1 /* -*- mode: c; c-basic-offset: 8 -*- */
3 /* NCR (or Symbios) 53c700 and 53c700-66 Driver
5 * Copyright (C) 2001 by James.Bottomley@HansenPartnership.com
6 **-----------------------------------------------------------------------------
8 ** This program is free software; you can redistribute it and/or modify
9 ** it under the terms of the GNU General Public License as published by
10 ** the Free Software Foundation; either version 2 of the License, or
11 ** (at your option) any later version.
13 ** This program is distributed in the hope that it will be useful,
14 ** but WITHOUT ANY WARRANTY; without even the implied warranty of
15 ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 ** GNU General Public License for more details.
18 ** You should have received a copy of the GNU General Public License
19 ** along with this program; if not, write to the Free Software
20 ** Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 **-----------------------------------------------------------------------------
27 * This driver is designed exclusively for these chips (virtually the
28 * earliest of the scripts engine chips). They need their own drivers
29 * because they are missing so many of the scripts and snazzy register
30 * features of their elder brothers (the 710, 720 and 770).
32 * The 700 is the lowliest of the line, it can only do async SCSI.
33 * The 700-66 can at least do synchronous SCSI up to 10MHz.
35 * The 700 chip has no host bus interface logic of its own. However,
36 * it is usually mapped to a location with well defined register
37 * offsets. Therefore, if you can determine the base address and the
38 * irq your board incorporating this chip uses, you can probably use
39 * this driver to run it (although you'll probably have to write a
40 * minimal wrapper for the purpose---see the NCR_D700 driver for
41 * details about how to do this).
46 * 1. Better statistics in the proc fs
48 * 2. Implement message queue (queues SCSI messages like commands) and make
49 * the abort and device reset functions use them.
56 * Fixed bad bug affecting tag starvation processing (previously the
57 * driver would hang the system if too many tags starved. Also fixed
58 * bad bug having to do with 10 byte command processing and REQUEST
59 * SENSE (the command would loop forever getting a transfer length
60 * mismatch in the CMD phase).
64 * Fixed scripts problem which caused certain devices (notably CDRWs)
65 * to hang on initial INQUIRY. Updated NCR_700_readl/writel to use
66 * __raw_readl/writel for parisc compatibility (Thomas
67 * Bogendoerfer). Added missing SCp->request_bufflen initialisation
68 * for sense requests (Ryan Bradetich).
72 * Following test of the 64 bit parisc kernel by Richard Hirst,
73 * several problems have now been corrected. Also adds support for
74 * consistent memory allocation.
78 * More Compatibility changes for 710 (now actually works). Enhanced
79 * support for odd clock speeds which constrain SDTR negotiations.
80 * correct cacheline separation for scsi messages and status for
81 * incoherent architectures. Use of the pci mapping functions on
82 * buffers to begin support for 64 bit drivers.
86 * Added support for the 53c710 chip (in 53c700 emulation mode only---no
87 * special 53c710 instructions or registers are used).
91 * More endianness/cache coherency changes.
93 * Better bad device handling (handles devices lying about tag
94 * queueing support and devices which fail to provide sense data on
95 * contingent allegiance conditions)
97 * Many thanks to Richard Hirst <rhirst@linuxcare.com> for patiently
98 * debugging this driver on the parisc architecture and suggesting
99 * many improvements and bug fixes.
101 * Thanks also go to Linuxcare Inc. for providing several PARISC
102 * machines for me to debug the driver on.
106 * Made the driver mem or io mapped; added endian invariance; added
107 * dma cache flushing operations for architectures which need it;
108 * added support for more varied clocking speeds.
112 * Initial modularisation from the D700. See NCR_D700.c for the rest of
115 #define NCR_700_VERSION "2.8"
117 #include <linux/config.h>
118 #include <linux/kernel.h>
119 #include <linux/types.h>
120 #include <linux/string.h>
121 #include <linux/ioport.h>
122 #include <linux/delay.h>
123 #include <linux/spinlock.h>
124 #include <linux/completion.h>
125 #include <linux/sched.h>
126 #include <linux/init.h>
127 #include <linux/proc_fs.h>
128 #include <linux/blkdev.h>
129 #include <linux/module.h>
130 #include <linux/interrupt.h>
131 #include <linux/device.h>
133 #include <asm/system.h>
135 #include <asm/pgtable.h>
136 #include <asm/byteorder.h>
138 #include <scsi/scsi.h>
139 #include <scsi/scsi_cmnd.h>
140 #include <scsi/scsi_dbg.h>
141 #include <scsi/scsi_eh.h>
142 #include <scsi/scsi_host.h>
143 #include <scsi/scsi_tcq.h>
144 #include <scsi/scsi_transport.h>
145 #include <scsi/scsi_transport_spi.h>
149 /* NOTE: For 64 bit drivers there are points in the code where we use
150 * a non dereferenceable pointer to point to a structure in dma-able
151 * memory (which is 32 bits) so that we can use all of the structure
152 * operations but take the address at the end. This macro allows us
153 * to truncate the 64 bit pointer down to 32 bits without the compiler
155 #define to32bit(x) ((__u32)((unsigned long)(x)))
160 #define STATIC static
163 MODULE_AUTHOR("James Bottomley");
164 MODULE_DESCRIPTION("53c700 and 53c700-66 Driver");
165 MODULE_LICENSE("GPL");
167 /* This is the script */
168 #include "53c700_d.h"
171 STATIC
int NCR_700_queuecommand(struct scsi_cmnd
*, void (*done
)(struct scsi_cmnd
*));
172 STATIC
int NCR_700_abort(struct scsi_cmnd
* SCpnt
);
173 STATIC
int NCR_700_bus_reset(struct scsi_cmnd
* SCpnt
);
174 STATIC
int NCR_700_host_reset(struct scsi_cmnd
* SCpnt
);
175 STATIC
void NCR_700_chip_setup(struct Scsi_Host
*host
);
176 STATIC
void NCR_700_chip_reset(struct Scsi_Host
*host
);
177 STATIC
int NCR_700_slave_configure(struct scsi_device
*SDpnt
);
178 STATIC
void NCR_700_slave_destroy(struct scsi_device
*SDpnt
);
179 static int NCR_700_change_queue_depth(struct scsi_device
*SDpnt
, int depth
);
180 static int NCR_700_change_queue_type(struct scsi_device
*SDpnt
, int depth
);
182 STATIC
struct device_attribute
*NCR_700_dev_attrs
[];
184 STATIC
struct scsi_transport_template
*NCR_700_transport_template
= NULL
;
186 static char *NCR_700_phase
[] = {
189 "before command phase",
190 "after command phase",
191 "after status phase",
192 "after data in phase",
193 "after data out phase",
197 static char *NCR_700_condition
[] = {
205 "REJECT_MSG RECEIVED",
206 "DISCONNECT_MSG RECEIVED",
212 static char *NCR_700_fatal_messages
[] = {
213 "unexpected message after reselection",
214 "still MSG_OUT after message injection",
215 "not MSG_IN after selection",
216 "Illegal message length received",
219 static char *NCR_700_SBCL_bits
[] = {
230 static char *NCR_700_SBCL_to_phase
[] = {
241 /* This translates the SDTR message offset and period to a value
242 * which can be loaded into the SXFER_REG.
244 * NOTE: According to SCSI-2, the true transfer period (in ns) is
245 * actually four times this period value */
247 NCR_700_offset_period_to_sxfer(struct NCR_700_Host_Parameters
*hostdata
,
248 __u8 offset
, __u8 period
)
252 __u8 min_xferp
= (hostdata
->chip710
253 ? NCR_710_MIN_XFERP
: NCR_700_MIN_XFERP
);
254 __u8 max_offset
= (hostdata
->chip710
255 ? NCR_710_MAX_OFFSET
: NCR_700_MAX_OFFSET
);
260 if(period
< hostdata
->min_period
) {
261 printk(KERN_WARNING
"53c700: Period %dns is less than this chip's minimum, setting to %d\n", period
*4, NCR_700_MIN_PERIOD
*4);
262 period
= hostdata
->min_period
;
264 XFERP
= (period
*4 * hostdata
->sync_clock
)/1000 - 4;
265 if(offset
> max_offset
) {
266 printk(KERN_WARNING
"53c700: Offset %d exceeds chip maximum, setting to %d\n",
270 if(XFERP
< min_xferp
) {
271 printk(KERN_WARNING
"53c700: XFERP %d is less than minium, setting to %d\n",
275 return (offset
& 0x0f) | (XFERP
& 0x07)<<4;
279 NCR_700_get_SXFER(struct scsi_device
*SDp
)
281 struct NCR_700_Host_Parameters
*hostdata
=
282 (struct NCR_700_Host_Parameters
*)SDp
->host
->hostdata
[0];
284 return NCR_700_offset_period_to_sxfer(hostdata
,
285 spi_offset(SDp
->sdev_target
),
286 spi_period(SDp
->sdev_target
));
290 NCR_700_detect(struct scsi_host_template
*tpnt
,
291 struct NCR_700_Host_Parameters
*hostdata
, struct device
*dev
)
293 dma_addr_t pScript
, pSlots
;
296 struct Scsi_Host
*host
;
297 static int banner
= 0;
300 if(tpnt
->sdev_attrs
== NULL
)
301 tpnt
->sdev_attrs
= NCR_700_dev_attrs
;
303 memory
= dma_alloc_noncoherent(hostdata
->dev
, TOTAL_MEM_SIZE
,
304 &pScript
, GFP_KERNEL
);
306 printk(KERN_ERR
"53c700: Failed to allocate memory for driver, detatching\n");
310 script
= (__u32
*)memory
;
311 hostdata
->msgin
= memory
+ MSGIN_OFFSET
;
312 hostdata
->msgout
= memory
+ MSGOUT_OFFSET
;
313 hostdata
->status
= memory
+ STATUS_OFFSET
;
314 /* all of these offsets are L1_CACHE_BYTES separated. It is fatal
315 * if this isn't sufficient separation to avoid dma flushing issues */
316 BUG_ON(!dma_is_consistent(pScript
) && L1_CACHE_BYTES
< dma_get_cache_alignment());
317 hostdata
->slots
= (struct NCR_700_command_slot
*)(memory
+ SLOTS_OFFSET
);
320 pSlots
= pScript
+ SLOTS_OFFSET
;
322 /* Fill in the missing routines from the host template */
323 tpnt
->queuecommand
= NCR_700_queuecommand
;
324 tpnt
->eh_abort_handler
= NCR_700_abort
;
325 tpnt
->eh_bus_reset_handler
= NCR_700_bus_reset
;
326 tpnt
->eh_host_reset_handler
= NCR_700_host_reset
;
327 tpnt
->can_queue
= NCR_700_COMMAND_SLOTS_PER_HOST
;
328 tpnt
->sg_tablesize
= NCR_700_SG_SEGMENTS
;
329 tpnt
->cmd_per_lun
= NCR_700_CMD_PER_LUN
;
330 tpnt
->use_clustering
= ENABLE_CLUSTERING
;
331 tpnt
->slave_configure
= NCR_700_slave_configure
;
332 tpnt
->slave_destroy
= NCR_700_slave_destroy
;
333 tpnt
->change_queue_depth
= NCR_700_change_queue_depth
;
334 tpnt
->change_queue_type
= NCR_700_change_queue_type
;
336 if(tpnt
->name
== NULL
)
337 tpnt
->name
= "53c700";
338 if(tpnt
->proc_name
== NULL
)
339 tpnt
->proc_name
= "53c700";
342 host
= scsi_host_alloc(tpnt
, 4);
345 memset(hostdata
->slots
, 0, sizeof(struct NCR_700_command_slot
)
346 * NCR_700_COMMAND_SLOTS_PER_HOST
);
347 for(j
= 0; j
< NCR_700_COMMAND_SLOTS_PER_HOST
; j
++) {
348 dma_addr_t offset
= (dma_addr_t
)((unsigned long)&hostdata
->slots
[j
].SG
[0]
349 - (unsigned long)&hostdata
->slots
[0].SG
[0]);
350 hostdata
->slots
[j
].pSG
= (struct NCR_700_SG_List
*)((unsigned long)(pSlots
+ offset
));
352 hostdata
->free_list
= &hostdata
->slots
[j
];
354 hostdata
->slots
[j
-1].ITL_forw
= &hostdata
->slots
[j
];
355 hostdata
->slots
[j
].state
= NCR_700_SLOT_FREE
;
358 for(j
= 0; j
< sizeof(SCRIPT
)/sizeof(SCRIPT
[0]); j
++) {
359 script
[j
] = bS_to_host(SCRIPT
[j
]);
362 /* adjust all labels to be bus physical */
363 for(j
= 0; j
< PATCHES
; j
++) {
364 script
[LABELPATCHES
[j
]] = bS_to_host(pScript
+ SCRIPT
[LABELPATCHES
[j
]]);
366 /* now patch up fixed addresses. */
367 script_patch_32(script
, MessageLocation
,
368 pScript
+ MSGOUT_OFFSET
);
369 script_patch_32(script
, StatusAddress
,
370 pScript
+ STATUS_OFFSET
);
371 script_patch_32(script
, ReceiveMsgAddress
,
372 pScript
+ MSGIN_OFFSET
);
374 hostdata
->script
= script
;
375 hostdata
->pScript
= pScript
;
376 dma_sync_single_for_device(hostdata
->dev
, pScript
, sizeof(SCRIPT
), DMA_TO_DEVICE
);
377 hostdata
->state
= NCR_700_HOST_FREE
;
378 hostdata
->cmd
= NULL
;
380 host
->max_lun
= NCR_700_MAX_LUNS
;
381 BUG_ON(NCR_700_transport_template
== NULL
);
382 host
->transportt
= NCR_700_transport_template
;
383 host
->unique_id
= (unsigned long)hostdata
->base
;
384 hostdata
->eh_complete
= NULL
;
385 host
->hostdata
[0] = (unsigned long)hostdata
;
387 NCR_700_writeb(0xff, host
, CTEST9_REG
);
388 if(hostdata
->chip710
)
389 hostdata
->rev
= (NCR_700_readb(host
, CTEST8_REG
)>>4) & 0x0f;
391 hostdata
->rev
= (NCR_700_readb(host
, CTEST7_REG
)>>4) & 0x0f;
392 hostdata
->fast
= (NCR_700_readb(host
, CTEST9_REG
) == 0);
394 printk(KERN_NOTICE
"53c700: Version " NCR_700_VERSION
" By James.Bottomley@HansenPartnership.com\n");
397 printk(KERN_NOTICE
"scsi%d: %s rev %d %s\n", host
->host_no
,
398 hostdata
->chip710
? "53c710" :
399 (hostdata
->fast
? "53c700-66" : "53c700"),
400 hostdata
->rev
, hostdata
->differential
?
401 "(Differential)" : "");
403 NCR_700_chip_reset(host
);
405 if (scsi_add_host(host
, dev
)) {
406 dev_printk(KERN_ERR
, dev
, "53c700: scsi_add_host failed\n");
411 spi_signalling(host
) = hostdata
->differential
? SPI_SIGNAL_HVD
:
418 NCR_700_release(struct Scsi_Host
*host
)
420 struct NCR_700_Host_Parameters
*hostdata
=
421 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
423 dma_free_noncoherent(hostdata
->dev
, TOTAL_MEM_SIZE
,
424 hostdata
->script
, hostdata
->pScript
);
429 NCR_700_identify(int can_disconnect
, __u8 lun
)
431 return IDENTIFY_BASE
|
432 ((can_disconnect
) ? 0x40 : 0) |
433 (lun
& NCR_700_LUN_MASK
);
437 * Function : static int data_residual (Scsi_Host *host)
439 * Purpose : return residual data count of what's in the chip. If you
440 * really want to know what this function is doing, it's almost a
441 * direct transcription of the algorithm described in the 53c710
442 * guide, except that the DBC and DFIFO registers are only 6 bits
445 * Inputs : host - SCSI host */
447 NCR_700_data_residual (struct Scsi_Host
*host
) {
448 struct NCR_700_Host_Parameters
*hostdata
=
449 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
450 int count
, synchronous
= 0;
453 if(hostdata
->chip710
) {
454 count
= ((NCR_700_readb(host
, DFIFO_REG
) & 0x7f) -
455 (NCR_700_readl(host
, DBC_REG
) & 0x7f)) & 0x7f;
457 count
= ((NCR_700_readb(host
, DFIFO_REG
) & 0x3f) -
458 (NCR_700_readl(host
, DBC_REG
) & 0x3f)) & 0x3f;
462 synchronous
= NCR_700_readb(host
, SXFER_REG
) & 0x0f;
464 /* get the data direction */
465 ddir
= NCR_700_readb(host
, CTEST0_REG
) & 0x01;
470 count
+= (NCR_700_readb(host
, SSTAT2_REG
) & 0xf0) >> 4;
472 if (NCR_700_readb(host
, SSTAT1_REG
) & SIDL_REG_FULL
)
476 __u8 sstat
= NCR_700_readb(host
, SSTAT1_REG
);
477 if (sstat
& SODL_REG_FULL
)
479 if (synchronous
&& (sstat
& SODR_REG_FULL
))
484 printk("RESIDUAL IS %d (ddir %d)\n", count
, ddir
);
489 /* print out the SCSI wires and corresponding phase from the SBCL register
492 sbcl_to_string(__u8 sbcl
)
495 static char ret
[256];
500 strcat(ret
, NCR_700_SBCL_bits
[i
]);
502 strcat(ret
, NCR_700_SBCL_to_phase
[sbcl
& 0x07]);
507 bitmap_to_number(__u8 bitmap
)
511 for(i
=0; i
<8 && !(bitmap
&(1<<i
)); i
++)
516 /* Pull a slot off the free list */
517 STATIC
struct NCR_700_command_slot
*
518 find_empty_slot(struct NCR_700_Host_Parameters
*hostdata
)
520 struct NCR_700_command_slot
*slot
= hostdata
->free_list
;
524 if(hostdata
->command_slot_count
!= NCR_700_COMMAND_SLOTS_PER_HOST
)
525 printk(KERN_ERR
"SLOTS FULL, but count is %d, should be %d\n", hostdata
->command_slot_count
, NCR_700_COMMAND_SLOTS_PER_HOST
);
529 if(slot
->state
!= NCR_700_SLOT_FREE
)
531 printk(KERN_ERR
"BUSY SLOT ON FREE LIST!!!\n");
534 hostdata
->free_list
= slot
->ITL_forw
;
535 slot
->ITL_forw
= NULL
;
538 /* NOTE: set the state to busy here, not queued, since this
539 * indicates the slot is in use and cannot be run by the IRQ
540 * finish routine. If we cannot queue the command when it
541 * is properly build, we then change to NCR_700_SLOT_QUEUED */
542 slot
->state
= NCR_700_SLOT_BUSY
;
543 hostdata
->command_slot_count
++;
549 free_slot(struct NCR_700_command_slot
*slot
,
550 struct NCR_700_Host_Parameters
*hostdata
)
552 if((slot
->state
& NCR_700_SLOT_MASK
) != NCR_700_SLOT_MAGIC
) {
553 printk(KERN_ERR
"53c700: SLOT %p is not MAGIC!!!\n", slot
);
555 if(slot
->state
== NCR_700_SLOT_FREE
) {
556 printk(KERN_ERR
"53c700: SLOT %p is FREE!!!\n", slot
);
559 slot
->resume_offset
= 0;
561 slot
->state
= NCR_700_SLOT_FREE
;
562 slot
->ITL_forw
= hostdata
->free_list
;
563 hostdata
->free_list
= slot
;
564 hostdata
->command_slot_count
--;
568 /* This routine really does very little. The command is indexed on
569 the ITL and (if tagged) the ITLQ lists in _queuecommand */
571 save_for_reselection(struct NCR_700_Host_Parameters
*hostdata
,
572 struct scsi_cmnd
*SCp
, __u32 dsp
)
574 /* Its just possible that this gets executed twice */
576 struct NCR_700_command_slot
*slot
=
577 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
579 slot
->resume_offset
= dsp
;
581 hostdata
->state
= NCR_700_HOST_FREE
;
582 hostdata
->cmd
= NULL
;
586 NCR_700_unmap(struct NCR_700_Host_Parameters
*hostdata
, struct scsi_cmnd
*SCp
,
587 struct NCR_700_command_slot
*slot
)
589 if(SCp
->sc_data_direction
!= DMA_NONE
&&
590 SCp
->sc_data_direction
!= DMA_BIDIRECTIONAL
) {
592 dma_unmap_sg(hostdata
->dev
, SCp
->buffer
,
593 SCp
->use_sg
, SCp
->sc_data_direction
);
595 dma_unmap_single(hostdata
->dev
, slot
->dma_handle
,
596 SCp
->request_bufflen
,
597 SCp
->sc_data_direction
);
603 NCR_700_scsi_done(struct NCR_700_Host_Parameters
*hostdata
,
604 struct scsi_cmnd
*SCp
, int result
)
606 hostdata
->state
= NCR_700_HOST_FREE
;
607 hostdata
->cmd
= NULL
;
610 struct NCR_700_command_slot
*slot
=
611 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
613 NCR_700_unmap(hostdata
, SCp
, slot
);
614 dma_unmap_single(hostdata
->dev
, slot
->pCmd
,
615 sizeof(SCp
->cmnd
), DMA_TO_DEVICE
);
616 if(SCp
->cmnd
[0] == REQUEST_SENSE
&& SCp
->cmnd
[6] == NCR_700_INTERNAL_SENSE_MAGIC
) {
618 printk(" ORIGINAL CMD %p RETURNED %d, new return is %d sense is\n",
619 SCp
, SCp
->cmnd
[7], result
);
620 scsi_print_sense("53c700", SCp
);
623 /* restore the old result if the request sense was
626 result
= SCp
->cmnd
[7];
627 /* now restore the original command */
628 memcpy((void *) SCp
->cmnd
, (void *) SCp
->data_cmnd
,
629 sizeof(SCp
->data_cmnd
));
630 SCp
->request_buffer
= SCp
->buffer
;
631 SCp
->request_bufflen
= SCp
->bufflen
;
632 SCp
->use_sg
= SCp
->old_use_sg
;
633 SCp
->cmd_len
= SCp
->old_cmd_len
;
634 SCp
->sc_data_direction
= SCp
->sc_old_data_direction
;
635 SCp
->underflow
= SCp
->old_underflow
;
638 free_slot(slot
, hostdata
);
640 if(NCR_700_get_depth(SCp
->device
) == 0 ||
641 NCR_700_get_depth(SCp
->device
) > SCp
->device
->queue_depth
)
642 printk(KERN_ERR
"Invalid depth in NCR_700_scsi_done(): %d\n",
643 NCR_700_get_depth(SCp
->device
));
644 #endif /* NCR_700_DEBUG */
645 NCR_700_set_depth(SCp
->device
, NCR_700_get_depth(SCp
->device
) - 1);
647 SCp
->host_scribble
= NULL
;
648 SCp
->result
= result
;
651 printk(KERN_ERR
"53c700: SCSI DONE HAS NULL SCp\n");
657 NCR_700_internal_bus_reset(struct Scsi_Host
*host
)
660 NCR_700_writeb(ASSERT_RST
, host
, SCNTL1_REG
);
662 NCR_700_writeb(0, host
, SCNTL1_REG
);
667 NCR_700_chip_setup(struct Scsi_Host
*host
)
669 struct NCR_700_Host_Parameters
*hostdata
=
670 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
671 __u32 dcntl_extra
= 0;
673 __u8 min_xferp
= (hostdata
->chip710
? NCR_710_MIN_XFERP
: NCR_700_MIN_XFERP
);
675 if(hostdata
->chip710
) {
676 __u8 burst_disable
= hostdata
->burst_disable
678 dcntl_extra
= COMPAT_700_MODE
;
680 NCR_700_writeb(dcntl_extra
, host
, DCNTL_REG
);
681 NCR_700_writeb(BURST_LENGTH_8
| hostdata
->dmode_extra
,
682 host
, DMODE_710_REG
);
683 NCR_700_writeb(burst_disable
| (hostdata
->differential
?
684 DIFF
: 0), host
, CTEST7_REG
);
685 NCR_700_writeb(BTB_TIMER_DISABLE
, host
, CTEST0_REG
);
686 NCR_700_writeb(FULL_ARBITRATION
| ENABLE_PARITY
| PARITY
687 | AUTO_ATN
, host
, SCNTL0_REG
);
689 NCR_700_writeb(BURST_LENGTH_8
| hostdata
->dmode_extra
,
690 host
, DMODE_700_REG
);
691 NCR_700_writeb(hostdata
->differential
?
692 DIFF
: 0, host
, CTEST7_REG
);
694 /* this is for 700-66, does nothing on 700 */
695 NCR_700_writeb(LAST_DIS_ENBL
| ENABLE_ACTIVE_NEGATION
696 | GENERATE_RECEIVE_PARITY
, host
,
699 NCR_700_writeb(FULL_ARBITRATION
| ENABLE_PARITY
700 | PARITY
| AUTO_ATN
, host
, SCNTL0_REG
);
704 NCR_700_writeb(1 << host
->this_id
, host
, SCID_REG
);
705 NCR_700_writeb(0, host
, SBCL_REG
);
706 NCR_700_writeb(ASYNC_OPERATION
, host
, SXFER_REG
);
708 NCR_700_writeb(PHASE_MM_INT
| SEL_TIMEOUT_INT
| GROSS_ERR_INT
| UX_DISC_INT
709 | RST_INT
| PAR_ERR_INT
| SELECT_INT
, host
, SIEN_REG
);
711 NCR_700_writeb(ABORT_INT
| INT_INST_INT
| ILGL_INST_INT
, host
, DIEN_REG
);
712 NCR_700_writeb(ENABLE_SELECT
, host
, SCNTL1_REG
);
713 if(hostdata
->clock
> 75) {
714 printk(KERN_ERR
"53c700: Clock speed %dMHz is too high: 75Mhz is the maximum this chip can be driven at\n", hostdata
->clock
);
715 /* do the best we can, but the async clock will be out
716 * of spec: sync divider 2, async divider 3 */
717 DEBUG(("53c700: sync 2 async 3\n"));
718 NCR_700_writeb(SYNC_DIV_2_0
, host
, SBCL_REG
);
719 NCR_700_writeb(ASYNC_DIV_3_0
| dcntl_extra
, host
, DCNTL_REG
);
720 hostdata
->sync_clock
= hostdata
->clock
/2;
721 } else if(hostdata
->clock
> 50 && hostdata
->clock
<= 75) {
722 /* sync divider 1.5, async divider 3 */
723 DEBUG(("53c700: sync 1.5 async 3\n"));
724 NCR_700_writeb(SYNC_DIV_1_5
, host
, SBCL_REG
);
725 NCR_700_writeb(ASYNC_DIV_3_0
| dcntl_extra
, host
, DCNTL_REG
);
726 hostdata
->sync_clock
= hostdata
->clock
*2;
727 hostdata
->sync_clock
/= 3;
729 } else if(hostdata
->clock
> 37 && hostdata
->clock
<= 50) {
730 /* sync divider 1, async divider 2 */
731 DEBUG(("53c700: sync 1 async 2\n"));
732 NCR_700_writeb(SYNC_DIV_1_0
, host
, SBCL_REG
);
733 NCR_700_writeb(ASYNC_DIV_2_0
| dcntl_extra
, host
, DCNTL_REG
);
734 hostdata
->sync_clock
= hostdata
->clock
;
735 } else if(hostdata
->clock
> 25 && hostdata
->clock
<=37) {
736 /* sync divider 1, async divider 1.5 */
737 DEBUG(("53c700: sync 1 async 1.5\n"));
738 NCR_700_writeb(SYNC_DIV_1_0
, host
, SBCL_REG
);
739 NCR_700_writeb(ASYNC_DIV_1_5
| dcntl_extra
, host
, DCNTL_REG
);
740 hostdata
->sync_clock
= hostdata
->clock
;
742 DEBUG(("53c700: sync 1 async 1\n"));
743 NCR_700_writeb(SYNC_DIV_1_0
, host
, SBCL_REG
);
744 NCR_700_writeb(ASYNC_DIV_1_0
| dcntl_extra
, host
, DCNTL_REG
);
745 /* sync divider 1, async divider 1 */
746 hostdata
->sync_clock
= hostdata
->clock
;
748 /* Calculate the actual minimum period that can be supported
749 * by our synchronous clock speed. See the 710 manual for
750 * exact details of this calculation which is based on a
751 * setting of the SXFER register */
752 min_period
= 1000*(4+min_xferp
)/(4*hostdata
->sync_clock
);
753 hostdata
->min_period
= NCR_700_MIN_PERIOD
;
754 if(min_period
> NCR_700_MIN_PERIOD
)
755 hostdata
->min_period
= min_period
;
759 NCR_700_chip_reset(struct Scsi_Host
*host
)
761 struct NCR_700_Host_Parameters
*hostdata
=
762 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
763 if(hostdata
->chip710
) {
764 NCR_700_writeb(SOFTWARE_RESET_710
, host
, ISTAT_REG
);
767 NCR_700_writeb(0, host
, ISTAT_REG
);
769 NCR_700_writeb(SOFTWARE_RESET
, host
, DCNTL_REG
);
772 NCR_700_writeb(0, host
, DCNTL_REG
);
777 NCR_700_chip_setup(host
);
780 /* The heart of the message processing engine is that the instruction
781 * immediately after the INT is the normal case (and so must be CLEAR
782 * ACK). If we want to do something else, we call that routine in
783 * scripts and set temp to be the normal case + 8 (skipping the CLEAR
784 * ACK) so that the routine returns correctly to resume its activity
787 process_extended_message(struct Scsi_Host
*host
,
788 struct NCR_700_Host_Parameters
*hostdata
,
789 struct scsi_cmnd
*SCp
, __u32 dsp
, __u32 dsps
)
791 __u32 resume_offset
= dsp
, temp
= dsp
+ 8;
792 __u8 pun
= 0xff, lun
= 0xff;
795 pun
= SCp
->device
->id
;
796 lun
= SCp
->device
->lun
;
799 switch(hostdata
->msgin
[2]) {
801 if(SCp
!= NULL
&& NCR_700_is_flag_set(SCp
->device
, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
)) {
802 struct scsi_target
*starget
= SCp
->device
->sdev_target
;
803 __u8 period
= hostdata
->msgin
[3];
804 __u8 offset
= hostdata
->msgin
[4];
806 if(offset
== 0 || period
== 0) {
811 spi_offset(starget
) = offset
;
812 spi_period(starget
) = period
;
814 if(NCR_700_is_flag_set(SCp
->device
, NCR_700_DEV_PRINT_SYNC_NEGOTIATION
)) {
815 spi_display_xfer_agreement(starget
);
816 NCR_700_clear_flag(SCp
->device
, NCR_700_DEV_PRINT_SYNC_NEGOTIATION
);
819 NCR_700_set_flag(SCp
->device
, NCR_700_DEV_NEGOTIATED_SYNC
);
820 NCR_700_clear_flag(SCp
->device
, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
);
822 NCR_700_writeb(NCR_700_get_SXFER(SCp
->device
),
826 /* SDTR message out of the blue, reject it */
827 shost_printk(KERN_WARNING
, host
,
828 "Unexpected SDTR msg\n");
829 hostdata
->msgout
[0] = A_REJECT_MSG
;
830 dma_cache_sync(hostdata
->msgout
, 1, DMA_TO_DEVICE
);
831 script_patch_16(hostdata
->script
, MessageCount
, 1);
832 /* SendMsgOut returns, so set up the return
834 resume_offset
= hostdata
->pScript
+ Ent_SendMessageWithATN
;
839 printk(KERN_INFO
"scsi%d: (%d:%d), Unsolicited WDTR after CMD, Rejecting\n",
840 host
->host_no
, pun
, lun
);
841 hostdata
->msgout
[0] = A_REJECT_MSG
;
842 dma_cache_sync(hostdata
->msgout
, 1, DMA_TO_DEVICE
);
843 script_patch_16(hostdata
->script
, MessageCount
, 1);
844 resume_offset
= hostdata
->pScript
+ Ent_SendMessageWithATN
;
849 printk(KERN_INFO
"scsi%d (%d:%d): Unexpected message %s: ",
850 host
->host_no
, pun
, lun
,
851 NCR_700_phase
[(dsps
& 0xf00) >> 8]);
852 spi_print_msg(hostdata
->msgin
);
855 hostdata
->msgout
[0] = A_REJECT_MSG
;
856 dma_cache_sync(hostdata
->msgout
, 1, DMA_TO_DEVICE
);
857 script_patch_16(hostdata
->script
, MessageCount
, 1);
858 /* SendMsgOut returns, so set up the return
860 resume_offset
= hostdata
->pScript
+ Ent_SendMessageWithATN
;
862 NCR_700_writel(temp
, host
, TEMP_REG
);
863 return resume_offset
;
867 process_message(struct Scsi_Host
*host
, struct NCR_700_Host_Parameters
*hostdata
,
868 struct scsi_cmnd
*SCp
, __u32 dsp
, __u32 dsps
)
870 /* work out where to return to */
871 __u32 temp
= dsp
+ 8, resume_offset
= dsp
;
872 __u8 pun
= 0xff, lun
= 0xff;
875 pun
= SCp
->device
->id
;
876 lun
= SCp
->device
->lun
;
880 printk("scsi%d (%d:%d): message %s: ", host
->host_no
, pun
, lun
,
881 NCR_700_phase
[(dsps
& 0xf00) >> 8]);
882 spi_print_msg(hostdata
->msgin
);
886 switch(hostdata
->msgin
[0]) {
889 resume_offset
= process_extended_message(host
, hostdata
, SCp
,
894 if(SCp
!= NULL
&& NCR_700_is_flag_set(SCp
->device
, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
)) {
895 /* Rejected our sync negotiation attempt */
896 spi_period(SCp
->device
->sdev_target
) =
897 spi_offset(SCp
->device
->sdev_target
) = 0;
898 NCR_700_set_flag(SCp
->device
, NCR_700_DEV_NEGOTIATED_SYNC
);
899 NCR_700_clear_flag(SCp
->device
, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
);
900 } else if(SCp
!= NULL
&& NCR_700_get_tag_neg_state(SCp
->device
) == NCR_700_DURING_TAG_NEGOTIATION
) {
901 /* rejected our first simple tag message */
902 scmd_printk(KERN_WARNING
, SCp
,
903 "Rejected first tag queue attempt, turning off tag queueing\n");
904 /* we're done negotiating */
905 NCR_700_set_tag_neg_state(SCp
->device
, NCR_700_FINISHED_TAG_NEGOTIATION
);
906 hostdata
->tag_negotiated
&= ~(1<<scmd_id(SCp
));
907 SCp
->device
->tagged_supported
= 0;
908 scsi_deactivate_tcq(SCp
->device
, host
->cmd_per_lun
);
910 shost_printk(KERN_WARNING
, host
,
911 "(%d:%d) Unexpected REJECT Message %s\n",
913 NCR_700_phase
[(dsps
& 0xf00) >> 8]);
914 /* however, just ignore it */
918 case A_PARITY_ERROR_MSG
:
919 printk(KERN_ERR
"scsi%d (%d:%d) Parity Error!\n", host
->host_no
,
921 NCR_700_internal_bus_reset(host
);
923 case A_SIMPLE_TAG_MSG
:
924 printk(KERN_INFO
"scsi%d (%d:%d) SIMPLE TAG %d %s\n", host
->host_no
,
925 pun
, lun
, hostdata
->msgin
[1],
926 NCR_700_phase
[(dsps
& 0xf00) >> 8]);
930 printk(KERN_INFO
"scsi%d (%d:%d): Unexpected message %s: ",
931 host
->host_no
, pun
, lun
,
932 NCR_700_phase
[(dsps
& 0xf00) >> 8]);
934 spi_print_msg(hostdata
->msgin
);
937 hostdata
->msgout
[0] = A_REJECT_MSG
;
938 dma_cache_sync(hostdata
->msgout
, 1, DMA_TO_DEVICE
);
939 script_patch_16(hostdata
->script
, MessageCount
, 1);
940 /* SendMsgOut returns, so set up the return
942 resume_offset
= hostdata
->pScript
+ Ent_SendMessageWithATN
;
946 NCR_700_writel(temp
, host
, TEMP_REG
);
947 /* set us up to receive another message */
948 dma_cache_sync(hostdata
->msgin
, MSG_ARRAY_SIZE
, DMA_FROM_DEVICE
);
949 return resume_offset
;
953 process_script_interrupt(__u32 dsps
, __u32 dsp
, struct scsi_cmnd
*SCp
,
954 struct Scsi_Host
*host
,
955 struct NCR_700_Host_Parameters
*hostdata
)
957 __u32 resume_offset
= 0;
958 __u8 pun
= 0xff, lun
=0xff;
961 pun
= SCp
->device
->id
;
962 lun
= SCp
->device
->lun
;
965 if(dsps
== A_GOOD_STATUS_AFTER_STATUS
) {
966 DEBUG((" COMMAND COMPLETE, status=%02x\n",
967 hostdata
->status
[0]));
968 /* OK, if TCQ still under negotiation, we now know it works */
969 if (NCR_700_get_tag_neg_state(SCp
->device
) == NCR_700_DURING_TAG_NEGOTIATION
)
970 NCR_700_set_tag_neg_state(SCp
->device
,
971 NCR_700_FINISHED_TAG_NEGOTIATION
);
973 /* check for contingent allegiance contitions */
974 if(status_byte(hostdata
->status
[0]) == CHECK_CONDITION
||
975 status_byte(hostdata
->status
[0]) == COMMAND_TERMINATED
) {
976 struct NCR_700_command_slot
*slot
=
977 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
978 if(SCp
->cmnd
[0] == REQUEST_SENSE
) {
979 /* OOPS: bad device, returning another
980 * contingent allegiance condition */
981 scmd_printk(KERN_ERR
, SCp
,
982 "broken device is looping in contingent allegiance: ignoring\n");
983 NCR_700_scsi_done(hostdata
, SCp
, hostdata
->status
[0]);
986 scsi_print_command(SCp
);
987 printk(" cmd %p has status %d, requesting sense\n",
988 SCp
, hostdata
->status
[0]);
990 /* we can destroy the command here
991 * because the contingent allegiance
992 * condition will cause a retry which
993 * will re-copy the command from the
994 * saved data_cmnd. We also unmap any
995 * data associated with the command
997 NCR_700_unmap(hostdata
, SCp
, slot
);
999 SCp
->cmnd
[0] = REQUEST_SENSE
;
1000 SCp
->cmnd
[1] = (SCp
->device
->lun
& 0x7) << 5;
1003 SCp
->cmnd
[4] = sizeof(SCp
->sense_buffer
);
1006 /* Here's a quiet hack: the
1007 * REQUEST_SENSE command is six bytes,
1008 * so store a flag indicating that
1009 * this was an internal sense request
1010 * and the original status at the end
1012 SCp
->cmnd
[6] = NCR_700_INTERNAL_SENSE_MAGIC
;
1013 SCp
->cmnd
[7] = hostdata
->status
[0];
1015 SCp
->sc_data_direction
= DMA_FROM_DEVICE
;
1016 dma_sync_single_for_device(hostdata
->dev
, slot
->pCmd
,
1017 SCp
->cmd_len
, DMA_TO_DEVICE
);
1018 SCp
->request_bufflen
= sizeof(SCp
->sense_buffer
);
1019 slot
->dma_handle
= dma_map_single(hostdata
->dev
, SCp
->sense_buffer
, sizeof(SCp
->sense_buffer
), DMA_FROM_DEVICE
);
1020 slot
->SG
[0].ins
= bS_to_host(SCRIPT_MOVE_DATA_IN
| sizeof(SCp
->sense_buffer
));
1021 slot
->SG
[0].pAddr
= bS_to_host(slot
->dma_handle
);
1022 slot
->SG
[1].ins
= bS_to_host(SCRIPT_RETURN
);
1023 slot
->SG
[1].pAddr
= 0;
1024 slot
->resume_offset
= hostdata
->pScript
;
1025 dma_cache_sync(slot
->SG
, sizeof(slot
->SG
[0])*2, DMA_TO_DEVICE
);
1026 dma_cache_sync(SCp
->sense_buffer
, sizeof(SCp
->sense_buffer
), DMA_FROM_DEVICE
);
1028 /* queue the command for reissue */
1029 slot
->state
= NCR_700_SLOT_QUEUED
;
1030 hostdata
->state
= NCR_700_HOST_FREE
;
1031 hostdata
->cmd
= NULL
;
1034 // Currently rely on the mid layer evaluation
1035 // of the tag queuing capability
1037 //if(status_byte(hostdata->status[0]) == GOOD &&
1038 // SCp->cmnd[0] == INQUIRY && SCp->use_sg == 0) {
1039 // /* Piggy back the tag queueing support
1040 // * on this command */
1041 // dma_sync_single_for_cpu(hostdata->dev,
1042 // slot->dma_handle,
1043 // SCp->request_bufflen,
1044 // DMA_FROM_DEVICE);
1045 // if(((char *)SCp->request_buffer)[7] & 0x02) {
1046 // scmd_printk(KERN_INFO, SCp,
1047 // "Enabling Tag Command Queuing\n");
1048 // hostdata->tag_negotiated |= (1<<scmd_id(SCp));
1049 // NCR_700_set_flag(SCp->device, NCR_700_DEV_BEGIN_TAG_QUEUEING);
1051 // NCR_700_clear_flag(SCp->device, NCR_700_DEV_BEGIN_TAG_QUEUEING);
1052 // hostdata->tag_negotiated &= ~(1<<scmd_id(SCp));
1055 NCR_700_scsi_done(hostdata
, SCp
, hostdata
->status
[0]);
1057 } else if((dsps
& 0xfffff0f0) == A_UNEXPECTED_PHASE
) {
1058 __u8 i
= (dsps
& 0xf00) >> 8;
1060 scmd_printk(KERN_ERR
, SCp
, "UNEXPECTED PHASE %s (%s)\n",
1062 sbcl_to_string(NCR_700_readb(host
, SBCL_REG
)));
1063 scmd_printk(KERN_ERR
, SCp
, " len = %d, cmd =",
1065 scsi_print_command(SCp
);
1067 NCR_700_internal_bus_reset(host
);
1068 } else if((dsps
& 0xfffff000) == A_FATAL
) {
1069 int i
= (dsps
& 0xfff);
1071 printk(KERN_ERR
"scsi%d: (%d:%d) FATAL ERROR: %s\n",
1072 host
->host_no
, pun
, lun
, NCR_700_fatal_messages
[i
]);
1073 if(dsps
== A_FATAL_ILLEGAL_MSG_LENGTH
) {
1074 printk(KERN_ERR
" msg begins %02x %02x\n",
1075 hostdata
->msgin
[0], hostdata
->msgin
[1]);
1077 NCR_700_internal_bus_reset(host
);
1078 } else if((dsps
& 0xfffff0f0) == A_DISCONNECT
) {
1079 #ifdef NCR_700_DEBUG
1080 __u8 i
= (dsps
& 0xf00) >> 8;
1082 printk("scsi%d: (%d:%d), DISCONNECTED (%d) %s\n",
1083 host
->host_no
, pun
, lun
,
1084 i
, NCR_700_phase
[i
]);
1086 save_for_reselection(hostdata
, SCp
, dsp
);
1088 } else if(dsps
== A_RESELECTION_IDENTIFIED
) {
1090 struct NCR_700_command_slot
*slot
;
1091 __u8 reselection_id
= hostdata
->reselection_id
;
1092 struct scsi_device
*SDp
;
1094 lun
= hostdata
->msgin
[0] & 0x1f;
1096 hostdata
->reselection_id
= 0xff;
1097 DEBUG(("scsi%d: (%d:%d) RESELECTED!\n",
1098 host
->host_no
, reselection_id
, lun
));
1099 /* clear the reselection indicator */
1100 SDp
= __scsi_device_lookup(host
, 0, reselection_id
, lun
);
1101 if(unlikely(SDp
== NULL
)) {
1102 printk(KERN_ERR
"scsi%d: (%d:%d) HAS NO device\n",
1103 host
->host_no
, reselection_id
, lun
);
1106 if(hostdata
->msgin
[1] == A_SIMPLE_TAG_MSG
) {
1107 struct scsi_cmnd
*SCp
= scsi_find_tag(SDp
, hostdata
->msgin
[2]);
1108 if(unlikely(SCp
== NULL
)) {
1109 printk(KERN_ERR
"scsi%d: (%d:%d) no saved request for tag %d\n",
1110 host
->host_no
, reselection_id
, lun
, hostdata
->msgin
[2]);
1114 slot
= (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1115 DDEBUG(KERN_DEBUG
, SDp
,
1116 "reselection is tag %d, slot %p(%d)\n",
1117 hostdata
->msgin
[2], slot
, slot
->tag
);
1119 struct scsi_cmnd
*SCp
= scsi_find_tag(SDp
, SCSI_NO_TAG
);
1120 if(unlikely(SCp
== NULL
)) {
1121 sdev_printk(KERN_ERR
, SDp
,
1122 "no saved request for untagged cmd\n");
1125 slot
= (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1129 printk(KERN_ERR
"scsi%d: (%d:%d) RESELECTED but no saved command (MSG = %02x %02x %02x)!!\n",
1130 host
->host_no
, reselection_id
, lun
,
1131 hostdata
->msgin
[0], hostdata
->msgin
[1],
1132 hostdata
->msgin
[2]);
1134 if(hostdata
->state
!= NCR_700_HOST_BUSY
)
1135 printk(KERN_ERR
"scsi%d: FATAL, host not busy during valid reselection!\n",
1137 resume_offset
= slot
->resume_offset
;
1138 hostdata
->cmd
= slot
->cmnd
;
1140 /* re-patch for this command */
1141 script_patch_32_abs(hostdata
->script
, CommandAddress
,
1143 script_patch_16(hostdata
->script
,
1144 CommandCount
, slot
->cmnd
->cmd_len
);
1145 script_patch_32_abs(hostdata
->script
, SGScriptStartAddress
,
1146 to32bit(&slot
->pSG
[0].ins
));
1148 /* Note: setting SXFER only works if we're
1149 * still in the MESSAGE phase, so it is vital
1150 * that ACK is still asserted when we process
1151 * the reselection message. The resume offset
1152 * should therefore always clear ACK */
1153 NCR_700_writeb(NCR_700_get_SXFER(hostdata
->cmd
->device
),
1155 dma_cache_sync(hostdata
->msgin
,
1156 MSG_ARRAY_SIZE
, DMA_FROM_DEVICE
);
1157 dma_cache_sync(hostdata
->msgout
,
1158 MSG_ARRAY_SIZE
, DMA_TO_DEVICE
);
1159 /* I'm just being paranoid here, the command should
1160 * already have been flushed from the cache */
1161 dma_cache_sync(slot
->cmnd
->cmnd
,
1162 slot
->cmnd
->cmd_len
, DMA_TO_DEVICE
);
1167 } else if(dsps
== A_RESELECTED_DURING_SELECTION
) {
1169 /* This section is full of debugging code because I've
1170 * never managed to reach it. I think what happens is
1171 * that, because the 700 runs with selection
1172 * interrupts enabled the whole time that we take a
1173 * selection interrupt before we manage to get to the
1174 * reselected script interrupt */
1176 __u8 reselection_id
= NCR_700_readb(host
, SFBR_REG
);
1177 struct NCR_700_command_slot
*slot
;
1179 /* Take out our own ID */
1180 reselection_id
&= ~(1<<host
->this_id
);
1182 /* I've never seen this happen, so keep this as a printk rather
1184 printk(KERN_INFO
"scsi%d: (%d:%d) RESELECTION DURING SELECTION, dsp=%08x[%04x] state=%d, count=%d\n",
1185 host
->host_no
, reselection_id
, lun
, dsp
, dsp
- hostdata
->pScript
, hostdata
->state
, hostdata
->command_slot_count
);
1188 /* FIXME: DEBUGGING CODE */
1189 __u32 SG
= (__u32
)bS_to_cpu(hostdata
->script
[A_SGScriptStartAddress_used
[0]]);
1192 for(i
=0; i
< NCR_700_COMMAND_SLOTS_PER_HOST
; i
++) {
1193 if(SG
>= to32bit(&hostdata
->slots
[i
].pSG
[0])
1194 && SG
<= to32bit(&hostdata
->slots
[i
].pSG
[NCR_700_SG_SEGMENTS
]))
1197 printk(KERN_INFO
"IDENTIFIED SG segment as being %08x in slot %p, cmd %p, slot->resume_offset=%08x\n", SG
, &hostdata
->slots
[i
], hostdata
->slots
[i
].cmnd
, hostdata
->slots
[i
].resume_offset
);
1198 SCp
= hostdata
->slots
[i
].cmnd
;
1202 slot
= (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1203 /* change slot from busy to queued to redo command */
1204 slot
->state
= NCR_700_SLOT_QUEUED
;
1206 hostdata
->cmd
= NULL
;
1208 if(reselection_id
== 0) {
1209 if(hostdata
->reselection_id
== 0xff) {
1210 printk(KERN_ERR
"scsi%d: Invalid reselection during selection!!\n", host
->host_no
);
1213 printk(KERN_ERR
"scsi%d: script reselected and we took a selection interrupt\n",
1215 reselection_id
= hostdata
->reselection_id
;
1219 /* convert to real ID */
1220 reselection_id
= bitmap_to_number(reselection_id
);
1222 hostdata
->reselection_id
= reselection_id
;
1223 /* just in case we have a stale simple tag message, clear it */
1224 hostdata
->msgin
[1] = 0;
1225 dma_cache_sync(hostdata
->msgin
,
1226 MSG_ARRAY_SIZE
, DMA_BIDIRECTIONAL
);
1227 if(hostdata
->tag_negotiated
& (1<<reselection_id
)) {
1228 resume_offset
= hostdata
->pScript
+ Ent_GetReselectionWithTag
;
1230 resume_offset
= hostdata
->pScript
+ Ent_GetReselectionData
;
1232 } else if(dsps
== A_COMPLETED_SELECTION_AS_TARGET
) {
1233 /* we've just disconnected from the bus, do nothing since
1234 * a return here will re-run the queued command slot
1235 * that may have been interrupted by the initial selection */
1236 DEBUG((" SELECTION COMPLETED\n"));
1237 } else if((dsps
& 0xfffff0f0) == A_MSG_IN
) {
1238 resume_offset
= process_message(host
, hostdata
, SCp
,
1240 } else if((dsps
& 0xfffff000) == 0) {
1241 __u8 i
= (dsps
& 0xf0) >> 4, j
= (dsps
& 0xf00) >> 8;
1242 printk(KERN_ERR
"scsi%d: (%d:%d), unhandled script condition %s %s at %04x\n",
1243 host
->host_no
, pun
, lun
, NCR_700_condition
[i
],
1244 NCR_700_phase
[j
], dsp
- hostdata
->pScript
);
1246 scsi_print_command(SCp
);
1249 for(i
= 0; i
< SCp
->use_sg
+ 1; i
++) {
1250 printk(KERN_INFO
" SG[%d].length = %d, move_insn=%08x, addr %08x\n", i
, ((struct scatterlist
*)SCp
->buffer
)[i
].length
, ((struct NCR_700_command_slot
*)SCp
->host_scribble
)->SG
[i
].ins
, ((struct NCR_700_command_slot
*)SCp
->host_scribble
)->SG
[i
].pAddr
);
1254 NCR_700_internal_bus_reset(host
);
1255 } else if((dsps
& 0xfffff000) == A_DEBUG_INTERRUPT
) {
1256 printk(KERN_NOTICE
"scsi%d (%d:%d) DEBUG INTERRUPT %d AT %08x[%04x], continuing\n",
1257 host
->host_no
, pun
, lun
, dsps
& 0xfff, dsp
, dsp
- hostdata
->pScript
);
1258 resume_offset
= dsp
;
1260 printk(KERN_ERR
"scsi%d: (%d:%d), unidentified script interrupt 0x%x at %04x\n",
1261 host
->host_no
, pun
, lun
, dsps
, dsp
- hostdata
->pScript
);
1262 NCR_700_internal_bus_reset(host
);
1264 return resume_offset
;
1267 /* We run the 53c700 with selection interrupts always enabled. This
1268 * means that the chip may be selected as soon as the bus frees. On a
1269 * busy bus, this can be before the scripts engine finishes its
1270 * processing. Therefore, part of the selection processing has to be
1271 * to find out what the scripts engine is doing and complete the
1272 * function if necessary (i.e. process the pending disconnect or save
1273 * the interrupted initial selection */
1275 process_selection(struct Scsi_Host
*host
, __u32 dsp
)
1277 __u8 id
= 0; /* Squash compiler warning */
1279 __u32 resume_offset
= 0;
1280 struct NCR_700_Host_Parameters
*hostdata
=
1281 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
1282 struct scsi_cmnd
*SCp
= hostdata
->cmd
;
1285 for(count
= 0; count
< 5; count
++) {
1286 id
= NCR_700_readb(host
, hostdata
->chip710
?
1287 CTEST9_REG
: SFBR_REG
);
1289 /* Take out our own ID */
1290 id
&= ~(1<<host
->this_id
);
1295 sbcl
= NCR_700_readb(host
, SBCL_REG
);
1296 if((sbcl
& SBCL_IO
) == 0) {
1297 /* mark as having been selected rather than reselected */
1300 /* convert to real ID */
1301 hostdata
->reselection_id
= id
= bitmap_to_number(id
);
1302 DEBUG(("scsi%d: Reselected by %d\n",
1303 host
->host_no
, id
));
1305 if(hostdata
->state
== NCR_700_HOST_BUSY
&& SCp
!= NULL
) {
1306 struct NCR_700_command_slot
*slot
=
1307 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1308 DEBUG((" ID %d WARNING: RESELECTION OF BUSY HOST, saving cmd %p, slot %p, addr %x [%04x], resume %x!\n", id
, hostdata
->cmd
, slot
, dsp
, dsp
- hostdata
->pScript
, resume_offset
));
1310 switch(dsp
- hostdata
->pScript
) {
1311 case Ent_Disconnect1
:
1312 case Ent_Disconnect2
:
1313 save_for_reselection(hostdata
, SCp
, Ent_Disconnect2
+ hostdata
->pScript
);
1315 case Ent_Disconnect3
:
1316 case Ent_Disconnect4
:
1317 save_for_reselection(hostdata
, SCp
, Ent_Disconnect4
+ hostdata
->pScript
);
1319 case Ent_Disconnect5
:
1320 case Ent_Disconnect6
:
1321 save_for_reselection(hostdata
, SCp
, Ent_Disconnect6
+ hostdata
->pScript
);
1323 case Ent_Disconnect7
:
1324 case Ent_Disconnect8
:
1325 save_for_reselection(hostdata
, SCp
, Ent_Disconnect8
+ hostdata
->pScript
);
1329 process_script_interrupt(A_GOOD_STATUS_AFTER_STATUS
, dsp
, SCp
, host
, hostdata
);
1333 slot
->state
= NCR_700_SLOT_QUEUED
;
1337 hostdata
->state
= NCR_700_HOST_BUSY
;
1338 hostdata
->cmd
= NULL
;
1339 /* clear any stale simple tag message */
1340 hostdata
->msgin
[1] = 0;
1341 dma_cache_sync(hostdata
->msgin
, MSG_ARRAY_SIZE
,
1345 /* Selected as target, Ignore */
1346 resume_offset
= hostdata
->pScript
+ Ent_SelectedAsTarget
;
1347 } else if(hostdata
->tag_negotiated
& (1<<id
)) {
1348 resume_offset
= hostdata
->pScript
+ Ent_GetReselectionWithTag
;
1350 resume_offset
= hostdata
->pScript
+ Ent_GetReselectionData
;
1352 return resume_offset
;
1356 NCR_700_clear_fifo(struct Scsi_Host
*host
) {
1357 const struct NCR_700_Host_Parameters
*hostdata
1358 = (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
1359 if(hostdata
->chip710
) {
1360 NCR_700_writeb(CLR_FIFO_710
, host
, CTEST8_REG
);
1362 NCR_700_writeb(CLR_FIFO
, host
, DFIFO_REG
);
1367 NCR_700_flush_fifo(struct Scsi_Host
*host
) {
1368 const struct NCR_700_Host_Parameters
*hostdata
1369 = (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
1370 if(hostdata
->chip710
) {
1371 NCR_700_writeb(FLUSH_DMA_FIFO_710
, host
, CTEST8_REG
);
1373 NCR_700_writeb(0, host
, CTEST8_REG
);
1375 NCR_700_writeb(FLUSH_DMA_FIFO
, host
, DFIFO_REG
);
1377 NCR_700_writeb(0, host
, DFIFO_REG
);
1382 /* The queue lock with interrupts disabled must be held on entry to
1385 NCR_700_start_command(struct scsi_cmnd
*SCp
)
1387 struct NCR_700_command_slot
*slot
=
1388 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1389 struct NCR_700_Host_Parameters
*hostdata
=
1390 (struct NCR_700_Host_Parameters
*)SCp
->device
->host
->hostdata
[0];
1391 __u16 count
= 1; /* for IDENTIFY message */
1393 if(hostdata
->state
!= NCR_700_HOST_FREE
) {
1394 /* keep this inside the lock to close the race window where
1395 * the running command finishes on another CPU while we don't
1396 * change the state to queued on this one */
1397 slot
->state
= NCR_700_SLOT_QUEUED
;
1399 DEBUG(("scsi%d: host busy, queueing command %p, slot %p\n",
1400 SCp
->device
->host
->host_no
, slot
->cmnd
, slot
));
1403 hostdata
->state
= NCR_700_HOST_BUSY
;
1404 hostdata
->cmd
= SCp
;
1405 slot
->state
= NCR_700_SLOT_BUSY
;
1406 /* keep interrupts disabled until we have the command correctly
1407 * set up so we cannot take a selection interrupt */
1409 hostdata
->msgout
[0] = NCR_700_identify(SCp
->cmnd
[0] != REQUEST_SENSE
,
1411 /* for INQUIRY or REQUEST_SENSE commands, we cannot be sure
1412 * if the negotiated transfer parameters still hold, so
1413 * always renegotiate them */
1414 if(SCp
->cmnd
[0] == INQUIRY
|| SCp
->cmnd
[0] == REQUEST_SENSE
) {
1415 NCR_700_clear_flag(SCp
->device
, NCR_700_DEV_NEGOTIATED_SYNC
);
1418 /* REQUEST_SENSE is asking for contingent I_T_L(_Q) status.
1419 * If a contingent allegiance condition exists, the device
1420 * will refuse all tags, so send the request sense as untagged
1422 if((hostdata
->tag_negotiated
& (1<<scmd_id(SCp
)))
1423 && (slot
->tag
!= SCSI_NO_TAG
&& SCp
->cmnd
[0] != REQUEST_SENSE
)) {
1424 count
+= scsi_populate_tag_msg(SCp
, &hostdata
->msgout
[count
]);
1427 if(hostdata
->fast
&&
1428 NCR_700_is_flag_clear(SCp
->device
, NCR_700_DEV_NEGOTIATED_SYNC
)) {
1429 count
+= spi_populate_sync_msg(&hostdata
->msgout
[count
],
1430 spi_period(SCp
->device
->sdev_target
),
1431 spi_offset(SCp
->device
->sdev_target
));
1432 NCR_700_set_flag(SCp
->device
, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
);
1435 script_patch_16(hostdata
->script
, MessageCount
, count
);
1438 script_patch_ID(hostdata
->script
,
1439 Device_ID
, 1<<scmd_id(SCp
));
1441 script_patch_32_abs(hostdata
->script
, CommandAddress
,
1443 script_patch_16(hostdata
->script
, CommandCount
, SCp
->cmd_len
);
1444 /* finally plumb the beginning of the SG list into the script
1446 script_patch_32_abs(hostdata
->script
, SGScriptStartAddress
,
1447 to32bit(&slot
->pSG
[0].ins
));
1448 NCR_700_clear_fifo(SCp
->device
->host
);
1450 if(slot
->resume_offset
== 0)
1451 slot
->resume_offset
= hostdata
->pScript
;
1452 /* now perform all the writebacks and invalidates */
1453 dma_cache_sync(hostdata
->msgout
, count
, DMA_TO_DEVICE
);
1454 dma_cache_sync(hostdata
->msgin
, MSG_ARRAY_SIZE
,
1456 dma_cache_sync(SCp
->cmnd
, SCp
->cmd_len
, DMA_TO_DEVICE
);
1457 dma_cache_sync(hostdata
->status
, 1, DMA_FROM_DEVICE
);
1459 /* set the synchronous period/offset */
1460 NCR_700_writeb(NCR_700_get_SXFER(SCp
->device
),
1461 SCp
->device
->host
, SXFER_REG
);
1462 NCR_700_writel(slot
->temp
, SCp
->device
->host
, TEMP_REG
);
1463 NCR_700_writel(slot
->resume_offset
, SCp
->device
->host
, DSP_REG
);
1469 NCR_700_intr(int irq
, void *dev_id
, struct pt_regs
*regs
)
1471 struct Scsi_Host
*host
= (struct Scsi_Host
*)dev_id
;
1472 struct NCR_700_Host_Parameters
*hostdata
=
1473 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
1475 __u32 resume_offset
= 0;
1476 __u8 pun
= 0xff, lun
= 0xff;
1477 unsigned long flags
;
1480 /* Use the host lock to serialise acess to the 53c700
1481 * hardware. Note: In future, we may need to take the queue
1482 * lock to enter the done routines. When that happens, we
1483 * need to ensure that for this driver, the host lock and the
1484 * queue lock point to the same thing. */
1485 spin_lock_irqsave(host
->host_lock
, flags
);
1486 if((istat
= NCR_700_readb(host
, ISTAT_REG
))
1487 & (SCSI_INT_PENDING
| DMA_INT_PENDING
)) {
1489 __u8 sstat0
= 0, dstat
= 0;
1491 struct scsi_cmnd
*SCp
= hostdata
->cmd
;
1492 enum NCR_700_Host_State state
;
1495 state
= hostdata
->state
;
1496 SCp
= hostdata
->cmd
;
1498 if(istat
& SCSI_INT_PENDING
) {
1501 sstat0
= NCR_700_readb(host
, SSTAT0_REG
);
1504 if(istat
& DMA_INT_PENDING
) {
1507 dstat
= NCR_700_readb(host
, DSTAT_REG
);
1510 dsps
= NCR_700_readl(host
, DSPS_REG
);
1511 dsp
= NCR_700_readl(host
, DSP_REG
);
1513 DEBUG(("scsi%d: istat %02x sstat0 %02x dstat %02x dsp %04x[%08x] dsps 0x%x\n",
1514 host
->host_no
, istat
, sstat0
, dstat
,
1515 (dsp
- (__u32
)(hostdata
->pScript
))/4,
1519 pun
= SCp
->device
->id
;
1520 lun
= SCp
->device
->lun
;
1523 if(sstat0
& SCSI_RESET_DETECTED
) {
1524 struct scsi_device
*SDp
;
1527 hostdata
->state
= NCR_700_HOST_BUSY
;
1529 printk(KERN_ERR
"scsi%d: Bus Reset detected, executing command %p, slot %p, dsp %08x[%04x]\n",
1530 host
->host_no
, SCp
, SCp
== NULL
? NULL
: SCp
->host_scribble
, dsp
, dsp
- hostdata
->pScript
);
1532 scsi_report_bus_reset(host
, 0);
1534 /* clear all the negotiated parameters */
1535 __shost_for_each_device(SDp
, host
)
1536 SDp
->hostdata
= NULL
;
1538 /* clear all the slots and their pending commands */
1539 for(i
= 0; i
< NCR_700_COMMAND_SLOTS_PER_HOST
; i
++) {
1540 struct scsi_cmnd
*SCp
;
1541 struct NCR_700_command_slot
*slot
=
1542 &hostdata
->slots
[i
];
1544 if(slot
->state
== NCR_700_SLOT_FREE
)
1548 printk(KERN_ERR
" failing command because of reset, slot %p, cmnd %p\n",
1550 free_slot(slot
, hostdata
);
1551 SCp
->host_scribble
= NULL
;
1552 NCR_700_set_depth(SCp
->device
, 0);
1553 /* NOTE: deadlock potential here: we
1554 * rely on mid-layer guarantees that
1555 * scsi_done won't try to issue the
1556 * command again otherwise we'll
1558 * hostdata->state_lock */
1559 SCp
->result
= DID_RESET
<< 16;
1560 SCp
->scsi_done(SCp
);
1563 NCR_700_chip_setup(host
);
1565 hostdata
->state
= NCR_700_HOST_FREE
;
1566 hostdata
->cmd
= NULL
;
1567 /* signal back if this was an eh induced reset */
1568 if(hostdata
->eh_complete
!= NULL
)
1569 complete(hostdata
->eh_complete
);
1571 } else if(sstat0
& SELECTION_TIMEOUT
) {
1572 DEBUG(("scsi%d: (%d:%d) selection timeout\n",
1573 host
->host_no
, pun
, lun
));
1574 NCR_700_scsi_done(hostdata
, SCp
, DID_NO_CONNECT
<<16);
1575 } else if(sstat0
& PHASE_MISMATCH
) {
1576 struct NCR_700_command_slot
*slot
= (SCp
== NULL
) ? NULL
:
1577 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1579 if(dsp
== Ent_SendMessage
+ 8 + hostdata
->pScript
) {
1580 /* It wants to reply to some part of
1582 #ifdef NCR_700_DEBUG
1583 __u32 temp
= NCR_700_readl(host
, TEMP_REG
);
1584 int count
= (hostdata
->script
[Ent_SendMessage
/4] & 0xffffff) - ((NCR_700_readl(host
, DBC_REG
) & 0xffffff) + NCR_700_data_residual(host
));
1585 printk("scsi%d (%d:%d) PHASE MISMATCH IN SEND MESSAGE %d remain, return %p[%04x], phase %s\n", host
->host_no
, pun
, lun
, count
, (void *)temp
, temp
- hostdata
->pScript
, sbcl_to_string(NCR_700_readb(host
, SBCL_REG
)));
1587 resume_offset
= hostdata
->pScript
+ Ent_SendMessagePhaseMismatch
;
1588 } else if(dsp
>= to32bit(&slot
->pSG
[0].ins
) &&
1589 dsp
<= to32bit(&slot
->pSG
[NCR_700_SG_SEGMENTS
].ins
)) {
1590 int data_transfer
= NCR_700_readl(host
, DBC_REG
) & 0xffffff;
1591 int SGcount
= (dsp
- to32bit(&slot
->pSG
[0].ins
))/sizeof(struct NCR_700_SG_List
);
1592 int residual
= NCR_700_data_residual(host
);
1594 #ifdef NCR_700_DEBUG
1595 __u32 naddr
= NCR_700_readl(host
, DNAD_REG
);
1597 printk("scsi%d: (%d:%d) Expected phase mismatch in slot->SG[%d], transferred 0x%x\n",
1598 host
->host_no
, pun
, lun
,
1599 SGcount
, data_transfer
);
1600 scsi_print_command(SCp
);
1602 printk("scsi%d: (%d:%d) Expected phase mismatch in slot->SG[%d], transferred 0x%x, residual %d\n",
1603 host
->host_no
, pun
, lun
,
1604 SGcount
, data_transfer
, residual
);
1607 data_transfer
+= residual
;
1609 if(data_transfer
!= 0) {
1615 count
= (bS_to_cpu(slot
->SG
[SGcount
].ins
) & 0x00ffffff);
1616 DEBUG(("DATA TRANSFER MISMATCH, count = %d, transferred %d\n", count
, count
-data_transfer
));
1617 slot
->SG
[SGcount
].ins
&= bS_to_host(0xff000000);
1618 slot
->SG
[SGcount
].ins
|= bS_to_host(data_transfer
);
1619 pAddr
= bS_to_cpu(slot
->SG
[SGcount
].pAddr
);
1620 pAddr
+= (count
- data_transfer
);
1621 #ifdef NCR_700_DEBUG
1622 if(pAddr
!= naddr
) {
1623 printk("scsi%d (%d:%d) transfer mismatch pAddr=%lx, naddr=%lx, data_transfer=%d, residual=%d\n", host
->host_no
, pun
, lun
, (unsigned long)pAddr
, (unsigned long)naddr
, data_transfer
, residual
);
1626 slot
->SG
[SGcount
].pAddr
= bS_to_host(pAddr
);
1628 /* set the executed moves to nops */
1629 for(i
=0; i
<SGcount
; i
++) {
1630 slot
->SG
[i
].ins
= bS_to_host(SCRIPT_NOP
);
1631 slot
->SG
[i
].pAddr
= 0;
1633 dma_cache_sync(slot
->SG
, sizeof(slot
->SG
), DMA_TO_DEVICE
);
1634 /* and pretend we disconnected after
1635 * the command phase */
1636 resume_offset
= hostdata
->pScript
+ Ent_MsgInDuringData
;
1637 /* make sure all the data is flushed */
1638 NCR_700_flush_fifo(host
);
1640 __u8 sbcl
= NCR_700_readb(host
, SBCL_REG
);
1641 printk(KERN_ERR
"scsi%d: (%d:%d) phase mismatch at %04x, phase %s\n",
1642 host
->host_no
, pun
, lun
, dsp
- hostdata
->pScript
, sbcl_to_string(sbcl
));
1643 NCR_700_internal_bus_reset(host
);
1646 } else if(sstat0
& SCSI_GROSS_ERROR
) {
1647 printk(KERN_ERR
"scsi%d: (%d:%d) GROSS ERROR\n",
1648 host
->host_no
, pun
, lun
);
1649 NCR_700_scsi_done(hostdata
, SCp
, DID_ERROR
<<16);
1650 } else if(sstat0
& PARITY_ERROR
) {
1651 printk(KERN_ERR
"scsi%d: (%d:%d) PARITY ERROR\n",
1652 host
->host_no
, pun
, lun
);
1653 NCR_700_scsi_done(hostdata
, SCp
, DID_ERROR
<<16);
1654 } else if(dstat
& SCRIPT_INT_RECEIVED
) {
1655 DEBUG(("scsi%d: (%d:%d) ====>SCRIPT INTERRUPT<====\n",
1656 host
->host_no
, pun
, lun
));
1657 resume_offset
= process_script_interrupt(dsps
, dsp
, SCp
, host
, hostdata
);
1658 } else if(dstat
& (ILGL_INST_DETECTED
)) {
1659 printk(KERN_ERR
"scsi%d: (%d:%d) Illegal Instruction detected at 0x%08x[0x%x]!!!\n"
1660 " Please email James.Bottomley@HansenPartnership.com with the details\n",
1661 host
->host_no
, pun
, lun
,
1662 dsp
, dsp
- hostdata
->pScript
);
1663 NCR_700_scsi_done(hostdata
, SCp
, DID_ERROR
<<16);
1664 } else if(dstat
& (WATCH_DOG_INTERRUPT
|ABORTED
)) {
1665 printk(KERN_ERR
"scsi%d: (%d:%d) serious DMA problem, dstat=%02x\n",
1666 host
->host_no
, pun
, lun
, dstat
);
1667 NCR_700_scsi_done(hostdata
, SCp
, DID_ERROR
<<16);
1671 /* NOTE: selection interrupt processing MUST occur
1672 * after script interrupt processing to correctly cope
1673 * with the case where we process a disconnect and
1674 * then get reselected before we process the
1676 if(sstat0
& SELECTED
) {
1677 /* FIXME: It currently takes at least FOUR
1678 * interrupts to complete a command that
1679 * disconnects: one for the disconnect, one
1680 * for the reselection, one to get the
1681 * reselection data and one to complete the
1682 * command. If we guess the reselected
1683 * command here and prepare it, we only need
1684 * to get a reselection data interrupt if we
1685 * guessed wrongly. Since the interrupt
1686 * overhead is much greater than the command
1687 * setup, this would be an efficient
1688 * optimisation particularly as we probably
1689 * only have one outstanding command on a
1690 * target most of the time */
1692 resume_offset
= process_selection(host
, dsp
);
1699 if(hostdata
->state
!= NCR_700_HOST_BUSY
) {
1700 printk(KERN_ERR
"scsi%d: Driver error: resume at 0x%08x [0x%04x] with non busy host!\n",
1701 host
->host_no
, resume_offset
, resume_offset
- hostdata
->pScript
);
1702 hostdata
->state
= NCR_700_HOST_BUSY
;
1705 DEBUG(("Attempting to resume at %x\n", resume_offset
));
1706 NCR_700_clear_fifo(host
);
1707 NCR_700_writel(resume_offset
, host
, DSP_REG
);
1709 /* There is probably a technical no-no about this: If we're a
1710 * shared interrupt and we got this interrupt because the
1711 * other device needs servicing not us, we're still going to
1712 * check our queued commands here---of course, there shouldn't
1713 * be any outstanding.... */
1714 if(hostdata
->state
== NCR_700_HOST_FREE
) {
1717 for(i
= 0; i
< NCR_700_COMMAND_SLOTS_PER_HOST
; i
++) {
1718 /* fairness: always run the queue from the last
1719 * position we left off */
1720 int j
= (i
+ hostdata
->saved_slot_position
)
1721 % NCR_700_COMMAND_SLOTS_PER_HOST
;
1723 if(hostdata
->slots
[j
].state
!= NCR_700_SLOT_QUEUED
)
1725 if(NCR_700_start_command(hostdata
->slots
[j
].cmnd
)) {
1726 DEBUG(("scsi%d: Issuing saved command slot %p, cmd %p\t\n",
1727 host
->host_no
, &hostdata
->slots
[j
],
1728 hostdata
->slots
[j
].cmnd
));
1729 hostdata
->saved_slot_position
= j
+ 1;
1736 spin_unlock_irqrestore(host
->host_lock
, flags
);
1737 return IRQ_RETVAL(handled
);
1741 NCR_700_queuecommand(struct scsi_cmnd
*SCp
, void (*done
)(struct scsi_cmnd
*))
1743 struct NCR_700_Host_Parameters
*hostdata
=
1744 (struct NCR_700_Host_Parameters
*)SCp
->device
->host
->hostdata
[0];
1746 enum dma_data_direction direction
;
1747 struct NCR_700_command_slot
*slot
;
1749 if(hostdata
->command_slot_count
>= NCR_700_COMMAND_SLOTS_PER_HOST
) {
1750 /* We're over our allocation, this should never happen
1751 * since we report the max allocation to the mid layer */
1752 printk(KERN_WARNING
"scsi%d: Command depth has gone over queue depth\n", SCp
->device
->host
->host_no
);
1755 /* check for untagged commands. We cannot have any outstanding
1756 * commands if we accept them. Commands could be untagged because:
1758 * - The tag negotiated bitmap is clear
1759 * - The blk layer sent and untagged command
1761 if(NCR_700_get_depth(SCp
->device
) != 0
1762 && (!(hostdata
->tag_negotiated
& (1<<scmd_id(SCp
)))
1763 || !blk_rq_tagged(SCp
->request
))) {
1764 CDEBUG(KERN_ERR
, SCp
, "has non zero depth %d\n",
1765 NCR_700_get_depth(SCp
->device
));
1766 return SCSI_MLQUEUE_DEVICE_BUSY
;
1768 if(NCR_700_get_depth(SCp
->device
) >= SCp
->device
->queue_depth
) {
1769 CDEBUG(KERN_ERR
, SCp
, "has max tag depth %d\n",
1770 NCR_700_get_depth(SCp
->device
));
1771 return SCSI_MLQUEUE_DEVICE_BUSY
;
1773 NCR_700_set_depth(SCp
->device
, NCR_700_get_depth(SCp
->device
) + 1);
1775 /* begin the command here */
1776 /* no need to check for NULL, test for command_slot_count above
1777 * ensures a slot is free */
1778 slot
= find_empty_slot(hostdata
);
1782 SCp
->scsi_done
= done
;
1783 SCp
->host_scribble
= (unsigned char *)slot
;
1784 SCp
->SCp
.ptr
= NULL
;
1785 SCp
->SCp
.buffer
= NULL
;
1787 #ifdef NCR_700_DEBUG
1788 printk("53c700: scsi%d, command ", SCp
->device
->host
->host_no
);
1789 scsi_print_command(SCp
);
1791 if(blk_rq_tagged(SCp
->request
)
1792 && (hostdata
->tag_negotiated
&(1<<scmd_id(SCp
))) == 0
1793 && NCR_700_get_tag_neg_state(SCp
->device
) == NCR_700_START_TAG_NEGOTIATION
) {
1794 scmd_printk(KERN_ERR
, SCp
, "Enabling Tag Command Queuing\n");
1795 hostdata
->tag_negotiated
|= (1<<scmd_id(SCp
));
1796 NCR_700_set_tag_neg_state(SCp
->device
, NCR_700_DURING_TAG_NEGOTIATION
);
1799 /* here we may have to process an untagged command. The gate
1800 * above ensures that this will be the only one outstanding,
1801 * so clear the tag negotiated bit.
1803 * FIXME: This will royally screw up on multiple LUN devices
1805 if(!blk_rq_tagged(SCp
->request
)
1806 && (hostdata
->tag_negotiated
&(1<<scmd_id(SCp
)))) {
1807 scmd_printk(KERN_INFO
, SCp
, "Disabling Tag Command Queuing\n");
1808 hostdata
->tag_negotiated
&= ~(1<<scmd_id(SCp
));
1811 if((hostdata
->tag_negotiated
&(1<<scmd_id(SCp
)))
1812 && scsi_get_tag_type(SCp
->device
)) {
1813 slot
->tag
= SCp
->request
->tag
;
1814 CDEBUG(KERN_DEBUG
, SCp
, "sending out tag %d, slot %p\n",
1817 slot
->tag
= SCSI_NO_TAG
;
1818 /* must populate current_cmnd for scsi_find_tag to work */
1819 SCp
->device
->current_cmnd
= SCp
;
1821 /* sanity check: some of the commands generated by the mid-layer
1822 * have an eccentric idea of their sc_data_direction */
1823 if(!SCp
->use_sg
&& !SCp
->request_bufflen
1824 && SCp
->sc_data_direction
!= DMA_NONE
) {
1825 #ifdef NCR_700_DEBUG
1826 printk("53c700: Command");
1827 scsi_print_command(SCp
);
1828 printk("Has wrong data direction %d\n", SCp
->sc_data_direction
);
1830 SCp
->sc_data_direction
= DMA_NONE
;
1833 switch (SCp
->cmnd
[0]) {
1835 /* clear the internal sense magic */
1839 /* OK, get it from the command */
1840 switch(SCp
->sc_data_direction
) {
1841 case DMA_BIDIRECTIONAL
:
1843 printk(KERN_ERR
"53c700: Unknown command for data direction ");
1844 scsi_print_command(SCp
);
1851 case DMA_FROM_DEVICE
:
1852 move_ins
= SCRIPT_MOVE_DATA_IN
;
1855 move_ins
= SCRIPT_MOVE_DATA_OUT
;
1860 /* now build the scatter gather list */
1861 direction
= SCp
->sc_data_direction
;
1865 dma_addr_t vPtr
= 0;
1869 sg_count
= dma_map_sg(hostdata
->dev
, SCp
->buffer
,
1870 SCp
->use_sg
, direction
);
1872 vPtr
= dma_map_single(hostdata
->dev
,
1873 SCp
->request_buffer
,
1874 SCp
->request_bufflen
,
1876 count
= SCp
->request_bufflen
;
1877 slot
->dma_handle
= vPtr
;
1882 for(i
= 0; i
< sg_count
; i
++) {
1885 struct scatterlist
*sg
= SCp
->buffer
;
1887 vPtr
= sg_dma_address(&sg
[i
]);
1888 count
= sg_dma_len(&sg
[i
]);
1891 slot
->SG
[i
].ins
= bS_to_host(move_ins
| count
);
1892 DEBUG((" scatter block %d: move %d[%08x] from 0x%lx\n",
1893 i
, count
, slot
->SG
[i
].ins
, (unsigned long)vPtr
));
1894 slot
->SG
[i
].pAddr
= bS_to_host(vPtr
);
1896 slot
->SG
[i
].ins
= bS_to_host(SCRIPT_RETURN
);
1897 slot
->SG
[i
].pAddr
= 0;
1898 dma_cache_sync(slot
->SG
, sizeof(slot
->SG
), DMA_TO_DEVICE
);
1899 DEBUG((" SETTING %08lx to %x\n",
1900 (&slot
->pSG
[i
].ins
),
1903 slot
->resume_offset
= 0;
1904 slot
->pCmd
= dma_map_single(hostdata
->dev
, SCp
->cmnd
,
1905 sizeof(SCp
->cmnd
), DMA_TO_DEVICE
);
1906 NCR_700_start_command(SCp
);
1911 NCR_700_abort(struct scsi_cmnd
* SCp
)
1913 struct NCR_700_command_slot
*slot
;
1915 scmd_printk(KERN_INFO
, SCp
,
1916 "New error handler wants to abort command\n\t");
1917 scsi_print_command(SCp
);
1919 slot
= (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1922 /* no outstanding command to abort */
1924 if(SCp
->cmnd
[0] == TEST_UNIT_READY
) {
1925 /* FIXME: This is because of a problem in the new
1926 * error handler. When it is in error recovery, it
1927 * will send a TUR to a device it thinks may still be
1928 * showing a problem. If the TUR isn't responded to,
1929 * it will abort it and mark the device off line.
1930 * Unfortunately, it does no other error recovery, so
1931 * this would leave us with an outstanding command
1932 * occupying a slot. Rather than allow this to
1933 * happen, we issue a bus reset to force all
1934 * outstanding commands to terminate here. */
1935 NCR_700_internal_bus_reset(SCp
->device
->host
);
1936 /* still drop through and return failed */
1943 NCR_700_bus_reset(struct scsi_cmnd
* SCp
)
1945 DECLARE_COMPLETION(complete
);
1946 struct NCR_700_Host_Parameters
*hostdata
=
1947 (struct NCR_700_Host_Parameters
*)SCp
->device
->host
->hostdata
[0];
1949 scmd_printk(KERN_INFO
, SCp
,
1950 "New error handler wants BUS reset, cmd %p\n\t", SCp
);
1951 scsi_print_command(SCp
);
1953 /* In theory, eh_complete should always be null because the
1954 * eh is single threaded, but just in case we're handling a
1955 * reset via sg or something */
1956 spin_lock_irq(SCp
->device
->host
->host_lock
);
1957 while (hostdata
->eh_complete
!= NULL
) {
1958 spin_unlock_irq(SCp
->device
->host
->host_lock
);
1959 msleep_interruptible(100);
1960 spin_lock_irq(SCp
->device
->host
->host_lock
);
1963 hostdata
->eh_complete
= &complete
;
1964 NCR_700_internal_bus_reset(SCp
->device
->host
);
1966 spin_unlock_irq(SCp
->device
->host
->host_lock
);
1967 wait_for_completion(&complete
);
1968 spin_lock_irq(SCp
->device
->host
->host_lock
);
1970 hostdata
->eh_complete
= NULL
;
1971 /* Revalidate the transport parameters of the failing device */
1973 spi_schedule_dv_device(SCp
->device
);
1975 spin_unlock_irq(SCp
->device
->host
->host_lock
);
1980 NCR_700_host_reset(struct scsi_cmnd
* SCp
)
1982 scmd_printk(KERN_INFO
, SCp
, "New error handler wants HOST reset\n\t");
1983 scsi_print_command(SCp
);
1985 spin_lock_irq(SCp
->device
->host
->host_lock
);
1987 NCR_700_internal_bus_reset(SCp
->device
->host
);
1988 NCR_700_chip_reset(SCp
->device
->host
);
1990 spin_unlock_irq(SCp
->device
->host
->host_lock
);
1996 NCR_700_set_period(struct scsi_target
*STp
, int period
)
1998 struct Scsi_Host
*SHp
= dev_to_shost(STp
->dev
.parent
);
1999 struct NCR_700_Host_Parameters
*hostdata
=
2000 (struct NCR_700_Host_Parameters
*)SHp
->hostdata
[0];
2005 if(period
< hostdata
->min_period
)
2006 period
= hostdata
->min_period
;
2008 spi_period(STp
) = period
;
2009 spi_flags(STp
) &= ~(NCR_700_DEV_NEGOTIATED_SYNC
|
2010 NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
);
2011 spi_flags(STp
) |= NCR_700_DEV_PRINT_SYNC_NEGOTIATION
;
2015 NCR_700_set_offset(struct scsi_target
*STp
, int offset
)
2017 struct Scsi_Host
*SHp
= dev_to_shost(STp
->dev
.parent
);
2018 struct NCR_700_Host_Parameters
*hostdata
=
2019 (struct NCR_700_Host_Parameters
*)SHp
->hostdata
[0];
2020 int max_offset
= hostdata
->chip710
2021 ? NCR_710_MAX_OFFSET
: NCR_700_MAX_OFFSET
;
2026 if(offset
> max_offset
)
2027 offset
= max_offset
;
2029 /* if we're currently async, make sure the period is reasonable */
2030 if(spi_offset(STp
) == 0 && (spi_period(STp
) < hostdata
->min_period
||
2031 spi_period(STp
) > 0xff))
2032 spi_period(STp
) = hostdata
->min_period
;
2034 spi_offset(STp
) = offset
;
2035 spi_flags(STp
) &= ~(NCR_700_DEV_NEGOTIATED_SYNC
|
2036 NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
);
2037 spi_flags(STp
) |= NCR_700_DEV_PRINT_SYNC_NEGOTIATION
;
2043 NCR_700_slave_configure(struct scsi_device
*SDp
)
2045 struct NCR_700_Host_Parameters
*hostdata
=
2046 (struct NCR_700_Host_Parameters
*)SDp
->host
->hostdata
[0];
2048 /* to do here: allocate memory; build a queue_full list */
2049 if(SDp
->tagged_supported
) {
2050 scsi_set_tag_type(SDp
, MSG_ORDERED_TAG
);
2051 scsi_activate_tcq(SDp
, NCR_700_DEFAULT_TAGS
);
2052 NCR_700_set_tag_neg_state(SDp
, NCR_700_START_TAG_NEGOTIATION
);
2054 /* initialise to default depth */
2055 scsi_adjust_queue_depth(SDp
, 0, SDp
->host
->cmd_per_lun
);
2057 if(hostdata
->fast
) {
2058 /* Find the correct offset and period via domain validation */
2059 if (!spi_initial_dv(SDp
->sdev_target
))
2062 spi_offset(SDp
->sdev_target
) = 0;
2063 spi_period(SDp
->sdev_target
) = 0;
2069 NCR_700_slave_destroy(struct scsi_device
*SDp
)
2071 /* to do here: deallocate memory */
2075 NCR_700_change_queue_depth(struct scsi_device
*SDp
, int depth
)
2077 if (depth
> NCR_700_MAX_TAGS
)
2078 depth
= NCR_700_MAX_TAGS
;
2080 scsi_adjust_queue_depth(SDp
, scsi_get_tag_type(SDp
), depth
);
2084 static int NCR_700_change_queue_type(struct scsi_device
*SDp
, int tag_type
)
2086 int change_tag
= ((tag_type
==0 && scsi_get_tag_type(SDp
) != 0)
2087 || (tag_type
!= 0 && scsi_get_tag_type(SDp
) == 0));
2088 struct NCR_700_Host_Parameters
*hostdata
=
2089 (struct NCR_700_Host_Parameters
*)SDp
->host
->hostdata
[0];
2091 scsi_set_tag_type(SDp
, tag_type
);
2093 /* We have a global (per target) flag to track whether TCQ is
2094 * enabled, so we'll be turning it off for the entire target here.
2095 * our tag algorithm will fail if we mix tagged and untagged commands,
2096 * so quiesce the device before doing this */
2098 scsi_target_quiesce(SDp
->sdev_target
);
2101 /* shift back to the default unqueued number of commands
2102 * (the user can still raise this) */
2103 scsi_deactivate_tcq(SDp
, SDp
->host
->cmd_per_lun
);
2104 hostdata
->tag_negotiated
&= ~(1 << sdev_id(SDp
));
2106 /* Here, we cleared the negotiation flag above, so this
2107 * will force the driver to renegotiate */
2108 scsi_activate_tcq(SDp
, SDp
->queue_depth
);
2110 NCR_700_set_tag_neg_state(SDp
, NCR_700_START_TAG_NEGOTIATION
);
2113 scsi_target_resume(SDp
->sdev_target
);
2119 NCR_700_show_active_tags(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
2121 struct scsi_device
*SDp
= to_scsi_device(dev
);
2123 return snprintf(buf
, 20, "%d\n", NCR_700_get_depth(SDp
));
2126 static struct device_attribute NCR_700_active_tags_attr
= {
2128 .name
= "active_tags",
2131 .show
= NCR_700_show_active_tags
,
2134 STATIC
struct device_attribute
*NCR_700_dev_attrs
[] = {
2135 &NCR_700_active_tags_attr
,
2139 EXPORT_SYMBOL(NCR_700_detect
);
2140 EXPORT_SYMBOL(NCR_700_release
);
2141 EXPORT_SYMBOL(NCR_700_intr
);
2143 static struct spi_function_template NCR_700_transport_functions
= {
2144 .set_period
= NCR_700_set_period
,
2146 .set_offset
= NCR_700_set_offset
,
2150 static int __init
NCR_700_init(void)
2152 NCR_700_transport_template
= spi_attach_transport(&NCR_700_transport_functions
);
2153 if(!NCR_700_transport_template
)
2158 static void __exit
NCR_700_exit(void)
2160 spi_release_transport(NCR_700_transport_template
);
2163 module_init(NCR_700_init
);
2164 module_exit(NCR_700_exit
);