[PATCH] powerpc: Fix pagetable bloat for hugepages
[linux-2.6/sactl.git] / arch / powerpc / mm / hugetlbpage.c
blob266b8b2ceac947071d225e4de981d2229d499fc2
1 /*
2 * PPC64 (POWER4) Huge TLB Page Support for Kernel.
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
6 * Based on the IA-32 version:
7 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
8 */
10 #include <linux/init.h>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/hugetlb.h>
14 #include <linux/pagemap.h>
15 #include <linux/smp_lock.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/sysctl.h>
19 #include <asm/mman.h>
20 #include <asm/pgalloc.h>
21 #include <asm/tlb.h>
22 #include <asm/tlbflush.h>
23 #include <asm/mmu_context.h>
24 #include <asm/machdep.h>
25 #include <asm/cputable.h>
26 #include <asm/tlb.h>
28 #include <linux/sysctl.h>
30 #define NUM_LOW_AREAS (0x100000000UL >> SID_SHIFT)
31 #define NUM_HIGH_AREAS (PGTABLE_RANGE >> HTLB_AREA_SHIFT)
33 #ifdef CONFIG_PPC_64K_PAGES
34 #define HUGEPTE_INDEX_SIZE (PMD_SHIFT-HPAGE_SHIFT)
35 #else
36 #define HUGEPTE_INDEX_SIZE (PUD_SHIFT-HPAGE_SHIFT)
37 #endif
38 #define PTRS_PER_HUGEPTE (1 << HUGEPTE_INDEX_SIZE)
39 #define HUGEPTE_TABLE_SIZE (sizeof(pte_t) << HUGEPTE_INDEX_SIZE)
41 #define HUGEPD_SHIFT (HPAGE_SHIFT + HUGEPTE_INDEX_SIZE)
42 #define HUGEPD_SIZE (1UL << HUGEPD_SHIFT)
43 #define HUGEPD_MASK (~(HUGEPD_SIZE-1))
45 #define huge_pgtable_cache (pgtable_cache[HUGEPTE_CACHE_NUM])
47 /* Flag to mark huge PD pointers. This means pmd_bad() and pud_bad()
48 * will choke on pointers to hugepte tables, which is handy for
49 * catching screwups early. */
50 #define HUGEPD_OK 0x1
52 typedef struct { unsigned long pd; } hugepd_t;
54 #define hugepd_none(hpd) ((hpd).pd == 0)
56 static inline pte_t *hugepd_page(hugepd_t hpd)
58 BUG_ON(!(hpd.pd & HUGEPD_OK));
59 return (pte_t *)(hpd.pd & ~HUGEPD_OK);
62 static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr)
64 unsigned long idx = ((addr >> HPAGE_SHIFT) & (PTRS_PER_HUGEPTE-1));
65 pte_t *dir = hugepd_page(*hpdp);
67 return dir + idx;
70 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
71 unsigned long address)
73 pte_t *new = kmem_cache_alloc(huge_pgtable_cache,
74 GFP_KERNEL|__GFP_REPEAT);
76 if (! new)
77 return -ENOMEM;
79 spin_lock(&mm->page_table_lock);
80 if (!hugepd_none(*hpdp))
81 kmem_cache_free(huge_pgtable_cache, new);
82 else
83 hpdp->pd = (unsigned long)new | HUGEPD_OK;
84 spin_unlock(&mm->page_table_lock);
85 return 0;
88 /* Modelled after find_linux_pte() */
89 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
91 pgd_t *pg;
92 pud_t *pu;
94 BUG_ON(! in_hugepage_area(mm->context, addr));
96 addr &= HPAGE_MASK;
98 pg = pgd_offset(mm, addr);
99 if (!pgd_none(*pg)) {
100 pu = pud_offset(pg, addr);
101 if (!pud_none(*pu)) {
102 #ifdef CONFIG_PPC_64K_PAGES
103 pmd_t *pm;
104 pm = pmd_offset(pu, addr);
105 if (!pmd_none(*pm))
106 return hugepte_offset((hugepd_t *)pm, addr);
107 #else
108 return hugepte_offset((hugepd_t *)pu, addr);
109 #endif
113 return NULL;
116 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr)
118 pgd_t *pg;
119 pud_t *pu;
120 hugepd_t *hpdp = NULL;
122 BUG_ON(! in_hugepage_area(mm->context, addr));
124 addr &= HPAGE_MASK;
126 pg = pgd_offset(mm, addr);
127 pu = pud_alloc(mm, pg, addr);
129 if (pu) {
130 #ifdef CONFIG_PPC_64K_PAGES
131 pmd_t *pm;
132 pm = pmd_alloc(mm, pu, addr);
133 if (pm)
134 hpdp = (hugepd_t *)pm;
135 #else
136 hpdp = (hugepd_t *)pu;
137 #endif
140 if (! hpdp)
141 return NULL;
143 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr))
144 return NULL;
146 return hugepte_offset(hpdp, addr);
149 static void free_hugepte_range(struct mmu_gather *tlb, hugepd_t *hpdp)
151 pte_t *hugepte = hugepd_page(*hpdp);
153 hpdp->pd = 0;
154 tlb->need_flush = 1;
155 pgtable_free_tlb(tlb, pgtable_free_cache(hugepte, HUGEPTE_CACHE_NUM,
156 HUGEPTE_TABLE_SIZE-1));
159 #ifdef CONFIG_PPC_64K_PAGES
160 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
161 unsigned long addr, unsigned long end,
162 unsigned long floor, unsigned long ceiling)
164 pmd_t *pmd;
165 unsigned long next;
166 unsigned long start;
168 start = addr;
169 pmd = pmd_offset(pud, addr);
170 do {
171 next = pmd_addr_end(addr, end);
172 if (pmd_none(*pmd))
173 continue;
174 free_hugepte_range(tlb, (hugepd_t *)pmd);
175 } while (pmd++, addr = next, addr != end);
177 start &= PUD_MASK;
178 if (start < floor)
179 return;
180 if (ceiling) {
181 ceiling &= PUD_MASK;
182 if (!ceiling)
183 return;
185 if (end - 1 > ceiling - 1)
186 return;
188 pmd = pmd_offset(pud, start);
189 pud_clear(pud);
190 pmd_free_tlb(tlb, pmd);
192 #endif
194 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
195 unsigned long addr, unsigned long end,
196 unsigned long floor, unsigned long ceiling)
198 pud_t *pud;
199 unsigned long next;
200 unsigned long start;
202 start = addr;
203 pud = pud_offset(pgd, addr);
204 do {
205 next = pud_addr_end(addr, end);
206 #ifdef CONFIG_PPC_64K_PAGES
207 if (pud_none_or_clear_bad(pud))
208 continue;
209 hugetlb_free_pmd_range(tlb, pud, addr, next, floor, ceiling);
210 #else
211 if (pud_none(*pud))
212 continue;
213 free_hugepte_range(tlb, (hugepd_t *)pud);
214 #endif
215 } while (pud++, addr = next, addr != end);
217 start &= PGDIR_MASK;
218 if (start < floor)
219 return;
220 if (ceiling) {
221 ceiling &= PGDIR_MASK;
222 if (!ceiling)
223 return;
225 if (end - 1 > ceiling - 1)
226 return;
228 pud = pud_offset(pgd, start);
229 pgd_clear(pgd);
230 pud_free_tlb(tlb, pud);
234 * This function frees user-level page tables of a process.
236 * Must be called with pagetable lock held.
238 void hugetlb_free_pgd_range(struct mmu_gather **tlb,
239 unsigned long addr, unsigned long end,
240 unsigned long floor, unsigned long ceiling)
242 pgd_t *pgd;
243 unsigned long next;
244 unsigned long start;
247 * Comments below take from the normal free_pgd_range(). They
248 * apply here too. The tests against HUGEPD_MASK below are
249 * essential, because we *don't* test for this at the bottom
250 * level. Without them we'll attempt to free a hugepte table
251 * when we unmap just part of it, even if there are other
252 * active mappings using it.
254 * The next few lines have given us lots of grief...
256 * Why are we testing HUGEPD* at this top level? Because
257 * often there will be no work to do at all, and we'd prefer
258 * not to go all the way down to the bottom just to discover
259 * that.
261 * Why all these "- 1"s? Because 0 represents both the bottom
262 * of the address space and the top of it (using -1 for the
263 * top wouldn't help much: the masks would do the wrong thing).
264 * The rule is that addr 0 and floor 0 refer to the bottom of
265 * the address space, but end 0 and ceiling 0 refer to the top
266 * Comparisons need to use "end - 1" and "ceiling - 1" (though
267 * that end 0 case should be mythical).
269 * Wherever addr is brought up or ceiling brought down, we
270 * must be careful to reject "the opposite 0" before it
271 * confuses the subsequent tests. But what about where end is
272 * brought down by HUGEPD_SIZE below? no, end can't go down to
273 * 0 there.
275 * Whereas we round start (addr) and ceiling down, by different
276 * masks at different levels, in order to test whether a table
277 * now has no other vmas using it, so can be freed, we don't
278 * bother to round floor or end up - the tests don't need that.
281 addr &= HUGEPD_MASK;
282 if (addr < floor) {
283 addr += HUGEPD_SIZE;
284 if (!addr)
285 return;
287 if (ceiling) {
288 ceiling &= HUGEPD_MASK;
289 if (!ceiling)
290 return;
292 if (end - 1 > ceiling - 1)
293 end -= HUGEPD_SIZE;
294 if (addr > end - 1)
295 return;
297 start = addr;
298 pgd = pgd_offset((*tlb)->mm, addr);
299 do {
300 BUG_ON(! in_hugepage_area((*tlb)->mm->context, addr));
301 next = pgd_addr_end(addr, end);
302 if (pgd_none_or_clear_bad(pgd))
303 continue;
304 hugetlb_free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
305 } while (pgd++, addr = next, addr != end);
308 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
309 pte_t *ptep, pte_t pte)
311 if (pte_present(*ptep)) {
312 /* We open-code pte_clear because we need to pass the right
313 * argument to hpte_update (huge / !huge)
315 unsigned long old = pte_update(ptep, ~0UL);
316 if (old & _PAGE_HASHPTE)
317 hpte_update(mm, addr & HPAGE_MASK, ptep, old, 1);
318 flush_tlb_pending();
320 *ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
323 pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
324 pte_t *ptep)
326 unsigned long old = pte_update(ptep, ~0UL);
328 if (old & _PAGE_HASHPTE)
329 hpte_update(mm, addr & HPAGE_MASK, ptep, old, 1);
330 *ptep = __pte(0);
332 return __pte(old);
335 struct slb_flush_info {
336 struct mm_struct *mm;
337 u16 newareas;
340 static void flush_low_segments(void *parm)
342 struct slb_flush_info *fi = parm;
343 unsigned long i;
345 BUILD_BUG_ON((sizeof(fi->newareas)*8) != NUM_LOW_AREAS);
347 if (current->active_mm != fi->mm)
348 return;
350 /* Only need to do anything if this CPU is working in the same
351 * mm as the one which has changed */
353 /* update the paca copy of the context struct */
354 get_paca()->context = current->active_mm->context;
356 asm volatile("isync" : : : "memory");
357 for (i = 0; i < NUM_LOW_AREAS; i++) {
358 if (! (fi->newareas & (1U << i)))
359 continue;
360 asm volatile("slbie %0"
361 : : "r" ((i << SID_SHIFT) | SLBIE_C));
363 asm volatile("isync" : : : "memory");
366 static void flush_high_segments(void *parm)
368 struct slb_flush_info *fi = parm;
369 unsigned long i, j;
372 BUILD_BUG_ON((sizeof(fi->newareas)*8) != NUM_HIGH_AREAS);
374 if (current->active_mm != fi->mm)
375 return;
377 /* Only need to do anything if this CPU is working in the same
378 * mm as the one which has changed */
380 /* update the paca copy of the context struct */
381 get_paca()->context = current->active_mm->context;
383 asm volatile("isync" : : : "memory");
384 for (i = 0; i < NUM_HIGH_AREAS; i++) {
385 if (! (fi->newareas & (1U << i)))
386 continue;
387 for (j = 0; j < (1UL << (HTLB_AREA_SHIFT-SID_SHIFT)); j++)
388 asm volatile("slbie %0"
389 :: "r" (((i << HTLB_AREA_SHIFT)
390 + (j << SID_SHIFT)) | SLBIE_C));
392 asm volatile("isync" : : : "memory");
395 static int prepare_low_area_for_htlb(struct mm_struct *mm, unsigned long area)
397 unsigned long start = area << SID_SHIFT;
398 unsigned long end = (area+1) << SID_SHIFT;
399 struct vm_area_struct *vma;
401 BUG_ON(area >= NUM_LOW_AREAS);
403 /* Check no VMAs are in the region */
404 vma = find_vma(mm, start);
405 if (vma && (vma->vm_start < end))
406 return -EBUSY;
408 return 0;
411 static int prepare_high_area_for_htlb(struct mm_struct *mm, unsigned long area)
413 unsigned long start = area << HTLB_AREA_SHIFT;
414 unsigned long end = (area+1) << HTLB_AREA_SHIFT;
415 struct vm_area_struct *vma;
417 BUG_ON(area >= NUM_HIGH_AREAS);
419 /* Hack, so that each addresses is controlled by exactly one
420 * of the high or low area bitmaps, the first high area starts
421 * at 4GB, not 0 */
422 if (start == 0)
423 start = 0x100000000UL;
425 /* Check no VMAs are in the region */
426 vma = find_vma(mm, start);
427 if (vma && (vma->vm_start < end))
428 return -EBUSY;
430 return 0;
433 static int open_low_hpage_areas(struct mm_struct *mm, u16 newareas)
435 unsigned long i;
436 struct slb_flush_info fi;
438 BUILD_BUG_ON((sizeof(newareas)*8) != NUM_LOW_AREAS);
439 BUILD_BUG_ON((sizeof(mm->context.low_htlb_areas)*8) != NUM_LOW_AREAS);
441 newareas &= ~(mm->context.low_htlb_areas);
442 if (! newareas)
443 return 0; /* The segments we want are already open */
445 for (i = 0; i < NUM_LOW_AREAS; i++)
446 if ((1 << i) & newareas)
447 if (prepare_low_area_for_htlb(mm, i) != 0)
448 return -EBUSY;
450 mm->context.low_htlb_areas |= newareas;
452 /* the context change must make it to memory before the flush,
453 * so that further SLB misses do the right thing. */
454 mb();
456 fi.mm = mm;
457 fi.newareas = newareas;
458 on_each_cpu(flush_low_segments, &fi, 0, 1);
460 return 0;
463 static int open_high_hpage_areas(struct mm_struct *mm, u16 newareas)
465 struct slb_flush_info fi;
466 unsigned long i;
468 BUILD_BUG_ON((sizeof(newareas)*8) != NUM_HIGH_AREAS);
469 BUILD_BUG_ON((sizeof(mm->context.high_htlb_areas)*8)
470 != NUM_HIGH_AREAS);
472 newareas &= ~(mm->context.high_htlb_areas);
473 if (! newareas)
474 return 0; /* The areas we want are already open */
476 for (i = 0; i < NUM_HIGH_AREAS; i++)
477 if ((1 << i) & newareas)
478 if (prepare_high_area_for_htlb(mm, i) != 0)
479 return -EBUSY;
481 mm->context.high_htlb_areas |= newareas;
483 /* update the paca copy of the context struct */
484 get_paca()->context = mm->context;
486 /* the context change must make it to memory before the flush,
487 * so that further SLB misses do the right thing. */
488 mb();
490 fi.mm = mm;
491 fi.newareas = newareas;
492 on_each_cpu(flush_high_segments, &fi, 0, 1);
494 return 0;
497 int prepare_hugepage_range(unsigned long addr, unsigned long len)
499 int err = 0;
501 if ( (addr+len) < addr )
502 return -EINVAL;
504 if (addr < 0x100000000UL)
505 err = open_low_hpage_areas(current->mm,
506 LOW_ESID_MASK(addr, len));
507 if ((addr + len) > 0x100000000UL)
508 err = open_high_hpage_areas(current->mm,
509 HTLB_AREA_MASK(addr, len));
510 if (err) {
511 printk(KERN_DEBUG "prepare_hugepage_range(%lx, %lx)"
512 " failed (lowmask: 0x%04hx, highmask: 0x%04hx)\n",
513 addr, len,
514 LOW_ESID_MASK(addr, len), HTLB_AREA_MASK(addr, len));
515 return err;
518 return 0;
521 struct page *
522 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
524 pte_t *ptep;
525 struct page *page;
527 if (! in_hugepage_area(mm->context, address))
528 return ERR_PTR(-EINVAL);
530 ptep = huge_pte_offset(mm, address);
531 page = pte_page(*ptep);
532 if (page)
533 page += (address % HPAGE_SIZE) / PAGE_SIZE;
535 return page;
538 int pmd_huge(pmd_t pmd)
540 return 0;
543 struct page *
544 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
545 pmd_t *pmd, int write)
547 BUG();
548 return NULL;
551 /* Because we have an exclusive hugepage region which lies within the
552 * normal user address space, we have to take special measures to make
553 * non-huge mmap()s evade the hugepage reserved regions. */
554 unsigned long arch_get_unmapped_area(struct file *filp, unsigned long addr,
555 unsigned long len, unsigned long pgoff,
556 unsigned long flags)
558 struct mm_struct *mm = current->mm;
559 struct vm_area_struct *vma;
560 unsigned long start_addr;
562 if (len > TASK_SIZE)
563 return -ENOMEM;
565 if (addr) {
566 addr = PAGE_ALIGN(addr);
567 vma = find_vma(mm, addr);
568 if (((TASK_SIZE - len) >= addr)
569 && (!vma || (addr+len) <= vma->vm_start)
570 && !is_hugepage_only_range(mm, addr,len))
571 return addr;
573 if (len > mm->cached_hole_size) {
574 start_addr = addr = mm->free_area_cache;
575 } else {
576 start_addr = addr = TASK_UNMAPPED_BASE;
577 mm->cached_hole_size = 0;
580 full_search:
581 vma = find_vma(mm, addr);
582 while (TASK_SIZE - len >= addr) {
583 BUG_ON(vma && (addr >= vma->vm_end));
585 if (touches_hugepage_low_range(mm, addr, len)) {
586 addr = ALIGN(addr+1, 1<<SID_SHIFT);
587 vma = find_vma(mm, addr);
588 continue;
590 if (touches_hugepage_high_range(mm, addr, len)) {
591 addr = ALIGN(addr+1, 1UL<<HTLB_AREA_SHIFT);
592 vma = find_vma(mm, addr);
593 continue;
595 if (!vma || addr + len <= vma->vm_start) {
597 * Remember the place where we stopped the search:
599 mm->free_area_cache = addr + len;
600 return addr;
602 if (addr + mm->cached_hole_size < vma->vm_start)
603 mm->cached_hole_size = vma->vm_start - addr;
604 addr = vma->vm_end;
605 vma = vma->vm_next;
608 /* Make sure we didn't miss any holes */
609 if (start_addr != TASK_UNMAPPED_BASE) {
610 start_addr = addr = TASK_UNMAPPED_BASE;
611 mm->cached_hole_size = 0;
612 goto full_search;
614 return -ENOMEM;
618 * This mmap-allocator allocates new areas top-down from below the
619 * stack's low limit (the base):
621 * Because we have an exclusive hugepage region which lies within the
622 * normal user address space, we have to take special measures to make
623 * non-huge mmap()s evade the hugepage reserved regions.
625 unsigned long
626 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
627 const unsigned long len, const unsigned long pgoff,
628 const unsigned long flags)
630 struct vm_area_struct *vma, *prev_vma;
631 struct mm_struct *mm = current->mm;
632 unsigned long base = mm->mmap_base, addr = addr0;
633 unsigned long largest_hole = mm->cached_hole_size;
634 int first_time = 1;
636 /* requested length too big for entire address space */
637 if (len > TASK_SIZE)
638 return -ENOMEM;
640 /* dont allow allocations above current base */
641 if (mm->free_area_cache > base)
642 mm->free_area_cache = base;
644 /* requesting a specific address */
645 if (addr) {
646 addr = PAGE_ALIGN(addr);
647 vma = find_vma(mm, addr);
648 if (TASK_SIZE - len >= addr &&
649 (!vma || addr + len <= vma->vm_start)
650 && !is_hugepage_only_range(mm, addr,len))
651 return addr;
654 if (len <= largest_hole) {
655 largest_hole = 0;
656 mm->free_area_cache = base;
658 try_again:
659 /* make sure it can fit in the remaining address space */
660 if (mm->free_area_cache < len)
661 goto fail;
663 /* either no address requested or cant fit in requested address hole */
664 addr = (mm->free_area_cache - len) & PAGE_MASK;
665 do {
666 hugepage_recheck:
667 if (touches_hugepage_low_range(mm, addr, len)) {
668 addr = (addr & ((~0) << SID_SHIFT)) - len;
669 goto hugepage_recheck;
670 } else if (touches_hugepage_high_range(mm, addr, len)) {
671 addr = (addr & ((~0UL) << HTLB_AREA_SHIFT)) - len;
672 goto hugepage_recheck;
676 * Lookup failure means no vma is above this address,
677 * i.e. return with success:
679 if (!(vma = find_vma_prev(mm, addr, &prev_vma)))
680 return addr;
683 * new region fits between prev_vma->vm_end and
684 * vma->vm_start, use it:
686 if (addr+len <= vma->vm_start &&
687 (!prev_vma || (addr >= prev_vma->vm_end))) {
688 /* remember the address as a hint for next time */
689 mm->cached_hole_size = largest_hole;
690 return (mm->free_area_cache = addr);
691 } else {
692 /* pull free_area_cache down to the first hole */
693 if (mm->free_area_cache == vma->vm_end) {
694 mm->free_area_cache = vma->vm_start;
695 mm->cached_hole_size = largest_hole;
699 /* remember the largest hole we saw so far */
700 if (addr + largest_hole < vma->vm_start)
701 largest_hole = vma->vm_start - addr;
703 /* try just below the current vma->vm_start */
704 addr = vma->vm_start-len;
705 } while (len <= vma->vm_start);
707 fail:
709 * if hint left us with no space for the requested
710 * mapping then try again:
712 if (first_time) {
713 mm->free_area_cache = base;
714 largest_hole = 0;
715 first_time = 0;
716 goto try_again;
719 * A failed mmap() very likely causes application failure,
720 * so fall back to the bottom-up function here. This scenario
721 * can happen with large stack limits and large mmap()
722 * allocations.
724 mm->free_area_cache = TASK_UNMAPPED_BASE;
725 mm->cached_hole_size = ~0UL;
726 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
728 * Restore the topdown base:
730 mm->free_area_cache = base;
731 mm->cached_hole_size = ~0UL;
733 return addr;
736 static int htlb_check_hinted_area(unsigned long addr, unsigned long len)
738 struct vm_area_struct *vma;
740 vma = find_vma(current->mm, addr);
741 if (!vma || ((addr + len) <= vma->vm_start))
742 return 0;
744 return -ENOMEM;
747 static unsigned long htlb_get_low_area(unsigned long len, u16 segmask)
749 unsigned long addr = 0;
750 struct vm_area_struct *vma;
752 vma = find_vma(current->mm, addr);
753 while (addr + len <= 0x100000000UL) {
754 BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */
756 if (! __within_hugepage_low_range(addr, len, segmask)) {
757 addr = ALIGN(addr+1, 1<<SID_SHIFT);
758 vma = find_vma(current->mm, addr);
759 continue;
762 if (!vma || (addr + len) <= vma->vm_start)
763 return addr;
764 addr = ALIGN(vma->vm_end, HPAGE_SIZE);
765 /* Depending on segmask this might not be a confirmed
766 * hugepage region, so the ALIGN could have skipped
767 * some VMAs */
768 vma = find_vma(current->mm, addr);
771 return -ENOMEM;
774 static unsigned long htlb_get_high_area(unsigned long len, u16 areamask)
776 unsigned long addr = 0x100000000UL;
777 struct vm_area_struct *vma;
779 vma = find_vma(current->mm, addr);
780 while (addr + len <= TASK_SIZE_USER64) {
781 BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */
783 if (! __within_hugepage_high_range(addr, len, areamask)) {
784 addr = ALIGN(addr+1, 1UL<<HTLB_AREA_SHIFT);
785 vma = find_vma(current->mm, addr);
786 continue;
789 if (!vma || (addr + len) <= vma->vm_start)
790 return addr;
791 addr = ALIGN(vma->vm_end, HPAGE_SIZE);
792 /* Depending on segmask this might not be a confirmed
793 * hugepage region, so the ALIGN could have skipped
794 * some VMAs */
795 vma = find_vma(current->mm, addr);
798 return -ENOMEM;
801 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
802 unsigned long len, unsigned long pgoff,
803 unsigned long flags)
805 int lastshift;
806 u16 areamask, curareas;
808 if (HPAGE_SHIFT == 0)
809 return -EINVAL;
810 if (len & ~HPAGE_MASK)
811 return -EINVAL;
813 if (!cpu_has_feature(CPU_FTR_16M_PAGE))
814 return -EINVAL;
816 /* Paranoia, caller should have dealt with this */
817 BUG_ON((addr + len) < addr);
819 if (test_thread_flag(TIF_32BIT)) {
820 /* Paranoia, caller should have dealt with this */
821 BUG_ON((addr + len) > 0x100000000UL);
823 curareas = current->mm->context.low_htlb_areas;
825 /* First see if we can use the hint address */
826 if (addr && (htlb_check_hinted_area(addr, len) == 0)) {
827 areamask = LOW_ESID_MASK(addr, len);
828 if (open_low_hpage_areas(current->mm, areamask) == 0)
829 return addr;
832 /* Next see if we can map in the existing low areas */
833 addr = htlb_get_low_area(len, curareas);
834 if (addr != -ENOMEM)
835 return addr;
837 /* Finally go looking for areas to open */
838 lastshift = 0;
839 for (areamask = LOW_ESID_MASK(0x100000000UL-len, len);
840 ! lastshift; areamask >>=1) {
841 if (areamask & 1)
842 lastshift = 1;
844 addr = htlb_get_low_area(len, curareas | areamask);
845 if ((addr != -ENOMEM)
846 && open_low_hpage_areas(current->mm, areamask) == 0)
847 return addr;
849 } else {
850 curareas = current->mm->context.high_htlb_areas;
852 /* First see if we can use the hint address */
853 /* We discourage 64-bit processes from doing hugepage
854 * mappings below 4GB (must use MAP_FIXED) */
855 if ((addr >= 0x100000000UL)
856 && (htlb_check_hinted_area(addr, len) == 0)) {
857 areamask = HTLB_AREA_MASK(addr, len);
858 if (open_high_hpage_areas(current->mm, areamask) == 0)
859 return addr;
862 /* Next see if we can map in the existing high areas */
863 addr = htlb_get_high_area(len, curareas);
864 if (addr != -ENOMEM)
865 return addr;
867 /* Finally go looking for areas to open */
868 lastshift = 0;
869 for (areamask = HTLB_AREA_MASK(TASK_SIZE_USER64-len, len);
870 ! lastshift; areamask >>=1) {
871 if (areamask & 1)
872 lastshift = 1;
874 addr = htlb_get_high_area(len, curareas | areamask);
875 if ((addr != -ENOMEM)
876 && open_high_hpage_areas(current->mm, areamask) == 0)
877 return addr;
880 printk(KERN_DEBUG "hugetlb_get_unmapped_area() unable to open"
881 " enough areas\n");
882 return -ENOMEM;
886 * Called by asm hashtable.S for doing lazy icache flush
888 static unsigned int hash_huge_page_do_lazy_icache(unsigned long rflags,
889 pte_t pte, int trap)
891 struct page *page;
892 int i;
894 if (!pfn_valid(pte_pfn(pte)))
895 return rflags;
897 page = pte_page(pte);
899 /* page is dirty */
900 if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
901 if (trap == 0x400) {
902 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++)
903 __flush_dcache_icache(page_address(page+i));
904 set_bit(PG_arch_1, &page->flags);
905 } else {
906 rflags |= HPTE_R_N;
909 return rflags;
912 int hash_huge_page(struct mm_struct *mm, unsigned long access,
913 unsigned long ea, unsigned long vsid, int local,
914 unsigned long trap)
916 pte_t *ptep;
917 unsigned long old_pte, new_pte;
918 unsigned long va, rflags, pa;
919 long slot;
920 int err = 1;
922 ptep = huge_pte_offset(mm, ea);
924 /* Search the Linux page table for a match with va */
925 va = (vsid << 28) | (ea & 0x0fffffff);
928 * If no pte found or not present, send the problem up to
929 * do_page_fault
931 if (unlikely(!ptep || pte_none(*ptep)))
932 goto out;
935 * Check the user's access rights to the page. If access should be
936 * prevented then send the problem up to do_page_fault.
938 if (unlikely(access & ~pte_val(*ptep)))
939 goto out;
941 * At this point, we have a pte (old_pte) which can be used to build
942 * or update an HPTE. There are 2 cases:
944 * 1. There is a valid (present) pte with no associated HPTE (this is
945 * the most common case)
946 * 2. There is a valid (present) pte with an associated HPTE. The
947 * current values of the pp bits in the HPTE prevent access
948 * because we are doing software DIRTY bit management and the
949 * page is currently not DIRTY.
953 do {
954 old_pte = pte_val(*ptep);
955 if (old_pte & _PAGE_BUSY)
956 goto out;
957 new_pte = old_pte | _PAGE_BUSY |
958 _PAGE_ACCESSED | _PAGE_HASHPTE;
959 } while(old_pte != __cmpxchg_u64((unsigned long *)ptep,
960 old_pte, new_pte));
962 rflags = 0x2 | (!(new_pte & _PAGE_RW));
963 /* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */
964 rflags |= ((new_pte & _PAGE_EXEC) ? 0 : HPTE_R_N);
965 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
966 /* No CPU has hugepages but lacks no execute, so we
967 * don't need to worry about that case */
968 rflags = hash_huge_page_do_lazy_icache(rflags, __pte(old_pte),
969 trap);
971 /* Check if pte already has an hpte (case 2) */
972 if (unlikely(old_pte & _PAGE_HASHPTE)) {
973 /* There MIGHT be an HPTE for this pte */
974 unsigned long hash, slot;
976 hash = hpt_hash(va, HPAGE_SHIFT);
977 if (old_pte & _PAGE_F_SECOND)
978 hash = ~hash;
979 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
980 slot += (old_pte & _PAGE_F_GIX) >> 12;
982 if (ppc_md.hpte_updatepp(slot, rflags, va, mmu_huge_psize,
983 local) == -1)
984 old_pte &= ~_PAGE_HPTEFLAGS;
987 if (likely(!(old_pte & _PAGE_HASHPTE))) {
988 unsigned long hash = hpt_hash(va, HPAGE_SHIFT);
989 unsigned long hpte_group;
991 pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT;
993 repeat:
994 hpte_group = ((hash & htab_hash_mask) *
995 HPTES_PER_GROUP) & ~0x7UL;
997 /* clear HPTE slot informations in new PTE */
998 new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HASHPTE;
1000 /* Add in WIMG bits */
1001 /* XXX We should store these in the pte */
1002 /* --BenH: I think they are ... */
1003 rflags |= _PAGE_COHERENT;
1005 /* Insert into the hash table, primary slot */
1006 slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, 0,
1007 mmu_huge_psize);
1009 /* Primary is full, try the secondary */
1010 if (unlikely(slot == -1)) {
1011 new_pte |= _PAGE_F_SECOND;
1012 hpte_group = ((~hash & htab_hash_mask) *
1013 HPTES_PER_GROUP) & ~0x7UL;
1014 slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags,
1015 HPTE_V_SECONDARY,
1016 mmu_huge_psize);
1017 if (slot == -1) {
1018 if (mftb() & 0x1)
1019 hpte_group = ((hash & htab_hash_mask) *
1020 HPTES_PER_GROUP)&~0x7UL;
1022 ppc_md.hpte_remove(hpte_group);
1023 goto repeat;
1027 if (unlikely(slot == -2))
1028 panic("hash_huge_page: pte_insert failed\n");
1030 new_pte |= (slot << 12) & _PAGE_F_GIX;
1034 * No need to use ldarx/stdcx here
1036 *ptep = __pte(new_pte & ~_PAGE_BUSY);
1038 err = 0;
1040 out:
1041 return err;
1044 static void zero_ctor(void *addr, kmem_cache_t *cache, unsigned long flags)
1046 memset(addr, 0, kmem_cache_size(cache));
1049 static int __init hugetlbpage_init(void)
1051 if (!cpu_has_feature(CPU_FTR_16M_PAGE))
1052 return -ENODEV;
1054 huge_pgtable_cache = kmem_cache_create("hugepte_cache",
1055 HUGEPTE_TABLE_SIZE,
1056 HUGEPTE_TABLE_SIZE,
1057 SLAB_HWCACHE_ALIGN |
1058 SLAB_MUST_HWCACHE_ALIGN,
1059 zero_ctor, NULL);
1060 if (! huge_pgtable_cache)
1061 panic("hugetlbpage_init(): could not create hugepte cache\n");
1063 return 0;
1066 module_init(hugetlbpage_init);