4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
11 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/slab.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/seq_file.h>
19 #include <linux/debugobjects.h>
20 #include <linux/kallsyms.h>
21 #include <linux/list.h>
22 #include <linux/rbtree.h>
23 #include <linux/radix-tree.h>
24 #include <linux/rcupdate.h>
26 #include <asm/atomic.h>
27 #include <asm/uaccess.h>
28 #include <asm/tlbflush.h>
31 /*** Page table manipulation functions ***/
33 static void vunmap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
)
37 pte
= pte_offset_kernel(pmd
, addr
);
39 pte_t ptent
= ptep_get_and_clear(&init_mm
, addr
, pte
);
40 WARN_ON(!pte_none(ptent
) && !pte_present(ptent
));
41 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
44 static void vunmap_pmd_range(pud_t
*pud
, unsigned long addr
, unsigned long end
)
49 pmd
= pmd_offset(pud
, addr
);
51 next
= pmd_addr_end(addr
, end
);
52 if (pmd_none_or_clear_bad(pmd
))
54 vunmap_pte_range(pmd
, addr
, next
);
55 } while (pmd
++, addr
= next
, addr
!= end
);
58 static void vunmap_pud_range(pgd_t
*pgd
, unsigned long addr
, unsigned long end
)
63 pud
= pud_offset(pgd
, addr
);
65 next
= pud_addr_end(addr
, end
);
66 if (pud_none_or_clear_bad(pud
))
68 vunmap_pmd_range(pud
, addr
, next
);
69 } while (pud
++, addr
= next
, addr
!= end
);
72 static void vunmap_page_range(unsigned long addr
, unsigned long end
)
78 pgd
= pgd_offset_k(addr
);
79 flush_cache_vunmap(addr
, end
);
81 next
= pgd_addr_end(addr
, end
);
82 if (pgd_none_or_clear_bad(pgd
))
84 vunmap_pud_range(pgd
, addr
, next
);
85 } while (pgd
++, addr
= next
, addr
!= end
);
88 static int vmap_pte_range(pmd_t
*pmd
, unsigned long addr
,
89 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
94 * nr is a running index into the array which helps higher level
95 * callers keep track of where we're up to.
98 pte
= pte_alloc_kernel(pmd
, addr
);
102 struct page
*page
= pages
[*nr
];
104 if (WARN_ON(!pte_none(*pte
)))
108 set_pte_at(&init_mm
, addr
, pte
, mk_pte(page
, prot
));
110 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
114 static int vmap_pmd_range(pud_t
*pud
, unsigned long addr
,
115 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
120 pmd
= pmd_alloc(&init_mm
, pud
, addr
);
124 next
= pmd_addr_end(addr
, end
);
125 if (vmap_pte_range(pmd
, addr
, next
, prot
, pages
, nr
))
127 } while (pmd
++, addr
= next
, addr
!= end
);
131 static int vmap_pud_range(pgd_t
*pgd
, unsigned long addr
,
132 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
137 pud
= pud_alloc(&init_mm
, pgd
, addr
);
141 next
= pud_addr_end(addr
, end
);
142 if (vmap_pmd_range(pud
, addr
, next
, prot
, pages
, nr
))
144 } while (pud
++, addr
= next
, addr
!= end
);
149 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
150 * will have pfns corresponding to the "pages" array.
152 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
154 static int vmap_page_range(unsigned long addr
, unsigned long end
,
155 pgprot_t prot
, struct page
**pages
)
163 pgd
= pgd_offset_k(addr
);
165 next
= pgd_addr_end(addr
, end
);
166 err
= vmap_pud_range(pgd
, addr
, next
, prot
, pages
, &nr
);
169 } while (pgd
++, addr
= next
, addr
!= end
);
170 flush_cache_vmap(addr
, end
);
177 static inline int is_vmalloc_or_module_addr(const void *x
)
180 * x86-64 and sparc64 put modules in a special place,
181 * and fall back on vmalloc() if that fails. Others
182 * just put it in the vmalloc space.
184 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
185 unsigned long addr
= (unsigned long)x
;
186 if (addr
>= MODULES_VADDR
&& addr
< MODULES_END
)
189 return is_vmalloc_addr(x
);
193 * Walk a vmap address to the struct page it maps.
195 struct page
*vmalloc_to_page(const void *vmalloc_addr
)
197 unsigned long addr
= (unsigned long) vmalloc_addr
;
198 struct page
*page
= NULL
;
199 pgd_t
*pgd
= pgd_offset_k(addr
);
202 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
203 * architectures that do not vmalloc module space
205 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr
));
207 if (!pgd_none(*pgd
)) {
208 pud_t
*pud
= pud_offset(pgd
, addr
);
209 if (!pud_none(*pud
)) {
210 pmd_t
*pmd
= pmd_offset(pud
, addr
);
211 if (!pmd_none(*pmd
)) {
214 ptep
= pte_offset_map(pmd
, addr
);
216 if (pte_present(pte
))
217 page
= pte_page(pte
);
224 EXPORT_SYMBOL(vmalloc_to_page
);
227 * Map a vmalloc()-space virtual address to the physical page frame number.
229 unsigned long vmalloc_to_pfn(const void *vmalloc_addr
)
231 return page_to_pfn(vmalloc_to_page(vmalloc_addr
));
233 EXPORT_SYMBOL(vmalloc_to_pfn
);
236 /*** Global kva allocator ***/
238 #define VM_LAZY_FREE 0x01
239 #define VM_LAZY_FREEING 0x02
240 #define VM_VM_AREA 0x04
243 unsigned long va_start
;
244 unsigned long va_end
;
246 struct rb_node rb_node
; /* address sorted rbtree */
247 struct list_head list
; /* address sorted list */
248 struct list_head purge_list
; /* "lazy purge" list */
250 struct rcu_head rcu_head
;
253 static DEFINE_SPINLOCK(vmap_area_lock
);
254 static struct rb_root vmap_area_root
= RB_ROOT
;
255 static LIST_HEAD(vmap_area_list
);
257 static struct vmap_area
*__find_vmap_area(unsigned long addr
)
259 struct rb_node
*n
= vmap_area_root
.rb_node
;
262 struct vmap_area
*va
;
264 va
= rb_entry(n
, struct vmap_area
, rb_node
);
265 if (addr
< va
->va_start
)
267 else if (addr
> va
->va_start
)
276 static void __insert_vmap_area(struct vmap_area
*va
)
278 struct rb_node
**p
= &vmap_area_root
.rb_node
;
279 struct rb_node
*parent
= NULL
;
283 struct vmap_area
*tmp
;
286 tmp
= rb_entry(parent
, struct vmap_area
, rb_node
);
287 if (va
->va_start
< tmp
->va_end
)
289 else if (va
->va_end
> tmp
->va_start
)
295 rb_link_node(&va
->rb_node
, parent
, p
);
296 rb_insert_color(&va
->rb_node
, &vmap_area_root
);
298 /* address-sort this list so it is usable like the vmlist */
299 tmp
= rb_prev(&va
->rb_node
);
301 struct vmap_area
*prev
;
302 prev
= rb_entry(tmp
, struct vmap_area
, rb_node
);
303 list_add_rcu(&va
->list
, &prev
->list
);
305 list_add_rcu(&va
->list
, &vmap_area_list
);
308 static void purge_vmap_area_lazy(void);
311 * Allocate a region of KVA of the specified size and alignment, within the
314 static struct vmap_area
*alloc_vmap_area(unsigned long size
,
316 unsigned long vstart
, unsigned long vend
,
317 int node
, gfp_t gfp_mask
)
319 struct vmap_area
*va
;
324 BUG_ON(size
& ~PAGE_MASK
);
326 addr
= ALIGN(vstart
, align
);
328 va
= kmalloc_node(sizeof(struct vmap_area
),
329 gfp_mask
& GFP_RECLAIM_MASK
, node
);
331 return ERR_PTR(-ENOMEM
);
334 spin_lock(&vmap_area_lock
);
335 /* XXX: could have a last_hole cache */
336 n
= vmap_area_root
.rb_node
;
338 struct vmap_area
*first
= NULL
;
341 struct vmap_area
*tmp
;
342 tmp
= rb_entry(n
, struct vmap_area
, rb_node
);
343 if (tmp
->va_end
>= addr
) {
344 if (!first
&& tmp
->va_start
< addr
+ size
)
356 if (first
->va_end
< addr
) {
357 n
= rb_next(&first
->rb_node
);
359 first
= rb_entry(n
, struct vmap_area
, rb_node
);
364 while (addr
+ size
>= first
->va_start
&& addr
+ size
<= vend
) {
365 addr
= ALIGN(first
->va_end
+ PAGE_SIZE
, align
);
367 n
= rb_next(&first
->rb_node
);
369 first
= rb_entry(n
, struct vmap_area
, rb_node
);
375 if (addr
+ size
> vend
) {
376 spin_unlock(&vmap_area_lock
);
378 purge_vmap_area_lazy();
382 if (printk_ratelimit())
383 printk(KERN_WARNING
"vmap allocation failed: "
384 "use vmalloc=<size> to increase size.\n");
385 return ERR_PTR(-EBUSY
);
388 BUG_ON(addr
& (align
-1));
391 va
->va_end
= addr
+ size
;
393 __insert_vmap_area(va
);
394 spin_unlock(&vmap_area_lock
);
399 static void rcu_free_va(struct rcu_head
*head
)
401 struct vmap_area
*va
= container_of(head
, struct vmap_area
, rcu_head
);
406 static void __free_vmap_area(struct vmap_area
*va
)
408 BUG_ON(RB_EMPTY_NODE(&va
->rb_node
));
409 rb_erase(&va
->rb_node
, &vmap_area_root
);
410 RB_CLEAR_NODE(&va
->rb_node
);
411 list_del_rcu(&va
->list
);
413 call_rcu(&va
->rcu_head
, rcu_free_va
);
417 * Free a region of KVA allocated by alloc_vmap_area
419 static void free_vmap_area(struct vmap_area
*va
)
421 spin_lock(&vmap_area_lock
);
422 __free_vmap_area(va
);
423 spin_unlock(&vmap_area_lock
);
427 * Clear the pagetable entries of a given vmap_area
429 static void unmap_vmap_area(struct vmap_area
*va
)
431 vunmap_page_range(va
->va_start
, va
->va_end
);
435 * lazy_max_pages is the maximum amount of virtual address space we gather up
436 * before attempting to purge with a TLB flush.
438 * There is a tradeoff here: a larger number will cover more kernel page tables
439 * and take slightly longer to purge, but it will linearly reduce the number of
440 * global TLB flushes that must be performed. It would seem natural to scale
441 * this number up linearly with the number of CPUs (because vmapping activity
442 * could also scale linearly with the number of CPUs), however it is likely
443 * that in practice, workloads might be constrained in other ways that mean
444 * vmap activity will not scale linearly with CPUs. Also, I want to be
445 * conservative and not introduce a big latency on huge systems, so go with
446 * a less aggressive log scale. It will still be an improvement over the old
447 * code, and it will be simple to change the scale factor if we find that it
448 * becomes a problem on bigger systems.
450 static unsigned long lazy_max_pages(void)
454 log
= fls(num_online_cpus());
456 return log
* (32UL * 1024 * 1024 / PAGE_SIZE
);
459 static atomic_t vmap_lazy_nr
= ATOMIC_INIT(0);
462 * Purges all lazily-freed vmap areas.
464 * If sync is 0 then don't purge if there is already a purge in progress.
465 * If force_flush is 1, then flush kernel TLBs between *start and *end even
466 * if we found no lazy vmap areas to unmap (callers can use this to optimise
467 * their own TLB flushing).
468 * Returns with *start = min(*start, lowest purged address)
469 * *end = max(*end, highest purged address)
471 static void __purge_vmap_area_lazy(unsigned long *start
, unsigned long *end
,
472 int sync
, int force_flush
)
474 static DEFINE_SPINLOCK(purge_lock
);
476 struct vmap_area
*va
;
480 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
481 * should not expect such behaviour. This just simplifies locking for
482 * the case that isn't actually used at the moment anyway.
484 if (!sync
&& !force_flush
) {
485 if (!spin_trylock(&purge_lock
))
488 spin_lock(&purge_lock
);
491 list_for_each_entry_rcu(va
, &vmap_area_list
, list
) {
492 if (va
->flags
& VM_LAZY_FREE
) {
493 if (va
->va_start
< *start
)
494 *start
= va
->va_start
;
495 if (va
->va_end
> *end
)
497 nr
+= (va
->va_end
- va
->va_start
) >> PAGE_SHIFT
;
499 list_add_tail(&va
->purge_list
, &valist
);
500 va
->flags
|= VM_LAZY_FREEING
;
501 va
->flags
&= ~VM_LAZY_FREE
;
507 BUG_ON(nr
> atomic_read(&vmap_lazy_nr
));
508 atomic_sub(nr
, &vmap_lazy_nr
);
511 if (nr
|| force_flush
)
512 flush_tlb_kernel_range(*start
, *end
);
515 spin_lock(&vmap_area_lock
);
516 list_for_each_entry(va
, &valist
, purge_list
)
517 __free_vmap_area(va
);
518 spin_unlock(&vmap_area_lock
);
520 spin_unlock(&purge_lock
);
524 * Kick off a purge of the outstanding lazy areas.
526 static void purge_vmap_area_lazy(void)
528 unsigned long start
= ULONG_MAX
, end
= 0;
530 __purge_vmap_area_lazy(&start
, &end
, 0, 0);
534 * Free and unmap a vmap area
536 static void free_unmap_vmap_area(struct vmap_area
*va
)
538 va
->flags
|= VM_LAZY_FREE
;
539 atomic_add((va
->va_end
- va
->va_start
) >> PAGE_SHIFT
, &vmap_lazy_nr
);
540 if (unlikely(atomic_read(&vmap_lazy_nr
) > lazy_max_pages()))
541 purge_vmap_area_lazy();
544 static struct vmap_area
*find_vmap_area(unsigned long addr
)
546 struct vmap_area
*va
;
548 spin_lock(&vmap_area_lock
);
549 va
= __find_vmap_area(addr
);
550 spin_unlock(&vmap_area_lock
);
555 static void free_unmap_vmap_area_addr(unsigned long addr
)
557 struct vmap_area
*va
;
559 va
= find_vmap_area(addr
);
561 free_unmap_vmap_area(va
);
565 /*** Per cpu kva allocator ***/
568 * vmap space is limited especially on 32 bit architectures. Ensure there is
569 * room for at least 16 percpu vmap blocks per CPU.
572 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
573 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
574 * instead (we just need a rough idea)
576 #if BITS_PER_LONG == 32
577 #define VMALLOC_SPACE (128UL*1024*1024)
579 #define VMALLOC_SPACE (128UL*1024*1024*1024)
582 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
583 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
584 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
585 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
586 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
587 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
588 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
589 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
590 VMALLOC_PAGES / NR_CPUS / 16))
592 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
594 struct vmap_block_queue
{
596 struct list_head free
;
597 struct list_head dirty
;
598 unsigned int nr_dirty
;
603 struct vmap_area
*va
;
604 struct vmap_block_queue
*vbq
;
605 unsigned long free
, dirty
;
606 DECLARE_BITMAP(alloc_map
, VMAP_BBMAP_BITS
);
607 DECLARE_BITMAP(dirty_map
, VMAP_BBMAP_BITS
);
610 struct list_head free_list
;
611 struct list_head dirty_list
;
613 struct rcu_head rcu_head
;
617 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
618 static DEFINE_PER_CPU(struct vmap_block_queue
, vmap_block_queue
);
621 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
622 * in the free path. Could get rid of this if we change the API to return a
623 * "cookie" from alloc, to be passed to free. But no big deal yet.
625 static DEFINE_SPINLOCK(vmap_block_tree_lock
);
626 static RADIX_TREE(vmap_block_tree
, GFP_ATOMIC
);
629 * We should probably have a fallback mechanism to allocate virtual memory
630 * out of partially filled vmap blocks. However vmap block sizing should be
631 * fairly reasonable according to the vmalloc size, so it shouldn't be a
635 static unsigned long addr_to_vb_idx(unsigned long addr
)
637 addr
-= VMALLOC_START
& ~(VMAP_BLOCK_SIZE
-1);
638 addr
/= VMAP_BLOCK_SIZE
;
642 static struct vmap_block
*new_vmap_block(gfp_t gfp_mask
)
644 struct vmap_block_queue
*vbq
;
645 struct vmap_block
*vb
;
646 struct vmap_area
*va
;
647 unsigned long vb_idx
;
650 node
= numa_node_id();
652 vb
= kmalloc_node(sizeof(struct vmap_block
),
653 gfp_mask
& GFP_RECLAIM_MASK
, node
);
655 return ERR_PTR(-ENOMEM
);
657 va
= alloc_vmap_area(VMAP_BLOCK_SIZE
, VMAP_BLOCK_SIZE
,
658 VMALLOC_START
, VMALLOC_END
,
660 if (unlikely(IS_ERR(va
))) {
662 return ERR_PTR(PTR_ERR(va
));
665 err
= radix_tree_preload(gfp_mask
);
672 spin_lock_init(&vb
->lock
);
674 vb
->free
= VMAP_BBMAP_BITS
;
676 bitmap_zero(vb
->alloc_map
, VMAP_BBMAP_BITS
);
677 bitmap_zero(vb
->dirty_map
, VMAP_BBMAP_BITS
);
678 INIT_LIST_HEAD(&vb
->free_list
);
679 INIT_LIST_HEAD(&vb
->dirty_list
);
681 vb_idx
= addr_to_vb_idx(va
->va_start
);
682 spin_lock(&vmap_block_tree_lock
);
683 err
= radix_tree_insert(&vmap_block_tree
, vb_idx
, vb
);
684 spin_unlock(&vmap_block_tree_lock
);
686 radix_tree_preload_end();
688 vbq
= &get_cpu_var(vmap_block_queue
);
690 spin_lock(&vbq
->lock
);
691 list_add(&vb
->free_list
, &vbq
->free
);
692 spin_unlock(&vbq
->lock
);
693 put_cpu_var(vmap_cpu_blocks
);
698 static void rcu_free_vb(struct rcu_head
*head
)
700 struct vmap_block
*vb
= container_of(head
, struct vmap_block
, rcu_head
);
705 static void free_vmap_block(struct vmap_block
*vb
)
707 struct vmap_block
*tmp
;
708 unsigned long vb_idx
;
710 spin_lock(&vb
->vbq
->lock
);
711 if (!list_empty(&vb
->free_list
))
712 list_del(&vb
->free_list
);
713 if (!list_empty(&vb
->dirty_list
))
714 list_del(&vb
->dirty_list
);
715 spin_unlock(&vb
->vbq
->lock
);
717 vb_idx
= addr_to_vb_idx(vb
->va
->va_start
);
718 spin_lock(&vmap_block_tree_lock
);
719 tmp
= radix_tree_delete(&vmap_block_tree
, vb_idx
);
720 spin_unlock(&vmap_block_tree_lock
);
723 free_unmap_vmap_area(vb
->va
);
724 call_rcu(&vb
->rcu_head
, rcu_free_vb
);
727 static void *vb_alloc(unsigned long size
, gfp_t gfp_mask
)
729 struct vmap_block_queue
*vbq
;
730 struct vmap_block
*vb
;
731 unsigned long addr
= 0;
734 BUG_ON(size
& ~PAGE_MASK
);
735 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
736 order
= get_order(size
);
740 vbq
= &get_cpu_var(vmap_block_queue
);
741 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
744 spin_lock(&vb
->lock
);
745 i
= bitmap_find_free_region(vb
->alloc_map
,
746 VMAP_BBMAP_BITS
, order
);
749 addr
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
750 BUG_ON(addr_to_vb_idx(addr
) !=
751 addr_to_vb_idx(vb
->va
->va_start
));
752 vb
->free
-= 1UL << order
;
754 spin_lock(&vbq
->lock
);
755 list_del_init(&vb
->free_list
);
756 spin_unlock(&vbq
->lock
);
758 spin_unlock(&vb
->lock
);
761 spin_unlock(&vb
->lock
);
763 put_cpu_var(vmap_cpu_blocks
);
767 vb
= new_vmap_block(gfp_mask
);
776 static void vb_free(const void *addr
, unsigned long size
)
778 unsigned long offset
;
779 unsigned long vb_idx
;
781 struct vmap_block
*vb
;
783 BUG_ON(size
& ~PAGE_MASK
);
784 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
785 order
= get_order(size
);
787 offset
= (unsigned long)addr
& (VMAP_BLOCK_SIZE
- 1);
789 vb_idx
= addr_to_vb_idx((unsigned long)addr
);
791 vb
= radix_tree_lookup(&vmap_block_tree
, vb_idx
);
795 spin_lock(&vb
->lock
);
796 bitmap_allocate_region(vb
->dirty_map
, offset
>> PAGE_SHIFT
, order
);
798 spin_lock(&vb
->vbq
->lock
);
799 list_add(&vb
->dirty_list
, &vb
->vbq
->dirty
);
800 spin_unlock(&vb
->vbq
->lock
);
802 vb
->dirty
+= 1UL << order
;
803 if (vb
->dirty
== VMAP_BBMAP_BITS
) {
804 BUG_ON(vb
->free
|| !list_empty(&vb
->free_list
));
805 spin_unlock(&vb
->lock
);
808 spin_unlock(&vb
->lock
);
812 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
814 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
815 * to amortize TLB flushing overheads. What this means is that any page you
816 * have now, may, in a former life, have been mapped into kernel virtual
817 * address by the vmap layer and so there might be some CPUs with TLB entries
818 * still referencing that page (additional to the regular 1:1 kernel mapping).
820 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
821 * be sure that none of the pages we have control over will have any aliases
822 * from the vmap layer.
824 void vm_unmap_aliases(void)
826 unsigned long start
= ULONG_MAX
, end
= 0;
830 for_each_possible_cpu(cpu
) {
831 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
832 struct vmap_block
*vb
;
835 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
838 spin_lock(&vb
->lock
);
839 i
= find_first_bit(vb
->dirty_map
, VMAP_BBMAP_BITS
);
840 while (i
< VMAP_BBMAP_BITS
) {
843 j
= find_next_zero_bit(vb
->dirty_map
,
846 s
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
847 e
= vb
->va
->va_start
+ (j
<< PAGE_SHIFT
);
848 vunmap_page_range(s
, e
);
857 i
= find_next_bit(vb
->dirty_map
,
860 spin_unlock(&vb
->lock
);
865 __purge_vmap_area_lazy(&start
, &end
, 1, flush
);
867 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
870 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
871 * @mem: the pointer returned by vm_map_ram
872 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
874 void vm_unmap_ram(const void *mem
, unsigned int count
)
876 unsigned long size
= count
<< PAGE_SHIFT
;
877 unsigned long addr
= (unsigned long)mem
;
880 BUG_ON(addr
< VMALLOC_START
);
881 BUG_ON(addr
> VMALLOC_END
);
882 BUG_ON(addr
& (PAGE_SIZE
-1));
884 debug_check_no_locks_freed(mem
, size
);
886 if (likely(count
<= VMAP_MAX_ALLOC
))
889 free_unmap_vmap_area_addr(addr
);
891 EXPORT_SYMBOL(vm_unmap_ram
);
894 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
895 * @pages: an array of pointers to the pages to be mapped
896 * @count: number of pages
897 * @node: prefer to allocate data structures on this node
898 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
899 * @returns: a pointer to the address that has been mapped, or NULL on failure
901 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
903 unsigned long size
= count
<< PAGE_SHIFT
;
907 if (likely(count
<= VMAP_MAX_ALLOC
)) {
908 mem
= vb_alloc(size
, GFP_KERNEL
);
911 addr
= (unsigned long)mem
;
913 struct vmap_area
*va
;
914 va
= alloc_vmap_area(size
, PAGE_SIZE
,
915 VMALLOC_START
, VMALLOC_END
, node
, GFP_KERNEL
);
922 if (vmap_page_range(addr
, addr
+ size
, prot
, pages
) < 0) {
923 vm_unmap_ram(mem
, count
);
928 EXPORT_SYMBOL(vm_map_ram
);
930 void __init
vmalloc_init(void)
934 for_each_possible_cpu(i
) {
935 struct vmap_block_queue
*vbq
;
937 vbq
= &per_cpu(vmap_block_queue
, i
);
938 spin_lock_init(&vbq
->lock
);
939 INIT_LIST_HEAD(&vbq
->free
);
940 INIT_LIST_HEAD(&vbq
->dirty
);
945 void unmap_kernel_range(unsigned long addr
, unsigned long size
)
947 unsigned long end
= addr
+ size
;
948 vunmap_page_range(addr
, end
);
949 flush_tlb_kernel_range(addr
, end
);
952 int map_vm_area(struct vm_struct
*area
, pgprot_t prot
, struct page
***pages
)
954 unsigned long addr
= (unsigned long)area
->addr
;
955 unsigned long end
= addr
+ area
->size
- PAGE_SIZE
;
958 err
= vmap_page_range(addr
, end
, prot
, *pages
);
966 EXPORT_SYMBOL_GPL(map_vm_area
);
968 /*** Old vmalloc interfaces ***/
969 DEFINE_RWLOCK(vmlist_lock
);
970 struct vm_struct
*vmlist
;
972 static struct vm_struct
*__get_vm_area_node(unsigned long size
,
973 unsigned long flags
, unsigned long start
, unsigned long end
,
974 int node
, gfp_t gfp_mask
, void *caller
)
976 static struct vmap_area
*va
;
977 struct vm_struct
*area
;
978 struct vm_struct
*tmp
, **p
;
979 unsigned long align
= 1;
981 BUG_ON(in_interrupt());
982 if (flags
& VM_IOREMAP
) {
985 if (bit
> IOREMAP_MAX_ORDER
)
986 bit
= IOREMAP_MAX_ORDER
;
987 else if (bit
< PAGE_SHIFT
)
993 size
= PAGE_ALIGN(size
);
997 area
= kmalloc_node(sizeof(*area
), gfp_mask
& GFP_RECLAIM_MASK
, node
);
1002 * We always allocate a guard page.
1006 va
= alloc_vmap_area(size
, align
, start
, end
, node
, gfp_mask
);
1012 area
->flags
= flags
;
1013 area
->addr
= (void *)va
->va_start
;
1017 area
->phys_addr
= 0;
1018 area
->caller
= caller
;
1020 va
->flags
|= VM_VM_AREA
;
1022 write_lock(&vmlist_lock
);
1023 for (p
= &vmlist
; (tmp
= *p
) != NULL
; p
= &tmp
->next
) {
1024 if (tmp
->addr
>= area
->addr
)
1029 write_unlock(&vmlist_lock
);
1034 struct vm_struct
*__get_vm_area(unsigned long size
, unsigned long flags
,
1035 unsigned long start
, unsigned long end
)
1037 return __get_vm_area_node(size
, flags
, start
, end
, -1, GFP_KERNEL
,
1038 __builtin_return_address(0));
1040 EXPORT_SYMBOL_GPL(__get_vm_area
);
1043 * get_vm_area - reserve a contiguous kernel virtual area
1044 * @size: size of the area
1045 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1047 * Search an area of @size in the kernel virtual mapping area,
1048 * and reserved it for out purposes. Returns the area descriptor
1049 * on success or %NULL on failure.
1051 struct vm_struct
*get_vm_area(unsigned long size
, unsigned long flags
)
1053 return __get_vm_area_node(size
, flags
, VMALLOC_START
, VMALLOC_END
,
1054 -1, GFP_KERNEL
, __builtin_return_address(0));
1057 struct vm_struct
*get_vm_area_caller(unsigned long size
, unsigned long flags
,
1060 return __get_vm_area_node(size
, flags
, VMALLOC_START
, VMALLOC_END
,
1061 -1, GFP_KERNEL
, caller
);
1064 struct vm_struct
*get_vm_area_node(unsigned long size
, unsigned long flags
,
1065 int node
, gfp_t gfp_mask
)
1067 return __get_vm_area_node(size
, flags
, VMALLOC_START
, VMALLOC_END
, node
,
1068 gfp_mask
, __builtin_return_address(0));
1071 static struct vm_struct
*find_vm_area(const void *addr
)
1073 struct vmap_area
*va
;
1075 va
= find_vmap_area((unsigned long)addr
);
1076 if (va
&& va
->flags
& VM_VM_AREA
)
1083 * remove_vm_area - find and remove a continuous kernel virtual area
1084 * @addr: base address
1086 * Search for the kernel VM area starting at @addr, and remove it.
1087 * This function returns the found VM area, but using it is NOT safe
1088 * on SMP machines, except for its size or flags.
1090 struct vm_struct
*remove_vm_area(const void *addr
)
1092 struct vmap_area
*va
;
1094 va
= find_vmap_area((unsigned long)addr
);
1095 if (va
&& va
->flags
& VM_VM_AREA
) {
1096 struct vm_struct
*vm
= va
->private;
1097 struct vm_struct
*tmp
, **p
;
1098 free_unmap_vmap_area(va
);
1099 vm
->size
-= PAGE_SIZE
;
1101 write_lock(&vmlist_lock
);
1102 for (p
= &vmlist
; (tmp
= *p
) != vm
; p
= &tmp
->next
)
1105 write_unlock(&vmlist_lock
);
1112 static void __vunmap(const void *addr
, int deallocate_pages
)
1114 struct vm_struct
*area
;
1119 if ((PAGE_SIZE
-1) & (unsigned long)addr
) {
1120 WARN(1, KERN_ERR
"Trying to vfree() bad address (%p)\n", addr
);
1124 area
= remove_vm_area(addr
);
1125 if (unlikely(!area
)) {
1126 WARN(1, KERN_ERR
"Trying to vfree() nonexistent vm area (%p)\n",
1131 debug_check_no_locks_freed(addr
, area
->size
);
1132 debug_check_no_obj_freed(addr
, area
->size
);
1134 if (deallocate_pages
) {
1137 for (i
= 0; i
< area
->nr_pages
; i
++) {
1138 struct page
*page
= area
->pages
[i
];
1144 if (area
->flags
& VM_VPAGES
)
1155 * vfree - release memory allocated by vmalloc()
1156 * @addr: memory base address
1158 * Free the virtually continuous memory area starting at @addr, as
1159 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1160 * NULL, no operation is performed.
1162 * Must not be called in interrupt context.
1164 void vfree(const void *addr
)
1166 BUG_ON(in_interrupt());
1169 EXPORT_SYMBOL(vfree
);
1172 * vunmap - release virtual mapping obtained by vmap()
1173 * @addr: memory base address
1175 * Free the virtually contiguous memory area starting at @addr,
1176 * which was created from the page array passed to vmap().
1178 * Must not be called in interrupt context.
1180 void vunmap(const void *addr
)
1182 BUG_ON(in_interrupt());
1185 EXPORT_SYMBOL(vunmap
);
1188 * vmap - map an array of pages into virtually contiguous space
1189 * @pages: array of page pointers
1190 * @count: number of pages to map
1191 * @flags: vm_area->flags
1192 * @prot: page protection for the mapping
1194 * Maps @count pages from @pages into contiguous kernel virtual
1197 void *vmap(struct page
**pages
, unsigned int count
,
1198 unsigned long flags
, pgprot_t prot
)
1200 struct vm_struct
*area
;
1202 if (count
> num_physpages
)
1205 area
= get_vm_area_caller((count
<< PAGE_SHIFT
), flags
,
1206 __builtin_return_address(0));
1210 if (map_vm_area(area
, prot
, &pages
)) {
1217 EXPORT_SYMBOL(vmap
);
1219 static void *__vmalloc_node(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
,
1220 int node
, void *caller
);
1221 static void *__vmalloc_area_node(struct vm_struct
*area
, gfp_t gfp_mask
,
1222 pgprot_t prot
, int node
, void *caller
)
1224 struct page
**pages
;
1225 unsigned int nr_pages
, array_size
, i
;
1227 nr_pages
= (area
->size
- PAGE_SIZE
) >> PAGE_SHIFT
;
1228 array_size
= (nr_pages
* sizeof(struct page
*));
1230 area
->nr_pages
= nr_pages
;
1231 /* Please note that the recursion is strictly bounded. */
1232 if (array_size
> PAGE_SIZE
) {
1233 pages
= __vmalloc_node(array_size
, gfp_mask
| __GFP_ZERO
,
1234 PAGE_KERNEL
, node
, caller
);
1235 area
->flags
|= VM_VPAGES
;
1237 pages
= kmalloc_node(array_size
,
1238 (gfp_mask
& GFP_RECLAIM_MASK
) | __GFP_ZERO
,
1241 area
->pages
= pages
;
1242 area
->caller
= caller
;
1244 remove_vm_area(area
->addr
);
1249 for (i
= 0; i
< area
->nr_pages
; i
++) {
1253 page
= alloc_page(gfp_mask
);
1255 page
= alloc_pages_node(node
, gfp_mask
, 0);
1257 if (unlikely(!page
)) {
1258 /* Successfully allocated i pages, free them in __vunmap() */
1262 area
->pages
[i
] = page
;
1265 if (map_vm_area(area
, prot
, &pages
))
1274 void *__vmalloc_area(struct vm_struct
*area
, gfp_t gfp_mask
, pgprot_t prot
)
1276 return __vmalloc_area_node(area
, gfp_mask
, prot
, -1,
1277 __builtin_return_address(0));
1281 * __vmalloc_node - allocate virtually contiguous memory
1282 * @size: allocation size
1283 * @gfp_mask: flags for the page level allocator
1284 * @prot: protection mask for the allocated pages
1285 * @node: node to use for allocation or -1
1286 * @caller: caller's return address
1288 * Allocate enough pages to cover @size from the page level
1289 * allocator with @gfp_mask flags. Map them into contiguous
1290 * kernel virtual space, using a pagetable protection of @prot.
1292 static void *__vmalloc_node(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
,
1293 int node
, void *caller
)
1295 struct vm_struct
*area
;
1297 size
= PAGE_ALIGN(size
);
1298 if (!size
|| (size
>> PAGE_SHIFT
) > num_physpages
)
1301 area
= __get_vm_area_node(size
, VM_ALLOC
, VMALLOC_START
, VMALLOC_END
,
1302 node
, gfp_mask
, caller
);
1307 return __vmalloc_area_node(area
, gfp_mask
, prot
, node
, caller
);
1310 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
1312 return __vmalloc_node(size
, gfp_mask
, prot
, -1,
1313 __builtin_return_address(0));
1315 EXPORT_SYMBOL(__vmalloc
);
1318 * vmalloc - allocate virtually contiguous memory
1319 * @size: allocation size
1320 * Allocate enough pages to cover @size from the page level
1321 * allocator and map them into contiguous kernel virtual space.
1323 * For tight control over page level allocator and protection flags
1324 * use __vmalloc() instead.
1326 void *vmalloc(unsigned long size
)
1328 return __vmalloc_node(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1329 -1, __builtin_return_address(0));
1331 EXPORT_SYMBOL(vmalloc
);
1334 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1335 * @size: allocation size
1337 * The resulting memory area is zeroed so it can be mapped to userspace
1338 * without leaking data.
1340 void *vmalloc_user(unsigned long size
)
1342 struct vm_struct
*area
;
1345 ret
= __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
, PAGE_KERNEL
);
1347 area
= find_vm_area(ret
);
1348 area
->flags
|= VM_USERMAP
;
1352 EXPORT_SYMBOL(vmalloc_user
);
1355 * vmalloc_node - allocate memory on a specific node
1356 * @size: allocation size
1359 * Allocate enough pages to cover @size from the page level
1360 * allocator and map them into contiguous kernel virtual space.
1362 * For tight control over page level allocator and protection flags
1363 * use __vmalloc() instead.
1365 void *vmalloc_node(unsigned long size
, int node
)
1367 return __vmalloc_node(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1368 node
, __builtin_return_address(0));
1370 EXPORT_SYMBOL(vmalloc_node
);
1372 #ifndef PAGE_KERNEL_EXEC
1373 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1377 * vmalloc_exec - allocate virtually contiguous, executable memory
1378 * @size: allocation size
1380 * Kernel-internal function to allocate enough pages to cover @size
1381 * the page level allocator and map them into contiguous and
1382 * executable kernel virtual space.
1384 * For tight control over page level allocator and protection flags
1385 * use __vmalloc() instead.
1388 void *vmalloc_exec(unsigned long size
)
1390 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
);
1393 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1394 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1395 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1396 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1398 #define GFP_VMALLOC32 GFP_KERNEL
1402 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1403 * @size: allocation size
1405 * Allocate enough 32bit PA addressable pages to cover @size from the
1406 * page level allocator and map them into contiguous kernel virtual space.
1408 void *vmalloc_32(unsigned long size
)
1410 return __vmalloc(size
, GFP_VMALLOC32
, PAGE_KERNEL
);
1412 EXPORT_SYMBOL(vmalloc_32
);
1415 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1416 * @size: allocation size
1418 * The resulting memory area is 32bit addressable and zeroed so it can be
1419 * mapped to userspace without leaking data.
1421 void *vmalloc_32_user(unsigned long size
)
1423 struct vm_struct
*area
;
1426 ret
= __vmalloc(size
, GFP_VMALLOC32
| __GFP_ZERO
, PAGE_KERNEL
);
1428 area
= find_vm_area(ret
);
1429 area
->flags
|= VM_USERMAP
;
1433 EXPORT_SYMBOL(vmalloc_32_user
);
1435 long vread(char *buf
, char *addr
, unsigned long count
)
1437 struct vm_struct
*tmp
;
1438 char *vaddr
, *buf_start
= buf
;
1441 /* Don't allow overflow */
1442 if ((unsigned long) addr
+ count
< count
)
1443 count
= -(unsigned long) addr
;
1445 read_lock(&vmlist_lock
);
1446 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1447 vaddr
= (char *) tmp
->addr
;
1448 if (addr
>= vaddr
+ tmp
->size
- PAGE_SIZE
)
1450 while (addr
< vaddr
) {
1458 n
= vaddr
+ tmp
->size
- PAGE_SIZE
- addr
;
1469 read_unlock(&vmlist_lock
);
1470 return buf
- buf_start
;
1473 long vwrite(char *buf
, char *addr
, unsigned long count
)
1475 struct vm_struct
*tmp
;
1476 char *vaddr
, *buf_start
= buf
;
1479 /* Don't allow overflow */
1480 if ((unsigned long) addr
+ count
< count
)
1481 count
= -(unsigned long) addr
;
1483 read_lock(&vmlist_lock
);
1484 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1485 vaddr
= (char *) tmp
->addr
;
1486 if (addr
>= vaddr
+ tmp
->size
- PAGE_SIZE
)
1488 while (addr
< vaddr
) {
1495 n
= vaddr
+ tmp
->size
- PAGE_SIZE
- addr
;
1506 read_unlock(&vmlist_lock
);
1507 return buf
- buf_start
;
1511 * remap_vmalloc_range - map vmalloc pages to userspace
1512 * @vma: vma to cover (map full range of vma)
1513 * @addr: vmalloc memory
1514 * @pgoff: number of pages into addr before first page to map
1516 * Returns: 0 for success, -Exxx on failure
1518 * This function checks that addr is a valid vmalloc'ed area, and
1519 * that it is big enough to cover the vma. Will return failure if
1520 * that criteria isn't met.
1522 * Similar to remap_pfn_range() (see mm/memory.c)
1524 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
1525 unsigned long pgoff
)
1527 struct vm_struct
*area
;
1528 unsigned long uaddr
= vma
->vm_start
;
1529 unsigned long usize
= vma
->vm_end
- vma
->vm_start
;
1531 if ((PAGE_SIZE
-1) & (unsigned long)addr
)
1534 area
= find_vm_area(addr
);
1538 if (!(area
->flags
& VM_USERMAP
))
1541 if (usize
+ (pgoff
<< PAGE_SHIFT
) > area
->size
- PAGE_SIZE
)
1544 addr
+= pgoff
<< PAGE_SHIFT
;
1546 struct page
*page
= vmalloc_to_page(addr
);
1549 ret
= vm_insert_page(vma
, uaddr
, page
);
1556 } while (usize
> 0);
1558 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
1559 vma
->vm_flags
|= VM_RESERVED
;
1563 EXPORT_SYMBOL(remap_vmalloc_range
);
1566 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1569 void __attribute__((weak
)) vmalloc_sync_all(void)
1574 static int f(pte_t
*pte
, pgtable_t table
, unsigned long addr
, void *data
)
1576 /* apply_to_page_range() does all the hard work. */
1581 * alloc_vm_area - allocate a range of kernel address space
1582 * @size: size of the area
1584 * Returns: NULL on failure, vm_struct on success
1586 * This function reserves a range of kernel address space, and
1587 * allocates pagetables to map that range. No actual mappings
1588 * are created. If the kernel address space is not shared
1589 * between processes, it syncs the pagetable across all
1592 struct vm_struct
*alloc_vm_area(size_t size
)
1594 struct vm_struct
*area
;
1596 area
= get_vm_area_caller(size
, VM_IOREMAP
,
1597 __builtin_return_address(0));
1602 * This ensures that page tables are constructed for this region
1603 * of kernel virtual address space and mapped into init_mm.
1605 if (apply_to_page_range(&init_mm
, (unsigned long)area
->addr
,
1606 area
->size
, f
, NULL
)) {
1611 /* Make sure the pagetables are constructed in process kernel
1617 EXPORT_SYMBOL_GPL(alloc_vm_area
);
1619 void free_vm_area(struct vm_struct
*area
)
1621 struct vm_struct
*ret
;
1622 ret
= remove_vm_area(area
->addr
);
1623 BUG_ON(ret
!= area
);
1626 EXPORT_SYMBOL_GPL(free_vm_area
);
1629 #ifdef CONFIG_PROC_FS
1630 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
1633 struct vm_struct
*v
;
1635 read_lock(&vmlist_lock
);
1637 while (n
> 0 && v
) {
1648 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
1650 struct vm_struct
*v
= p
;
1656 static void s_stop(struct seq_file
*m
, void *p
)
1658 read_unlock(&vmlist_lock
);
1661 static void show_numa_info(struct seq_file
*m
, struct vm_struct
*v
)
1664 unsigned int nr
, *counters
= m
->private;
1669 memset(counters
, 0, nr_node_ids
* sizeof(unsigned int));
1671 for (nr
= 0; nr
< v
->nr_pages
; nr
++)
1672 counters
[page_to_nid(v
->pages
[nr
])]++;
1674 for_each_node_state(nr
, N_HIGH_MEMORY
)
1676 seq_printf(m
, " N%u=%u", nr
, counters
[nr
]);
1680 static int s_show(struct seq_file
*m
, void *p
)
1682 struct vm_struct
*v
= p
;
1684 seq_printf(m
, "0x%p-0x%p %7ld",
1685 v
->addr
, v
->addr
+ v
->size
, v
->size
);
1688 char buff
[2 * KSYM_NAME_LEN
];
1691 sprint_symbol(buff
, (unsigned long)v
->caller
);
1696 seq_printf(m
, " pages=%d", v
->nr_pages
);
1699 seq_printf(m
, " phys=%lx", v
->phys_addr
);
1701 if (v
->flags
& VM_IOREMAP
)
1702 seq_printf(m
, " ioremap");
1704 if (v
->flags
& VM_ALLOC
)
1705 seq_printf(m
, " vmalloc");
1707 if (v
->flags
& VM_MAP
)
1708 seq_printf(m
, " vmap");
1710 if (v
->flags
& VM_USERMAP
)
1711 seq_printf(m
, " user");
1713 if (v
->flags
& VM_VPAGES
)
1714 seq_printf(m
, " vpages");
1716 show_numa_info(m
, v
);
1721 const struct seq_operations vmalloc_op
= {