2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
13 #include <asm/processor.h>
14 #include <asm/tlbflush.h>
15 #include <asm/sections.h>
16 #include <asm/uaccess.h>
17 #include <asm/pgalloc.h>
28 within(unsigned long addr
, unsigned long start
, unsigned long end
)
30 return addr
>= start
&& addr
< end
;
38 * clflush_cache_range - flush a cache range with clflush
39 * @addr: virtual start address
40 * @size: number of bytes to flush
42 * clflush is an unordered instruction which needs fencing with mfence
43 * to avoid ordering issues.
45 void clflush_cache_range(void *vaddr
, unsigned int size
)
47 void *vend
= vaddr
+ size
- 1;
51 for (; vaddr
< vend
; vaddr
+= boot_cpu_data
.x86_clflush_size
)
54 * Flush any possible final partial cacheline:
61 static void __cpa_flush_all(void *arg
)
63 unsigned long cache
= (unsigned long)arg
;
66 * Flush all to work around Errata in early athlons regarding
67 * large page flushing.
71 if (cache
&& boot_cpu_data
.x86_model
>= 4)
75 static void cpa_flush_all(unsigned long cache
)
77 BUG_ON(irqs_disabled());
79 on_each_cpu(__cpa_flush_all
, (void *) cache
, 1, 1);
82 static void __cpa_flush_range(void *arg
)
85 * We could optimize that further and do individual per page
86 * tlb invalidates for a low number of pages. Caveat: we must
87 * flush the high aliases on 64bit as well.
92 static void cpa_flush_range(unsigned long start
, int numpages
, int cache
)
94 unsigned int i
, level
;
97 BUG_ON(irqs_disabled());
98 WARN_ON(PAGE_ALIGN(start
) != start
);
100 on_each_cpu(__cpa_flush_range
, NULL
, 1, 1);
106 * We only need to flush on one CPU,
107 * clflush is a MESI-coherent instruction that
108 * will cause all other CPUs to flush the same
111 for (i
= 0, addr
= start
; i
< numpages
; i
++, addr
+= PAGE_SIZE
) {
112 pte_t
*pte
= lookup_address(addr
, &level
);
115 * Only flush present addresses:
117 if (pte
&& pte_present(*pte
))
118 clflush_cache_range((void *) addr
, PAGE_SIZE
);
122 #define HIGH_MAP_START __START_KERNEL_map
123 #define HIGH_MAP_END (__START_KERNEL_map + KERNEL_TEXT_SIZE)
127 * Converts a virtual address to a X86-64 highmap address
129 static unsigned long virt_to_highmap(void *address
)
132 return __pa((unsigned long)address
) + HIGH_MAP_START
- phys_base
;
134 return (unsigned long)address
;
139 * Certain areas of memory on x86 require very specific protection flags,
140 * for example the BIOS area or kernel text. Callers don't always get this
141 * right (again, ioremap() on BIOS memory is not uncommon) so this function
142 * checks and fixes these known static required protection bits.
144 static inline pgprot_t
static_protections(pgprot_t prot
, unsigned long address
)
146 pgprot_t forbidden
= __pgprot(0);
149 * The BIOS area between 640k and 1Mb needs to be executable for
150 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
152 if (within(__pa(address
), BIOS_BEGIN
, BIOS_END
))
153 pgprot_val(forbidden
) |= _PAGE_NX
;
156 * The kernel text needs to be executable for obvious reasons
157 * Does not cover __inittext since that is gone later on
159 if (within(address
, (unsigned long)_text
, (unsigned long)_etext
))
160 pgprot_val(forbidden
) |= _PAGE_NX
;
162 * Do the same for the x86-64 high kernel mapping
164 if (within(address
, virt_to_highmap(_text
), virt_to_highmap(_etext
)))
165 pgprot_val(forbidden
) |= _PAGE_NX
;
168 #ifdef CONFIG_DEBUG_RODATA
169 /* The .rodata section needs to be read-only */
170 if (within(address
, (unsigned long)__start_rodata
,
171 (unsigned long)__end_rodata
))
172 pgprot_val(forbidden
) |= _PAGE_RW
;
174 * Do the same for the x86-64 high kernel mapping
176 if (within(address
, virt_to_highmap(__start_rodata
),
177 virt_to_highmap(__end_rodata
)))
178 pgprot_val(forbidden
) |= _PAGE_RW
;
181 prot
= __pgprot(pgprot_val(prot
) & ~pgprot_val(forbidden
));
186 pte_t
*lookup_address(unsigned long address
, int *level
)
188 pgd_t
*pgd
= pgd_offset_k(address
);
192 *level
= PG_LEVEL_NONE
;
196 pud
= pud_offset(pgd
, address
);
199 pmd
= pmd_offset(pud
, address
);
203 *level
= PG_LEVEL_2M
;
207 *level
= PG_LEVEL_4K
;
208 return pte_offset_kernel(pmd
, address
);
211 static void __set_pmd_pte(pte_t
*kpte
, unsigned long address
, pte_t pte
)
214 set_pte_atomic(kpte
, pte
);
216 if (!SHARED_KERNEL_PMD
) {
219 list_for_each_entry(page
, &pgd_list
, lru
) {
224 pgd
= (pgd_t
*)page_address(page
) + pgd_index(address
);
225 pud
= pud_offset(pgd
, address
);
226 pmd
= pmd_offset(pud
, address
);
227 set_pte_atomic((pte_t
*)pmd
, pte
);
233 static int split_large_page(pte_t
*kpte
, unsigned long address
)
235 pgprot_t ref_prot
= pte_pgprot(pte_clrhuge(*kpte
));
236 gfp_t gfp_flags
= GFP_KERNEL
;
237 unsigned long flags
, addr
, pfn
;
240 unsigned int i
, level
;
242 #ifdef CONFIG_DEBUG_PAGEALLOC
243 gfp_flags
= __GFP_HIGH
| __GFP_NOFAIL
| __GFP_NOWARN
;
244 gfp_flags
= GFP_ATOMIC
| __GFP_NOWARN
;
246 base
= alloc_pages(gfp_flags
, 0);
250 spin_lock_irqsave(&pgd_lock
, flags
);
252 * Check for races, another CPU might have split this page
255 tmp
= lookup_address(address
, &level
);
261 address
= __pa(address
);
262 addr
= address
& LARGE_PAGE_MASK
;
263 pbase
= (pte_t
*)page_address(base
);
265 paravirt_alloc_pt(&init_mm
, page_to_pfn(base
));
269 * Get the target pfn from the original entry:
271 pfn
= pte_pfn(*kpte
);
272 for (i
= 0; i
< PTRS_PER_PTE
; i
++, pfn
++)
273 set_pte(&pbase
[i
], pfn_pte(pfn
, ref_prot
));
276 * Install the new, split up pagetable. Important detail here:
278 * On Intel the NX bit of all levels must be cleared to make a
279 * page executable. See section 4.13.2 of Intel 64 and IA-32
280 * Architectures Software Developer's Manual).
282 ref_prot
= pte_pgprot(pte_mkexec(pte_clrhuge(*kpte
)));
283 __set_pmd_pte(kpte
, address
, mk_pte(base
, ref_prot
));
287 spin_unlock_irqrestore(&pgd_lock
, flags
);
290 __free_pages(base
, 0);
295 static int __change_page_attr(unsigned long address
, struct cpa_data
*cpa
)
297 struct page
*kpte_page
;
302 kpte
= lookup_address(address
, &level
);
306 kpte_page
= virt_to_page(kpte
);
307 BUG_ON(PageLRU(kpte_page
));
308 BUG_ON(PageCompound(kpte_page
));
310 if (level
== PG_LEVEL_4K
) {
311 pte_t new_pte
, old_pte
= *kpte
;
312 pgprot_t new_prot
= pte_pgprot(old_pte
);
314 if(!pte_val(old_pte
)) {
315 printk(KERN_WARNING
"CPA: called for zero pte. "
316 "vaddr = %lx cpa->vaddr = %lx\n", address
,
322 pgprot_val(new_prot
) &= ~pgprot_val(cpa
->mask_clr
);
323 pgprot_val(new_prot
) |= pgprot_val(cpa
->mask_set
);
325 new_prot
= static_protections(new_prot
, address
);
328 * We need to keep the pfn from the existing PTE,
329 * after all we're only going to change it's attributes
330 * not the memory it points to
332 new_pte
= pfn_pte(pte_pfn(old_pte
), canon_pgprot(new_prot
));
335 * Do we really change anything ?
337 if (pte_val(old_pte
) != pte_val(new_pte
)) {
338 set_pte_atomic(kpte
, new_pte
);
342 err
= split_large_page(kpte
, address
);
351 * change_page_attr_addr - Change page table attributes in linear mapping
352 * @address: Virtual address in linear mapping.
353 * @prot: New page table attribute (PAGE_*)
355 * Change page attributes of a page in the direct mapping. This is a variant
356 * of change_page_attr() that also works on memory holes that do not have
357 * mem_map entry (pfn_valid() is false).
359 * See change_page_attr() documentation for more details.
361 * Modules and drivers should use the set_memory_* APIs instead.
364 static int change_page_attr_addr(struct cpa_data
*cpa
)
367 unsigned long address
= cpa
->vaddr
;
370 unsigned long phys_addr
= __pa(address
);
373 * If we are inside the high mapped kernel range, then we
374 * fixup the low mapping first. __va() returns the virtual
375 * address in the linear mapping:
377 if (within(address
, HIGH_MAP_START
, HIGH_MAP_END
))
378 address
= (unsigned long) __va(phys_addr
);
381 err
= __change_page_attr(address
, cpa
);
387 * If the physical address is inside the kernel map, we need
388 * to touch the high mapped kernel as well:
390 if (within(phys_addr
, 0, KERNEL_TEXT_SIZE
)) {
392 * Calc the high mapping address. See __phys_addr()
393 * for the non obvious details.
395 * Note that NX and other required permissions are
396 * checked in static_protections().
398 address
= phys_addr
+ HIGH_MAP_START
- phys_base
;
401 * Our high aliases are imprecise, because we check
402 * everything between 0 and KERNEL_TEXT_SIZE, so do
403 * not propagate lookup failures back to users:
405 __change_page_attr(address
, cpa
);
411 static int __change_page_attr_set_clr(struct cpa_data
*cpa
)
416 for (i
= 0; i
< cpa
->numpages
; i
++, cpa
->vaddr
+= PAGE_SIZE
) {
417 ret
= change_page_attr_addr(cpa
);
425 static inline int cache_attr(pgprot_t attr
)
427 return pgprot_val(attr
) &
428 (_PAGE_PAT
| _PAGE_PAT_LARGE
| _PAGE_PWT
| _PAGE_PCD
);
431 static int change_page_attr_set_clr(unsigned long addr
, int numpages
,
432 pgprot_t mask_set
, pgprot_t mask_clr
)
438 * Check, if we are requested to change a not supported
441 mask_set
= canon_pgprot(mask_set
);
442 mask_clr
= canon_pgprot(mask_clr
);
443 if (!pgprot_val(mask_set
) && !pgprot_val(mask_clr
))
447 cpa
.numpages
= numpages
;
448 cpa
.mask_set
= mask_set
;
449 cpa
.mask_clr
= mask_clr
;
452 ret
= __change_page_attr_set_clr(&cpa
);
455 * Check whether we really changed something:
461 * No need to flush, when we did not set any of the caching
464 cache
= cache_attr(mask_set
);
467 * On success we use clflush, when the CPU supports it to
468 * avoid the wbindv. If the CPU does not support it and in the
469 * error case we fall back to cpa_flush_all (which uses
472 if (!ret
&& cpu_has_clflush
)
473 cpa_flush_range(addr
, numpages
, cache
);
475 cpa_flush_all(cache
);
480 static inline int change_page_attr_set(unsigned long addr
, int numpages
,
483 return change_page_attr_set_clr(addr
, numpages
, mask
, __pgprot(0));
486 static inline int change_page_attr_clear(unsigned long addr
, int numpages
,
489 return change_page_attr_set_clr(addr
, numpages
, __pgprot(0), mask
);
492 int set_memory_uc(unsigned long addr
, int numpages
)
494 return change_page_attr_set(addr
, numpages
,
495 __pgprot(_PAGE_PCD
| _PAGE_PWT
));
497 EXPORT_SYMBOL(set_memory_uc
);
499 int set_memory_wb(unsigned long addr
, int numpages
)
501 return change_page_attr_clear(addr
, numpages
,
502 __pgprot(_PAGE_PCD
| _PAGE_PWT
));
504 EXPORT_SYMBOL(set_memory_wb
);
506 int set_memory_x(unsigned long addr
, int numpages
)
508 return change_page_attr_clear(addr
, numpages
, __pgprot(_PAGE_NX
));
510 EXPORT_SYMBOL(set_memory_x
);
512 int set_memory_nx(unsigned long addr
, int numpages
)
514 return change_page_attr_set(addr
, numpages
, __pgprot(_PAGE_NX
));
516 EXPORT_SYMBOL(set_memory_nx
);
518 int set_memory_ro(unsigned long addr
, int numpages
)
520 return change_page_attr_clear(addr
, numpages
, __pgprot(_PAGE_RW
));
523 int set_memory_rw(unsigned long addr
, int numpages
)
525 return change_page_attr_set(addr
, numpages
, __pgprot(_PAGE_RW
));
528 int set_memory_np(unsigned long addr
, int numpages
)
530 return change_page_attr_clear(addr
, numpages
, __pgprot(_PAGE_PRESENT
));
533 int set_pages_uc(struct page
*page
, int numpages
)
535 unsigned long addr
= (unsigned long)page_address(page
);
537 return set_memory_uc(addr
, numpages
);
539 EXPORT_SYMBOL(set_pages_uc
);
541 int set_pages_wb(struct page
*page
, int numpages
)
543 unsigned long addr
= (unsigned long)page_address(page
);
545 return set_memory_wb(addr
, numpages
);
547 EXPORT_SYMBOL(set_pages_wb
);
549 int set_pages_x(struct page
*page
, int numpages
)
551 unsigned long addr
= (unsigned long)page_address(page
);
553 return set_memory_x(addr
, numpages
);
555 EXPORT_SYMBOL(set_pages_x
);
557 int set_pages_nx(struct page
*page
, int numpages
)
559 unsigned long addr
= (unsigned long)page_address(page
);
561 return set_memory_nx(addr
, numpages
);
563 EXPORT_SYMBOL(set_pages_nx
);
565 int set_pages_ro(struct page
*page
, int numpages
)
567 unsigned long addr
= (unsigned long)page_address(page
);
569 return set_memory_ro(addr
, numpages
);
572 int set_pages_rw(struct page
*page
, int numpages
)
574 unsigned long addr
= (unsigned long)page_address(page
);
576 return set_memory_rw(addr
, numpages
);
579 #ifdef CONFIG_DEBUG_PAGEALLOC
581 static int __set_pages_p(struct page
*page
, int numpages
)
583 struct cpa_data cpa
= { .vaddr
= (unsigned long) page_address(page
),
584 .numpages
= numpages
,
585 .mask_set
= __pgprot(_PAGE_PRESENT
| _PAGE_RW
),
586 .mask_clr
= __pgprot(0)};
588 return __change_page_attr_set_clr(&cpa
);
591 static int __set_pages_np(struct page
*page
, int numpages
)
593 struct cpa_data cpa
= { .vaddr
= (unsigned long) page_address(page
),
594 .numpages
= numpages
,
595 .mask_set
= __pgprot(0),
596 .mask_clr
= __pgprot(_PAGE_PRESENT
| _PAGE_RW
)};
598 return __change_page_attr_set_clr(&cpa
);
601 void kernel_map_pages(struct page
*page
, int numpages
, int enable
)
603 if (PageHighMem(page
))
606 debug_check_no_locks_freed(page_address(page
),
607 numpages
* PAGE_SIZE
);
611 * If page allocator is not up yet then do not call c_p_a():
613 if (!debug_pagealloc_enabled
)
617 * The return value is ignored - the calls cannot fail,
618 * large pages are disabled at boot time:
621 __set_pages_p(page
, numpages
);
623 __set_pages_np(page
, numpages
);
626 * We should perform an IPI and flush all tlbs,
627 * but that can deadlock->flush only current cpu:
634 * The testcases use internal knowledge of the implementation that shouldn't
635 * be exposed to the rest of the kernel. Include these directly here.
637 #ifdef CONFIG_CPA_DEBUG
638 #include "pageattr-test.c"