[ALSA] ASoC: documentation & maintainer
[linux-2.6/sactl.git] / drivers / scsi / libsas / sas_expander.c
blobd31e6fa466f79668f151c0d0c301bbccf27c848f
1 /*
2 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/pci.h>
26 #include <linux/scatterlist.h>
28 #include "sas_internal.h"
30 #include <scsi/scsi_transport.h>
31 #include <scsi/scsi_transport_sas.h>
32 #include "../scsi_sas_internal.h"
34 static int sas_discover_expander(struct domain_device *dev);
35 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
36 static int sas_configure_phy(struct domain_device *dev, int phy_id,
37 u8 *sas_addr, int include);
38 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
40 #if 0
41 /* FIXME: smp needs to migrate into the sas class */
42 static ssize_t smp_portal_read(struct kobject *, char *, loff_t, size_t);
43 static ssize_t smp_portal_write(struct kobject *, char *, loff_t, size_t);
44 #endif
46 /* ---------- SMP task management ---------- */
48 static void smp_task_timedout(unsigned long _task)
50 struct sas_task *task = (void *) _task;
51 unsigned long flags;
53 spin_lock_irqsave(&task->task_state_lock, flags);
54 if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
55 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
56 spin_unlock_irqrestore(&task->task_state_lock, flags);
58 complete(&task->completion);
61 static void smp_task_done(struct sas_task *task)
63 if (!del_timer(&task->timer))
64 return;
65 complete(&task->completion);
68 /* Give it some long enough timeout. In seconds. */
69 #define SMP_TIMEOUT 10
71 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
72 void *resp, int resp_size)
74 int res, retry;
75 struct sas_task *task = NULL;
76 struct sas_internal *i =
77 to_sas_internal(dev->port->ha->core.shost->transportt);
79 for (retry = 0; retry < 3; retry++) {
80 task = sas_alloc_task(GFP_KERNEL);
81 if (!task)
82 return -ENOMEM;
84 task->dev = dev;
85 task->task_proto = dev->tproto;
86 sg_init_one(&task->smp_task.smp_req, req, req_size);
87 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
89 task->task_done = smp_task_done;
91 task->timer.data = (unsigned long) task;
92 task->timer.function = smp_task_timedout;
93 task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
94 add_timer(&task->timer);
96 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
98 if (res) {
99 del_timer(&task->timer);
100 SAS_DPRINTK("executing SMP task failed:%d\n", res);
101 goto ex_err;
104 wait_for_completion(&task->completion);
105 res = -ETASK;
106 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
107 SAS_DPRINTK("smp task timed out or aborted\n");
108 i->dft->lldd_abort_task(task);
109 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
110 SAS_DPRINTK("SMP task aborted and not done\n");
111 goto ex_err;
114 if (task->task_status.resp == SAS_TASK_COMPLETE &&
115 task->task_status.stat == SAM_GOOD) {
116 res = 0;
117 break;
118 } else {
119 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
120 "status 0x%x\n", __FUNCTION__,
121 SAS_ADDR(dev->sas_addr),
122 task->task_status.resp,
123 task->task_status.stat);
124 sas_free_task(task);
125 task = NULL;
128 ex_err:
129 BUG_ON(retry == 3 && task != NULL);
130 if (task != NULL) {
131 sas_free_task(task);
133 return res;
136 /* ---------- Allocations ---------- */
138 static inline void *alloc_smp_req(int size)
140 u8 *p = kzalloc(size, GFP_KERNEL);
141 if (p)
142 p[0] = SMP_REQUEST;
143 return p;
146 static inline void *alloc_smp_resp(int size)
148 return kzalloc(size, GFP_KERNEL);
151 /* ---------- Expander configuration ---------- */
153 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
154 void *disc_resp)
156 struct expander_device *ex = &dev->ex_dev;
157 struct ex_phy *phy = &ex->ex_phy[phy_id];
158 struct smp_resp *resp = disc_resp;
159 struct discover_resp *dr = &resp->disc;
160 struct sas_rphy *rphy = dev->rphy;
161 int rediscover = (phy->phy != NULL);
163 if (!rediscover) {
164 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
166 /* FIXME: error_handling */
167 BUG_ON(!phy->phy);
170 switch (resp->result) {
171 case SMP_RESP_PHY_VACANT:
172 phy->phy_state = PHY_VACANT;
173 return;
174 default:
175 phy->phy_state = PHY_NOT_PRESENT;
176 return;
177 case SMP_RESP_FUNC_ACC:
178 phy->phy_state = PHY_EMPTY; /* do not know yet */
179 break;
182 phy->phy_id = phy_id;
183 phy->attached_dev_type = dr->attached_dev_type;
184 phy->linkrate = dr->linkrate;
185 phy->attached_sata_host = dr->attached_sata_host;
186 phy->attached_sata_dev = dr->attached_sata_dev;
187 phy->attached_sata_ps = dr->attached_sata_ps;
188 phy->attached_iproto = dr->iproto << 1;
189 phy->attached_tproto = dr->tproto << 1;
190 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
191 phy->attached_phy_id = dr->attached_phy_id;
192 phy->phy_change_count = dr->change_count;
193 phy->routing_attr = dr->routing_attr;
194 phy->virtual = dr->virtual;
195 phy->last_da_index = -1;
197 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
198 phy->phy->identify.target_port_protocols = phy->attached_tproto;
199 phy->phy->identify.phy_identifier = phy_id;
200 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
201 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
202 phy->phy->minimum_linkrate = dr->pmin_linkrate;
203 phy->phy->maximum_linkrate = dr->pmax_linkrate;
204 phy->phy->negotiated_linkrate = phy->linkrate;
206 if (!rediscover)
207 sas_phy_add(phy->phy);
209 SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
210 SAS_ADDR(dev->sas_addr), phy->phy_id,
211 phy->routing_attr == TABLE_ROUTING ? 'T' :
212 phy->routing_attr == DIRECT_ROUTING ? 'D' :
213 phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
214 SAS_ADDR(phy->attached_sas_addr));
216 return;
219 #define DISCOVER_REQ_SIZE 16
220 #define DISCOVER_RESP_SIZE 56
222 static int sas_ex_phy_discover(struct domain_device *dev, int single)
224 struct expander_device *ex = &dev->ex_dev;
225 int res = 0;
226 u8 *disc_req;
227 u8 *disc_resp;
229 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
230 if (!disc_req)
231 return -ENOMEM;
233 disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
234 if (!disc_resp) {
235 kfree(disc_req);
236 return -ENOMEM;
239 disc_req[1] = SMP_DISCOVER;
241 if (0 <= single && single < ex->num_phys) {
242 disc_req[9] = single;
243 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
244 disc_resp, DISCOVER_RESP_SIZE);
245 if (res)
246 goto out_err;
247 sas_set_ex_phy(dev, single, disc_resp);
248 } else {
249 int i;
251 for (i = 0; i < ex->num_phys; i++) {
252 disc_req[9] = i;
253 res = smp_execute_task(dev, disc_req,
254 DISCOVER_REQ_SIZE, disc_resp,
255 DISCOVER_RESP_SIZE);
256 if (res)
257 goto out_err;
258 sas_set_ex_phy(dev, i, disc_resp);
261 out_err:
262 kfree(disc_resp);
263 kfree(disc_req);
264 return res;
267 static int sas_expander_discover(struct domain_device *dev)
269 struct expander_device *ex = &dev->ex_dev;
270 int res = -ENOMEM;
272 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
273 if (!ex->ex_phy)
274 return -ENOMEM;
276 res = sas_ex_phy_discover(dev, -1);
277 if (res)
278 goto out_err;
280 return 0;
281 out_err:
282 kfree(ex->ex_phy);
283 ex->ex_phy = NULL;
284 return res;
287 #define MAX_EXPANDER_PHYS 128
289 static void ex_assign_report_general(struct domain_device *dev,
290 struct smp_resp *resp)
292 struct report_general_resp *rg = &resp->rg;
294 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
295 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
296 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
297 dev->ex_dev.conf_route_table = rg->conf_route_table;
298 dev->ex_dev.configuring = rg->configuring;
299 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
302 #define RG_REQ_SIZE 8
303 #define RG_RESP_SIZE 32
305 static int sas_ex_general(struct domain_device *dev)
307 u8 *rg_req;
308 struct smp_resp *rg_resp;
309 int res;
310 int i;
312 rg_req = alloc_smp_req(RG_REQ_SIZE);
313 if (!rg_req)
314 return -ENOMEM;
316 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
317 if (!rg_resp) {
318 kfree(rg_req);
319 return -ENOMEM;
322 rg_req[1] = SMP_REPORT_GENERAL;
324 for (i = 0; i < 5; i++) {
325 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
326 RG_RESP_SIZE);
328 if (res) {
329 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
330 SAS_ADDR(dev->sas_addr), res);
331 goto out;
332 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
333 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
334 SAS_ADDR(dev->sas_addr), rg_resp->result);
335 res = rg_resp->result;
336 goto out;
339 ex_assign_report_general(dev, rg_resp);
341 if (dev->ex_dev.configuring) {
342 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
343 SAS_ADDR(dev->sas_addr));
344 schedule_timeout_interruptible(5*HZ);
345 } else
346 break;
348 out:
349 kfree(rg_req);
350 kfree(rg_resp);
351 return res;
354 static void ex_assign_manuf_info(struct domain_device *dev, void
355 *_mi_resp)
357 u8 *mi_resp = _mi_resp;
358 struct sas_rphy *rphy = dev->rphy;
359 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
361 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
362 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
363 memcpy(edev->product_rev, mi_resp + 36,
364 SAS_EXPANDER_PRODUCT_REV_LEN);
366 if (mi_resp[8] & 1) {
367 memcpy(edev->component_vendor_id, mi_resp + 40,
368 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
369 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
370 edev->component_revision_id = mi_resp[50];
374 #define MI_REQ_SIZE 8
375 #define MI_RESP_SIZE 64
377 static int sas_ex_manuf_info(struct domain_device *dev)
379 u8 *mi_req;
380 u8 *mi_resp;
381 int res;
383 mi_req = alloc_smp_req(MI_REQ_SIZE);
384 if (!mi_req)
385 return -ENOMEM;
387 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
388 if (!mi_resp) {
389 kfree(mi_req);
390 return -ENOMEM;
393 mi_req[1] = SMP_REPORT_MANUF_INFO;
395 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
396 if (res) {
397 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
398 SAS_ADDR(dev->sas_addr), res);
399 goto out;
400 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
401 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
402 SAS_ADDR(dev->sas_addr), mi_resp[2]);
403 goto out;
406 ex_assign_manuf_info(dev, mi_resp);
407 out:
408 kfree(mi_req);
409 kfree(mi_resp);
410 return res;
413 #define PC_REQ_SIZE 44
414 #define PC_RESP_SIZE 8
416 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
417 enum phy_func phy_func,
418 struct sas_phy_linkrates *rates)
420 u8 *pc_req;
421 u8 *pc_resp;
422 int res;
424 pc_req = alloc_smp_req(PC_REQ_SIZE);
425 if (!pc_req)
426 return -ENOMEM;
428 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
429 if (!pc_resp) {
430 kfree(pc_req);
431 return -ENOMEM;
434 pc_req[1] = SMP_PHY_CONTROL;
435 pc_req[9] = phy_id;
436 pc_req[10]= phy_func;
437 if (rates) {
438 pc_req[32] = rates->minimum_linkrate << 4;
439 pc_req[33] = rates->maximum_linkrate << 4;
442 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
444 kfree(pc_resp);
445 kfree(pc_req);
446 return res;
449 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
451 struct expander_device *ex = &dev->ex_dev;
452 struct ex_phy *phy = &ex->ex_phy[phy_id];
454 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
455 phy->linkrate = SAS_PHY_DISABLED;
458 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
460 struct expander_device *ex = &dev->ex_dev;
461 int i;
463 for (i = 0; i < ex->num_phys; i++) {
464 struct ex_phy *phy = &ex->ex_phy[i];
466 if (phy->phy_state == PHY_VACANT ||
467 phy->phy_state == PHY_NOT_PRESENT)
468 continue;
470 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
471 sas_ex_disable_phy(dev, i);
475 static int sas_dev_present_in_domain(struct asd_sas_port *port,
476 u8 *sas_addr)
478 struct domain_device *dev;
480 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
481 return 1;
482 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
483 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
484 return 1;
486 return 0;
489 #define RPEL_REQ_SIZE 16
490 #define RPEL_RESP_SIZE 32
491 int sas_smp_get_phy_events(struct sas_phy *phy)
493 int res;
494 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
495 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
496 u8 *req = alloc_smp_req(RPEL_REQ_SIZE);
497 u8 *resp = kzalloc(RPEL_RESP_SIZE, GFP_KERNEL);
499 if (!resp)
500 return -ENOMEM;
502 req[1] = SMP_REPORT_PHY_ERR_LOG;
503 req[9] = phy->number;
505 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
506 resp, RPEL_RESP_SIZE);
508 if (!res)
509 goto out;
511 phy->invalid_dword_count = scsi_to_u32(&resp[12]);
512 phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
513 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
514 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
516 out:
517 kfree(resp);
518 return res;
522 #define RPS_REQ_SIZE 16
523 #define RPS_RESP_SIZE 60
525 static int sas_get_report_phy_sata(struct domain_device *dev,
526 int phy_id,
527 struct smp_resp *rps_resp)
529 int res;
530 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
532 if (!rps_req)
533 return -ENOMEM;
535 rps_req[1] = SMP_REPORT_PHY_SATA;
536 rps_req[9] = phy_id;
538 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
539 rps_resp, RPS_RESP_SIZE);
541 kfree(rps_req);
542 return 0;
545 static void sas_ex_get_linkrate(struct domain_device *parent,
546 struct domain_device *child,
547 struct ex_phy *parent_phy)
549 struct expander_device *parent_ex = &parent->ex_dev;
550 struct sas_port *port;
551 int i;
553 child->pathways = 0;
555 port = parent_phy->port;
557 for (i = 0; i < parent_ex->num_phys; i++) {
558 struct ex_phy *phy = &parent_ex->ex_phy[i];
560 if (phy->phy_state == PHY_VACANT ||
561 phy->phy_state == PHY_NOT_PRESENT)
562 continue;
564 if (SAS_ADDR(phy->attached_sas_addr) ==
565 SAS_ADDR(child->sas_addr)) {
567 child->min_linkrate = min(parent->min_linkrate,
568 phy->linkrate);
569 child->max_linkrate = max(parent->max_linkrate,
570 phy->linkrate);
571 child->pathways++;
572 sas_port_add_phy(port, phy->phy);
575 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
576 child->pathways = min(child->pathways, parent->pathways);
579 static struct domain_device *sas_ex_discover_end_dev(
580 struct domain_device *parent, int phy_id)
582 struct expander_device *parent_ex = &parent->ex_dev;
583 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
584 struct domain_device *child = NULL;
585 struct sas_rphy *rphy;
586 int res;
588 if (phy->attached_sata_host || phy->attached_sata_ps)
589 return NULL;
591 child = kzalloc(sizeof(*child), GFP_KERNEL);
592 if (!child)
593 return NULL;
595 child->parent = parent;
596 child->port = parent->port;
597 child->iproto = phy->attached_iproto;
598 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
599 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
600 if (!phy->port) {
601 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
602 if (unlikely(!phy->port))
603 goto out_err;
604 if (unlikely(sas_port_add(phy->port) != 0)) {
605 sas_port_free(phy->port);
606 goto out_err;
609 sas_ex_get_linkrate(parent, child, phy);
611 if ((phy->attached_tproto & SAS_PROTO_STP) || phy->attached_sata_dev) {
612 child->dev_type = SATA_DEV;
613 if (phy->attached_tproto & SAS_PROTO_STP)
614 child->tproto = phy->attached_tproto;
615 if (phy->attached_sata_dev)
616 child->tproto |= SATA_DEV;
617 res = sas_get_report_phy_sata(parent, phy_id,
618 &child->sata_dev.rps_resp);
619 if (res) {
620 SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
621 "0x%x\n", SAS_ADDR(parent->sas_addr),
622 phy_id, res);
623 goto out_free;
625 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
626 sizeof(struct dev_to_host_fis));
627 sas_init_dev(child);
628 res = sas_discover_sata(child);
629 if (res) {
630 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
631 "%016llx:0x%x returned 0x%x\n",
632 SAS_ADDR(child->sas_addr),
633 SAS_ADDR(parent->sas_addr), phy_id, res);
634 goto out_free;
636 } else if (phy->attached_tproto & SAS_PROTO_SSP) {
637 child->dev_type = SAS_END_DEV;
638 rphy = sas_end_device_alloc(phy->port);
639 /* FIXME: error handling */
640 if (unlikely(!rphy))
641 goto out_free;
642 child->tproto = phy->attached_tproto;
643 sas_init_dev(child);
645 child->rphy = rphy;
646 sas_fill_in_rphy(child, rphy);
648 spin_lock(&parent->port->dev_list_lock);
649 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
650 spin_unlock(&parent->port->dev_list_lock);
652 res = sas_discover_end_dev(child);
653 if (res) {
654 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
655 "at %016llx:0x%x returned 0x%x\n",
656 SAS_ADDR(child->sas_addr),
657 SAS_ADDR(parent->sas_addr), phy_id, res);
658 goto out_list_del;
660 } else {
661 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
662 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
663 phy_id);
666 list_add_tail(&child->siblings, &parent_ex->children);
667 return child;
669 out_list_del:
670 list_del(&child->dev_list_node);
671 sas_rphy_free(rphy);
672 out_free:
673 sas_port_delete(phy->port);
674 out_err:
675 phy->port = NULL;
676 kfree(child);
677 return NULL;
680 static struct domain_device *sas_ex_discover_expander(
681 struct domain_device *parent, int phy_id)
683 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
684 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
685 struct domain_device *child = NULL;
686 struct sas_rphy *rphy;
687 struct sas_expander_device *edev;
688 struct asd_sas_port *port;
689 int res;
691 if (phy->routing_attr == DIRECT_ROUTING) {
692 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
693 "allowed\n",
694 SAS_ADDR(parent->sas_addr), phy_id,
695 SAS_ADDR(phy->attached_sas_addr),
696 phy->attached_phy_id);
697 return NULL;
699 child = kzalloc(sizeof(*child), GFP_KERNEL);
700 if (!child)
701 return NULL;
703 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
704 /* FIXME: better error handling */
705 BUG_ON(sas_port_add(phy->port) != 0);
708 switch (phy->attached_dev_type) {
709 case EDGE_DEV:
710 rphy = sas_expander_alloc(phy->port,
711 SAS_EDGE_EXPANDER_DEVICE);
712 break;
713 case FANOUT_DEV:
714 rphy = sas_expander_alloc(phy->port,
715 SAS_FANOUT_EXPANDER_DEVICE);
716 break;
717 default:
718 rphy = NULL; /* shut gcc up */
719 BUG();
721 port = parent->port;
722 child->rphy = rphy;
723 edev = rphy_to_expander_device(rphy);
724 child->dev_type = phy->attached_dev_type;
725 child->parent = parent;
726 child->port = port;
727 child->iproto = phy->attached_iproto;
728 child->tproto = phy->attached_tproto;
729 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
730 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
731 sas_ex_get_linkrate(parent, child, phy);
732 edev->level = parent_ex->level + 1;
733 parent->port->disc.max_level = max(parent->port->disc.max_level,
734 edev->level);
735 sas_init_dev(child);
736 sas_fill_in_rphy(child, rphy);
737 sas_rphy_add(rphy);
739 spin_lock(&parent->port->dev_list_lock);
740 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
741 spin_unlock(&parent->port->dev_list_lock);
743 res = sas_discover_expander(child);
744 if (res) {
745 kfree(child);
746 return NULL;
748 list_add_tail(&child->siblings, &parent->ex_dev.children);
749 return child;
752 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
754 struct expander_device *ex = &dev->ex_dev;
755 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
756 struct domain_device *child = NULL;
757 int res = 0;
759 /* Phy state */
760 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
761 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
762 res = sas_ex_phy_discover(dev, phy_id);
763 if (res)
764 return res;
767 /* Parent and domain coherency */
768 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
769 SAS_ADDR(dev->port->sas_addr))) {
770 sas_add_parent_port(dev, phy_id);
771 return 0;
773 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
774 SAS_ADDR(dev->parent->sas_addr))) {
775 sas_add_parent_port(dev, phy_id);
776 if (ex_phy->routing_attr == TABLE_ROUTING)
777 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
778 return 0;
781 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
782 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
784 if (ex_phy->attached_dev_type == NO_DEVICE) {
785 if (ex_phy->routing_attr == DIRECT_ROUTING) {
786 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
787 sas_configure_routing(dev, ex_phy->attached_sas_addr);
789 return 0;
790 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
791 return 0;
793 if (ex_phy->attached_dev_type != SAS_END_DEV &&
794 ex_phy->attached_dev_type != FANOUT_DEV &&
795 ex_phy->attached_dev_type != EDGE_DEV) {
796 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
797 "phy 0x%x\n", ex_phy->attached_dev_type,
798 SAS_ADDR(dev->sas_addr),
799 phy_id);
800 return 0;
803 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
804 if (res) {
805 SAS_DPRINTK("configure routing for dev %016llx "
806 "reported 0x%x. Forgotten\n",
807 SAS_ADDR(ex_phy->attached_sas_addr), res);
808 sas_disable_routing(dev, ex_phy->attached_sas_addr);
809 return res;
812 switch (ex_phy->attached_dev_type) {
813 case SAS_END_DEV:
814 child = sas_ex_discover_end_dev(dev, phy_id);
815 break;
816 case FANOUT_DEV:
817 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
818 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
819 "attached to ex %016llx phy 0x%x\n",
820 SAS_ADDR(ex_phy->attached_sas_addr),
821 ex_phy->attached_phy_id,
822 SAS_ADDR(dev->sas_addr),
823 phy_id);
824 sas_ex_disable_phy(dev, phy_id);
825 break;
826 } else
827 memcpy(dev->port->disc.fanout_sas_addr,
828 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
829 /* fallthrough */
830 case EDGE_DEV:
831 child = sas_ex_discover_expander(dev, phy_id);
832 break;
833 default:
834 break;
837 if (child) {
838 int i;
840 for (i = 0; i < ex->num_phys; i++) {
841 if (ex->ex_phy[i].phy_state == PHY_VACANT ||
842 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
843 continue;
845 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
846 SAS_ADDR(child->sas_addr))
847 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
851 return res;
854 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
856 struct expander_device *ex = &dev->ex_dev;
857 int i;
859 for (i = 0; i < ex->num_phys; i++) {
860 struct ex_phy *phy = &ex->ex_phy[i];
862 if (phy->phy_state == PHY_VACANT ||
863 phy->phy_state == PHY_NOT_PRESENT)
864 continue;
866 if ((phy->attached_dev_type == EDGE_DEV ||
867 phy->attached_dev_type == FANOUT_DEV) &&
868 phy->routing_attr == SUBTRACTIVE_ROUTING) {
870 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
872 return 1;
875 return 0;
878 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
880 struct expander_device *ex = &dev->ex_dev;
881 struct domain_device *child;
882 u8 sub_addr[8] = {0, };
884 list_for_each_entry(child, &ex->children, siblings) {
885 if (child->dev_type != EDGE_DEV &&
886 child->dev_type != FANOUT_DEV)
887 continue;
888 if (sub_addr[0] == 0) {
889 sas_find_sub_addr(child, sub_addr);
890 continue;
891 } else {
892 u8 s2[8];
894 if (sas_find_sub_addr(child, s2) &&
895 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
897 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
898 "diverges from subtractive "
899 "boundary %016llx\n",
900 SAS_ADDR(dev->sas_addr),
901 SAS_ADDR(child->sas_addr),
902 SAS_ADDR(s2),
903 SAS_ADDR(sub_addr));
905 sas_ex_disable_port(child, s2);
909 return 0;
912 * sas_ex_discover_devices -- discover devices attached to this expander
913 * dev: pointer to the expander domain device
914 * single: if you want to do a single phy, else set to -1;
916 * Configure this expander for use with its devices and register the
917 * devices of this expander.
919 static int sas_ex_discover_devices(struct domain_device *dev, int single)
921 struct expander_device *ex = &dev->ex_dev;
922 int i = 0, end = ex->num_phys;
923 int res = 0;
925 if (0 <= single && single < end) {
926 i = single;
927 end = i+1;
930 for ( ; i < end; i++) {
931 struct ex_phy *ex_phy = &ex->ex_phy[i];
933 if (ex_phy->phy_state == PHY_VACANT ||
934 ex_phy->phy_state == PHY_NOT_PRESENT ||
935 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
936 continue;
938 switch (ex_phy->linkrate) {
939 case SAS_PHY_DISABLED:
940 case SAS_PHY_RESET_PROBLEM:
941 case SAS_SATA_PORT_SELECTOR:
942 continue;
943 default:
944 res = sas_ex_discover_dev(dev, i);
945 if (res)
946 break;
947 continue;
951 if (!res)
952 sas_check_level_subtractive_boundary(dev);
954 return res;
957 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
959 struct expander_device *ex = &dev->ex_dev;
960 int i;
961 u8 *sub_sas_addr = NULL;
963 if (dev->dev_type != EDGE_DEV)
964 return 0;
966 for (i = 0; i < ex->num_phys; i++) {
967 struct ex_phy *phy = &ex->ex_phy[i];
969 if (phy->phy_state == PHY_VACANT ||
970 phy->phy_state == PHY_NOT_PRESENT)
971 continue;
973 if ((phy->attached_dev_type == FANOUT_DEV ||
974 phy->attached_dev_type == EDGE_DEV) &&
975 phy->routing_attr == SUBTRACTIVE_ROUTING) {
977 if (!sub_sas_addr)
978 sub_sas_addr = &phy->attached_sas_addr[0];
979 else if (SAS_ADDR(sub_sas_addr) !=
980 SAS_ADDR(phy->attached_sas_addr)) {
982 SAS_DPRINTK("ex %016llx phy 0x%x "
983 "diverges(%016llx) on subtractive "
984 "boundary(%016llx). Disabled\n",
985 SAS_ADDR(dev->sas_addr), i,
986 SAS_ADDR(phy->attached_sas_addr),
987 SAS_ADDR(sub_sas_addr));
988 sas_ex_disable_phy(dev, i);
992 return 0;
995 static void sas_print_parent_topology_bug(struct domain_device *child,
996 struct ex_phy *parent_phy,
997 struct ex_phy *child_phy)
999 static const char ra_char[] = {
1000 [DIRECT_ROUTING] = 'D',
1001 [SUBTRACTIVE_ROUTING] = 'S',
1002 [TABLE_ROUTING] = 'T',
1004 static const char *ex_type[] = {
1005 [EDGE_DEV] = "edge",
1006 [FANOUT_DEV] = "fanout",
1008 struct domain_device *parent = child->parent;
1010 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
1011 "has %c:%c routing link!\n",
1013 ex_type[parent->dev_type],
1014 SAS_ADDR(parent->sas_addr),
1015 parent_phy->phy_id,
1017 ex_type[child->dev_type],
1018 SAS_ADDR(child->sas_addr),
1019 child_phy->phy_id,
1021 ra_char[parent_phy->routing_attr],
1022 ra_char[child_phy->routing_attr]);
1025 static int sas_check_eeds(struct domain_device *child,
1026 struct ex_phy *parent_phy,
1027 struct ex_phy *child_phy)
1029 int res = 0;
1030 struct domain_device *parent = child->parent;
1032 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1033 res = -ENODEV;
1034 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1035 "phy S:0x%x, while there is a fanout ex %016llx\n",
1036 SAS_ADDR(parent->sas_addr),
1037 parent_phy->phy_id,
1038 SAS_ADDR(child->sas_addr),
1039 child_phy->phy_id,
1040 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1041 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1042 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1043 SAS_ADDR_SIZE);
1044 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1045 SAS_ADDR_SIZE);
1046 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1047 SAS_ADDR(parent->sas_addr)) ||
1048 (SAS_ADDR(parent->port->disc.eeds_a) ==
1049 SAS_ADDR(child->sas_addr)))
1051 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1052 SAS_ADDR(parent->sas_addr)) ||
1053 (SAS_ADDR(parent->port->disc.eeds_b) ==
1054 SAS_ADDR(child->sas_addr))))
1056 else {
1057 res = -ENODEV;
1058 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1059 "phy 0x%x link forms a third EEDS!\n",
1060 SAS_ADDR(parent->sas_addr),
1061 parent_phy->phy_id,
1062 SAS_ADDR(child->sas_addr),
1063 child_phy->phy_id);
1066 return res;
1069 /* Here we spill over 80 columns. It is intentional.
1071 static int sas_check_parent_topology(struct domain_device *child)
1073 struct expander_device *child_ex = &child->ex_dev;
1074 struct expander_device *parent_ex;
1075 int i;
1076 int res = 0;
1078 if (!child->parent)
1079 return 0;
1081 if (child->parent->dev_type != EDGE_DEV &&
1082 child->parent->dev_type != FANOUT_DEV)
1083 return 0;
1085 parent_ex = &child->parent->ex_dev;
1087 for (i = 0; i < parent_ex->num_phys; i++) {
1088 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1089 struct ex_phy *child_phy;
1091 if (parent_phy->phy_state == PHY_VACANT ||
1092 parent_phy->phy_state == PHY_NOT_PRESENT)
1093 continue;
1095 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1096 continue;
1098 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1100 switch (child->parent->dev_type) {
1101 case EDGE_DEV:
1102 if (child->dev_type == FANOUT_DEV) {
1103 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1104 child_phy->routing_attr != TABLE_ROUTING) {
1105 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1106 res = -ENODEV;
1108 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1109 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1110 res = sas_check_eeds(child, parent_phy, child_phy);
1111 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1112 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1113 res = -ENODEV;
1115 } else if (parent_phy->routing_attr == TABLE_ROUTING &&
1116 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1117 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1118 res = -ENODEV;
1120 break;
1121 case FANOUT_DEV:
1122 if (parent_phy->routing_attr != TABLE_ROUTING ||
1123 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1124 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1125 res = -ENODEV;
1127 break;
1128 default:
1129 break;
1133 return res;
1136 #define RRI_REQ_SIZE 16
1137 #define RRI_RESP_SIZE 44
1139 static int sas_configure_present(struct domain_device *dev, int phy_id,
1140 u8 *sas_addr, int *index, int *present)
1142 int i, res = 0;
1143 struct expander_device *ex = &dev->ex_dev;
1144 struct ex_phy *phy = &ex->ex_phy[phy_id];
1145 u8 *rri_req;
1146 u8 *rri_resp;
1148 *present = 0;
1149 *index = 0;
1151 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1152 if (!rri_req)
1153 return -ENOMEM;
1155 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1156 if (!rri_resp) {
1157 kfree(rri_req);
1158 return -ENOMEM;
1161 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1162 rri_req[9] = phy_id;
1164 for (i = 0; i < ex->max_route_indexes ; i++) {
1165 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1166 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1167 RRI_RESP_SIZE);
1168 if (res)
1169 goto out;
1170 res = rri_resp[2];
1171 if (res == SMP_RESP_NO_INDEX) {
1172 SAS_DPRINTK("overflow of indexes: dev %016llx "
1173 "phy 0x%x index 0x%x\n",
1174 SAS_ADDR(dev->sas_addr), phy_id, i);
1175 goto out;
1176 } else if (res != SMP_RESP_FUNC_ACC) {
1177 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1178 "result 0x%x\n", __FUNCTION__,
1179 SAS_ADDR(dev->sas_addr), phy_id, i, res);
1180 goto out;
1182 if (SAS_ADDR(sas_addr) != 0) {
1183 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1184 *index = i;
1185 if ((rri_resp[12] & 0x80) == 0x80)
1186 *present = 0;
1187 else
1188 *present = 1;
1189 goto out;
1190 } else if (SAS_ADDR(rri_resp+16) == 0) {
1191 *index = i;
1192 *present = 0;
1193 goto out;
1195 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1196 phy->last_da_index < i) {
1197 phy->last_da_index = i;
1198 *index = i;
1199 *present = 0;
1200 goto out;
1203 res = -1;
1204 out:
1205 kfree(rri_req);
1206 kfree(rri_resp);
1207 return res;
1210 #define CRI_REQ_SIZE 44
1211 #define CRI_RESP_SIZE 8
1213 static int sas_configure_set(struct domain_device *dev, int phy_id,
1214 u8 *sas_addr, int index, int include)
1216 int res;
1217 u8 *cri_req;
1218 u8 *cri_resp;
1220 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1221 if (!cri_req)
1222 return -ENOMEM;
1224 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1225 if (!cri_resp) {
1226 kfree(cri_req);
1227 return -ENOMEM;
1230 cri_req[1] = SMP_CONF_ROUTE_INFO;
1231 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1232 cri_req[9] = phy_id;
1233 if (SAS_ADDR(sas_addr) == 0 || !include)
1234 cri_req[12] |= 0x80;
1235 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1237 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1238 CRI_RESP_SIZE);
1239 if (res)
1240 goto out;
1241 res = cri_resp[2];
1242 if (res == SMP_RESP_NO_INDEX) {
1243 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1244 "index 0x%x\n",
1245 SAS_ADDR(dev->sas_addr), phy_id, index);
1247 out:
1248 kfree(cri_req);
1249 kfree(cri_resp);
1250 return res;
1253 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1254 u8 *sas_addr, int include)
1256 int index;
1257 int present;
1258 int res;
1260 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1261 if (res)
1262 return res;
1263 if (include ^ present)
1264 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1266 return res;
1270 * sas_configure_parent -- configure routing table of parent
1271 * parent: parent expander
1272 * child: child expander
1273 * sas_addr: SAS port identifier of device directly attached to child
1275 static int sas_configure_parent(struct domain_device *parent,
1276 struct domain_device *child,
1277 u8 *sas_addr, int include)
1279 struct expander_device *ex_parent = &parent->ex_dev;
1280 int res = 0;
1281 int i;
1283 if (parent->parent) {
1284 res = sas_configure_parent(parent->parent, parent, sas_addr,
1285 include);
1286 if (res)
1287 return res;
1290 if (ex_parent->conf_route_table == 0) {
1291 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1292 SAS_ADDR(parent->sas_addr));
1293 return 0;
1296 for (i = 0; i < ex_parent->num_phys; i++) {
1297 struct ex_phy *phy = &ex_parent->ex_phy[i];
1299 if ((phy->routing_attr == TABLE_ROUTING) &&
1300 (SAS_ADDR(phy->attached_sas_addr) ==
1301 SAS_ADDR(child->sas_addr))) {
1302 res = sas_configure_phy(parent, i, sas_addr, include);
1303 if (res)
1304 return res;
1308 return res;
1312 * sas_configure_routing -- configure routing
1313 * dev: expander device
1314 * sas_addr: port identifier of device directly attached to the expander device
1316 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1318 if (dev->parent)
1319 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1320 return 0;
1323 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1325 if (dev->parent)
1326 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1327 return 0;
1330 #if 0
1331 #define SMP_BIN_ATTR_NAME "smp_portal"
1333 static void sas_ex_smp_hook(struct domain_device *dev)
1335 struct expander_device *ex_dev = &dev->ex_dev;
1336 struct bin_attribute *bin_attr = &ex_dev->smp_bin_attr;
1338 memset(bin_attr, 0, sizeof(*bin_attr));
1340 bin_attr->attr.name = SMP_BIN_ATTR_NAME;
1341 bin_attr->attr.owner = THIS_MODULE;
1342 bin_attr->attr.mode = 0600;
1344 bin_attr->size = 0;
1345 bin_attr->private = NULL;
1346 bin_attr->read = smp_portal_read;
1347 bin_attr->write= smp_portal_write;
1348 bin_attr->mmap = NULL;
1350 ex_dev->smp_portal_pid = -1;
1351 init_MUTEX(&ex_dev->smp_sema);
1353 #endif
1356 * sas_discover_expander -- expander discovery
1357 * @ex: pointer to expander domain device
1359 * See comment in sas_discover_sata().
1361 static int sas_discover_expander(struct domain_device *dev)
1363 int res;
1365 res = sas_notify_lldd_dev_found(dev);
1366 if (res)
1367 return res;
1369 res = sas_ex_general(dev);
1370 if (res)
1371 goto out_err;
1372 res = sas_ex_manuf_info(dev);
1373 if (res)
1374 goto out_err;
1376 res = sas_expander_discover(dev);
1377 if (res) {
1378 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1379 SAS_ADDR(dev->sas_addr), res);
1380 goto out_err;
1383 sas_check_ex_subtractive_boundary(dev);
1384 res = sas_check_parent_topology(dev);
1385 if (res)
1386 goto out_err;
1387 return 0;
1388 out_err:
1389 sas_notify_lldd_dev_gone(dev);
1390 return res;
1393 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1395 int res = 0;
1396 struct domain_device *dev;
1398 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1399 if (dev->dev_type == EDGE_DEV ||
1400 dev->dev_type == FANOUT_DEV) {
1401 struct sas_expander_device *ex =
1402 rphy_to_expander_device(dev->rphy);
1404 if (level == ex->level)
1405 res = sas_ex_discover_devices(dev, -1);
1406 else if (level > 0)
1407 res = sas_ex_discover_devices(port->port_dev, -1);
1412 return res;
1415 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1417 int res;
1418 int level;
1420 do {
1421 level = port->disc.max_level;
1422 res = sas_ex_level_discovery(port, level);
1423 mb();
1424 } while (level < port->disc.max_level);
1426 return res;
1429 int sas_discover_root_expander(struct domain_device *dev)
1431 int res;
1432 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1434 sas_rphy_add(dev->rphy);
1436 ex->level = dev->port->disc.max_level; /* 0 */
1437 res = sas_discover_expander(dev);
1438 if (!res)
1439 sas_ex_bfs_disc(dev->port);
1441 return res;
1444 /* ---------- Domain revalidation ---------- */
1446 static int sas_get_phy_discover(struct domain_device *dev,
1447 int phy_id, struct smp_resp *disc_resp)
1449 int res;
1450 u8 *disc_req;
1452 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1453 if (!disc_req)
1454 return -ENOMEM;
1456 disc_req[1] = SMP_DISCOVER;
1457 disc_req[9] = phy_id;
1459 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1460 disc_resp, DISCOVER_RESP_SIZE);
1461 if (res)
1462 goto out;
1463 else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1464 res = disc_resp->result;
1465 goto out;
1467 out:
1468 kfree(disc_req);
1469 return res;
1472 static int sas_get_phy_change_count(struct domain_device *dev,
1473 int phy_id, int *pcc)
1475 int res;
1476 struct smp_resp *disc_resp;
1478 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1479 if (!disc_resp)
1480 return -ENOMEM;
1482 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1483 if (!res)
1484 *pcc = disc_resp->disc.change_count;
1486 kfree(disc_resp);
1487 return res;
1490 static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1491 int phy_id, u8 *attached_sas_addr)
1493 int res;
1494 struct smp_resp *disc_resp;
1495 struct discover_resp *dr;
1497 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1498 if (!disc_resp)
1499 return -ENOMEM;
1500 dr = &disc_resp->disc;
1502 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1503 if (!res) {
1504 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1505 if (dr->attached_dev_type == 0)
1506 memset(attached_sas_addr, 0, 8);
1508 kfree(disc_resp);
1509 return res;
1512 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1513 int from_phy)
1515 struct expander_device *ex = &dev->ex_dev;
1516 int res = 0;
1517 int i;
1519 for (i = from_phy; i < ex->num_phys; i++) {
1520 int phy_change_count = 0;
1522 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1523 if (res)
1524 goto out;
1525 else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1526 ex->ex_phy[i].phy_change_count = phy_change_count;
1527 *phy_id = i;
1528 return 0;
1531 out:
1532 return res;
1535 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1537 int res;
1538 u8 *rg_req;
1539 struct smp_resp *rg_resp;
1541 rg_req = alloc_smp_req(RG_REQ_SIZE);
1542 if (!rg_req)
1543 return -ENOMEM;
1545 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1546 if (!rg_resp) {
1547 kfree(rg_req);
1548 return -ENOMEM;
1551 rg_req[1] = SMP_REPORT_GENERAL;
1553 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1554 RG_RESP_SIZE);
1555 if (res)
1556 goto out;
1557 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1558 res = rg_resp->result;
1559 goto out;
1562 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1563 out:
1564 kfree(rg_resp);
1565 kfree(rg_req);
1566 return res;
1569 static int sas_find_bcast_dev(struct domain_device *dev,
1570 struct domain_device **src_dev)
1572 struct expander_device *ex = &dev->ex_dev;
1573 int ex_change_count = -1;
1574 int res;
1576 res = sas_get_ex_change_count(dev, &ex_change_count);
1577 if (res)
1578 goto out;
1579 if (ex_change_count != -1 &&
1580 ex_change_count != ex->ex_change_count) {
1581 *src_dev = dev;
1582 ex->ex_change_count = ex_change_count;
1583 } else {
1584 struct domain_device *ch;
1586 list_for_each_entry(ch, &ex->children, siblings) {
1587 if (ch->dev_type == EDGE_DEV ||
1588 ch->dev_type == FANOUT_DEV) {
1589 res = sas_find_bcast_dev(ch, src_dev);
1590 if (src_dev)
1591 return res;
1595 out:
1596 return res;
1599 static void sas_unregister_ex_tree(struct domain_device *dev)
1601 struct expander_device *ex = &dev->ex_dev;
1602 struct domain_device *child, *n;
1604 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1605 if (child->dev_type == EDGE_DEV ||
1606 child->dev_type == FANOUT_DEV)
1607 sas_unregister_ex_tree(child);
1608 else
1609 sas_unregister_dev(child);
1611 sas_unregister_dev(dev);
1614 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1615 int phy_id)
1617 struct expander_device *ex_dev = &parent->ex_dev;
1618 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1619 struct domain_device *child, *n;
1621 list_for_each_entry_safe(child, n, &ex_dev->children, siblings) {
1622 if (SAS_ADDR(child->sas_addr) ==
1623 SAS_ADDR(phy->attached_sas_addr)) {
1624 if (child->dev_type == EDGE_DEV ||
1625 child->dev_type == FANOUT_DEV)
1626 sas_unregister_ex_tree(child);
1627 else
1628 sas_unregister_dev(child);
1629 break;
1632 sas_disable_routing(parent, phy->attached_sas_addr);
1633 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1634 sas_port_delete_phy(phy->port, phy->phy);
1635 if (phy->port->num_phys == 0)
1636 sas_port_delete(phy->port);
1637 phy->port = NULL;
1640 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1641 const int level)
1643 struct expander_device *ex_root = &root->ex_dev;
1644 struct domain_device *child;
1645 int res = 0;
1647 list_for_each_entry(child, &ex_root->children, siblings) {
1648 if (child->dev_type == EDGE_DEV ||
1649 child->dev_type == FANOUT_DEV) {
1650 struct sas_expander_device *ex =
1651 rphy_to_expander_device(child->rphy);
1653 if (level > ex->level)
1654 res = sas_discover_bfs_by_root_level(child,
1655 level);
1656 else if (level == ex->level)
1657 res = sas_ex_discover_devices(child, -1);
1660 return res;
1663 static int sas_discover_bfs_by_root(struct domain_device *dev)
1665 int res;
1666 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1667 int level = ex->level+1;
1669 res = sas_ex_discover_devices(dev, -1);
1670 if (res)
1671 goto out;
1672 do {
1673 res = sas_discover_bfs_by_root_level(dev, level);
1674 mb();
1675 level += 1;
1676 } while (level <= dev->port->disc.max_level);
1677 out:
1678 return res;
1681 static int sas_discover_new(struct domain_device *dev, int phy_id)
1683 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1684 struct domain_device *child;
1685 int res;
1687 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1688 SAS_ADDR(dev->sas_addr), phy_id);
1689 res = sas_ex_phy_discover(dev, phy_id);
1690 if (res)
1691 goto out;
1692 res = sas_ex_discover_devices(dev, phy_id);
1693 if (res)
1694 goto out;
1695 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1696 if (SAS_ADDR(child->sas_addr) ==
1697 SAS_ADDR(ex_phy->attached_sas_addr)) {
1698 if (child->dev_type == EDGE_DEV ||
1699 child->dev_type == FANOUT_DEV)
1700 res = sas_discover_bfs_by_root(child);
1701 break;
1704 out:
1705 return res;
1708 static int sas_rediscover_dev(struct domain_device *dev, int phy_id)
1710 struct expander_device *ex = &dev->ex_dev;
1711 struct ex_phy *phy = &ex->ex_phy[phy_id];
1712 u8 attached_sas_addr[8];
1713 int res;
1715 res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1716 switch (res) {
1717 case SMP_RESP_NO_PHY:
1718 phy->phy_state = PHY_NOT_PRESENT;
1719 sas_unregister_devs_sas_addr(dev, phy_id);
1720 goto out; break;
1721 case SMP_RESP_PHY_VACANT:
1722 phy->phy_state = PHY_VACANT;
1723 sas_unregister_devs_sas_addr(dev, phy_id);
1724 goto out; break;
1725 case SMP_RESP_FUNC_ACC:
1726 break;
1729 if (SAS_ADDR(attached_sas_addr) == 0) {
1730 phy->phy_state = PHY_EMPTY;
1731 sas_unregister_devs_sas_addr(dev, phy_id);
1732 } else if (SAS_ADDR(attached_sas_addr) ==
1733 SAS_ADDR(phy->attached_sas_addr)) {
1734 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1735 SAS_ADDR(dev->sas_addr), phy_id);
1736 sas_ex_phy_discover(dev, phy_id);
1737 } else
1738 res = sas_discover_new(dev, phy_id);
1739 out:
1740 return res;
1743 static int sas_rediscover(struct domain_device *dev, const int phy_id)
1745 struct expander_device *ex = &dev->ex_dev;
1746 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1747 int res = 0;
1748 int i;
1750 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1751 SAS_ADDR(dev->sas_addr), phy_id);
1753 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1754 for (i = 0; i < ex->num_phys; i++) {
1755 struct ex_phy *phy = &ex->ex_phy[i];
1757 if (i == phy_id)
1758 continue;
1759 if (SAS_ADDR(phy->attached_sas_addr) ==
1760 SAS_ADDR(changed_phy->attached_sas_addr)) {
1761 SAS_DPRINTK("phy%d part of wide port with "
1762 "phy%d\n", phy_id, i);
1763 goto out;
1766 res = sas_rediscover_dev(dev, phy_id);
1767 } else
1768 res = sas_discover_new(dev, phy_id);
1769 out:
1770 return res;
1774 * sas_revalidate_domain -- revalidate the domain
1775 * @port: port to the domain of interest
1777 * NOTE: this process _must_ quit (return) as soon as any connection
1778 * errors are encountered. Connection recovery is done elsewhere.
1779 * Discover process only interrogates devices in order to discover the
1780 * domain.
1782 int sas_ex_revalidate_domain(struct domain_device *port_dev)
1784 int res;
1785 struct domain_device *dev = NULL;
1787 res = sas_find_bcast_dev(port_dev, &dev);
1788 if (res)
1789 goto out;
1790 if (dev) {
1791 struct expander_device *ex = &dev->ex_dev;
1792 int i = 0, phy_id;
1794 do {
1795 phy_id = -1;
1796 res = sas_find_bcast_phy(dev, &phy_id, i);
1797 if (phy_id == -1)
1798 break;
1799 res = sas_rediscover(dev, phy_id);
1800 i = phy_id + 1;
1801 } while (i < ex->num_phys);
1803 out:
1804 return res;
1807 #if 0
1808 /* ---------- SMP portal ---------- */
1810 static ssize_t smp_portal_write(struct kobject *kobj, char *buf, loff_t offs,
1811 size_t size)
1813 struct domain_device *dev = to_dom_device(kobj);
1814 struct expander_device *ex = &dev->ex_dev;
1816 if (offs != 0)
1817 return -EFBIG;
1818 else if (size == 0)
1819 return 0;
1821 down_interruptible(&ex->smp_sema);
1822 if (ex->smp_req)
1823 kfree(ex->smp_req);
1824 ex->smp_req = kzalloc(size, GFP_USER);
1825 if (!ex->smp_req) {
1826 up(&ex->smp_sema);
1827 return -ENOMEM;
1829 memcpy(ex->smp_req, buf, size);
1830 ex->smp_req_size = size;
1831 ex->smp_portal_pid = current->pid;
1832 up(&ex->smp_sema);
1834 return size;
1837 static ssize_t smp_portal_read(struct kobject *kobj, char *buf, loff_t offs,
1838 size_t size)
1840 struct domain_device *dev = to_dom_device(kobj);
1841 struct expander_device *ex = &dev->ex_dev;
1842 u8 *smp_resp;
1843 int res = -EINVAL;
1845 /* XXX: sysfs gives us an offset of 0x10 or 0x8 while in fact
1846 * it should be 0.
1849 down_interruptible(&ex->smp_sema);
1850 if (!ex->smp_req || ex->smp_portal_pid != current->pid)
1851 goto out;
1853 res = 0;
1854 if (size == 0)
1855 goto out;
1857 res = -ENOMEM;
1858 smp_resp = alloc_smp_resp(size);
1859 if (!smp_resp)
1860 goto out;
1861 res = smp_execute_task(dev, ex->smp_req, ex->smp_req_size,
1862 smp_resp, size);
1863 if (!res) {
1864 memcpy(buf, smp_resp, size);
1865 res = size;
1868 kfree(smp_resp);
1869 out:
1870 kfree(ex->smp_req);
1871 ex->smp_req = NULL;
1872 ex->smp_req_size = 0;
1873 ex->smp_portal_pid = -1;
1874 up(&ex->smp_sema);
1875 return res;
1877 #endif