if (disable_dev_on_err
)
4781 pci_disable_device(pdev
);
4786 * ata_pci_remove_one - PCI layer callback for device removal
4787 * @pdev: PCI device that was removed
4789 * PCI layer indicates to libata via this hook that
4790 * hot-unplug or module unload event has occurred.
4791 * Handle this by unregistering all objects associated
4792 * with this PCI device. Free those objects. Then finally
4793 * release PCI resources and disable device.
4796 * Inherited from PCI layer (may sleep).
4799 void ata_pci_remove_one (struct pci_dev
*pdev
)
4801 struct device
*dev
= pci_dev_to_dev(pdev
);
4802 struct ata_host_set
*host_set
= dev_get_drvdata(dev
);
4804 ata_host_set_remove(host_set
);
4805 pci_release_regions(pdev
);
4806 pci_disable_device(pdev
);
4807 dev_set_drvdata(dev
, NULL
);
4810 /* move to PCI subsystem */
4811 int pci_test_config_bits(struct pci_dev
*pdev
, const struct pci_bits
*bits
)
4813 unsigned long tmp
= 0;
4815 switch (bits
->width
) {
4818 pci_read_config_byte(pdev
, bits
->reg
, &tmp8
);
4824 pci_read_config_word(pdev
, bits
->reg
, &tmp16
);
4830 pci_read_config_dword(pdev
, bits
->reg
, &tmp32
);
4841 return (tmp
== bits
->val
) ? 1 : 0;
4843 #endif /* CONFIG_PCI */
4846 static int __init
ata_init(void)
4848 ata_wq
= create_workqueue("ata");
4852 printk(KERN_DEBUG
"libata version " DRV_VERSION
" loaded.\n");
4856 static void __exit
ata_exit(void)
4858 destroy_workqueue(ata_wq
);
4861 module_init(ata_init
);
4862 module_exit(ata_exit
);
4864 static unsigned long ratelimit_time
;
4865 static spinlock_t ata_ratelimit_lock
= SPIN_LOCK_UNLOCKED
;
4867 int ata_ratelimit(void)
4870 unsigned long flags
;
4872 spin_lock_irqsave(&ata_ratelimit_lock
, flags
);
4874 if (time_after(jiffies
, ratelimit_time
)) {
4876 ratelimit_time
= jiffies
+ (HZ
/5);
4880 spin_unlock_irqrestore(&ata_ratelimit_lock
, flags
);
4886 * libata is essentially a library of internal helper functions for
4887 * low-level ATA host controller drivers. As such, the API/ABI is
4888 * likely to change as new drivers are added and updated.
4889 * Do not depend on ABI/API stability.
4892 EXPORT_SYMBOL_GPL(ata_std_bios_param
);
4893 EXPORT_SYMBOL_GPL(ata_std_ports
);
4894 EXPORT_SYMBOL_GPL(ata_device_add
);
4895 EXPORT_SYMBOL_GPL(ata_host_set_remove
);
4896 EXPORT_SYMBOL_GPL(ata_sg_init
);
4897 EXPORT_SYMBOL_GPL(ata_sg_init_one
);
4898 EXPORT_SYMBOL_GPL(ata_qc_complete
);
4899 EXPORT_SYMBOL_GPL(ata_qc_issue_prot
);
4900 EXPORT_SYMBOL_GPL(ata_eng_timeout
);
4901 EXPORT_SYMBOL_GPL(ata_tf_load
);
4902 EXPORT_SYMBOL_GPL(ata_tf_read
);
4903 EXPORT_SYMBOL_GPL(ata_noop_dev_select
);
4904 EXPORT_SYMBOL_GPL(ata_std_dev_select
);
4905 EXPORT_SYMBOL_GPL(ata_tf_to_fis
);
4906 EXPORT_SYMBOL_GPL(ata_tf_from_fis
);
4907 EXPORT_SYMBOL_GPL(ata_check_status
);
4908 EXPORT_SYMBOL_GPL(ata_altstatus
);
4909 EXPORT_SYMBOL_GPL(ata_exec_command
);
4910 EXPORT_SYMBOL_GPL(ata_port_start
);
4911 EXPORT_SYMBOL_GPL(ata_port_stop
);
4912 EXPORT_SYMBOL_GPL(ata_host_stop
);
4913 EXPORT_SYMBOL_GPL(ata_interrupt
);
4914 EXPORT_SYMBOL_GPL(ata_qc_prep
);
4915 EXPORT_SYMBOL_GPL(ata_bmdma_setup
);
4916 EXPORT_SYMBOL_GPL(ata_bmdma_start
);
4917 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear
);
4918 EXPORT_SYMBOL_GPL(ata_bmdma_status
);
4919 EXPORT_SYMBOL_GPL(ata_bmdma_stop
);
4920 EXPORT_SYMBOL_GPL(ata_port_probe
);
4921 EXPORT_SYMBOL_GPL(sata_phy_reset
);
4922 EXPORT_SYMBOL_GPL(__sata_phy_reset
);
4923 EXPORT_SYMBOL_GPL(ata_bus_reset
);
4924 EXPORT_SYMBOL_GPL(ata_port_disable
);
4925 EXPORT_SYMBOL_GPL(ata_ratelimit
);
4926 EXPORT_SYMBOL_GPL(ata_scsi_ioctl
);
4927 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd
);
4928 EXPORT_SYMBOL_GPL(ata_scsi_error
);
4929 EXPORT_SYMBOL_GPL(ata_scsi_slave_config
);
4930 EXPORT_SYMBOL_GPL(ata_scsi_release
);
4931 EXPORT_SYMBOL_GPL(ata_host_intr
);
4932 EXPORT_SYMBOL_GPL(ata_dev_classify
);
4933 EXPORT_SYMBOL_GPL(ata_dev_id_string
);
4934 EXPORT_SYMBOL_GPL(ata_dev_config
);
4935 EXPORT_SYMBOL_GPL(ata_scsi_simulate
);
4937 EXPORT_SYMBOL_GPL(ata_timing_compute
);
4938 EXPORT_SYMBOL_GPL(ata_timing_merge
);
4941 EXPORT_SYMBOL_GPL(pci_test_config_bits
);
4942 EXPORT_SYMBOL_GPL(ata_pci_host_stop
);
4943 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode
);
4944 EXPORT_SYMBOL_GPL(ata_pci_init_one
);
4945 EXPORT_SYMBOL_GPL(ata_pci_remove_one
);
4946 #endif /* CONFIG_PCI */