orinoco: fix last beacon reporting on 64-bit systems
[linux-2.6/sactl.git] / kernel / trace / ring_buffer.c
blobf780e9552f913e5b9674a218b148f27364e82723
1 /*
2 * Generic ring buffer
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/ring_buffer.h>
7 #include <linux/spinlock.h>
8 #include <linux/debugfs.h>
9 #include <linux/uaccess.h>
10 #include <linux/module.h>
11 #include <linux/percpu.h>
12 #include <linux/mutex.h>
13 #include <linux/sched.h> /* used for sched_clock() (for now) */
14 #include <linux/init.h>
15 #include <linux/hash.h>
16 #include <linux/list.h>
17 #include <linux/fs.h>
19 #include "trace.h"
21 /* Global flag to disable all recording to ring buffers */
22 static int ring_buffers_off __read_mostly;
24 /**
25 * tracing_on - enable all tracing buffers
27 * This function enables all tracing buffers that may have been
28 * disabled with tracing_off.
30 void tracing_on(void)
32 ring_buffers_off = 0;
35 /**
36 * tracing_off - turn off all tracing buffers
38 * This function stops all tracing buffers from recording data.
39 * It does not disable any overhead the tracers themselves may
40 * be causing. This function simply causes all recording to
41 * the ring buffers to fail.
43 void tracing_off(void)
45 ring_buffers_off = 1;
48 /* Up this if you want to test the TIME_EXTENTS and normalization */
49 #define DEBUG_SHIFT 0
51 /* FIXME!!! */
52 u64 ring_buffer_time_stamp(int cpu)
54 u64 time;
56 preempt_disable_notrace();
57 /* shift to debug/test normalization and TIME_EXTENTS */
58 time = sched_clock() << DEBUG_SHIFT;
59 preempt_enable_notrace();
61 return time;
64 void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
66 /* Just stupid testing the normalize function and deltas */
67 *ts >>= DEBUG_SHIFT;
70 #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
71 #define RB_ALIGNMENT_SHIFT 2
72 #define RB_ALIGNMENT (1 << RB_ALIGNMENT_SHIFT)
73 #define RB_MAX_SMALL_DATA 28
75 enum {
76 RB_LEN_TIME_EXTEND = 8,
77 RB_LEN_TIME_STAMP = 16,
80 /* inline for ring buffer fast paths */
81 static inline unsigned
82 rb_event_length(struct ring_buffer_event *event)
84 unsigned length;
86 switch (event->type) {
87 case RINGBUF_TYPE_PADDING:
88 /* undefined */
89 return -1;
91 case RINGBUF_TYPE_TIME_EXTEND:
92 return RB_LEN_TIME_EXTEND;
94 case RINGBUF_TYPE_TIME_STAMP:
95 return RB_LEN_TIME_STAMP;
97 case RINGBUF_TYPE_DATA:
98 if (event->len)
99 length = event->len << RB_ALIGNMENT_SHIFT;
100 else
101 length = event->array[0];
102 return length + RB_EVNT_HDR_SIZE;
103 default:
104 BUG();
106 /* not hit */
107 return 0;
111 * ring_buffer_event_length - return the length of the event
112 * @event: the event to get the length of
114 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
116 return rb_event_length(event);
119 /* inline for ring buffer fast paths */
120 static inline void *
121 rb_event_data(struct ring_buffer_event *event)
123 BUG_ON(event->type != RINGBUF_TYPE_DATA);
124 /* If length is in len field, then array[0] has the data */
125 if (event->len)
126 return (void *)&event->array[0];
127 /* Otherwise length is in array[0] and array[1] has the data */
128 return (void *)&event->array[1];
132 * ring_buffer_event_data - return the data of the event
133 * @event: the event to get the data from
135 void *ring_buffer_event_data(struct ring_buffer_event *event)
137 return rb_event_data(event);
140 #define for_each_buffer_cpu(buffer, cpu) \
141 for_each_cpu_mask(cpu, buffer->cpumask)
143 #define TS_SHIFT 27
144 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
145 #define TS_DELTA_TEST (~TS_MASK)
148 * This hack stolen from mm/slob.c.
149 * We can store per page timing information in the page frame of the page.
150 * Thanks to Peter Zijlstra for suggesting this idea.
152 struct buffer_page {
153 u64 time_stamp; /* page time stamp */
154 local_t write; /* index for next write */
155 local_t commit; /* write commited index */
156 unsigned read; /* index for next read */
157 struct list_head list; /* list of free pages */
158 void *page; /* Actual data page */
162 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
163 * this issue out.
165 static inline void free_buffer_page(struct buffer_page *bpage)
167 if (bpage->page)
168 free_page((unsigned long)bpage->page);
169 kfree(bpage);
173 * We need to fit the time_stamp delta into 27 bits.
175 static inline int test_time_stamp(u64 delta)
177 if (delta & TS_DELTA_TEST)
178 return 1;
179 return 0;
182 #define BUF_PAGE_SIZE PAGE_SIZE
185 * head_page == tail_page && head == tail then buffer is empty.
187 struct ring_buffer_per_cpu {
188 int cpu;
189 struct ring_buffer *buffer;
190 spinlock_t lock;
191 struct lock_class_key lock_key;
192 struct list_head pages;
193 struct buffer_page *head_page; /* read from head */
194 struct buffer_page *tail_page; /* write to tail */
195 struct buffer_page *commit_page; /* commited pages */
196 struct buffer_page *reader_page;
197 unsigned long overrun;
198 unsigned long entries;
199 u64 write_stamp;
200 u64 read_stamp;
201 atomic_t record_disabled;
204 struct ring_buffer {
205 unsigned long size;
206 unsigned pages;
207 unsigned flags;
208 int cpus;
209 cpumask_t cpumask;
210 atomic_t record_disabled;
212 struct mutex mutex;
214 struct ring_buffer_per_cpu **buffers;
217 struct ring_buffer_iter {
218 struct ring_buffer_per_cpu *cpu_buffer;
219 unsigned long head;
220 struct buffer_page *head_page;
221 u64 read_stamp;
224 #define RB_WARN_ON(buffer, cond) \
225 do { \
226 if (unlikely(cond)) { \
227 atomic_inc(&buffer->record_disabled); \
228 WARN_ON(1); \
230 } while (0)
232 #define RB_WARN_ON_RET(buffer, cond) \
233 do { \
234 if (unlikely(cond)) { \
235 atomic_inc(&buffer->record_disabled); \
236 WARN_ON(1); \
237 return -1; \
239 } while (0)
241 #define RB_WARN_ON_ONCE(buffer, cond) \
242 do { \
243 static int once; \
244 if (unlikely(cond) && !once) { \
245 once++; \
246 atomic_inc(&buffer->record_disabled); \
247 WARN_ON(1); \
249 } while (0)
252 * check_pages - integrity check of buffer pages
253 * @cpu_buffer: CPU buffer with pages to test
255 * As a safty measure we check to make sure the data pages have not
256 * been corrupted.
258 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
260 struct list_head *head = &cpu_buffer->pages;
261 struct buffer_page *page, *tmp;
263 RB_WARN_ON_RET(cpu_buffer, head->next->prev != head);
264 RB_WARN_ON_RET(cpu_buffer, head->prev->next != head);
266 list_for_each_entry_safe(page, tmp, head, list) {
267 RB_WARN_ON_RET(cpu_buffer,
268 page->list.next->prev != &page->list);
269 RB_WARN_ON_RET(cpu_buffer,
270 page->list.prev->next != &page->list);
273 return 0;
276 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
277 unsigned nr_pages)
279 struct list_head *head = &cpu_buffer->pages;
280 struct buffer_page *page, *tmp;
281 unsigned long addr;
282 LIST_HEAD(pages);
283 unsigned i;
285 for (i = 0; i < nr_pages; i++) {
286 page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
287 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
288 if (!page)
289 goto free_pages;
290 list_add(&page->list, &pages);
292 addr = __get_free_page(GFP_KERNEL);
293 if (!addr)
294 goto free_pages;
295 page->page = (void *)addr;
298 list_splice(&pages, head);
300 rb_check_pages(cpu_buffer);
302 return 0;
304 free_pages:
305 list_for_each_entry_safe(page, tmp, &pages, list) {
306 list_del_init(&page->list);
307 free_buffer_page(page);
309 return -ENOMEM;
312 static struct ring_buffer_per_cpu *
313 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
315 struct ring_buffer_per_cpu *cpu_buffer;
316 struct buffer_page *page;
317 unsigned long addr;
318 int ret;
320 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
321 GFP_KERNEL, cpu_to_node(cpu));
322 if (!cpu_buffer)
323 return NULL;
325 cpu_buffer->cpu = cpu;
326 cpu_buffer->buffer = buffer;
327 spin_lock_init(&cpu_buffer->lock);
328 INIT_LIST_HEAD(&cpu_buffer->pages);
330 page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
331 GFP_KERNEL, cpu_to_node(cpu));
332 if (!page)
333 goto fail_free_buffer;
335 cpu_buffer->reader_page = page;
336 addr = __get_free_page(GFP_KERNEL);
337 if (!addr)
338 goto fail_free_reader;
339 page->page = (void *)addr;
341 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
343 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
344 if (ret < 0)
345 goto fail_free_reader;
347 cpu_buffer->head_page
348 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
349 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
351 return cpu_buffer;
353 fail_free_reader:
354 free_buffer_page(cpu_buffer->reader_page);
356 fail_free_buffer:
357 kfree(cpu_buffer);
358 return NULL;
361 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
363 struct list_head *head = &cpu_buffer->pages;
364 struct buffer_page *page, *tmp;
366 list_del_init(&cpu_buffer->reader_page->list);
367 free_buffer_page(cpu_buffer->reader_page);
369 list_for_each_entry_safe(page, tmp, head, list) {
370 list_del_init(&page->list);
371 free_buffer_page(page);
373 kfree(cpu_buffer);
377 * Causes compile errors if the struct buffer_page gets bigger
378 * than the struct page.
380 extern int ring_buffer_page_too_big(void);
383 * ring_buffer_alloc - allocate a new ring_buffer
384 * @size: the size in bytes that is needed.
385 * @flags: attributes to set for the ring buffer.
387 * Currently the only flag that is available is the RB_FL_OVERWRITE
388 * flag. This flag means that the buffer will overwrite old data
389 * when the buffer wraps. If this flag is not set, the buffer will
390 * drop data when the tail hits the head.
392 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
394 struct ring_buffer *buffer;
395 int bsize;
396 int cpu;
398 /* Paranoid! Optimizes out when all is well */
399 if (sizeof(struct buffer_page) > sizeof(struct page))
400 ring_buffer_page_too_big();
403 /* keep it in its own cache line */
404 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
405 GFP_KERNEL);
406 if (!buffer)
407 return NULL;
409 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
410 buffer->flags = flags;
412 /* need at least two pages */
413 if (buffer->pages == 1)
414 buffer->pages++;
416 buffer->cpumask = cpu_possible_map;
417 buffer->cpus = nr_cpu_ids;
419 bsize = sizeof(void *) * nr_cpu_ids;
420 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
421 GFP_KERNEL);
422 if (!buffer->buffers)
423 goto fail_free_buffer;
425 for_each_buffer_cpu(buffer, cpu) {
426 buffer->buffers[cpu] =
427 rb_allocate_cpu_buffer(buffer, cpu);
428 if (!buffer->buffers[cpu])
429 goto fail_free_buffers;
432 mutex_init(&buffer->mutex);
434 return buffer;
436 fail_free_buffers:
437 for_each_buffer_cpu(buffer, cpu) {
438 if (buffer->buffers[cpu])
439 rb_free_cpu_buffer(buffer->buffers[cpu]);
441 kfree(buffer->buffers);
443 fail_free_buffer:
444 kfree(buffer);
445 return NULL;
449 * ring_buffer_free - free a ring buffer.
450 * @buffer: the buffer to free.
452 void
453 ring_buffer_free(struct ring_buffer *buffer)
455 int cpu;
457 for_each_buffer_cpu(buffer, cpu)
458 rb_free_cpu_buffer(buffer->buffers[cpu]);
460 kfree(buffer);
463 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
465 static void
466 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
468 struct buffer_page *page;
469 struct list_head *p;
470 unsigned i;
472 atomic_inc(&cpu_buffer->record_disabled);
473 synchronize_sched();
475 for (i = 0; i < nr_pages; i++) {
476 BUG_ON(list_empty(&cpu_buffer->pages));
477 p = cpu_buffer->pages.next;
478 page = list_entry(p, struct buffer_page, list);
479 list_del_init(&page->list);
480 free_buffer_page(page);
482 BUG_ON(list_empty(&cpu_buffer->pages));
484 rb_reset_cpu(cpu_buffer);
486 rb_check_pages(cpu_buffer);
488 atomic_dec(&cpu_buffer->record_disabled);
492 static void
493 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
494 struct list_head *pages, unsigned nr_pages)
496 struct buffer_page *page;
497 struct list_head *p;
498 unsigned i;
500 atomic_inc(&cpu_buffer->record_disabled);
501 synchronize_sched();
503 for (i = 0; i < nr_pages; i++) {
504 BUG_ON(list_empty(pages));
505 p = pages->next;
506 page = list_entry(p, struct buffer_page, list);
507 list_del_init(&page->list);
508 list_add_tail(&page->list, &cpu_buffer->pages);
510 rb_reset_cpu(cpu_buffer);
512 rb_check_pages(cpu_buffer);
514 atomic_dec(&cpu_buffer->record_disabled);
518 * ring_buffer_resize - resize the ring buffer
519 * @buffer: the buffer to resize.
520 * @size: the new size.
522 * The tracer is responsible for making sure that the buffer is
523 * not being used while changing the size.
524 * Note: We may be able to change the above requirement by using
525 * RCU synchronizations.
527 * Minimum size is 2 * BUF_PAGE_SIZE.
529 * Returns -1 on failure.
531 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
533 struct ring_buffer_per_cpu *cpu_buffer;
534 unsigned nr_pages, rm_pages, new_pages;
535 struct buffer_page *page, *tmp;
536 unsigned long buffer_size;
537 unsigned long addr;
538 LIST_HEAD(pages);
539 int i, cpu;
542 * Always succeed at resizing a non-existent buffer:
544 if (!buffer)
545 return size;
547 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
548 size *= BUF_PAGE_SIZE;
549 buffer_size = buffer->pages * BUF_PAGE_SIZE;
551 /* we need a minimum of two pages */
552 if (size < BUF_PAGE_SIZE * 2)
553 size = BUF_PAGE_SIZE * 2;
555 if (size == buffer_size)
556 return size;
558 mutex_lock(&buffer->mutex);
560 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
562 if (size < buffer_size) {
564 /* easy case, just free pages */
565 BUG_ON(nr_pages >= buffer->pages);
567 rm_pages = buffer->pages - nr_pages;
569 for_each_buffer_cpu(buffer, cpu) {
570 cpu_buffer = buffer->buffers[cpu];
571 rb_remove_pages(cpu_buffer, rm_pages);
573 goto out;
577 * This is a bit more difficult. We only want to add pages
578 * when we can allocate enough for all CPUs. We do this
579 * by allocating all the pages and storing them on a local
580 * link list. If we succeed in our allocation, then we
581 * add these pages to the cpu_buffers. Otherwise we just free
582 * them all and return -ENOMEM;
584 BUG_ON(nr_pages <= buffer->pages);
585 new_pages = nr_pages - buffer->pages;
587 for_each_buffer_cpu(buffer, cpu) {
588 for (i = 0; i < new_pages; i++) {
589 page = kzalloc_node(ALIGN(sizeof(*page),
590 cache_line_size()),
591 GFP_KERNEL, cpu_to_node(cpu));
592 if (!page)
593 goto free_pages;
594 list_add(&page->list, &pages);
595 addr = __get_free_page(GFP_KERNEL);
596 if (!addr)
597 goto free_pages;
598 page->page = (void *)addr;
602 for_each_buffer_cpu(buffer, cpu) {
603 cpu_buffer = buffer->buffers[cpu];
604 rb_insert_pages(cpu_buffer, &pages, new_pages);
607 BUG_ON(!list_empty(&pages));
609 out:
610 buffer->pages = nr_pages;
611 mutex_unlock(&buffer->mutex);
613 return size;
615 free_pages:
616 list_for_each_entry_safe(page, tmp, &pages, list) {
617 list_del_init(&page->list);
618 free_buffer_page(page);
620 mutex_unlock(&buffer->mutex);
621 return -ENOMEM;
624 static inline int rb_null_event(struct ring_buffer_event *event)
626 return event->type == RINGBUF_TYPE_PADDING;
629 static inline void *__rb_page_index(struct buffer_page *page, unsigned index)
631 return page->page + index;
634 static inline struct ring_buffer_event *
635 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
637 return __rb_page_index(cpu_buffer->reader_page,
638 cpu_buffer->reader_page->read);
641 static inline struct ring_buffer_event *
642 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
644 return __rb_page_index(cpu_buffer->head_page,
645 cpu_buffer->head_page->read);
648 static inline struct ring_buffer_event *
649 rb_iter_head_event(struct ring_buffer_iter *iter)
651 return __rb_page_index(iter->head_page, iter->head);
654 static inline unsigned rb_page_write(struct buffer_page *bpage)
656 return local_read(&bpage->write);
659 static inline unsigned rb_page_commit(struct buffer_page *bpage)
661 return local_read(&bpage->commit);
664 /* Size is determined by what has been commited */
665 static inline unsigned rb_page_size(struct buffer_page *bpage)
667 return rb_page_commit(bpage);
670 static inline unsigned
671 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
673 return rb_page_commit(cpu_buffer->commit_page);
676 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
678 return rb_page_commit(cpu_buffer->head_page);
682 * When the tail hits the head and the buffer is in overwrite mode,
683 * the head jumps to the next page and all content on the previous
684 * page is discarded. But before doing so, we update the overrun
685 * variable of the buffer.
687 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
689 struct ring_buffer_event *event;
690 unsigned long head;
692 for (head = 0; head < rb_head_size(cpu_buffer);
693 head += rb_event_length(event)) {
695 event = __rb_page_index(cpu_buffer->head_page, head);
696 BUG_ON(rb_null_event(event));
697 /* Only count data entries */
698 if (event->type != RINGBUF_TYPE_DATA)
699 continue;
700 cpu_buffer->overrun++;
701 cpu_buffer->entries--;
705 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
706 struct buffer_page **page)
708 struct list_head *p = (*page)->list.next;
710 if (p == &cpu_buffer->pages)
711 p = p->next;
713 *page = list_entry(p, struct buffer_page, list);
716 static inline unsigned
717 rb_event_index(struct ring_buffer_event *event)
719 unsigned long addr = (unsigned long)event;
721 return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
724 static inline int
725 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
726 struct ring_buffer_event *event)
728 unsigned long addr = (unsigned long)event;
729 unsigned long index;
731 index = rb_event_index(event);
732 addr &= PAGE_MASK;
734 return cpu_buffer->commit_page->page == (void *)addr &&
735 rb_commit_index(cpu_buffer) == index;
738 static inline void
739 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
740 struct ring_buffer_event *event)
742 unsigned long addr = (unsigned long)event;
743 unsigned long index;
745 index = rb_event_index(event);
746 addr &= PAGE_MASK;
748 while (cpu_buffer->commit_page->page != (void *)addr) {
749 RB_WARN_ON(cpu_buffer,
750 cpu_buffer->commit_page == cpu_buffer->tail_page);
751 cpu_buffer->commit_page->commit =
752 cpu_buffer->commit_page->write;
753 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
754 cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
757 /* Now set the commit to the event's index */
758 local_set(&cpu_buffer->commit_page->commit, index);
761 static inline void
762 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
765 * We only race with interrupts and NMIs on this CPU.
766 * If we own the commit event, then we can commit
767 * all others that interrupted us, since the interruptions
768 * are in stack format (they finish before they come
769 * back to us). This allows us to do a simple loop to
770 * assign the commit to the tail.
772 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
773 cpu_buffer->commit_page->commit =
774 cpu_buffer->commit_page->write;
775 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
776 cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
777 /* add barrier to keep gcc from optimizing too much */
778 barrier();
780 while (rb_commit_index(cpu_buffer) !=
781 rb_page_write(cpu_buffer->commit_page)) {
782 cpu_buffer->commit_page->commit =
783 cpu_buffer->commit_page->write;
784 barrier();
788 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
790 cpu_buffer->read_stamp = cpu_buffer->reader_page->time_stamp;
791 cpu_buffer->reader_page->read = 0;
794 static inline void rb_inc_iter(struct ring_buffer_iter *iter)
796 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
799 * The iterator could be on the reader page (it starts there).
800 * But the head could have moved, since the reader was
801 * found. Check for this case and assign the iterator
802 * to the head page instead of next.
804 if (iter->head_page == cpu_buffer->reader_page)
805 iter->head_page = cpu_buffer->head_page;
806 else
807 rb_inc_page(cpu_buffer, &iter->head_page);
809 iter->read_stamp = iter->head_page->time_stamp;
810 iter->head = 0;
814 * ring_buffer_update_event - update event type and data
815 * @event: the even to update
816 * @type: the type of event
817 * @length: the size of the event field in the ring buffer
819 * Update the type and data fields of the event. The length
820 * is the actual size that is written to the ring buffer,
821 * and with this, we can determine what to place into the
822 * data field.
824 static inline void
825 rb_update_event(struct ring_buffer_event *event,
826 unsigned type, unsigned length)
828 event->type = type;
830 switch (type) {
832 case RINGBUF_TYPE_PADDING:
833 break;
835 case RINGBUF_TYPE_TIME_EXTEND:
836 event->len =
837 (RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
838 >> RB_ALIGNMENT_SHIFT;
839 break;
841 case RINGBUF_TYPE_TIME_STAMP:
842 event->len =
843 (RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
844 >> RB_ALIGNMENT_SHIFT;
845 break;
847 case RINGBUF_TYPE_DATA:
848 length -= RB_EVNT_HDR_SIZE;
849 if (length > RB_MAX_SMALL_DATA) {
850 event->len = 0;
851 event->array[0] = length;
852 } else
853 event->len =
854 (length + (RB_ALIGNMENT-1))
855 >> RB_ALIGNMENT_SHIFT;
856 break;
857 default:
858 BUG();
862 static inline unsigned rb_calculate_event_length(unsigned length)
864 struct ring_buffer_event event; /* Used only for sizeof array */
866 /* zero length can cause confusions */
867 if (!length)
868 length = 1;
870 if (length > RB_MAX_SMALL_DATA)
871 length += sizeof(event.array[0]);
873 length += RB_EVNT_HDR_SIZE;
874 length = ALIGN(length, RB_ALIGNMENT);
876 return length;
879 static struct ring_buffer_event *
880 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
881 unsigned type, unsigned long length, u64 *ts)
883 struct buffer_page *tail_page, *head_page, *reader_page;
884 unsigned long tail, write;
885 struct ring_buffer *buffer = cpu_buffer->buffer;
886 struct ring_buffer_event *event;
887 unsigned long flags;
889 tail_page = cpu_buffer->tail_page;
890 write = local_add_return(length, &tail_page->write);
891 tail = write - length;
893 /* See if we shot pass the end of this buffer page */
894 if (write > BUF_PAGE_SIZE) {
895 struct buffer_page *next_page = tail_page;
897 spin_lock_irqsave(&cpu_buffer->lock, flags);
899 rb_inc_page(cpu_buffer, &next_page);
901 head_page = cpu_buffer->head_page;
902 reader_page = cpu_buffer->reader_page;
904 /* we grabbed the lock before incrementing */
905 RB_WARN_ON(cpu_buffer, next_page == reader_page);
908 * If for some reason, we had an interrupt storm that made
909 * it all the way around the buffer, bail, and warn
910 * about it.
912 if (unlikely(next_page == cpu_buffer->commit_page)) {
913 WARN_ON_ONCE(1);
914 goto out_unlock;
917 if (next_page == head_page) {
918 if (!(buffer->flags & RB_FL_OVERWRITE)) {
919 /* reset write */
920 if (tail <= BUF_PAGE_SIZE)
921 local_set(&tail_page->write, tail);
922 goto out_unlock;
925 /* tail_page has not moved yet? */
926 if (tail_page == cpu_buffer->tail_page) {
927 /* count overflows */
928 rb_update_overflow(cpu_buffer);
930 rb_inc_page(cpu_buffer, &head_page);
931 cpu_buffer->head_page = head_page;
932 cpu_buffer->head_page->read = 0;
937 * If the tail page is still the same as what we think
938 * it is, then it is up to us to update the tail
939 * pointer.
941 if (tail_page == cpu_buffer->tail_page) {
942 local_set(&next_page->write, 0);
943 local_set(&next_page->commit, 0);
944 cpu_buffer->tail_page = next_page;
946 /* reread the time stamp */
947 *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
948 cpu_buffer->tail_page->time_stamp = *ts;
952 * The actual tail page has moved forward.
954 if (tail < BUF_PAGE_SIZE) {
955 /* Mark the rest of the page with padding */
956 event = __rb_page_index(tail_page, tail);
957 event->type = RINGBUF_TYPE_PADDING;
960 if (tail <= BUF_PAGE_SIZE)
961 /* Set the write back to the previous setting */
962 local_set(&tail_page->write, tail);
965 * If this was a commit entry that failed,
966 * increment that too
968 if (tail_page == cpu_buffer->commit_page &&
969 tail == rb_commit_index(cpu_buffer)) {
970 rb_set_commit_to_write(cpu_buffer);
973 spin_unlock_irqrestore(&cpu_buffer->lock, flags);
975 /* fail and let the caller try again */
976 return ERR_PTR(-EAGAIN);
979 /* We reserved something on the buffer */
981 BUG_ON(write > BUF_PAGE_SIZE);
983 event = __rb_page_index(tail_page, tail);
984 rb_update_event(event, type, length);
987 * If this is a commit and the tail is zero, then update
988 * this page's time stamp.
990 if (!tail && rb_is_commit(cpu_buffer, event))
991 cpu_buffer->commit_page->time_stamp = *ts;
993 return event;
995 out_unlock:
996 spin_unlock_irqrestore(&cpu_buffer->lock, flags);
997 return NULL;
1000 static int
1001 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1002 u64 *ts, u64 *delta)
1004 struct ring_buffer_event *event;
1005 static int once;
1006 int ret;
1008 if (unlikely(*delta > (1ULL << 59) && !once++)) {
1009 printk(KERN_WARNING "Delta way too big! %llu"
1010 " ts=%llu write stamp = %llu\n",
1011 (unsigned long long)*delta,
1012 (unsigned long long)*ts,
1013 (unsigned long long)cpu_buffer->write_stamp);
1014 WARN_ON(1);
1018 * The delta is too big, we to add a
1019 * new timestamp.
1021 event = __rb_reserve_next(cpu_buffer,
1022 RINGBUF_TYPE_TIME_EXTEND,
1023 RB_LEN_TIME_EXTEND,
1024 ts);
1025 if (!event)
1026 return -EBUSY;
1028 if (PTR_ERR(event) == -EAGAIN)
1029 return -EAGAIN;
1031 /* Only a commited time event can update the write stamp */
1032 if (rb_is_commit(cpu_buffer, event)) {
1034 * If this is the first on the page, then we need to
1035 * update the page itself, and just put in a zero.
1037 if (rb_event_index(event)) {
1038 event->time_delta = *delta & TS_MASK;
1039 event->array[0] = *delta >> TS_SHIFT;
1040 } else {
1041 cpu_buffer->commit_page->time_stamp = *ts;
1042 event->time_delta = 0;
1043 event->array[0] = 0;
1045 cpu_buffer->write_stamp = *ts;
1046 /* let the caller know this was the commit */
1047 ret = 1;
1048 } else {
1049 /* Darn, this is just wasted space */
1050 event->time_delta = 0;
1051 event->array[0] = 0;
1052 ret = 0;
1055 *delta = 0;
1057 return ret;
1060 static struct ring_buffer_event *
1061 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1062 unsigned type, unsigned long length)
1064 struct ring_buffer_event *event;
1065 u64 ts, delta;
1066 int commit = 0;
1067 int nr_loops = 0;
1069 again:
1071 * We allow for interrupts to reenter here and do a trace.
1072 * If one does, it will cause this original code to loop
1073 * back here. Even with heavy interrupts happening, this
1074 * should only happen a few times in a row. If this happens
1075 * 1000 times in a row, there must be either an interrupt
1076 * storm or we have something buggy.
1077 * Bail!
1079 if (unlikely(++nr_loops > 1000)) {
1080 RB_WARN_ON(cpu_buffer, 1);
1081 return NULL;
1084 ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1087 * Only the first commit can update the timestamp.
1088 * Yes there is a race here. If an interrupt comes in
1089 * just after the conditional and it traces too, then it
1090 * will also check the deltas. More than one timestamp may
1091 * also be made. But only the entry that did the actual
1092 * commit will be something other than zero.
1094 if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1095 rb_page_write(cpu_buffer->tail_page) ==
1096 rb_commit_index(cpu_buffer)) {
1098 delta = ts - cpu_buffer->write_stamp;
1100 /* make sure this delta is calculated here */
1101 barrier();
1103 /* Did the write stamp get updated already? */
1104 if (unlikely(ts < cpu_buffer->write_stamp))
1105 delta = 0;
1107 if (test_time_stamp(delta)) {
1109 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1111 if (commit == -EBUSY)
1112 return NULL;
1114 if (commit == -EAGAIN)
1115 goto again;
1117 RB_WARN_ON(cpu_buffer, commit < 0);
1119 } else
1120 /* Non commits have zero deltas */
1121 delta = 0;
1123 event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1124 if (PTR_ERR(event) == -EAGAIN)
1125 goto again;
1127 if (!event) {
1128 if (unlikely(commit))
1130 * Ouch! We needed a timestamp and it was commited. But
1131 * we didn't get our event reserved.
1133 rb_set_commit_to_write(cpu_buffer);
1134 return NULL;
1138 * If the timestamp was commited, make the commit our entry
1139 * now so that we will update it when needed.
1141 if (commit)
1142 rb_set_commit_event(cpu_buffer, event);
1143 else if (!rb_is_commit(cpu_buffer, event))
1144 delta = 0;
1146 event->time_delta = delta;
1148 return event;
1151 static DEFINE_PER_CPU(int, rb_need_resched);
1154 * ring_buffer_lock_reserve - reserve a part of the buffer
1155 * @buffer: the ring buffer to reserve from
1156 * @length: the length of the data to reserve (excluding event header)
1157 * @flags: a pointer to save the interrupt flags
1159 * Returns a reseverd event on the ring buffer to copy directly to.
1160 * The user of this interface will need to get the body to write into
1161 * and can use the ring_buffer_event_data() interface.
1163 * The length is the length of the data needed, not the event length
1164 * which also includes the event header.
1166 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1167 * If NULL is returned, then nothing has been allocated or locked.
1169 struct ring_buffer_event *
1170 ring_buffer_lock_reserve(struct ring_buffer *buffer,
1171 unsigned long length,
1172 unsigned long *flags)
1174 struct ring_buffer_per_cpu *cpu_buffer;
1175 struct ring_buffer_event *event;
1176 int cpu, resched;
1178 if (ring_buffers_off)
1179 return NULL;
1181 if (atomic_read(&buffer->record_disabled))
1182 return NULL;
1184 /* If we are tracing schedule, we don't want to recurse */
1185 resched = need_resched();
1186 preempt_disable_notrace();
1188 cpu = raw_smp_processor_id();
1190 if (!cpu_isset(cpu, buffer->cpumask))
1191 goto out;
1193 cpu_buffer = buffer->buffers[cpu];
1195 if (atomic_read(&cpu_buffer->record_disabled))
1196 goto out;
1198 length = rb_calculate_event_length(length);
1199 if (length > BUF_PAGE_SIZE)
1200 goto out;
1202 event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1203 if (!event)
1204 goto out;
1207 * Need to store resched state on this cpu.
1208 * Only the first needs to.
1211 if (preempt_count() == 1)
1212 per_cpu(rb_need_resched, cpu) = resched;
1214 return event;
1216 out:
1217 if (resched)
1218 preempt_enable_notrace();
1219 else
1220 preempt_enable_notrace();
1221 return NULL;
1224 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1225 struct ring_buffer_event *event)
1227 cpu_buffer->entries++;
1229 /* Only process further if we own the commit */
1230 if (!rb_is_commit(cpu_buffer, event))
1231 return;
1233 cpu_buffer->write_stamp += event->time_delta;
1235 rb_set_commit_to_write(cpu_buffer);
1239 * ring_buffer_unlock_commit - commit a reserved
1240 * @buffer: The buffer to commit to
1241 * @event: The event pointer to commit.
1242 * @flags: the interrupt flags received from ring_buffer_lock_reserve.
1244 * This commits the data to the ring buffer, and releases any locks held.
1246 * Must be paired with ring_buffer_lock_reserve.
1248 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1249 struct ring_buffer_event *event,
1250 unsigned long flags)
1252 struct ring_buffer_per_cpu *cpu_buffer;
1253 int cpu = raw_smp_processor_id();
1255 cpu_buffer = buffer->buffers[cpu];
1257 rb_commit(cpu_buffer, event);
1260 * Only the last preempt count needs to restore preemption.
1262 if (preempt_count() == 1) {
1263 if (per_cpu(rb_need_resched, cpu))
1264 preempt_enable_no_resched_notrace();
1265 else
1266 preempt_enable_notrace();
1267 } else
1268 preempt_enable_no_resched_notrace();
1270 return 0;
1274 * ring_buffer_write - write data to the buffer without reserving
1275 * @buffer: The ring buffer to write to.
1276 * @length: The length of the data being written (excluding the event header)
1277 * @data: The data to write to the buffer.
1279 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1280 * one function. If you already have the data to write to the buffer, it
1281 * may be easier to simply call this function.
1283 * Note, like ring_buffer_lock_reserve, the length is the length of the data
1284 * and not the length of the event which would hold the header.
1286 int ring_buffer_write(struct ring_buffer *buffer,
1287 unsigned long length,
1288 void *data)
1290 struct ring_buffer_per_cpu *cpu_buffer;
1291 struct ring_buffer_event *event;
1292 unsigned long event_length;
1293 void *body;
1294 int ret = -EBUSY;
1295 int cpu, resched;
1297 if (ring_buffers_off)
1298 return -EBUSY;
1300 if (atomic_read(&buffer->record_disabled))
1301 return -EBUSY;
1303 resched = need_resched();
1304 preempt_disable_notrace();
1306 cpu = raw_smp_processor_id();
1308 if (!cpu_isset(cpu, buffer->cpumask))
1309 goto out;
1311 cpu_buffer = buffer->buffers[cpu];
1313 if (atomic_read(&cpu_buffer->record_disabled))
1314 goto out;
1316 event_length = rb_calculate_event_length(length);
1317 event = rb_reserve_next_event(cpu_buffer,
1318 RINGBUF_TYPE_DATA, event_length);
1319 if (!event)
1320 goto out;
1322 body = rb_event_data(event);
1324 memcpy(body, data, length);
1326 rb_commit(cpu_buffer, event);
1328 ret = 0;
1329 out:
1330 if (resched)
1331 preempt_enable_no_resched_notrace();
1332 else
1333 preempt_enable_notrace();
1335 return ret;
1338 static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1340 struct buffer_page *reader = cpu_buffer->reader_page;
1341 struct buffer_page *head = cpu_buffer->head_page;
1342 struct buffer_page *commit = cpu_buffer->commit_page;
1344 return reader->read == rb_page_commit(reader) &&
1345 (commit == reader ||
1346 (commit == head &&
1347 head->read == rb_page_commit(commit)));
1351 * ring_buffer_record_disable - stop all writes into the buffer
1352 * @buffer: The ring buffer to stop writes to.
1354 * This prevents all writes to the buffer. Any attempt to write
1355 * to the buffer after this will fail and return NULL.
1357 * The caller should call synchronize_sched() after this.
1359 void ring_buffer_record_disable(struct ring_buffer *buffer)
1361 atomic_inc(&buffer->record_disabled);
1365 * ring_buffer_record_enable - enable writes to the buffer
1366 * @buffer: The ring buffer to enable writes
1368 * Note, multiple disables will need the same number of enables
1369 * to truely enable the writing (much like preempt_disable).
1371 void ring_buffer_record_enable(struct ring_buffer *buffer)
1373 atomic_dec(&buffer->record_disabled);
1377 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1378 * @buffer: The ring buffer to stop writes to.
1379 * @cpu: The CPU buffer to stop
1381 * This prevents all writes to the buffer. Any attempt to write
1382 * to the buffer after this will fail and return NULL.
1384 * The caller should call synchronize_sched() after this.
1386 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1388 struct ring_buffer_per_cpu *cpu_buffer;
1390 if (!cpu_isset(cpu, buffer->cpumask))
1391 return;
1393 cpu_buffer = buffer->buffers[cpu];
1394 atomic_inc(&cpu_buffer->record_disabled);
1398 * ring_buffer_record_enable_cpu - enable writes to the buffer
1399 * @buffer: The ring buffer to enable writes
1400 * @cpu: The CPU to enable.
1402 * Note, multiple disables will need the same number of enables
1403 * to truely enable the writing (much like preempt_disable).
1405 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1407 struct ring_buffer_per_cpu *cpu_buffer;
1409 if (!cpu_isset(cpu, buffer->cpumask))
1410 return;
1412 cpu_buffer = buffer->buffers[cpu];
1413 atomic_dec(&cpu_buffer->record_disabled);
1417 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1418 * @buffer: The ring buffer
1419 * @cpu: The per CPU buffer to get the entries from.
1421 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1423 struct ring_buffer_per_cpu *cpu_buffer;
1425 if (!cpu_isset(cpu, buffer->cpumask))
1426 return 0;
1428 cpu_buffer = buffer->buffers[cpu];
1429 return cpu_buffer->entries;
1433 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1434 * @buffer: The ring buffer
1435 * @cpu: The per CPU buffer to get the number of overruns from
1437 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1439 struct ring_buffer_per_cpu *cpu_buffer;
1441 if (!cpu_isset(cpu, buffer->cpumask))
1442 return 0;
1444 cpu_buffer = buffer->buffers[cpu];
1445 return cpu_buffer->overrun;
1449 * ring_buffer_entries - get the number of entries in a buffer
1450 * @buffer: The ring buffer
1452 * Returns the total number of entries in the ring buffer
1453 * (all CPU entries)
1455 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1457 struct ring_buffer_per_cpu *cpu_buffer;
1458 unsigned long entries = 0;
1459 int cpu;
1461 /* if you care about this being correct, lock the buffer */
1462 for_each_buffer_cpu(buffer, cpu) {
1463 cpu_buffer = buffer->buffers[cpu];
1464 entries += cpu_buffer->entries;
1467 return entries;
1471 * ring_buffer_overrun_cpu - get the number of overruns in buffer
1472 * @buffer: The ring buffer
1474 * Returns the total number of overruns in the ring buffer
1475 * (all CPU entries)
1477 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1479 struct ring_buffer_per_cpu *cpu_buffer;
1480 unsigned long overruns = 0;
1481 int cpu;
1483 /* if you care about this being correct, lock the buffer */
1484 for_each_buffer_cpu(buffer, cpu) {
1485 cpu_buffer = buffer->buffers[cpu];
1486 overruns += cpu_buffer->overrun;
1489 return overruns;
1493 * ring_buffer_iter_reset - reset an iterator
1494 * @iter: The iterator to reset
1496 * Resets the iterator, so that it will start from the beginning
1497 * again.
1499 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1501 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1503 /* Iterator usage is expected to have record disabled */
1504 if (list_empty(&cpu_buffer->reader_page->list)) {
1505 iter->head_page = cpu_buffer->head_page;
1506 iter->head = cpu_buffer->head_page->read;
1507 } else {
1508 iter->head_page = cpu_buffer->reader_page;
1509 iter->head = cpu_buffer->reader_page->read;
1511 if (iter->head)
1512 iter->read_stamp = cpu_buffer->read_stamp;
1513 else
1514 iter->read_stamp = iter->head_page->time_stamp;
1518 * ring_buffer_iter_empty - check if an iterator has no more to read
1519 * @iter: The iterator to check
1521 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1523 struct ring_buffer_per_cpu *cpu_buffer;
1525 cpu_buffer = iter->cpu_buffer;
1527 return iter->head_page == cpu_buffer->commit_page &&
1528 iter->head == rb_commit_index(cpu_buffer);
1531 static void
1532 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1533 struct ring_buffer_event *event)
1535 u64 delta;
1537 switch (event->type) {
1538 case RINGBUF_TYPE_PADDING:
1539 return;
1541 case RINGBUF_TYPE_TIME_EXTEND:
1542 delta = event->array[0];
1543 delta <<= TS_SHIFT;
1544 delta += event->time_delta;
1545 cpu_buffer->read_stamp += delta;
1546 return;
1548 case RINGBUF_TYPE_TIME_STAMP:
1549 /* FIXME: not implemented */
1550 return;
1552 case RINGBUF_TYPE_DATA:
1553 cpu_buffer->read_stamp += event->time_delta;
1554 return;
1556 default:
1557 BUG();
1559 return;
1562 static void
1563 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1564 struct ring_buffer_event *event)
1566 u64 delta;
1568 switch (event->type) {
1569 case RINGBUF_TYPE_PADDING:
1570 return;
1572 case RINGBUF_TYPE_TIME_EXTEND:
1573 delta = event->array[0];
1574 delta <<= TS_SHIFT;
1575 delta += event->time_delta;
1576 iter->read_stamp += delta;
1577 return;
1579 case RINGBUF_TYPE_TIME_STAMP:
1580 /* FIXME: not implemented */
1581 return;
1583 case RINGBUF_TYPE_DATA:
1584 iter->read_stamp += event->time_delta;
1585 return;
1587 default:
1588 BUG();
1590 return;
1593 static struct buffer_page *
1594 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1596 struct buffer_page *reader = NULL;
1597 unsigned long flags;
1598 int nr_loops = 0;
1600 spin_lock_irqsave(&cpu_buffer->lock, flags);
1602 again:
1604 * This should normally only loop twice. But because the
1605 * start of the reader inserts an empty page, it causes
1606 * a case where we will loop three times. There should be no
1607 * reason to loop four times (that I know of).
1609 if (unlikely(++nr_loops > 3)) {
1610 RB_WARN_ON(cpu_buffer, 1);
1611 reader = NULL;
1612 goto out;
1615 reader = cpu_buffer->reader_page;
1617 /* If there's more to read, return this page */
1618 if (cpu_buffer->reader_page->read < rb_page_size(reader))
1619 goto out;
1621 /* Never should we have an index greater than the size */
1622 RB_WARN_ON(cpu_buffer,
1623 cpu_buffer->reader_page->read > rb_page_size(reader));
1625 /* check if we caught up to the tail */
1626 reader = NULL;
1627 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
1628 goto out;
1631 * Splice the empty reader page into the list around the head.
1632 * Reset the reader page to size zero.
1635 reader = cpu_buffer->head_page;
1636 cpu_buffer->reader_page->list.next = reader->list.next;
1637 cpu_buffer->reader_page->list.prev = reader->list.prev;
1639 local_set(&cpu_buffer->reader_page->write, 0);
1640 local_set(&cpu_buffer->reader_page->commit, 0);
1642 /* Make the reader page now replace the head */
1643 reader->list.prev->next = &cpu_buffer->reader_page->list;
1644 reader->list.next->prev = &cpu_buffer->reader_page->list;
1647 * If the tail is on the reader, then we must set the head
1648 * to the inserted page, otherwise we set it one before.
1650 cpu_buffer->head_page = cpu_buffer->reader_page;
1652 if (cpu_buffer->commit_page != reader)
1653 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1655 /* Finally update the reader page to the new head */
1656 cpu_buffer->reader_page = reader;
1657 rb_reset_reader_page(cpu_buffer);
1659 goto again;
1661 out:
1662 spin_unlock_irqrestore(&cpu_buffer->lock, flags);
1664 return reader;
1667 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1669 struct ring_buffer_event *event;
1670 struct buffer_page *reader;
1671 unsigned length;
1673 reader = rb_get_reader_page(cpu_buffer);
1675 /* This function should not be called when buffer is empty */
1676 BUG_ON(!reader);
1678 event = rb_reader_event(cpu_buffer);
1680 if (event->type == RINGBUF_TYPE_DATA)
1681 cpu_buffer->entries--;
1683 rb_update_read_stamp(cpu_buffer, event);
1685 length = rb_event_length(event);
1686 cpu_buffer->reader_page->read += length;
1689 static void rb_advance_iter(struct ring_buffer_iter *iter)
1691 struct ring_buffer *buffer;
1692 struct ring_buffer_per_cpu *cpu_buffer;
1693 struct ring_buffer_event *event;
1694 unsigned length;
1696 cpu_buffer = iter->cpu_buffer;
1697 buffer = cpu_buffer->buffer;
1700 * Check if we are at the end of the buffer.
1702 if (iter->head >= rb_page_size(iter->head_page)) {
1703 BUG_ON(iter->head_page == cpu_buffer->commit_page);
1704 rb_inc_iter(iter);
1705 return;
1708 event = rb_iter_head_event(iter);
1710 length = rb_event_length(event);
1713 * This should not be called to advance the header if we are
1714 * at the tail of the buffer.
1716 BUG_ON((iter->head_page == cpu_buffer->commit_page) &&
1717 (iter->head + length > rb_commit_index(cpu_buffer)));
1719 rb_update_iter_read_stamp(iter, event);
1721 iter->head += length;
1723 /* check for end of page padding */
1724 if ((iter->head >= rb_page_size(iter->head_page)) &&
1725 (iter->head_page != cpu_buffer->commit_page))
1726 rb_advance_iter(iter);
1730 * ring_buffer_peek - peek at the next event to be read
1731 * @buffer: The ring buffer to read
1732 * @cpu: The cpu to peak at
1733 * @ts: The timestamp counter of this event.
1735 * This will return the event that will be read next, but does
1736 * not consume the data.
1738 struct ring_buffer_event *
1739 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1741 struct ring_buffer_per_cpu *cpu_buffer;
1742 struct ring_buffer_event *event;
1743 struct buffer_page *reader;
1744 int nr_loops = 0;
1746 if (!cpu_isset(cpu, buffer->cpumask))
1747 return NULL;
1749 cpu_buffer = buffer->buffers[cpu];
1751 again:
1753 * We repeat when a timestamp is encountered. It is possible
1754 * to get multiple timestamps from an interrupt entering just
1755 * as one timestamp is about to be written. The max times
1756 * that this can happen is the number of nested interrupts we
1757 * can have. Nesting 10 deep of interrupts is clearly
1758 * an anomaly.
1760 if (unlikely(++nr_loops > 10)) {
1761 RB_WARN_ON(cpu_buffer, 1);
1762 return NULL;
1765 reader = rb_get_reader_page(cpu_buffer);
1766 if (!reader)
1767 return NULL;
1769 event = rb_reader_event(cpu_buffer);
1771 switch (event->type) {
1772 case RINGBUF_TYPE_PADDING:
1773 RB_WARN_ON(cpu_buffer, 1);
1774 rb_advance_reader(cpu_buffer);
1775 return NULL;
1777 case RINGBUF_TYPE_TIME_EXTEND:
1778 /* Internal data, OK to advance */
1779 rb_advance_reader(cpu_buffer);
1780 goto again;
1782 case RINGBUF_TYPE_TIME_STAMP:
1783 /* FIXME: not implemented */
1784 rb_advance_reader(cpu_buffer);
1785 goto again;
1787 case RINGBUF_TYPE_DATA:
1788 if (ts) {
1789 *ts = cpu_buffer->read_stamp + event->time_delta;
1790 ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1792 return event;
1794 default:
1795 BUG();
1798 return NULL;
1802 * ring_buffer_iter_peek - peek at the next event to be read
1803 * @iter: The ring buffer iterator
1804 * @ts: The timestamp counter of this event.
1806 * This will return the event that will be read next, but does
1807 * not increment the iterator.
1809 struct ring_buffer_event *
1810 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
1812 struct ring_buffer *buffer;
1813 struct ring_buffer_per_cpu *cpu_buffer;
1814 struct ring_buffer_event *event;
1815 int nr_loops = 0;
1817 if (ring_buffer_iter_empty(iter))
1818 return NULL;
1820 cpu_buffer = iter->cpu_buffer;
1821 buffer = cpu_buffer->buffer;
1823 again:
1825 * We repeat when a timestamp is encountered. It is possible
1826 * to get multiple timestamps from an interrupt entering just
1827 * as one timestamp is about to be written. The max times
1828 * that this can happen is the number of nested interrupts we
1829 * can have. Nesting 10 deep of interrupts is clearly
1830 * an anomaly.
1832 if (unlikely(++nr_loops > 10)) {
1833 RB_WARN_ON(cpu_buffer, 1);
1834 return NULL;
1837 if (rb_per_cpu_empty(cpu_buffer))
1838 return NULL;
1840 event = rb_iter_head_event(iter);
1842 switch (event->type) {
1843 case RINGBUF_TYPE_PADDING:
1844 rb_inc_iter(iter);
1845 goto again;
1847 case RINGBUF_TYPE_TIME_EXTEND:
1848 /* Internal data, OK to advance */
1849 rb_advance_iter(iter);
1850 goto again;
1852 case RINGBUF_TYPE_TIME_STAMP:
1853 /* FIXME: not implemented */
1854 rb_advance_iter(iter);
1855 goto again;
1857 case RINGBUF_TYPE_DATA:
1858 if (ts) {
1859 *ts = iter->read_stamp + event->time_delta;
1860 ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1862 return event;
1864 default:
1865 BUG();
1868 return NULL;
1872 * ring_buffer_consume - return an event and consume it
1873 * @buffer: The ring buffer to get the next event from
1875 * Returns the next event in the ring buffer, and that event is consumed.
1876 * Meaning, that sequential reads will keep returning a different event,
1877 * and eventually empty the ring buffer if the producer is slower.
1879 struct ring_buffer_event *
1880 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
1882 struct ring_buffer_per_cpu *cpu_buffer;
1883 struct ring_buffer_event *event;
1885 if (!cpu_isset(cpu, buffer->cpumask))
1886 return NULL;
1888 event = ring_buffer_peek(buffer, cpu, ts);
1889 if (!event)
1890 return NULL;
1892 cpu_buffer = buffer->buffers[cpu];
1893 rb_advance_reader(cpu_buffer);
1895 return event;
1899 * ring_buffer_read_start - start a non consuming read of the buffer
1900 * @buffer: The ring buffer to read from
1901 * @cpu: The cpu buffer to iterate over
1903 * This starts up an iteration through the buffer. It also disables
1904 * the recording to the buffer until the reading is finished.
1905 * This prevents the reading from being corrupted. This is not
1906 * a consuming read, so a producer is not expected.
1908 * Must be paired with ring_buffer_finish.
1910 struct ring_buffer_iter *
1911 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
1913 struct ring_buffer_per_cpu *cpu_buffer;
1914 struct ring_buffer_iter *iter;
1915 unsigned long flags;
1917 if (!cpu_isset(cpu, buffer->cpumask))
1918 return NULL;
1920 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
1921 if (!iter)
1922 return NULL;
1924 cpu_buffer = buffer->buffers[cpu];
1926 iter->cpu_buffer = cpu_buffer;
1928 atomic_inc(&cpu_buffer->record_disabled);
1929 synchronize_sched();
1931 spin_lock_irqsave(&cpu_buffer->lock, flags);
1932 ring_buffer_iter_reset(iter);
1933 spin_unlock_irqrestore(&cpu_buffer->lock, flags);
1935 return iter;
1939 * ring_buffer_finish - finish reading the iterator of the buffer
1940 * @iter: The iterator retrieved by ring_buffer_start
1942 * This re-enables the recording to the buffer, and frees the
1943 * iterator.
1945 void
1946 ring_buffer_read_finish(struct ring_buffer_iter *iter)
1948 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1950 atomic_dec(&cpu_buffer->record_disabled);
1951 kfree(iter);
1955 * ring_buffer_read - read the next item in the ring buffer by the iterator
1956 * @iter: The ring buffer iterator
1957 * @ts: The time stamp of the event read.
1959 * This reads the next event in the ring buffer and increments the iterator.
1961 struct ring_buffer_event *
1962 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
1964 struct ring_buffer_event *event;
1966 event = ring_buffer_iter_peek(iter, ts);
1967 if (!event)
1968 return NULL;
1970 rb_advance_iter(iter);
1972 return event;
1976 * ring_buffer_size - return the size of the ring buffer (in bytes)
1977 * @buffer: The ring buffer.
1979 unsigned long ring_buffer_size(struct ring_buffer *buffer)
1981 return BUF_PAGE_SIZE * buffer->pages;
1984 static void
1985 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
1987 cpu_buffer->head_page
1988 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
1989 local_set(&cpu_buffer->head_page->write, 0);
1990 local_set(&cpu_buffer->head_page->commit, 0);
1992 cpu_buffer->head_page->read = 0;
1994 cpu_buffer->tail_page = cpu_buffer->head_page;
1995 cpu_buffer->commit_page = cpu_buffer->head_page;
1997 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1998 local_set(&cpu_buffer->reader_page->write, 0);
1999 local_set(&cpu_buffer->reader_page->commit, 0);
2000 cpu_buffer->reader_page->read = 0;
2002 cpu_buffer->overrun = 0;
2003 cpu_buffer->entries = 0;
2007 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2008 * @buffer: The ring buffer to reset a per cpu buffer of
2009 * @cpu: The CPU buffer to be reset
2011 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2013 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2014 unsigned long flags;
2016 if (!cpu_isset(cpu, buffer->cpumask))
2017 return;
2019 spin_lock_irqsave(&cpu_buffer->lock, flags);
2021 rb_reset_cpu(cpu_buffer);
2023 spin_unlock_irqrestore(&cpu_buffer->lock, flags);
2027 * ring_buffer_reset - reset a ring buffer
2028 * @buffer: The ring buffer to reset all cpu buffers
2030 void ring_buffer_reset(struct ring_buffer *buffer)
2032 int cpu;
2034 for_each_buffer_cpu(buffer, cpu)
2035 ring_buffer_reset_cpu(buffer, cpu);
2039 * rind_buffer_empty - is the ring buffer empty?
2040 * @buffer: The ring buffer to test
2042 int ring_buffer_empty(struct ring_buffer *buffer)
2044 struct ring_buffer_per_cpu *cpu_buffer;
2045 int cpu;
2047 /* yes this is racy, but if you don't like the race, lock the buffer */
2048 for_each_buffer_cpu(buffer, cpu) {
2049 cpu_buffer = buffer->buffers[cpu];
2050 if (!rb_per_cpu_empty(cpu_buffer))
2051 return 0;
2053 return 1;
2057 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2058 * @buffer: The ring buffer
2059 * @cpu: The CPU buffer to test
2061 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2063 struct ring_buffer_per_cpu *cpu_buffer;
2065 if (!cpu_isset(cpu, buffer->cpumask))
2066 return 1;
2068 cpu_buffer = buffer->buffers[cpu];
2069 return rb_per_cpu_empty(cpu_buffer);
2073 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2074 * @buffer_a: One buffer to swap with
2075 * @buffer_b: The other buffer to swap with
2077 * This function is useful for tracers that want to take a "snapshot"
2078 * of a CPU buffer and has another back up buffer lying around.
2079 * it is expected that the tracer handles the cpu buffer not being
2080 * used at the moment.
2082 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2083 struct ring_buffer *buffer_b, int cpu)
2085 struct ring_buffer_per_cpu *cpu_buffer_a;
2086 struct ring_buffer_per_cpu *cpu_buffer_b;
2088 if (!cpu_isset(cpu, buffer_a->cpumask) ||
2089 !cpu_isset(cpu, buffer_b->cpumask))
2090 return -EINVAL;
2092 /* At least make sure the two buffers are somewhat the same */
2093 if (buffer_a->size != buffer_b->size ||
2094 buffer_a->pages != buffer_b->pages)
2095 return -EINVAL;
2097 cpu_buffer_a = buffer_a->buffers[cpu];
2098 cpu_buffer_b = buffer_b->buffers[cpu];
2101 * We can't do a synchronize_sched here because this
2102 * function can be called in atomic context.
2103 * Normally this will be called from the same CPU as cpu.
2104 * If not it's up to the caller to protect this.
2106 atomic_inc(&cpu_buffer_a->record_disabled);
2107 atomic_inc(&cpu_buffer_b->record_disabled);
2109 buffer_a->buffers[cpu] = cpu_buffer_b;
2110 buffer_b->buffers[cpu] = cpu_buffer_a;
2112 cpu_buffer_b->buffer = buffer_a;
2113 cpu_buffer_a->buffer = buffer_b;
2115 atomic_dec(&cpu_buffer_a->record_disabled);
2116 atomic_dec(&cpu_buffer_b->record_disabled);
2118 return 0;
2121 static ssize_t
2122 rb_simple_read(struct file *filp, char __user *ubuf,
2123 size_t cnt, loff_t *ppos)
2125 int *p = filp->private_data;
2126 char buf[64];
2127 int r;
2129 /* !ring_buffers_off == tracing_on */
2130 r = sprintf(buf, "%d\n", !*p);
2132 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2135 static ssize_t
2136 rb_simple_write(struct file *filp, const char __user *ubuf,
2137 size_t cnt, loff_t *ppos)
2139 int *p = filp->private_data;
2140 char buf[64];
2141 long val;
2142 int ret;
2144 if (cnt >= sizeof(buf))
2145 return -EINVAL;
2147 if (copy_from_user(&buf, ubuf, cnt))
2148 return -EFAULT;
2150 buf[cnt] = 0;
2152 ret = strict_strtoul(buf, 10, &val);
2153 if (ret < 0)
2154 return ret;
2156 /* !ring_buffers_off == tracing_on */
2157 *p = !val;
2159 (*ppos)++;
2161 return cnt;
2164 static struct file_operations rb_simple_fops = {
2165 .open = tracing_open_generic,
2166 .read = rb_simple_read,
2167 .write = rb_simple_write,
2171 static __init int rb_init_debugfs(void)
2173 struct dentry *d_tracer;
2174 struct dentry *entry;
2176 d_tracer = tracing_init_dentry();
2178 entry = debugfs_create_file("tracing_on", 0644, d_tracer,
2179 &ring_buffers_off, &rb_simple_fops);
2180 if (!entry)
2181 pr_warning("Could not create debugfs 'tracing_on' entry\n");
2183 return 0;
2186 fs_initcall(rb_init_debugfs);