orinoco: fix last beacon reporting on 64-bit systems
[linux-2.6/sactl.git] / kernel / sched.c
blob9b1e79371c207b37c1617d3f7c0460709a3cc39b
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
80 #include "sched_cpupri.h"
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101 * Helpers for converting nanosecond timing to jiffy resolution
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 * These are the 'tuning knobs' of the scheduler:
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
114 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * single value that denotes runtime == period, ie unlimited time.
119 #define RUNTIME_INF ((u64)~0ULL)
121 #ifdef CONFIG_SMP
123 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
124 * Since cpu_power is a 'constant', we can use a reciprocal divide.
126 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
128 return reciprocal_divide(load, sg->reciprocal_cpu_power);
132 * Each time a sched group cpu_power is changed,
133 * we must compute its reciprocal value
135 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
137 sg->__cpu_power += val;
138 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
140 #endif
142 static inline int rt_policy(int policy)
144 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
145 return 1;
146 return 0;
149 static inline int task_has_rt_policy(struct task_struct *p)
151 return rt_policy(p->policy);
155 * This is the priority-queue data structure of the RT scheduling class:
157 struct rt_prio_array {
158 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
159 struct list_head queue[MAX_RT_PRIO];
162 struct rt_bandwidth {
163 /* nests inside the rq lock: */
164 spinlock_t rt_runtime_lock;
165 ktime_t rt_period;
166 u64 rt_runtime;
167 struct hrtimer rt_period_timer;
170 static struct rt_bandwidth def_rt_bandwidth;
172 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
174 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
176 struct rt_bandwidth *rt_b =
177 container_of(timer, struct rt_bandwidth, rt_period_timer);
178 ktime_t now;
179 int overrun;
180 int idle = 0;
182 for (;;) {
183 now = hrtimer_cb_get_time(timer);
184 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
186 if (!overrun)
187 break;
189 idle = do_sched_rt_period_timer(rt_b, overrun);
192 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
195 static
196 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
198 rt_b->rt_period = ns_to_ktime(period);
199 rt_b->rt_runtime = runtime;
201 spin_lock_init(&rt_b->rt_runtime_lock);
203 hrtimer_init(&rt_b->rt_period_timer,
204 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
205 rt_b->rt_period_timer.function = sched_rt_period_timer;
206 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
209 static inline int rt_bandwidth_enabled(void)
211 return sysctl_sched_rt_runtime >= 0;
214 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
216 ktime_t now;
218 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
219 return;
221 if (hrtimer_active(&rt_b->rt_period_timer))
222 return;
224 spin_lock(&rt_b->rt_runtime_lock);
225 for (;;) {
226 if (hrtimer_active(&rt_b->rt_period_timer))
227 break;
229 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
230 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
231 hrtimer_start_expires(&rt_b->rt_period_timer,
232 HRTIMER_MODE_ABS);
234 spin_unlock(&rt_b->rt_runtime_lock);
237 #ifdef CONFIG_RT_GROUP_SCHED
238 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
240 hrtimer_cancel(&rt_b->rt_period_timer);
242 #endif
245 * sched_domains_mutex serializes calls to arch_init_sched_domains,
246 * detach_destroy_domains and partition_sched_domains.
248 static DEFINE_MUTEX(sched_domains_mutex);
250 #ifdef CONFIG_GROUP_SCHED
252 #include <linux/cgroup.h>
254 struct cfs_rq;
256 static LIST_HEAD(task_groups);
258 /* task group related information */
259 struct task_group {
260 #ifdef CONFIG_CGROUP_SCHED
261 struct cgroup_subsys_state css;
262 #endif
264 #ifdef CONFIG_FAIR_GROUP_SCHED
265 /* schedulable entities of this group on each cpu */
266 struct sched_entity **se;
267 /* runqueue "owned" by this group on each cpu */
268 struct cfs_rq **cfs_rq;
269 unsigned long shares;
270 #endif
272 #ifdef CONFIG_RT_GROUP_SCHED
273 struct sched_rt_entity **rt_se;
274 struct rt_rq **rt_rq;
276 struct rt_bandwidth rt_bandwidth;
277 #endif
279 struct rcu_head rcu;
280 struct list_head list;
282 struct task_group *parent;
283 struct list_head siblings;
284 struct list_head children;
287 #ifdef CONFIG_USER_SCHED
290 * Root task group.
291 * Every UID task group (including init_task_group aka UID-0) will
292 * be a child to this group.
294 struct task_group root_task_group;
296 #ifdef CONFIG_FAIR_GROUP_SCHED
297 /* Default task group's sched entity on each cpu */
298 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
299 /* Default task group's cfs_rq on each cpu */
300 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
301 #endif /* CONFIG_FAIR_GROUP_SCHED */
303 #ifdef CONFIG_RT_GROUP_SCHED
304 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
305 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
306 #endif /* CONFIG_RT_GROUP_SCHED */
307 #else /* !CONFIG_USER_SCHED */
308 #define root_task_group init_task_group
309 #endif /* CONFIG_USER_SCHED */
311 /* task_group_lock serializes add/remove of task groups and also changes to
312 * a task group's cpu shares.
314 static DEFINE_SPINLOCK(task_group_lock);
316 #ifdef CONFIG_FAIR_GROUP_SCHED
317 #ifdef CONFIG_USER_SCHED
318 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
319 #else /* !CONFIG_USER_SCHED */
320 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
321 #endif /* CONFIG_USER_SCHED */
324 * A weight of 0 or 1 can cause arithmetics problems.
325 * A weight of a cfs_rq is the sum of weights of which entities
326 * are queued on this cfs_rq, so a weight of a entity should not be
327 * too large, so as the shares value of a task group.
328 * (The default weight is 1024 - so there's no practical
329 * limitation from this.)
331 #define MIN_SHARES 2
332 #define MAX_SHARES (1UL << 18)
334 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
335 #endif
337 /* Default task group.
338 * Every task in system belong to this group at bootup.
340 struct task_group init_task_group;
342 /* return group to which a task belongs */
343 static inline struct task_group *task_group(struct task_struct *p)
345 struct task_group *tg;
347 #ifdef CONFIG_USER_SCHED
348 tg = p->user->tg;
349 #elif defined(CONFIG_CGROUP_SCHED)
350 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
351 struct task_group, css);
352 #else
353 tg = &init_task_group;
354 #endif
355 return tg;
358 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
359 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
361 #ifdef CONFIG_FAIR_GROUP_SCHED
362 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
363 p->se.parent = task_group(p)->se[cpu];
364 #endif
366 #ifdef CONFIG_RT_GROUP_SCHED
367 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
368 p->rt.parent = task_group(p)->rt_se[cpu];
369 #endif
372 #else
374 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
375 static inline struct task_group *task_group(struct task_struct *p)
377 return NULL;
380 #endif /* CONFIG_GROUP_SCHED */
382 /* CFS-related fields in a runqueue */
383 struct cfs_rq {
384 struct load_weight load;
385 unsigned long nr_running;
387 u64 exec_clock;
388 u64 min_vruntime;
390 struct rb_root tasks_timeline;
391 struct rb_node *rb_leftmost;
393 struct list_head tasks;
394 struct list_head *balance_iterator;
397 * 'curr' points to currently running entity on this cfs_rq.
398 * It is set to NULL otherwise (i.e when none are currently running).
400 struct sched_entity *curr, *next, *last;
402 unsigned int nr_spread_over;
404 #ifdef CONFIG_FAIR_GROUP_SCHED
405 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
408 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
409 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
410 * (like users, containers etc.)
412 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
413 * list is used during load balance.
415 struct list_head leaf_cfs_rq_list;
416 struct task_group *tg; /* group that "owns" this runqueue */
418 #ifdef CONFIG_SMP
420 * the part of load.weight contributed by tasks
422 unsigned long task_weight;
425 * h_load = weight * f(tg)
427 * Where f(tg) is the recursive weight fraction assigned to
428 * this group.
430 unsigned long h_load;
433 * this cpu's part of tg->shares
435 unsigned long shares;
438 * load.weight at the time we set shares
440 unsigned long rq_weight;
441 #endif
442 #endif
445 /* Real-Time classes' related field in a runqueue: */
446 struct rt_rq {
447 struct rt_prio_array active;
448 unsigned long rt_nr_running;
449 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
450 int highest_prio; /* highest queued rt task prio */
451 #endif
452 #ifdef CONFIG_SMP
453 unsigned long rt_nr_migratory;
454 int overloaded;
455 #endif
456 int rt_throttled;
457 u64 rt_time;
458 u64 rt_runtime;
459 /* Nests inside the rq lock: */
460 spinlock_t rt_runtime_lock;
462 #ifdef CONFIG_RT_GROUP_SCHED
463 unsigned long rt_nr_boosted;
465 struct rq *rq;
466 struct list_head leaf_rt_rq_list;
467 struct task_group *tg;
468 struct sched_rt_entity *rt_se;
469 #endif
472 #ifdef CONFIG_SMP
475 * We add the notion of a root-domain which will be used to define per-domain
476 * variables. Each exclusive cpuset essentially defines an island domain by
477 * fully partitioning the member cpus from any other cpuset. Whenever a new
478 * exclusive cpuset is created, we also create and attach a new root-domain
479 * object.
482 struct root_domain {
483 atomic_t refcount;
484 cpumask_t span;
485 cpumask_t online;
488 * The "RT overload" flag: it gets set if a CPU has more than
489 * one runnable RT task.
491 cpumask_t rto_mask;
492 atomic_t rto_count;
493 #ifdef CONFIG_SMP
494 struct cpupri cpupri;
495 #endif
499 * By default the system creates a single root-domain with all cpus as
500 * members (mimicking the global state we have today).
502 static struct root_domain def_root_domain;
504 #endif
507 * This is the main, per-CPU runqueue data structure.
509 * Locking rule: those places that want to lock multiple runqueues
510 * (such as the load balancing or the thread migration code), lock
511 * acquire operations must be ordered by ascending &runqueue.
513 struct rq {
514 /* runqueue lock: */
515 spinlock_t lock;
518 * nr_running and cpu_load should be in the same cacheline because
519 * remote CPUs use both these fields when doing load calculation.
521 unsigned long nr_running;
522 #define CPU_LOAD_IDX_MAX 5
523 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
524 unsigned char idle_at_tick;
525 #ifdef CONFIG_NO_HZ
526 unsigned long last_tick_seen;
527 unsigned char in_nohz_recently;
528 #endif
529 /* capture load from *all* tasks on this cpu: */
530 struct load_weight load;
531 unsigned long nr_load_updates;
532 u64 nr_switches;
534 struct cfs_rq cfs;
535 struct rt_rq rt;
537 #ifdef CONFIG_FAIR_GROUP_SCHED
538 /* list of leaf cfs_rq on this cpu: */
539 struct list_head leaf_cfs_rq_list;
540 #endif
541 #ifdef CONFIG_RT_GROUP_SCHED
542 struct list_head leaf_rt_rq_list;
543 #endif
546 * This is part of a global counter where only the total sum
547 * over all CPUs matters. A task can increase this counter on
548 * one CPU and if it got migrated afterwards it may decrease
549 * it on another CPU. Always updated under the runqueue lock:
551 unsigned long nr_uninterruptible;
553 struct task_struct *curr, *idle;
554 unsigned long next_balance;
555 struct mm_struct *prev_mm;
557 u64 clock;
559 atomic_t nr_iowait;
561 #ifdef CONFIG_SMP
562 struct root_domain *rd;
563 struct sched_domain *sd;
565 /* For active balancing */
566 int active_balance;
567 int push_cpu;
568 /* cpu of this runqueue: */
569 int cpu;
570 int online;
572 unsigned long avg_load_per_task;
574 struct task_struct *migration_thread;
575 struct list_head migration_queue;
576 #endif
578 #ifdef CONFIG_SCHED_HRTICK
579 #ifdef CONFIG_SMP
580 int hrtick_csd_pending;
581 struct call_single_data hrtick_csd;
582 #endif
583 struct hrtimer hrtick_timer;
584 #endif
586 #ifdef CONFIG_SCHEDSTATS
587 /* latency stats */
588 struct sched_info rq_sched_info;
590 /* sys_sched_yield() stats */
591 unsigned int yld_exp_empty;
592 unsigned int yld_act_empty;
593 unsigned int yld_both_empty;
594 unsigned int yld_count;
596 /* schedule() stats */
597 unsigned int sched_switch;
598 unsigned int sched_count;
599 unsigned int sched_goidle;
601 /* try_to_wake_up() stats */
602 unsigned int ttwu_count;
603 unsigned int ttwu_local;
605 /* BKL stats */
606 unsigned int bkl_count;
607 #endif
610 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
612 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
614 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
617 static inline int cpu_of(struct rq *rq)
619 #ifdef CONFIG_SMP
620 return rq->cpu;
621 #else
622 return 0;
623 #endif
627 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
628 * See detach_destroy_domains: synchronize_sched for details.
630 * The domain tree of any CPU may only be accessed from within
631 * preempt-disabled sections.
633 #define for_each_domain(cpu, __sd) \
634 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
636 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
637 #define this_rq() (&__get_cpu_var(runqueues))
638 #define task_rq(p) cpu_rq(task_cpu(p))
639 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
641 static inline void update_rq_clock(struct rq *rq)
643 rq->clock = sched_clock_cpu(cpu_of(rq));
647 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
649 #ifdef CONFIG_SCHED_DEBUG
650 # define const_debug __read_mostly
651 #else
652 # define const_debug static const
653 #endif
656 * runqueue_is_locked
658 * Returns true if the current cpu runqueue is locked.
659 * This interface allows printk to be called with the runqueue lock
660 * held and know whether or not it is OK to wake up the klogd.
662 int runqueue_is_locked(void)
664 int cpu = get_cpu();
665 struct rq *rq = cpu_rq(cpu);
666 int ret;
668 ret = spin_is_locked(&rq->lock);
669 put_cpu();
670 return ret;
674 * Debugging: various feature bits
677 #define SCHED_FEAT(name, enabled) \
678 __SCHED_FEAT_##name ,
680 enum {
681 #include "sched_features.h"
684 #undef SCHED_FEAT
686 #define SCHED_FEAT(name, enabled) \
687 (1UL << __SCHED_FEAT_##name) * enabled |
689 const_debug unsigned int sysctl_sched_features =
690 #include "sched_features.h"
693 #undef SCHED_FEAT
695 #ifdef CONFIG_SCHED_DEBUG
696 #define SCHED_FEAT(name, enabled) \
697 #name ,
699 static __read_mostly char *sched_feat_names[] = {
700 #include "sched_features.h"
701 NULL
704 #undef SCHED_FEAT
706 static int sched_feat_open(struct inode *inode, struct file *filp)
708 filp->private_data = inode->i_private;
709 return 0;
712 static ssize_t
713 sched_feat_read(struct file *filp, char __user *ubuf,
714 size_t cnt, loff_t *ppos)
716 char *buf;
717 int r = 0;
718 int len = 0;
719 int i;
721 for (i = 0; sched_feat_names[i]; i++) {
722 len += strlen(sched_feat_names[i]);
723 len += 4;
726 buf = kmalloc(len + 2, GFP_KERNEL);
727 if (!buf)
728 return -ENOMEM;
730 for (i = 0; sched_feat_names[i]; i++) {
731 if (sysctl_sched_features & (1UL << i))
732 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
733 else
734 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
737 r += sprintf(buf + r, "\n");
738 WARN_ON(r >= len + 2);
740 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
742 kfree(buf);
744 return r;
747 static ssize_t
748 sched_feat_write(struct file *filp, const char __user *ubuf,
749 size_t cnt, loff_t *ppos)
751 char buf[64];
752 char *cmp = buf;
753 int neg = 0;
754 int i;
756 if (cnt > 63)
757 cnt = 63;
759 if (copy_from_user(&buf, ubuf, cnt))
760 return -EFAULT;
762 buf[cnt] = 0;
764 if (strncmp(buf, "NO_", 3) == 0) {
765 neg = 1;
766 cmp += 3;
769 for (i = 0; sched_feat_names[i]; i++) {
770 int len = strlen(sched_feat_names[i]);
772 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
773 if (neg)
774 sysctl_sched_features &= ~(1UL << i);
775 else
776 sysctl_sched_features |= (1UL << i);
777 break;
781 if (!sched_feat_names[i])
782 return -EINVAL;
784 filp->f_pos += cnt;
786 return cnt;
789 static struct file_operations sched_feat_fops = {
790 .open = sched_feat_open,
791 .read = sched_feat_read,
792 .write = sched_feat_write,
795 static __init int sched_init_debug(void)
797 debugfs_create_file("sched_features", 0644, NULL, NULL,
798 &sched_feat_fops);
800 return 0;
802 late_initcall(sched_init_debug);
804 #endif
806 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
812 const_debug unsigned int sysctl_sched_nr_migrate = 32;
815 * ratelimit for updating the group shares.
816 * default: 0.25ms
818 unsigned int sysctl_sched_shares_ratelimit = 250000;
821 * Inject some fuzzyness into changing the per-cpu group shares
822 * this avoids remote rq-locks at the expense of fairness.
823 * default: 4
825 unsigned int sysctl_sched_shares_thresh = 4;
828 * period over which we measure -rt task cpu usage in us.
829 * default: 1s
831 unsigned int sysctl_sched_rt_period = 1000000;
833 static __read_mostly int scheduler_running;
836 * part of the period that we allow rt tasks to run in us.
837 * default: 0.95s
839 int sysctl_sched_rt_runtime = 950000;
841 static inline u64 global_rt_period(void)
843 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
846 static inline u64 global_rt_runtime(void)
848 if (sysctl_sched_rt_runtime < 0)
849 return RUNTIME_INF;
851 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
854 #ifndef prepare_arch_switch
855 # define prepare_arch_switch(next) do { } while (0)
856 #endif
857 #ifndef finish_arch_switch
858 # define finish_arch_switch(prev) do { } while (0)
859 #endif
861 static inline int task_current(struct rq *rq, struct task_struct *p)
863 return rq->curr == p;
866 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
867 static inline int task_running(struct rq *rq, struct task_struct *p)
869 return task_current(rq, p);
872 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
876 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
878 #ifdef CONFIG_DEBUG_SPINLOCK
879 /* this is a valid case when another task releases the spinlock */
880 rq->lock.owner = current;
881 #endif
883 * If we are tracking spinlock dependencies then we have to
884 * fix up the runqueue lock - which gets 'carried over' from
885 * prev into current:
887 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
889 spin_unlock_irq(&rq->lock);
892 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
893 static inline int task_running(struct rq *rq, struct task_struct *p)
895 #ifdef CONFIG_SMP
896 return p->oncpu;
897 #else
898 return task_current(rq, p);
899 #endif
902 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
904 #ifdef CONFIG_SMP
906 * We can optimise this out completely for !SMP, because the
907 * SMP rebalancing from interrupt is the only thing that cares
908 * here.
910 next->oncpu = 1;
911 #endif
912 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
913 spin_unlock_irq(&rq->lock);
914 #else
915 spin_unlock(&rq->lock);
916 #endif
919 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
921 #ifdef CONFIG_SMP
923 * After ->oncpu is cleared, the task can be moved to a different CPU.
924 * We must ensure this doesn't happen until the switch is completely
925 * finished.
927 smp_wmb();
928 prev->oncpu = 0;
929 #endif
930 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
931 local_irq_enable();
932 #endif
934 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
937 * __task_rq_lock - lock the runqueue a given task resides on.
938 * Must be called interrupts disabled.
940 static inline struct rq *__task_rq_lock(struct task_struct *p)
941 __acquires(rq->lock)
943 for (;;) {
944 struct rq *rq = task_rq(p);
945 spin_lock(&rq->lock);
946 if (likely(rq == task_rq(p)))
947 return rq;
948 spin_unlock(&rq->lock);
953 * task_rq_lock - lock the runqueue a given task resides on and disable
954 * interrupts. Note the ordering: we can safely lookup the task_rq without
955 * explicitly disabling preemption.
957 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
958 __acquires(rq->lock)
960 struct rq *rq;
962 for (;;) {
963 local_irq_save(*flags);
964 rq = task_rq(p);
965 spin_lock(&rq->lock);
966 if (likely(rq == task_rq(p)))
967 return rq;
968 spin_unlock_irqrestore(&rq->lock, *flags);
972 void task_rq_unlock_wait(struct task_struct *p)
974 struct rq *rq = task_rq(p);
976 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
977 spin_unlock_wait(&rq->lock);
980 static void __task_rq_unlock(struct rq *rq)
981 __releases(rq->lock)
983 spin_unlock(&rq->lock);
986 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
987 __releases(rq->lock)
989 spin_unlock_irqrestore(&rq->lock, *flags);
993 * this_rq_lock - lock this runqueue and disable interrupts.
995 static struct rq *this_rq_lock(void)
996 __acquires(rq->lock)
998 struct rq *rq;
1000 local_irq_disable();
1001 rq = this_rq();
1002 spin_lock(&rq->lock);
1004 return rq;
1007 #ifdef CONFIG_SCHED_HRTICK
1009 * Use HR-timers to deliver accurate preemption points.
1011 * Its all a bit involved since we cannot program an hrt while holding the
1012 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1013 * reschedule event.
1015 * When we get rescheduled we reprogram the hrtick_timer outside of the
1016 * rq->lock.
1020 * Use hrtick when:
1021 * - enabled by features
1022 * - hrtimer is actually high res
1024 static inline int hrtick_enabled(struct rq *rq)
1026 if (!sched_feat(HRTICK))
1027 return 0;
1028 if (!cpu_active(cpu_of(rq)))
1029 return 0;
1030 return hrtimer_is_hres_active(&rq->hrtick_timer);
1033 static void hrtick_clear(struct rq *rq)
1035 if (hrtimer_active(&rq->hrtick_timer))
1036 hrtimer_cancel(&rq->hrtick_timer);
1040 * High-resolution timer tick.
1041 * Runs from hardirq context with interrupts disabled.
1043 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1045 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1047 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1049 spin_lock(&rq->lock);
1050 update_rq_clock(rq);
1051 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1052 spin_unlock(&rq->lock);
1054 return HRTIMER_NORESTART;
1057 #ifdef CONFIG_SMP
1059 * called from hardirq (IPI) context
1061 static void __hrtick_start(void *arg)
1063 struct rq *rq = arg;
1065 spin_lock(&rq->lock);
1066 hrtimer_restart(&rq->hrtick_timer);
1067 rq->hrtick_csd_pending = 0;
1068 spin_unlock(&rq->lock);
1072 * Called to set the hrtick timer state.
1074 * called with rq->lock held and irqs disabled
1076 static void hrtick_start(struct rq *rq, u64 delay)
1078 struct hrtimer *timer = &rq->hrtick_timer;
1079 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1081 hrtimer_set_expires(timer, time);
1083 if (rq == this_rq()) {
1084 hrtimer_restart(timer);
1085 } else if (!rq->hrtick_csd_pending) {
1086 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1087 rq->hrtick_csd_pending = 1;
1091 static int
1092 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1094 int cpu = (int)(long)hcpu;
1096 switch (action) {
1097 case CPU_UP_CANCELED:
1098 case CPU_UP_CANCELED_FROZEN:
1099 case CPU_DOWN_PREPARE:
1100 case CPU_DOWN_PREPARE_FROZEN:
1101 case CPU_DEAD:
1102 case CPU_DEAD_FROZEN:
1103 hrtick_clear(cpu_rq(cpu));
1104 return NOTIFY_OK;
1107 return NOTIFY_DONE;
1110 static __init void init_hrtick(void)
1112 hotcpu_notifier(hotplug_hrtick, 0);
1114 #else
1116 * Called to set the hrtick timer state.
1118 * called with rq->lock held and irqs disabled
1120 static void hrtick_start(struct rq *rq, u64 delay)
1122 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1125 static inline void init_hrtick(void)
1128 #endif /* CONFIG_SMP */
1130 static void init_rq_hrtick(struct rq *rq)
1132 #ifdef CONFIG_SMP
1133 rq->hrtick_csd_pending = 0;
1135 rq->hrtick_csd.flags = 0;
1136 rq->hrtick_csd.func = __hrtick_start;
1137 rq->hrtick_csd.info = rq;
1138 #endif
1140 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1141 rq->hrtick_timer.function = hrtick;
1142 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
1144 #else /* CONFIG_SCHED_HRTICK */
1145 static inline void hrtick_clear(struct rq *rq)
1149 static inline void init_rq_hrtick(struct rq *rq)
1153 static inline void init_hrtick(void)
1156 #endif /* CONFIG_SCHED_HRTICK */
1159 * resched_task - mark a task 'to be rescheduled now'.
1161 * On UP this means the setting of the need_resched flag, on SMP it
1162 * might also involve a cross-CPU call to trigger the scheduler on
1163 * the target CPU.
1165 #ifdef CONFIG_SMP
1167 #ifndef tsk_is_polling
1168 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1169 #endif
1171 static void resched_task(struct task_struct *p)
1173 int cpu;
1175 assert_spin_locked(&task_rq(p)->lock);
1177 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1178 return;
1180 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1182 cpu = task_cpu(p);
1183 if (cpu == smp_processor_id())
1184 return;
1186 /* NEED_RESCHED must be visible before we test polling */
1187 smp_mb();
1188 if (!tsk_is_polling(p))
1189 smp_send_reschedule(cpu);
1192 static void resched_cpu(int cpu)
1194 struct rq *rq = cpu_rq(cpu);
1195 unsigned long flags;
1197 if (!spin_trylock_irqsave(&rq->lock, flags))
1198 return;
1199 resched_task(cpu_curr(cpu));
1200 spin_unlock_irqrestore(&rq->lock, flags);
1203 #ifdef CONFIG_NO_HZ
1205 * When add_timer_on() enqueues a timer into the timer wheel of an
1206 * idle CPU then this timer might expire before the next timer event
1207 * which is scheduled to wake up that CPU. In case of a completely
1208 * idle system the next event might even be infinite time into the
1209 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1210 * leaves the inner idle loop so the newly added timer is taken into
1211 * account when the CPU goes back to idle and evaluates the timer
1212 * wheel for the next timer event.
1214 void wake_up_idle_cpu(int cpu)
1216 struct rq *rq = cpu_rq(cpu);
1218 if (cpu == smp_processor_id())
1219 return;
1222 * This is safe, as this function is called with the timer
1223 * wheel base lock of (cpu) held. When the CPU is on the way
1224 * to idle and has not yet set rq->curr to idle then it will
1225 * be serialized on the timer wheel base lock and take the new
1226 * timer into account automatically.
1228 if (rq->curr != rq->idle)
1229 return;
1232 * We can set TIF_RESCHED on the idle task of the other CPU
1233 * lockless. The worst case is that the other CPU runs the
1234 * idle task through an additional NOOP schedule()
1236 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1238 /* NEED_RESCHED must be visible before we test polling */
1239 smp_mb();
1240 if (!tsk_is_polling(rq->idle))
1241 smp_send_reschedule(cpu);
1243 #endif /* CONFIG_NO_HZ */
1245 #else /* !CONFIG_SMP */
1246 static void resched_task(struct task_struct *p)
1248 assert_spin_locked(&task_rq(p)->lock);
1249 set_tsk_need_resched(p);
1251 #endif /* CONFIG_SMP */
1253 #if BITS_PER_LONG == 32
1254 # define WMULT_CONST (~0UL)
1255 #else
1256 # define WMULT_CONST (1UL << 32)
1257 #endif
1259 #define WMULT_SHIFT 32
1262 * Shift right and round:
1264 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1267 * delta *= weight / lw
1269 static unsigned long
1270 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1271 struct load_weight *lw)
1273 u64 tmp;
1275 if (!lw->inv_weight) {
1276 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1277 lw->inv_weight = 1;
1278 else
1279 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1280 / (lw->weight+1);
1283 tmp = (u64)delta_exec * weight;
1285 * Check whether we'd overflow the 64-bit multiplication:
1287 if (unlikely(tmp > WMULT_CONST))
1288 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1289 WMULT_SHIFT/2);
1290 else
1291 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1293 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1296 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1298 lw->weight += inc;
1299 lw->inv_weight = 0;
1302 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1304 lw->weight -= dec;
1305 lw->inv_weight = 0;
1309 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1310 * of tasks with abnormal "nice" values across CPUs the contribution that
1311 * each task makes to its run queue's load is weighted according to its
1312 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1313 * scaled version of the new time slice allocation that they receive on time
1314 * slice expiry etc.
1317 #define WEIGHT_IDLEPRIO 2
1318 #define WMULT_IDLEPRIO (1 << 31)
1321 * Nice levels are multiplicative, with a gentle 10% change for every
1322 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1323 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1324 * that remained on nice 0.
1326 * The "10% effect" is relative and cumulative: from _any_ nice level,
1327 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1328 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1329 * If a task goes up by ~10% and another task goes down by ~10% then
1330 * the relative distance between them is ~25%.)
1332 static const int prio_to_weight[40] = {
1333 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1334 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1335 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1336 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1337 /* 0 */ 1024, 820, 655, 526, 423,
1338 /* 5 */ 335, 272, 215, 172, 137,
1339 /* 10 */ 110, 87, 70, 56, 45,
1340 /* 15 */ 36, 29, 23, 18, 15,
1344 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1346 * In cases where the weight does not change often, we can use the
1347 * precalculated inverse to speed up arithmetics by turning divisions
1348 * into multiplications:
1350 static const u32 prio_to_wmult[40] = {
1351 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1352 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1353 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1354 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1355 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1356 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1357 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1358 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1361 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1364 * runqueue iterator, to support SMP load-balancing between different
1365 * scheduling classes, without having to expose their internal data
1366 * structures to the load-balancing proper:
1368 struct rq_iterator {
1369 void *arg;
1370 struct task_struct *(*start)(void *);
1371 struct task_struct *(*next)(void *);
1374 #ifdef CONFIG_SMP
1375 static unsigned long
1376 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1377 unsigned long max_load_move, struct sched_domain *sd,
1378 enum cpu_idle_type idle, int *all_pinned,
1379 int *this_best_prio, struct rq_iterator *iterator);
1381 static int
1382 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1383 struct sched_domain *sd, enum cpu_idle_type idle,
1384 struct rq_iterator *iterator);
1385 #endif
1387 #ifdef CONFIG_CGROUP_CPUACCT
1388 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1389 #else
1390 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1391 #endif
1393 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1395 update_load_add(&rq->load, load);
1398 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1400 update_load_sub(&rq->load, load);
1403 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1404 typedef int (*tg_visitor)(struct task_group *, void *);
1407 * Iterate the full tree, calling @down when first entering a node and @up when
1408 * leaving it for the final time.
1410 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1412 struct task_group *parent, *child;
1413 int ret;
1415 rcu_read_lock();
1416 parent = &root_task_group;
1417 down:
1418 ret = (*down)(parent, data);
1419 if (ret)
1420 goto out_unlock;
1421 list_for_each_entry_rcu(child, &parent->children, siblings) {
1422 parent = child;
1423 goto down;
1426 continue;
1428 ret = (*up)(parent, data);
1429 if (ret)
1430 goto out_unlock;
1432 child = parent;
1433 parent = parent->parent;
1434 if (parent)
1435 goto up;
1436 out_unlock:
1437 rcu_read_unlock();
1439 return ret;
1442 static int tg_nop(struct task_group *tg, void *data)
1444 return 0;
1446 #endif
1448 #ifdef CONFIG_SMP
1449 static unsigned long source_load(int cpu, int type);
1450 static unsigned long target_load(int cpu, int type);
1451 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1453 static unsigned long cpu_avg_load_per_task(int cpu)
1455 struct rq *rq = cpu_rq(cpu);
1457 if (rq->nr_running)
1458 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1459 else
1460 rq->avg_load_per_task = 0;
1462 return rq->avg_load_per_task;
1465 #ifdef CONFIG_FAIR_GROUP_SCHED
1467 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1470 * Calculate and set the cpu's group shares.
1472 static void
1473 update_group_shares_cpu(struct task_group *tg, int cpu,
1474 unsigned long sd_shares, unsigned long sd_rq_weight)
1476 int boost = 0;
1477 unsigned long shares;
1478 unsigned long rq_weight;
1480 if (!tg->se[cpu])
1481 return;
1483 rq_weight = tg->cfs_rq[cpu]->load.weight;
1486 * If there are currently no tasks on the cpu pretend there is one of
1487 * average load so that when a new task gets to run here it will not
1488 * get delayed by group starvation.
1490 if (!rq_weight) {
1491 boost = 1;
1492 rq_weight = NICE_0_LOAD;
1495 if (unlikely(rq_weight > sd_rq_weight))
1496 rq_weight = sd_rq_weight;
1499 * \Sum shares * rq_weight
1500 * shares = -----------------------
1501 * \Sum rq_weight
1504 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1505 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1507 if (abs(shares - tg->se[cpu]->load.weight) >
1508 sysctl_sched_shares_thresh) {
1509 struct rq *rq = cpu_rq(cpu);
1510 unsigned long flags;
1512 spin_lock_irqsave(&rq->lock, flags);
1514 * record the actual number of shares, not the boosted amount.
1516 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1517 tg->cfs_rq[cpu]->rq_weight = rq_weight;
1519 __set_se_shares(tg->se[cpu], shares);
1520 spin_unlock_irqrestore(&rq->lock, flags);
1525 * Re-compute the task group their per cpu shares over the given domain.
1526 * This needs to be done in a bottom-up fashion because the rq weight of a
1527 * parent group depends on the shares of its child groups.
1529 static int tg_shares_up(struct task_group *tg, void *data)
1531 unsigned long rq_weight = 0;
1532 unsigned long shares = 0;
1533 struct sched_domain *sd = data;
1534 int i;
1536 for_each_cpu_mask(i, sd->span) {
1537 rq_weight += tg->cfs_rq[i]->load.weight;
1538 shares += tg->cfs_rq[i]->shares;
1541 if ((!shares && rq_weight) || shares > tg->shares)
1542 shares = tg->shares;
1544 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1545 shares = tg->shares;
1547 if (!rq_weight)
1548 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1550 for_each_cpu_mask(i, sd->span)
1551 update_group_shares_cpu(tg, i, shares, rq_weight);
1553 return 0;
1557 * Compute the cpu's hierarchical load factor for each task group.
1558 * This needs to be done in a top-down fashion because the load of a child
1559 * group is a fraction of its parents load.
1561 static int tg_load_down(struct task_group *tg, void *data)
1563 unsigned long load;
1564 long cpu = (long)data;
1566 if (!tg->parent) {
1567 load = cpu_rq(cpu)->load.weight;
1568 } else {
1569 load = tg->parent->cfs_rq[cpu]->h_load;
1570 load *= tg->cfs_rq[cpu]->shares;
1571 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1574 tg->cfs_rq[cpu]->h_load = load;
1576 return 0;
1579 static void update_shares(struct sched_domain *sd)
1581 u64 now = cpu_clock(raw_smp_processor_id());
1582 s64 elapsed = now - sd->last_update;
1584 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1585 sd->last_update = now;
1586 walk_tg_tree(tg_nop, tg_shares_up, sd);
1590 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1592 spin_unlock(&rq->lock);
1593 update_shares(sd);
1594 spin_lock(&rq->lock);
1597 static void update_h_load(long cpu)
1599 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1602 #else
1604 static inline void update_shares(struct sched_domain *sd)
1608 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1612 #endif
1614 #endif
1616 #ifdef CONFIG_FAIR_GROUP_SCHED
1617 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1619 #ifdef CONFIG_SMP
1620 cfs_rq->shares = shares;
1621 #endif
1623 #endif
1625 #include "sched_stats.h"
1626 #include "sched_idletask.c"
1627 #include "sched_fair.c"
1628 #include "sched_rt.c"
1629 #ifdef CONFIG_SCHED_DEBUG
1630 # include "sched_debug.c"
1631 #endif
1633 #define sched_class_highest (&rt_sched_class)
1634 #define for_each_class(class) \
1635 for (class = sched_class_highest; class; class = class->next)
1637 static void inc_nr_running(struct rq *rq)
1639 rq->nr_running++;
1642 static void dec_nr_running(struct rq *rq)
1644 rq->nr_running--;
1647 static void set_load_weight(struct task_struct *p)
1649 if (task_has_rt_policy(p)) {
1650 p->se.load.weight = prio_to_weight[0] * 2;
1651 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1652 return;
1656 * SCHED_IDLE tasks get minimal weight:
1658 if (p->policy == SCHED_IDLE) {
1659 p->se.load.weight = WEIGHT_IDLEPRIO;
1660 p->se.load.inv_weight = WMULT_IDLEPRIO;
1661 return;
1664 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1665 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1668 static void update_avg(u64 *avg, u64 sample)
1670 s64 diff = sample - *avg;
1671 *avg += diff >> 3;
1674 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1676 sched_info_queued(p);
1677 p->sched_class->enqueue_task(rq, p, wakeup);
1678 p->se.on_rq = 1;
1681 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1683 if (sleep && p->se.last_wakeup) {
1684 update_avg(&p->se.avg_overlap,
1685 p->se.sum_exec_runtime - p->se.last_wakeup);
1686 p->se.last_wakeup = 0;
1689 sched_info_dequeued(p);
1690 p->sched_class->dequeue_task(rq, p, sleep);
1691 p->se.on_rq = 0;
1695 * __normal_prio - return the priority that is based on the static prio
1697 static inline int __normal_prio(struct task_struct *p)
1699 return p->static_prio;
1703 * Calculate the expected normal priority: i.e. priority
1704 * without taking RT-inheritance into account. Might be
1705 * boosted by interactivity modifiers. Changes upon fork,
1706 * setprio syscalls, and whenever the interactivity
1707 * estimator recalculates.
1709 static inline int normal_prio(struct task_struct *p)
1711 int prio;
1713 if (task_has_rt_policy(p))
1714 prio = MAX_RT_PRIO-1 - p->rt_priority;
1715 else
1716 prio = __normal_prio(p);
1717 return prio;
1721 * Calculate the current priority, i.e. the priority
1722 * taken into account by the scheduler. This value might
1723 * be boosted by RT tasks, or might be boosted by
1724 * interactivity modifiers. Will be RT if the task got
1725 * RT-boosted. If not then it returns p->normal_prio.
1727 static int effective_prio(struct task_struct *p)
1729 p->normal_prio = normal_prio(p);
1731 * If we are RT tasks or we were boosted to RT priority,
1732 * keep the priority unchanged. Otherwise, update priority
1733 * to the normal priority:
1735 if (!rt_prio(p->prio))
1736 return p->normal_prio;
1737 return p->prio;
1741 * activate_task - move a task to the runqueue.
1743 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1745 if (task_contributes_to_load(p))
1746 rq->nr_uninterruptible--;
1748 enqueue_task(rq, p, wakeup);
1749 inc_nr_running(rq);
1753 * deactivate_task - remove a task from the runqueue.
1755 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1757 if (task_contributes_to_load(p))
1758 rq->nr_uninterruptible++;
1760 dequeue_task(rq, p, sleep);
1761 dec_nr_running(rq);
1765 * task_curr - is this task currently executing on a CPU?
1766 * @p: the task in question.
1768 inline int task_curr(const struct task_struct *p)
1770 return cpu_curr(task_cpu(p)) == p;
1773 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1775 set_task_rq(p, cpu);
1776 #ifdef CONFIG_SMP
1778 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1779 * successfuly executed on another CPU. We must ensure that updates of
1780 * per-task data have been completed by this moment.
1782 smp_wmb();
1783 task_thread_info(p)->cpu = cpu;
1784 #endif
1787 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1788 const struct sched_class *prev_class,
1789 int oldprio, int running)
1791 if (prev_class != p->sched_class) {
1792 if (prev_class->switched_from)
1793 prev_class->switched_from(rq, p, running);
1794 p->sched_class->switched_to(rq, p, running);
1795 } else
1796 p->sched_class->prio_changed(rq, p, oldprio, running);
1799 #ifdef CONFIG_SMP
1801 /* Used instead of source_load when we know the type == 0 */
1802 static unsigned long weighted_cpuload(const int cpu)
1804 return cpu_rq(cpu)->load.weight;
1808 * Is this task likely cache-hot:
1810 static int
1811 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1813 s64 delta;
1816 * Buddy candidates are cache hot:
1818 if (sched_feat(CACHE_HOT_BUDDY) &&
1819 (&p->se == cfs_rq_of(&p->se)->next ||
1820 &p->se == cfs_rq_of(&p->se)->last))
1821 return 1;
1823 if (p->sched_class != &fair_sched_class)
1824 return 0;
1826 if (sysctl_sched_migration_cost == -1)
1827 return 1;
1828 if (sysctl_sched_migration_cost == 0)
1829 return 0;
1831 delta = now - p->se.exec_start;
1833 return delta < (s64)sysctl_sched_migration_cost;
1837 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1839 int old_cpu = task_cpu(p);
1840 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1841 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1842 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1843 u64 clock_offset;
1845 clock_offset = old_rq->clock - new_rq->clock;
1847 #ifdef CONFIG_SCHEDSTATS
1848 if (p->se.wait_start)
1849 p->se.wait_start -= clock_offset;
1850 if (p->se.sleep_start)
1851 p->se.sleep_start -= clock_offset;
1852 if (p->se.block_start)
1853 p->se.block_start -= clock_offset;
1854 if (old_cpu != new_cpu) {
1855 schedstat_inc(p, se.nr_migrations);
1856 if (task_hot(p, old_rq->clock, NULL))
1857 schedstat_inc(p, se.nr_forced2_migrations);
1859 #endif
1860 p->se.vruntime -= old_cfsrq->min_vruntime -
1861 new_cfsrq->min_vruntime;
1863 __set_task_cpu(p, new_cpu);
1866 struct migration_req {
1867 struct list_head list;
1869 struct task_struct *task;
1870 int dest_cpu;
1872 struct completion done;
1876 * The task's runqueue lock must be held.
1877 * Returns true if you have to wait for migration thread.
1879 static int
1880 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1882 struct rq *rq = task_rq(p);
1885 * If the task is not on a runqueue (and not running), then
1886 * it is sufficient to simply update the task's cpu field.
1888 if (!p->se.on_rq && !task_running(rq, p)) {
1889 set_task_cpu(p, dest_cpu);
1890 return 0;
1893 init_completion(&req->done);
1894 req->task = p;
1895 req->dest_cpu = dest_cpu;
1896 list_add(&req->list, &rq->migration_queue);
1898 return 1;
1902 * wait_task_inactive - wait for a thread to unschedule.
1904 * If @match_state is nonzero, it's the @p->state value just checked and
1905 * not expected to change. If it changes, i.e. @p might have woken up,
1906 * then return zero. When we succeed in waiting for @p to be off its CPU,
1907 * we return a positive number (its total switch count). If a second call
1908 * a short while later returns the same number, the caller can be sure that
1909 * @p has remained unscheduled the whole time.
1911 * The caller must ensure that the task *will* unschedule sometime soon,
1912 * else this function might spin for a *long* time. This function can't
1913 * be called with interrupts off, or it may introduce deadlock with
1914 * smp_call_function() if an IPI is sent by the same process we are
1915 * waiting to become inactive.
1917 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1919 unsigned long flags;
1920 int running, on_rq;
1921 unsigned long ncsw;
1922 struct rq *rq;
1924 for (;;) {
1926 * We do the initial early heuristics without holding
1927 * any task-queue locks at all. We'll only try to get
1928 * the runqueue lock when things look like they will
1929 * work out!
1931 rq = task_rq(p);
1934 * If the task is actively running on another CPU
1935 * still, just relax and busy-wait without holding
1936 * any locks.
1938 * NOTE! Since we don't hold any locks, it's not
1939 * even sure that "rq" stays as the right runqueue!
1940 * But we don't care, since "task_running()" will
1941 * return false if the runqueue has changed and p
1942 * is actually now running somewhere else!
1944 while (task_running(rq, p)) {
1945 if (match_state && unlikely(p->state != match_state))
1946 return 0;
1947 cpu_relax();
1951 * Ok, time to look more closely! We need the rq
1952 * lock now, to be *sure*. If we're wrong, we'll
1953 * just go back and repeat.
1955 rq = task_rq_lock(p, &flags);
1956 trace_sched_wait_task(rq, p);
1957 running = task_running(rq, p);
1958 on_rq = p->se.on_rq;
1959 ncsw = 0;
1960 if (!match_state || p->state == match_state)
1961 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1962 task_rq_unlock(rq, &flags);
1965 * If it changed from the expected state, bail out now.
1967 if (unlikely(!ncsw))
1968 break;
1971 * Was it really running after all now that we
1972 * checked with the proper locks actually held?
1974 * Oops. Go back and try again..
1976 if (unlikely(running)) {
1977 cpu_relax();
1978 continue;
1982 * It's not enough that it's not actively running,
1983 * it must be off the runqueue _entirely_, and not
1984 * preempted!
1986 * So if it wa still runnable (but just not actively
1987 * running right now), it's preempted, and we should
1988 * yield - it could be a while.
1990 if (unlikely(on_rq)) {
1991 schedule_timeout_uninterruptible(1);
1992 continue;
1996 * Ahh, all good. It wasn't running, and it wasn't
1997 * runnable, which means that it will never become
1998 * running in the future either. We're all done!
2000 break;
2003 return ncsw;
2006 /***
2007 * kick_process - kick a running thread to enter/exit the kernel
2008 * @p: the to-be-kicked thread
2010 * Cause a process which is running on another CPU to enter
2011 * kernel-mode, without any delay. (to get signals handled.)
2013 * NOTE: this function doesnt have to take the runqueue lock,
2014 * because all it wants to ensure is that the remote task enters
2015 * the kernel. If the IPI races and the task has been migrated
2016 * to another CPU then no harm is done and the purpose has been
2017 * achieved as well.
2019 void kick_process(struct task_struct *p)
2021 int cpu;
2023 preempt_disable();
2024 cpu = task_cpu(p);
2025 if ((cpu != smp_processor_id()) && task_curr(p))
2026 smp_send_reschedule(cpu);
2027 preempt_enable();
2031 * Return a low guess at the load of a migration-source cpu weighted
2032 * according to the scheduling class and "nice" value.
2034 * We want to under-estimate the load of migration sources, to
2035 * balance conservatively.
2037 static unsigned long source_load(int cpu, int type)
2039 struct rq *rq = cpu_rq(cpu);
2040 unsigned long total = weighted_cpuload(cpu);
2042 if (type == 0 || !sched_feat(LB_BIAS))
2043 return total;
2045 return min(rq->cpu_load[type-1], total);
2049 * Return a high guess at the load of a migration-target cpu weighted
2050 * according to the scheduling class and "nice" value.
2052 static unsigned long target_load(int cpu, int type)
2054 struct rq *rq = cpu_rq(cpu);
2055 unsigned long total = weighted_cpuload(cpu);
2057 if (type == 0 || !sched_feat(LB_BIAS))
2058 return total;
2060 return max(rq->cpu_load[type-1], total);
2064 * find_idlest_group finds and returns the least busy CPU group within the
2065 * domain.
2067 static struct sched_group *
2068 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2070 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2071 unsigned long min_load = ULONG_MAX, this_load = 0;
2072 int load_idx = sd->forkexec_idx;
2073 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2075 do {
2076 unsigned long load, avg_load;
2077 int local_group;
2078 int i;
2080 /* Skip over this group if it has no CPUs allowed */
2081 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2082 continue;
2084 local_group = cpu_isset(this_cpu, group->cpumask);
2086 /* Tally up the load of all CPUs in the group */
2087 avg_load = 0;
2089 for_each_cpu_mask_nr(i, group->cpumask) {
2090 /* Bias balancing toward cpus of our domain */
2091 if (local_group)
2092 load = source_load(i, load_idx);
2093 else
2094 load = target_load(i, load_idx);
2096 avg_load += load;
2099 /* Adjust by relative CPU power of the group */
2100 avg_load = sg_div_cpu_power(group,
2101 avg_load * SCHED_LOAD_SCALE);
2103 if (local_group) {
2104 this_load = avg_load;
2105 this = group;
2106 } else if (avg_load < min_load) {
2107 min_load = avg_load;
2108 idlest = group;
2110 } while (group = group->next, group != sd->groups);
2112 if (!idlest || 100*this_load < imbalance*min_load)
2113 return NULL;
2114 return idlest;
2118 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2120 static int
2121 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2122 cpumask_t *tmp)
2124 unsigned long load, min_load = ULONG_MAX;
2125 int idlest = -1;
2126 int i;
2128 /* Traverse only the allowed CPUs */
2129 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2131 for_each_cpu_mask_nr(i, *tmp) {
2132 load = weighted_cpuload(i);
2134 if (load < min_load || (load == min_load && i == this_cpu)) {
2135 min_load = load;
2136 idlest = i;
2140 return idlest;
2144 * sched_balance_self: balance the current task (running on cpu) in domains
2145 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2146 * SD_BALANCE_EXEC.
2148 * Balance, ie. select the least loaded group.
2150 * Returns the target CPU number, or the same CPU if no balancing is needed.
2152 * preempt must be disabled.
2154 static int sched_balance_self(int cpu, int flag)
2156 struct task_struct *t = current;
2157 struct sched_domain *tmp, *sd = NULL;
2159 for_each_domain(cpu, tmp) {
2161 * If power savings logic is enabled for a domain, stop there.
2163 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2164 break;
2165 if (tmp->flags & flag)
2166 sd = tmp;
2169 if (sd)
2170 update_shares(sd);
2172 while (sd) {
2173 cpumask_t span, tmpmask;
2174 struct sched_group *group;
2175 int new_cpu, weight;
2177 if (!(sd->flags & flag)) {
2178 sd = sd->child;
2179 continue;
2182 span = sd->span;
2183 group = find_idlest_group(sd, t, cpu);
2184 if (!group) {
2185 sd = sd->child;
2186 continue;
2189 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2190 if (new_cpu == -1 || new_cpu == cpu) {
2191 /* Now try balancing at a lower domain level of cpu */
2192 sd = sd->child;
2193 continue;
2196 /* Now try balancing at a lower domain level of new_cpu */
2197 cpu = new_cpu;
2198 sd = NULL;
2199 weight = cpus_weight(span);
2200 for_each_domain(cpu, tmp) {
2201 if (weight <= cpus_weight(tmp->span))
2202 break;
2203 if (tmp->flags & flag)
2204 sd = tmp;
2206 /* while loop will break here if sd == NULL */
2209 return cpu;
2212 #endif /* CONFIG_SMP */
2214 /***
2215 * try_to_wake_up - wake up a thread
2216 * @p: the to-be-woken-up thread
2217 * @state: the mask of task states that can be woken
2218 * @sync: do a synchronous wakeup?
2220 * Put it on the run-queue if it's not already there. The "current"
2221 * thread is always on the run-queue (except when the actual
2222 * re-schedule is in progress), and as such you're allowed to do
2223 * the simpler "current->state = TASK_RUNNING" to mark yourself
2224 * runnable without the overhead of this.
2226 * returns failure only if the task is already active.
2228 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2230 int cpu, orig_cpu, this_cpu, success = 0;
2231 unsigned long flags;
2232 long old_state;
2233 struct rq *rq;
2235 if (!sched_feat(SYNC_WAKEUPS))
2236 sync = 0;
2238 #ifdef CONFIG_SMP
2239 if (sched_feat(LB_WAKEUP_UPDATE)) {
2240 struct sched_domain *sd;
2242 this_cpu = raw_smp_processor_id();
2243 cpu = task_cpu(p);
2245 for_each_domain(this_cpu, sd) {
2246 if (cpu_isset(cpu, sd->span)) {
2247 update_shares(sd);
2248 break;
2252 #endif
2254 smp_wmb();
2255 rq = task_rq_lock(p, &flags);
2256 old_state = p->state;
2257 if (!(old_state & state))
2258 goto out;
2260 if (p->se.on_rq)
2261 goto out_running;
2263 cpu = task_cpu(p);
2264 orig_cpu = cpu;
2265 this_cpu = smp_processor_id();
2267 #ifdef CONFIG_SMP
2268 if (unlikely(task_running(rq, p)))
2269 goto out_activate;
2271 cpu = p->sched_class->select_task_rq(p, sync);
2272 if (cpu != orig_cpu) {
2273 set_task_cpu(p, cpu);
2274 task_rq_unlock(rq, &flags);
2275 /* might preempt at this point */
2276 rq = task_rq_lock(p, &flags);
2277 old_state = p->state;
2278 if (!(old_state & state))
2279 goto out;
2280 if (p->se.on_rq)
2281 goto out_running;
2283 this_cpu = smp_processor_id();
2284 cpu = task_cpu(p);
2287 #ifdef CONFIG_SCHEDSTATS
2288 schedstat_inc(rq, ttwu_count);
2289 if (cpu == this_cpu)
2290 schedstat_inc(rq, ttwu_local);
2291 else {
2292 struct sched_domain *sd;
2293 for_each_domain(this_cpu, sd) {
2294 if (cpu_isset(cpu, sd->span)) {
2295 schedstat_inc(sd, ttwu_wake_remote);
2296 break;
2300 #endif /* CONFIG_SCHEDSTATS */
2302 out_activate:
2303 #endif /* CONFIG_SMP */
2304 schedstat_inc(p, se.nr_wakeups);
2305 if (sync)
2306 schedstat_inc(p, se.nr_wakeups_sync);
2307 if (orig_cpu != cpu)
2308 schedstat_inc(p, se.nr_wakeups_migrate);
2309 if (cpu == this_cpu)
2310 schedstat_inc(p, se.nr_wakeups_local);
2311 else
2312 schedstat_inc(p, se.nr_wakeups_remote);
2313 update_rq_clock(rq);
2314 activate_task(rq, p, 1);
2315 success = 1;
2317 out_running:
2318 trace_sched_wakeup(rq, p);
2319 check_preempt_curr(rq, p, sync);
2321 p->state = TASK_RUNNING;
2322 #ifdef CONFIG_SMP
2323 if (p->sched_class->task_wake_up)
2324 p->sched_class->task_wake_up(rq, p);
2325 #endif
2326 out:
2327 current->se.last_wakeup = current->se.sum_exec_runtime;
2329 task_rq_unlock(rq, &flags);
2331 return success;
2334 int wake_up_process(struct task_struct *p)
2336 return try_to_wake_up(p, TASK_ALL, 0);
2338 EXPORT_SYMBOL(wake_up_process);
2340 int wake_up_state(struct task_struct *p, unsigned int state)
2342 return try_to_wake_up(p, state, 0);
2346 * Perform scheduler related setup for a newly forked process p.
2347 * p is forked by current.
2349 * __sched_fork() is basic setup used by init_idle() too:
2351 static void __sched_fork(struct task_struct *p)
2353 p->se.exec_start = 0;
2354 p->se.sum_exec_runtime = 0;
2355 p->se.prev_sum_exec_runtime = 0;
2356 p->se.last_wakeup = 0;
2357 p->se.avg_overlap = 0;
2359 #ifdef CONFIG_SCHEDSTATS
2360 p->se.wait_start = 0;
2361 p->se.sum_sleep_runtime = 0;
2362 p->se.sleep_start = 0;
2363 p->se.block_start = 0;
2364 p->se.sleep_max = 0;
2365 p->se.block_max = 0;
2366 p->se.exec_max = 0;
2367 p->se.slice_max = 0;
2368 p->se.wait_max = 0;
2369 #endif
2371 INIT_LIST_HEAD(&p->rt.run_list);
2372 p->se.on_rq = 0;
2373 INIT_LIST_HEAD(&p->se.group_node);
2375 #ifdef CONFIG_PREEMPT_NOTIFIERS
2376 INIT_HLIST_HEAD(&p->preempt_notifiers);
2377 #endif
2380 * We mark the process as running here, but have not actually
2381 * inserted it onto the runqueue yet. This guarantees that
2382 * nobody will actually run it, and a signal or other external
2383 * event cannot wake it up and insert it on the runqueue either.
2385 p->state = TASK_RUNNING;
2389 * fork()/clone()-time setup:
2391 void sched_fork(struct task_struct *p, int clone_flags)
2393 int cpu = get_cpu();
2395 __sched_fork(p);
2397 #ifdef CONFIG_SMP
2398 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2399 #endif
2400 set_task_cpu(p, cpu);
2403 * Make sure we do not leak PI boosting priority to the child:
2405 p->prio = current->normal_prio;
2406 if (!rt_prio(p->prio))
2407 p->sched_class = &fair_sched_class;
2409 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2410 if (likely(sched_info_on()))
2411 memset(&p->sched_info, 0, sizeof(p->sched_info));
2412 #endif
2413 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2414 p->oncpu = 0;
2415 #endif
2416 #ifdef CONFIG_PREEMPT
2417 /* Want to start with kernel preemption disabled. */
2418 task_thread_info(p)->preempt_count = 1;
2419 #endif
2420 put_cpu();
2424 * wake_up_new_task - wake up a newly created task for the first time.
2426 * This function will do some initial scheduler statistics housekeeping
2427 * that must be done for every newly created context, then puts the task
2428 * on the runqueue and wakes it.
2430 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2432 unsigned long flags;
2433 struct rq *rq;
2435 rq = task_rq_lock(p, &flags);
2436 BUG_ON(p->state != TASK_RUNNING);
2437 update_rq_clock(rq);
2439 p->prio = effective_prio(p);
2441 if (!p->sched_class->task_new || !current->se.on_rq) {
2442 activate_task(rq, p, 0);
2443 } else {
2445 * Let the scheduling class do new task startup
2446 * management (if any):
2448 p->sched_class->task_new(rq, p);
2449 inc_nr_running(rq);
2451 trace_sched_wakeup_new(rq, p);
2452 check_preempt_curr(rq, p, 0);
2453 #ifdef CONFIG_SMP
2454 if (p->sched_class->task_wake_up)
2455 p->sched_class->task_wake_up(rq, p);
2456 #endif
2457 task_rq_unlock(rq, &flags);
2460 #ifdef CONFIG_PREEMPT_NOTIFIERS
2463 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2464 * @notifier: notifier struct to register
2466 void preempt_notifier_register(struct preempt_notifier *notifier)
2468 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2470 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2473 * preempt_notifier_unregister - no longer interested in preemption notifications
2474 * @notifier: notifier struct to unregister
2476 * This is safe to call from within a preemption notifier.
2478 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2480 hlist_del(&notifier->link);
2482 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2484 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2486 struct preempt_notifier *notifier;
2487 struct hlist_node *node;
2489 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2490 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2493 static void
2494 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2495 struct task_struct *next)
2497 struct preempt_notifier *notifier;
2498 struct hlist_node *node;
2500 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2501 notifier->ops->sched_out(notifier, next);
2504 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2506 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2510 static void
2511 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2512 struct task_struct *next)
2516 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2519 * prepare_task_switch - prepare to switch tasks
2520 * @rq: the runqueue preparing to switch
2521 * @prev: the current task that is being switched out
2522 * @next: the task we are going to switch to.
2524 * This is called with the rq lock held and interrupts off. It must
2525 * be paired with a subsequent finish_task_switch after the context
2526 * switch.
2528 * prepare_task_switch sets up locking and calls architecture specific
2529 * hooks.
2531 static inline void
2532 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2533 struct task_struct *next)
2535 fire_sched_out_preempt_notifiers(prev, next);
2536 prepare_lock_switch(rq, next);
2537 prepare_arch_switch(next);
2541 * finish_task_switch - clean up after a task-switch
2542 * @rq: runqueue associated with task-switch
2543 * @prev: the thread we just switched away from.
2545 * finish_task_switch must be called after the context switch, paired
2546 * with a prepare_task_switch call before the context switch.
2547 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2548 * and do any other architecture-specific cleanup actions.
2550 * Note that we may have delayed dropping an mm in context_switch(). If
2551 * so, we finish that here outside of the runqueue lock. (Doing it
2552 * with the lock held can cause deadlocks; see schedule() for
2553 * details.)
2555 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2556 __releases(rq->lock)
2558 struct mm_struct *mm = rq->prev_mm;
2559 long prev_state;
2561 rq->prev_mm = NULL;
2564 * A task struct has one reference for the use as "current".
2565 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2566 * schedule one last time. The schedule call will never return, and
2567 * the scheduled task must drop that reference.
2568 * The test for TASK_DEAD must occur while the runqueue locks are
2569 * still held, otherwise prev could be scheduled on another cpu, die
2570 * there before we look at prev->state, and then the reference would
2571 * be dropped twice.
2572 * Manfred Spraul <manfred@colorfullife.com>
2574 prev_state = prev->state;
2575 finish_arch_switch(prev);
2576 finish_lock_switch(rq, prev);
2577 #ifdef CONFIG_SMP
2578 if (current->sched_class->post_schedule)
2579 current->sched_class->post_schedule(rq);
2580 #endif
2582 fire_sched_in_preempt_notifiers(current);
2583 if (mm)
2584 mmdrop(mm);
2585 if (unlikely(prev_state == TASK_DEAD)) {
2587 * Remove function-return probe instances associated with this
2588 * task and put them back on the free list.
2590 kprobe_flush_task(prev);
2591 put_task_struct(prev);
2596 * schedule_tail - first thing a freshly forked thread must call.
2597 * @prev: the thread we just switched away from.
2599 asmlinkage void schedule_tail(struct task_struct *prev)
2600 __releases(rq->lock)
2602 struct rq *rq = this_rq();
2604 finish_task_switch(rq, prev);
2605 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2606 /* In this case, finish_task_switch does not reenable preemption */
2607 preempt_enable();
2608 #endif
2609 if (current->set_child_tid)
2610 put_user(task_pid_vnr(current), current->set_child_tid);
2614 * context_switch - switch to the new MM and the new
2615 * thread's register state.
2617 static inline void
2618 context_switch(struct rq *rq, struct task_struct *prev,
2619 struct task_struct *next)
2621 struct mm_struct *mm, *oldmm;
2623 prepare_task_switch(rq, prev, next);
2624 trace_sched_switch(rq, prev, next);
2625 mm = next->mm;
2626 oldmm = prev->active_mm;
2628 * For paravirt, this is coupled with an exit in switch_to to
2629 * combine the page table reload and the switch backend into
2630 * one hypercall.
2632 arch_enter_lazy_cpu_mode();
2634 if (unlikely(!mm)) {
2635 next->active_mm = oldmm;
2636 atomic_inc(&oldmm->mm_count);
2637 enter_lazy_tlb(oldmm, next);
2638 } else
2639 switch_mm(oldmm, mm, next);
2641 if (unlikely(!prev->mm)) {
2642 prev->active_mm = NULL;
2643 rq->prev_mm = oldmm;
2646 * Since the runqueue lock will be released by the next
2647 * task (which is an invalid locking op but in the case
2648 * of the scheduler it's an obvious special-case), so we
2649 * do an early lockdep release here:
2651 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2652 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2653 #endif
2655 /* Here we just switch the register state and the stack. */
2656 switch_to(prev, next, prev);
2658 barrier();
2660 * this_rq must be evaluated again because prev may have moved
2661 * CPUs since it called schedule(), thus the 'rq' on its stack
2662 * frame will be invalid.
2664 finish_task_switch(this_rq(), prev);
2668 * nr_running, nr_uninterruptible and nr_context_switches:
2670 * externally visible scheduler statistics: current number of runnable
2671 * threads, current number of uninterruptible-sleeping threads, total
2672 * number of context switches performed since bootup.
2674 unsigned long nr_running(void)
2676 unsigned long i, sum = 0;
2678 for_each_online_cpu(i)
2679 sum += cpu_rq(i)->nr_running;
2681 return sum;
2684 unsigned long nr_uninterruptible(void)
2686 unsigned long i, sum = 0;
2688 for_each_possible_cpu(i)
2689 sum += cpu_rq(i)->nr_uninterruptible;
2692 * Since we read the counters lockless, it might be slightly
2693 * inaccurate. Do not allow it to go below zero though:
2695 if (unlikely((long)sum < 0))
2696 sum = 0;
2698 return sum;
2701 unsigned long long nr_context_switches(void)
2703 int i;
2704 unsigned long long sum = 0;
2706 for_each_possible_cpu(i)
2707 sum += cpu_rq(i)->nr_switches;
2709 return sum;
2712 unsigned long nr_iowait(void)
2714 unsigned long i, sum = 0;
2716 for_each_possible_cpu(i)
2717 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2719 return sum;
2722 unsigned long nr_active(void)
2724 unsigned long i, running = 0, uninterruptible = 0;
2726 for_each_online_cpu(i) {
2727 running += cpu_rq(i)->nr_running;
2728 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2731 if (unlikely((long)uninterruptible < 0))
2732 uninterruptible = 0;
2734 return running + uninterruptible;
2738 * Update rq->cpu_load[] statistics. This function is usually called every
2739 * scheduler tick (TICK_NSEC).
2741 static void update_cpu_load(struct rq *this_rq)
2743 unsigned long this_load = this_rq->load.weight;
2744 int i, scale;
2746 this_rq->nr_load_updates++;
2748 /* Update our load: */
2749 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2750 unsigned long old_load, new_load;
2752 /* scale is effectively 1 << i now, and >> i divides by scale */
2754 old_load = this_rq->cpu_load[i];
2755 new_load = this_load;
2757 * Round up the averaging division if load is increasing. This
2758 * prevents us from getting stuck on 9 if the load is 10, for
2759 * example.
2761 if (new_load > old_load)
2762 new_load += scale-1;
2763 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2767 #ifdef CONFIG_SMP
2770 * double_rq_lock - safely lock two runqueues
2772 * Note this does not disable interrupts like task_rq_lock,
2773 * you need to do so manually before calling.
2775 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2776 __acquires(rq1->lock)
2777 __acquires(rq2->lock)
2779 BUG_ON(!irqs_disabled());
2780 if (rq1 == rq2) {
2781 spin_lock(&rq1->lock);
2782 __acquire(rq2->lock); /* Fake it out ;) */
2783 } else {
2784 if (rq1 < rq2) {
2785 spin_lock(&rq1->lock);
2786 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2787 } else {
2788 spin_lock(&rq2->lock);
2789 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2792 update_rq_clock(rq1);
2793 update_rq_clock(rq2);
2797 * double_rq_unlock - safely unlock two runqueues
2799 * Note this does not restore interrupts like task_rq_unlock,
2800 * you need to do so manually after calling.
2802 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2803 __releases(rq1->lock)
2804 __releases(rq2->lock)
2806 spin_unlock(&rq1->lock);
2807 if (rq1 != rq2)
2808 spin_unlock(&rq2->lock);
2809 else
2810 __release(rq2->lock);
2814 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2816 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2817 __releases(this_rq->lock)
2818 __acquires(busiest->lock)
2819 __acquires(this_rq->lock)
2821 int ret = 0;
2823 if (unlikely(!irqs_disabled())) {
2824 /* printk() doesn't work good under rq->lock */
2825 spin_unlock(&this_rq->lock);
2826 BUG_ON(1);
2828 if (unlikely(!spin_trylock(&busiest->lock))) {
2829 if (busiest < this_rq) {
2830 spin_unlock(&this_rq->lock);
2831 spin_lock(&busiest->lock);
2832 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
2833 ret = 1;
2834 } else
2835 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
2837 return ret;
2840 static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2841 __releases(busiest->lock)
2843 spin_unlock(&busiest->lock);
2844 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2848 * If dest_cpu is allowed for this process, migrate the task to it.
2849 * This is accomplished by forcing the cpu_allowed mask to only
2850 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2851 * the cpu_allowed mask is restored.
2853 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2855 struct migration_req req;
2856 unsigned long flags;
2857 struct rq *rq;
2859 rq = task_rq_lock(p, &flags);
2860 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2861 || unlikely(!cpu_active(dest_cpu)))
2862 goto out;
2864 trace_sched_migrate_task(rq, p, dest_cpu);
2865 /* force the process onto the specified CPU */
2866 if (migrate_task(p, dest_cpu, &req)) {
2867 /* Need to wait for migration thread (might exit: take ref). */
2868 struct task_struct *mt = rq->migration_thread;
2870 get_task_struct(mt);
2871 task_rq_unlock(rq, &flags);
2872 wake_up_process(mt);
2873 put_task_struct(mt);
2874 wait_for_completion(&req.done);
2876 return;
2878 out:
2879 task_rq_unlock(rq, &flags);
2883 * sched_exec - execve() is a valuable balancing opportunity, because at
2884 * this point the task has the smallest effective memory and cache footprint.
2886 void sched_exec(void)
2888 int new_cpu, this_cpu = get_cpu();
2889 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2890 put_cpu();
2891 if (new_cpu != this_cpu)
2892 sched_migrate_task(current, new_cpu);
2896 * pull_task - move a task from a remote runqueue to the local runqueue.
2897 * Both runqueues must be locked.
2899 static void pull_task(struct rq *src_rq, struct task_struct *p,
2900 struct rq *this_rq, int this_cpu)
2902 deactivate_task(src_rq, p, 0);
2903 set_task_cpu(p, this_cpu);
2904 activate_task(this_rq, p, 0);
2906 * Note that idle threads have a prio of MAX_PRIO, for this test
2907 * to be always true for them.
2909 check_preempt_curr(this_rq, p, 0);
2913 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2915 static
2916 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2917 struct sched_domain *sd, enum cpu_idle_type idle,
2918 int *all_pinned)
2921 * We do not migrate tasks that are:
2922 * 1) running (obviously), or
2923 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2924 * 3) are cache-hot on their current CPU.
2926 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2927 schedstat_inc(p, se.nr_failed_migrations_affine);
2928 return 0;
2930 *all_pinned = 0;
2932 if (task_running(rq, p)) {
2933 schedstat_inc(p, se.nr_failed_migrations_running);
2934 return 0;
2938 * Aggressive migration if:
2939 * 1) task is cache cold, or
2940 * 2) too many balance attempts have failed.
2943 if (!task_hot(p, rq->clock, sd) ||
2944 sd->nr_balance_failed > sd->cache_nice_tries) {
2945 #ifdef CONFIG_SCHEDSTATS
2946 if (task_hot(p, rq->clock, sd)) {
2947 schedstat_inc(sd, lb_hot_gained[idle]);
2948 schedstat_inc(p, se.nr_forced_migrations);
2950 #endif
2951 return 1;
2954 if (task_hot(p, rq->clock, sd)) {
2955 schedstat_inc(p, se.nr_failed_migrations_hot);
2956 return 0;
2958 return 1;
2961 static unsigned long
2962 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2963 unsigned long max_load_move, struct sched_domain *sd,
2964 enum cpu_idle_type idle, int *all_pinned,
2965 int *this_best_prio, struct rq_iterator *iterator)
2967 int loops = 0, pulled = 0, pinned = 0;
2968 struct task_struct *p;
2969 long rem_load_move = max_load_move;
2971 if (max_load_move == 0)
2972 goto out;
2974 pinned = 1;
2977 * Start the load-balancing iterator:
2979 p = iterator->start(iterator->arg);
2980 next:
2981 if (!p || loops++ > sysctl_sched_nr_migrate)
2982 goto out;
2984 if ((p->se.load.weight >> 1) > rem_load_move ||
2985 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2986 p = iterator->next(iterator->arg);
2987 goto next;
2990 pull_task(busiest, p, this_rq, this_cpu);
2991 pulled++;
2992 rem_load_move -= p->se.load.weight;
2995 * We only want to steal up to the prescribed amount of weighted load.
2997 if (rem_load_move > 0) {
2998 if (p->prio < *this_best_prio)
2999 *this_best_prio = p->prio;
3000 p = iterator->next(iterator->arg);
3001 goto next;
3003 out:
3005 * Right now, this is one of only two places pull_task() is called,
3006 * so we can safely collect pull_task() stats here rather than
3007 * inside pull_task().
3009 schedstat_add(sd, lb_gained[idle], pulled);
3011 if (all_pinned)
3012 *all_pinned = pinned;
3014 return max_load_move - rem_load_move;
3018 * move_tasks tries to move up to max_load_move weighted load from busiest to
3019 * this_rq, as part of a balancing operation within domain "sd".
3020 * Returns 1 if successful and 0 otherwise.
3022 * Called with both runqueues locked.
3024 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3025 unsigned long max_load_move,
3026 struct sched_domain *sd, enum cpu_idle_type idle,
3027 int *all_pinned)
3029 const struct sched_class *class = sched_class_highest;
3030 unsigned long total_load_moved = 0;
3031 int this_best_prio = this_rq->curr->prio;
3033 do {
3034 total_load_moved +=
3035 class->load_balance(this_rq, this_cpu, busiest,
3036 max_load_move - total_load_moved,
3037 sd, idle, all_pinned, &this_best_prio);
3038 class = class->next;
3040 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3041 break;
3043 } while (class && max_load_move > total_load_moved);
3045 return total_load_moved > 0;
3048 static int
3049 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3050 struct sched_domain *sd, enum cpu_idle_type idle,
3051 struct rq_iterator *iterator)
3053 struct task_struct *p = iterator->start(iterator->arg);
3054 int pinned = 0;
3056 while (p) {
3057 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3058 pull_task(busiest, p, this_rq, this_cpu);
3060 * Right now, this is only the second place pull_task()
3061 * is called, so we can safely collect pull_task()
3062 * stats here rather than inside pull_task().
3064 schedstat_inc(sd, lb_gained[idle]);
3066 return 1;
3068 p = iterator->next(iterator->arg);
3071 return 0;
3075 * move_one_task tries to move exactly one task from busiest to this_rq, as
3076 * part of active balancing operations within "domain".
3077 * Returns 1 if successful and 0 otherwise.
3079 * Called with both runqueues locked.
3081 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3082 struct sched_domain *sd, enum cpu_idle_type idle)
3084 const struct sched_class *class;
3086 for (class = sched_class_highest; class; class = class->next)
3087 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3088 return 1;
3090 return 0;
3094 * find_busiest_group finds and returns the busiest CPU group within the
3095 * domain. It calculates and returns the amount of weighted load which
3096 * should be moved to restore balance via the imbalance parameter.
3098 static struct sched_group *
3099 find_busiest_group(struct sched_domain *sd, int this_cpu,
3100 unsigned long *imbalance, enum cpu_idle_type idle,
3101 int *sd_idle, const cpumask_t *cpus, int *balance)
3103 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3104 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3105 unsigned long max_pull;
3106 unsigned long busiest_load_per_task, busiest_nr_running;
3107 unsigned long this_load_per_task, this_nr_running;
3108 int load_idx, group_imb = 0;
3109 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3110 int power_savings_balance = 1;
3111 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3112 unsigned long min_nr_running = ULONG_MAX;
3113 struct sched_group *group_min = NULL, *group_leader = NULL;
3114 #endif
3116 max_load = this_load = total_load = total_pwr = 0;
3117 busiest_load_per_task = busiest_nr_running = 0;
3118 this_load_per_task = this_nr_running = 0;
3120 if (idle == CPU_NOT_IDLE)
3121 load_idx = sd->busy_idx;
3122 else if (idle == CPU_NEWLY_IDLE)
3123 load_idx = sd->newidle_idx;
3124 else
3125 load_idx = sd->idle_idx;
3127 do {
3128 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3129 int local_group;
3130 int i;
3131 int __group_imb = 0;
3132 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3133 unsigned long sum_nr_running, sum_weighted_load;
3134 unsigned long sum_avg_load_per_task;
3135 unsigned long avg_load_per_task;
3137 local_group = cpu_isset(this_cpu, group->cpumask);
3139 if (local_group)
3140 balance_cpu = first_cpu(group->cpumask);
3142 /* Tally up the load of all CPUs in the group */
3143 sum_weighted_load = sum_nr_running = avg_load = 0;
3144 sum_avg_load_per_task = avg_load_per_task = 0;
3146 max_cpu_load = 0;
3147 min_cpu_load = ~0UL;
3149 for_each_cpu_mask_nr(i, group->cpumask) {
3150 struct rq *rq;
3152 if (!cpu_isset(i, *cpus))
3153 continue;
3155 rq = cpu_rq(i);
3157 if (*sd_idle && rq->nr_running)
3158 *sd_idle = 0;
3160 /* Bias balancing toward cpus of our domain */
3161 if (local_group) {
3162 if (idle_cpu(i) && !first_idle_cpu) {
3163 first_idle_cpu = 1;
3164 balance_cpu = i;
3167 load = target_load(i, load_idx);
3168 } else {
3169 load = source_load(i, load_idx);
3170 if (load > max_cpu_load)
3171 max_cpu_load = load;
3172 if (min_cpu_load > load)
3173 min_cpu_load = load;
3176 avg_load += load;
3177 sum_nr_running += rq->nr_running;
3178 sum_weighted_load += weighted_cpuload(i);
3180 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3184 * First idle cpu or the first cpu(busiest) in this sched group
3185 * is eligible for doing load balancing at this and above
3186 * domains. In the newly idle case, we will allow all the cpu's
3187 * to do the newly idle load balance.
3189 if (idle != CPU_NEWLY_IDLE && local_group &&
3190 balance_cpu != this_cpu && balance) {
3191 *balance = 0;
3192 goto ret;
3195 total_load += avg_load;
3196 total_pwr += group->__cpu_power;
3198 /* Adjust by relative CPU power of the group */
3199 avg_load = sg_div_cpu_power(group,
3200 avg_load * SCHED_LOAD_SCALE);
3204 * Consider the group unbalanced when the imbalance is larger
3205 * than the average weight of two tasks.
3207 * APZ: with cgroup the avg task weight can vary wildly and
3208 * might not be a suitable number - should we keep a
3209 * normalized nr_running number somewhere that negates
3210 * the hierarchy?
3212 avg_load_per_task = sg_div_cpu_power(group,
3213 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3215 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3216 __group_imb = 1;
3218 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3220 if (local_group) {
3221 this_load = avg_load;
3222 this = group;
3223 this_nr_running = sum_nr_running;
3224 this_load_per_task = sum_weighted_load;
3225 } else if (avg_load > max_load &&
3226 (sum_nr_running > group_capacity || __group_imb)) {
3227 max_load = avg_load;
3228 busiest = group;
3229 busiest_nr_running = sum_nr_running;
3230 busiest_load_per_task = sum_weighted_load;
3231 group_imb = __group_imb;
3234 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3236 * Busy processors will not participate in power savings
3237 * balance.
3239 if (idle == CPU_NOT_IDLE ||
3240 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3241 goto group_next;
3244 * If the local group is idle or completely loaded
3245 * no need to do power savings balance at this domain
3247 if (local_group && (this_nr_running >= group_capacity ||
3248 !this_nr_running))
3249 power_savings_balance = 0;
3252 * If a group is already running at full capacity or idle,
3253 * don't include that group in power savings calculations
3255 if (!power_savings_balance || sum_nr_running >= group_capacity
3256 || !sum_nr_running)
3257 goto group_next;
3260 * Calculate the group which has the least non-idle load.
3261 * This is the group from where we need to pick up the load
3262 * for saving power
3264 if ((sum_nr_running < min_nr_running) ||
3265 (sum_nr_running == min_nr_running &&
3266 first_cpu(group->cpumask) <
3267 first_cpu(group_min->cpumask))) {
3268 group_min = group;
3269 min_nr_running = sum_nr_running;
3270 min_load_per_task = sum_weighted_load /
3271 sum_nr_running;
3275 * Calculate the group which is almost near its
3276 * capacity but still has some space to pick up some load
3277 * from other group and save more power
3279 if (sum_nr_running <= group_capacity - 1) {
3280 if (sum_nr_running > leader_nr_running ||
3281 (sum_nr_running == leader_nr_running &&
3282 first_cpu(group->cpumask) >
3283 first_cpu(group_leader->cpumask))) {
3284 group_leader = group;
3285 leader_nr_running = sum_nr_running;
3288 group_next:
3289 #endif
3290 group = group->next;
3291 } while (group != sd->groups);
3293 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3294 goto out_balanced;
3296 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3298 if (this_load >= avg_load ||
3299 100*max_load <= sd->imbalance_pct*this_load)
3300 goto out_balanced;
3302 busiest_load_per_task /= busiest_nr_running;
3303 if (group_imb)
3304 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3307 * We're trying to get all the cpus to the average_load, so we don't
3308 * want to push ourselves above the average load, nor do we wish to
3309 * reduce the max loaded cpu below the average load, as either of these
3310 * actions would just result in more rebalancing later, and ping-pong
3311 * tasks around. Thus we look for the minimum possible imbalance.
3312 * Negative imbalances (*we* are more loaded than anyone else) will
3313 * be counted as no imbalance for these purposes -- we can't fix that
3314 * by pulling tasks to us. Be careful of negative numbers as they'll
3315 * appear as very large values with unsigned longs.
3317 if (max_load <= busiest_load_per_task)
3318 goto out_balanced;
3321 * In the presence of smp nice balancing, certain scenarios can have
3322 * max load less than avg load(as we skip the groups at or below
3323 * its cpu_power, while calculating max_load..)
3325 if (max_load < avg_load) {
3326 *imbalance = 0;
3327 goto small_imbalance;
3330 /* Don't want to pull so many tasks that a group would go idle */
3331 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3333 /* How much load to actually move to equalise the imbalance */
3334 *imbalance = min(max_pull * busiest->__cpu_power,
3335 (avg_load - this_load) * this->__cpu_power)
3336 / SCHED_LOAD_SCALE;
3339 * if *imbalance is less than the average load per runnable task
3340 * there is no gaurantee that any tasks will be moved so we'll have
3341 * a think about bumping its value to force at least one task to be
3342 * moved
3344 if (*imbalance < busiest_load_per_task) {
3345 unsigned long tmp, pwr_now, pwr_move;
3346 unsigned int imbn;
3348 small_imbalance:
3349 pwr_move = pwr_now = 0;
3350 imbn = 2;
3351 if (this_nr_running) {
3352 this_load_per_task /= this_nr_running;
3353 if (busiest_load_per_task > this_load_per_task)
3354 imbn = 1;
3355 } else
3356 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3358 if (max_load - this_load + busiest_load_per_task >=
3359 busiest_load_per_task * imbn) {
3360 *imbalance = busiest_load_per_task;
3361 return busiest;
3365 * OK, we don't have enough imbalance to justify moving tasks,
3366 * however we may be able to increase total CPU power used by
3367 * moving them.
3370 pwr_now += busiest->__cpu_power *
3371 min(busiest_load_per_task, max_load);
3372 pwr_now += this->__cpu_power *
3373 min(this_load_per_task, this_load);
3374 pwr_now /= SCHED_LOAD_SCALE;
3376 /* Amount of load we'd subtract */
3377 tmp = sg_div_cpu_power(busiest,
3378 busiest_load_per_task * SCHED_LOAD_SCALE);
3379 if (max_load > tmp)
3380 pwr_move += busiest->__cpu_power *
3381 min(busiest_load_per_task, max_load - tmp);
3383 /* Amount of load we'd add */
3384 if (max_load * busiest->__cpu_power <
3385 busiest_load_per_task * SCHED_LOAD_SCALE)
3386 tmp = sg_div_cpu_power(this,
3387 max_load * busiest->__cpu_power);
3388 else
3389 tmp = sg_div_cpu_power(this,
3390 busiest_load_per_task * SCHED_LOAD_SCALE);
3391 pwr_move += this->__cpu_power *
3392 min(this_load_per_task, this_load + tmp);
3393 pwr_move /= SCHED_LOAD_SCALE;
3395 /* Move if we gain throughput */
3396 if (pwr_move > pwr_now)
3397 *imbalance = busiest_load_per_task;
3400 return busiest;
3402 out_balanced:
3403 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3404 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3405 goto ret;
3407 if (this == group_leader && group_leader != group_min) {
3408 *imbalance = min_load_per_task;
3409 return group_min;
3411 #endif
3412 ret:
3413 *imbalance = 0;
3414 return NULL;
3418 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3420 static struct rq *
3421 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3422 unsigned long imbalance, const cpumask_t *cpus)
3424 struct rq *busiest = NULL, *rq;
3425 unsigned long max_load = 0;
3426 int i;
3428 for_each_cpu_mask_nr(i, group->cpumask) {
3429 unsigned long wl;
3431 if (!cpu_isset(i, *cpus))
3432 continue;
3434 rq = cpu_rq(i);
3435 wl = weighted_cpuload(i);
3437 if (rq->nr_running == 1 && wl > imbalance)
3438 continue;
3440 if (wl > max_load) {
3441 max_load = wl;
3442 busiest = rq;
3446 return busiest;
3450 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3451 * so long as it is large enough.
3453 #define MAX_PINNED_INTERVAL 512
3456 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3457 * tasks if there is an imbalance.
3459 static int load_balance(int this_cpu, struct rq *this_rq,
3460 struct sched_domain *sd, enum cpu_idle_type idle,
3461 int *balance, cpumask_t *cpus)
3463 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3464 struct sched_group *group;
3465 unsigned long imbalance;
3466 struct rq *busiest;
3467 unsigned long flags;
3469 cpus_setall(*cpus);
3472 * When power savings policy is enabled for the parent domain, idle
3473 * sibling can pick up load irrespective of busy siblings. In this case,
3474 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3475 * portraying it as CPU_NOT_IDLE.
3477 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3478 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3479 sd_idle = 1;
3481 schedstat_inc(sd, lb_count[idle]);
3483 redo:
3484 update_shares(sd);
3485 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3486 cpus, balance);
3488 if (*balance == 0)
3489 goto out_balanced;
3491 if (!group) {
3492 schedstat_inc(sd, lb_nobusyg[idle]);
3493 goto out_balanced;
3496 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3497 if (!busiest) {
3498 schedstat_inc(sd, lb_nobusyq[idle]);
3499 goto out_balanced;
3502 BUG_ON(busiest == this_rq);
3504 schedstat_add(sd, lb_imbalance[idle], imbalance);
3506 ld_moved = 0;
3507 if (busiest->nr_running > 1) {
3509 * Attempt to move tasks. If find_busiest_group has found
3510 * an imbalance but busiest->nr_running <= 1, the group is
3511 * still unbalanced. ld_moved simply stays zero, so it is
3512 * correctly treated as an imbalance.
3514 local_irq_save(flags);
3515 double_rq_lock(this_rq, busiest);
3516 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3517 imbalance, sd, idle, &all_pinned);
3518 double_rq_unlock(this_rq, busiest);
3519 local_irq_restore(flags);
3522 * some other cpu did the load balance for us.
3524 if (ld_moved && this_cpu != smp_processor_id())
3525 resched_cpu(this_cpu);
3527 /* All tasks on this runqueue were pinned by CPU affinity */
3528 if (unlikely(all_pinned)) {
3529 cpu_clear(cpu_of(busiest), *cpus);
3530 if (!cpus_empty(*cpus))
3531 goto redo;
3532 goto out_balanced;
3536 if (!ld_moved) {
3537 schedstat_inc(sd, lb_failed[idle]);
3538 sd->nr_balance_failed++;
3540 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3542 spin_lock_irqsave(&busiest->lock, flags);
3544 /* don't kick the migration_thread, if the curr
3545 * task on busiest cpu can't be moved to this_cpu
3547 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3548 spin_unlock_irqrestore(&busiest->lock, flags);
3549 all_pinned = 1;
3550 goto out_one_pinned;
3553 if (!busiest->active_balance) {
3554 busiest->active_balance = 1;
3555 busiest->push_cpu = this_cpu;
3556 active_balance = 1;
3558 spin_unlock_irqrestore(&busiest->lock, flags);
3559 if (active_balance)
3560 wake_up_process(busiest->migration_thread);
3563 * We've kicked active balancing, reset the failure
3564 * counter.
3566 sd->nr_balance_failed = sd->cache_nice_tries+1;
3568 } else
3569 sd->nr_balance_failed = 0;
3571 if (likely(!active_balance)) {
3572 /* We were unbalanced, so reset the balancing interval */
3573 sd->balance_interval = sd->min_interval;
3574 } else {
3576 * If we've begun active balancing, start to back off. This
3577 * case may not be covered by the all_pinned logic if there
3578 * is only 1 task on the busy runqueue (because we don't call
3579 * move_tasks).
3581 if (sd->balance_interval < sd->max_interval)
3582 sd->balance_interval *= 2;
3585 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3586 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3587 ld_moved = -1;
3589 goto out;
3591 out_balanced:
3592 schedstat_inc(sd, lb_balanced[idle]);
3594 sd->nr_balance_failed = 0;
3596 out_one_pinned:
3597 /* tune up the balancing interval */
3598 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3599 (sd->balance_interval < sd->max_interval))
3600 sd->balance_interval *= 2;
3602 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3603 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3604 ld_moved = -1;
3605 else
3606 ld_moved = 0;
3607 out:
3608 if (ld_moved)
3609 update_shares(sd);
3610 return ld_moved;
3614 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3615 * tasks if there is an imbalance.
3617 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3618 * this_rq is locked.
3620 static int
3621 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3622 cpumask_t *cpus)
3624 struct sched_group *group;
3625 struct rq *busiest = NULL;
3626 unsigned long imbalance;
3627 int ld_moved = 0;
3628 int sd_idle = 0;
3629 int all_pinned = 0;
3631 cpus_setall(*cpus);
3634 * When power savings policy is enabled for the parent domain, idle
3635 * sibling can pick up load irrespective of busy siblings. In this case,
3636 * let the state of idle sibling percolate up as IDLE, instead of
3637 * portraying it as CPU_NOT_IDLE.
3639 if (sd->flags & SD_SHARE_CPUPOWER &&
3640 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3641 sd_idle = 1;
3643 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3644 redo:
3645 update_shares_locked(this_rq, sd);
3646 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3647 &sd_idle, cpus, NULL);
3648 if (!group) {
3649 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3650 goto out_balanced;
3653 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3654 if (!busiest) {
3655 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3656 goto out_balanced;
3659 BUG_ON(busiest == this_rq);
3661 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3663 ld_moved = 0;
3664 if (busiest->nr_running > 1) {
3665 /* Attempt to move tasks */
3666 double_lock_balance(this_rq, busiest);
3667 /* this_rq->clock is already updated */
3668 update_rq_clock(busiest);
3669 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3670 imbalance, sd, CPU_NEWLY_IDLE,
3671 &all_pinned);
3672 double_unlock_balance(this_rq, busiest);
3674 if (unlikely(all_pinned)) {
3675 cpu_clear(cpu_of(busiest), *cpus);
3676 if (!cpus_empty(*cpus))
3677 goto redo;
3681 if (!ld_moved) {
3682 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3683 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3684 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3685 return -1;
3686 } else
3687 sd->nr_balance_failed = 0;
3689 update_shares_locked(this_rq, sd);
3690 return ld_moved;
3692 out_balanced:
3693 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3694 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3695 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3696 return -1;
3697 sd->nr_balance_failed = 0;
3699 return 0;
3703 * idle_balance is called by schedule() if this_cpu is about to become
3704 * idle. Attempts to pull tasks from other CPUs.
3706 static void idle_balance(int this_cpu, struct rq *this_rq)
3708 struct sched_domain *sd;
3709 int pulled_task = -1;
3710 unsigned long next_balance = jiffies + HZ;
3711 cpumask_t tmpmask;
3713 for_each_domain(this_cpu, sd) {
3714 unsigned long interval;
3716 if (!(sd->flags & SD_LOAD_BALANCE))
3717 continue;
3719 if (sd->flags & SD_BALANCE_NEWIDLE)
3720 /* If we've pulled tasks over stop searching: */
3721 pulled_task = load_balance_newidle(this_cpu, this_rq,
3722 sd, &tmpmask);
3724 interval = msecs_to_jiffies(sd->balance_interval);
3725 if (time_after(next_balance, sd->last_balance + interval))
3726 next_balance = sd->last_balance + interval;
3727 if (pulled_task)
3728 break;
3730 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3732 * We are going idle. next_balance may be set based on
3733 * a busy processor. So reset next_balance.
3735 this_rq->next_balance = next_balance;
3740 * active_load_balance is run by migration threads. It pushes running tasks
3741 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3742 * running on each physical CPU where possible, and avoids physical /
3743 * logical imbalances.
3745 * Called with busiest_rq locked.
3747 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3749 int target_cpu = busiest_rq->push_cpu;
3750 struct sched_domain *sd;
3751 struct rq *target_rq;
3753 /* Is there any task to move? */
3754 if (busiest_rq->nr_running <= 1)
3755 return;
3757 target_rq = cpu_rq(target_cpu);
3760 * This condition is "impossible", if it occurs
3761 * we need to fix it. Originally reported by
3762 * Bjorn Helgaas on a 128-cpu setup.
3764 BUG_ON(busiest_rq == target_rq);
3766 /* move a task from busiest_rq to target_rq */
3767 double_lock_balance(busiest_rq, target_rq);
3768 update_rq_clock(busiest_rq);
3769 update_rq_clock(target_rq);
3771 /* Search for an sd spanning us and the target CPU. */
3772 for_each_domain(target_cpu, sd) {
3773 if ((sd->flags & SD_LOAD_BALANCE) &&
3774 cpu_isset(busiest_cpu, sd->span))
3775 break;
3778 if (likely(sd)) {
3779 schedstat_inc(sd, alb_count);
3781 if (move_one_task(target_rq, target_cpu, busiest_rq,
3782 sd, CPU_IDLE))
3783 schedstat_inc(sd, alb_pushed);
3784 else
3785 schedstat_inc(sd, alb_failed);
3787 double_unlock_balance(busiest_rq, target_rq);
3790 #ifdef CONFIG_NO_HZ
3791 static struct {
3792 atomic_t load_balancer;
3793 cpumask_t cpu_mask;
3794 } nohz ____cacheline_aligned = {
3795 .load_balancer = ATOMIC_INIT(-1),
3796 .cpu_mask = CPU_MASK_NONE,
3800 * This routine will try to nominate the ilb (idle load balancing)
3801 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3802 * load balancing on behalf of all those cpus. If all the cpus in the system
3803 * go into this tickless mode, then there will be no ilb owner (as there is
3804 * no need for one) and all the cpus will sleep till the next wakeup event
3805 * arrives...
3807 * For the ilb owner, tick is not stopped. And this tick will be used
3808 * for idle load balancing. ilb owner will still be part of
3809 * nohz.cpu_mask..
3811 * While stopping the tick, this cpu will become the ilb owner if there
3812 * is no other owner. And will be the owner till that cpu becomes busy
3813 * or if all cpus in the system stop their ticks at which point
3814 * there is no need for ilb owner.
3816 * When the ilb owner becomes busy, it nominates another owner, during the
3817 * next busy scheduler_tick()
3819 int select_nohz_load_balancer(int stop_tick)
3821 int cpu = smp_processor_id();
3823 if (stop_tick) {
3824 cpu_set(cpu, nohz.cpu_mask);
3825 cpu_rq(cpu)->in_nohz_recently = 1;
3828 * If we are going offline and still the leader, give up!
3830 if (!cpu_active(cpu) &&
3831 atomic_read(&nohz.load_balancer) == cpu) {
3832 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3833 BUG();
3834 return 0;
3837 /* time for ilb owner also to sleep */
3838 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3839 if (atomic_read(&nohz.load_balancer) == cpu)
3840 atomic_set(&nohz.load_balancer, -1);
3841 return 0;
3844 if (atomic_read(&nohz.load_balancer) == -1) {
3845 /* make me the ilb owner */
3846 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3847 return 1;
3848 } else if (atomic_read(&nohz.load_balancer) == cpu)
3849 return 1;
3850 } else {
3851 if (!cpu_isset(cpu, nohz.cpu_mask))
3852 return 0;
3854 cpu_clear(cpu, nohz.cpu_mask);
3856 if (atomic_read(&nohz.load_balancer) == cpu)
3857 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3858 BUG();
3860 return 0;
3862 #endif
3864 static DEFINE_SPINLOCK(balancing);
3867 * It checks each scheduling domain to see if it is due to be balanced,
3868 * and initiates a balancing operation if so.
3870 * Balancing parameters are set up in arch_init_sched_domains.
3872 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3874 int balance = 1;
3875 struct rq *rq = cpu_rq(cpu);
3876 unsigned long interval;
3877 struct sched_domain *sd;
3878 /* Earliest time when we have to do rebalance again */
3879 unsigned long next_balance = jiffies + 60*HZ;
3880 int update_next_balance = 0;
3881 int need_serialize;
3882 cpumask_t tmp;
3884 for_each_domain(cpu, sd) {
3885 if (!(sd->flags & SD_LOAD_BALANCE))
3886 continue;
3888 interval = sd->balance_interval;
3889 if (idle != CPU_IDLE)
3890 interval *= sd->busy_factor;
3892 /* scale ms to jiffies */
3893 interval = msecs_to_jiffies(interval);
3894 if (unlikely(!interval))
3895 interval = 1;
3896 if (interval > HZ*NR_CPUS/10)
3897 interval = HZ*NR_CPUS/10;
3899 need_serialize = sd->flags & SD_SERIALIZE;
3901 if (need_serialize) {
3902 if (!spin_trylock(&balancing))
3903 goto out;
3906 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3907 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3909 * We've pulled tasks over so either we're no
3910 * longer idle, or one of our SMT siblings is
3911 * not idle.
3913 idle = CPU_NOT_IDLE;
3915 sd->last_balance = jiffies;
3917 if (need_serialize)
3918 spin_unlock(&balancing);
3919 out:
3920 if (time_after(next_balance, sd->last_balance + interval)) {
3921 next_balance = sd->last_balance + interval;
3922 update_next_balance = 1;
3926 * Stop the load balance at this level. There is another
3927 * CPU in our sched group which is doing load balancing more
3928 * actively.
3930 if (!balance)
3931 break;
3935 * next_balance will be updated only when there is a need.
3936 * When the cpu is attached to null domain for ex, it will not be
3937 * updated.
3939 if (likely(update_next_balance))
3940 rq->next_balance = next_balance;
3944 * run_rebalance_domains is triggered when needed from the scheduler tick.
3945 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3946 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3948 static void run_rebalance_domains(struct softirq_action *h)
3950 int this_cpu = smp_processor_id();
3951 struct rq *this_rq = cpu_rq(this_cpu);
3952 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3953 CPU_IDLE : CPU_NOT_IDLE;
3955 rebalance_domains(this_cpu, idle);
3957 #ifdef CONFIG_NO_HZ
3959 * If this cpu is the owner for idle load balancing, then do the
3960 * balancing on behalf of the other idle cpus whose ticks are
3961 * stopped.
3963 if (this_rq->idle_at_tick &&
3964 atomic_read(&nohz.load_balancer) == this_cpu) {
3965 cpumask_t cpus = nohz.cpu_mask;
3966 struct rq *rq;
3967 int balance_cpu;
3969 cpu_clear(this_cpu, cpus);
3970 for_each_cpu_mask_nr(balance_cpu, cpus) {
3972 * If this cpu gets work to do, stop the load balancing
3973 * work being done for other cpus. Next load
3974 * balancing owner will pick it up.
3976 if (need_resched())
3977 break;
3979 rebalance_domains(balance_cpu, CPU_IDLE);
3981 rq = cpu_rq(balance_cpu);
3982 if (time_after(this_rq->next_balance, rq->next_balance))
3983 this_rq->next_balance = rq->next_balance;
3986 #endif
3990 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3992 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3993 * idle load balancing owner or decide to stop the periodic load balancing,
3994 * if the whole system is idle.
3996 static inline void trigger_load_balance(struct rq *rq, int cpu)
3998 #ifdef CONFIG_NO_HZ
4000 * If we were in the nohz mode recently and busy at the current
4001 * scheduler tick, then check if we need to nominate new idle
4002 * load balancer.
4004 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4005 rq->in_nohz_recently = 0;
4007 if (atomic_read(&nohz.load_balancer) == cpu) {
4008 cpu_clear(cpu, nohz.cpu_mask);
4009 atomic_set(&nohz.load_balancer, -1);
4012 if (atomic_read(&nohz.load_balancer) == -1) {
4014 * simple selection for now: Nominate the
4015 * first cpu in the nohz list to be the next
4016 * ilb owner.
4018 * TBD: Traverse the sched domains and nominate
4019 * the nearest cpu in the nohz.cpu_mask.
4021 int ilb = first_cpu(nohz.cpu_mask);
4023 if (ilb < nr_cpu_ids)
4024 resched_cpu(ilb);
4029 * If this cpu is idle and doing idle load balancing for all the
4030 * cpus with ticks stopped, is it time for that to stop?
4032 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4033 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4034 resched_cpu(cpu);
4035 return;
4039 * If this cpu is idle and the idle load balancing is done by
4040 * someone else, then no need raise the SCHED_SOFTIRQ
4042 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4043 cpu_isset(cpu, nohz.cpu_mask))
4044 return;
4045 #endif
4046 if (time_after_eq(jiffies, rq->next_balance))
4047 raise_softirq(SCHED_SOFTIRQ);
4050 #else /* CONFIG_SMP */
4053 * on UP we do not need to balance between CPUs:
4055 static inline void idle_balance(int cpu, struct rq *rq)
4059 #endif
4061 DEFINE_PER_CPU(struct kernel_stat, kstat);
4063 EXPORT_PER_CPU_SYMBOL(kstat);
4066 * Return any ns on the sched_clock that have not yet been banked in
4067 * @p in case that task is currently running.
4069 unsigned long long task_delta_exec(struct task_struct *p)
4071 unsigned long flags;
4072 struct rq *rq;
4073 u64 ns = 0;
4075 rq = task_rq_lock(p, &flags);
4077 if (task_current(rq, p)) {
4078 u64 delta_exec;
4080 update_rq_clock(rq);
4081 delta_exec = rq->clock - p->se.exec_start;
4082 if ((s64)delta_exec > 0)
4083 ns = delta_exec;
4086 task_rq_unlock(rq, &flags);
4088 return ns;
4092 * Account user cpu time to a process.
4093 * @p: the process that the cpu time gets accounted to
4094 * @cputime: the cpu time spent in user space since the last update
4096 void account_user_time(struct task_struct *p, cputime_t cputime)
4098 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4099 cputime64_t tmp;
4101 p->utime = cputime_add(p->utime, cputime);
4102 account_group_user_time(p, cputime);
4104 /* Add user time to cpustat. */
4105 tmp = cputime_to_cputime64(cputime);
4106 if (TASK_NICE(p) > 0)
4107 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4108 else
4109 cpustat->user = cputime64_add(cpustat->user, tmp);
4110 /* Account for user time used */
4111 acct_update_integrals(p);
4115 * Account guest cpu time to a process.
4116 * @p: the process that the cpu time gets accounted to
4117 * @cputime: the cpu time spent in virtual machine since the last update
4119 static void account_guest_time(struct task_struct *p, cputime_t cputime)
4121 cputime64_t tmp;
4122 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4124 tmp = cputime_to_cputime64(cputime);
4126 p->utime = cputime_add(p->utime, cputime);
4127 account_group_user_time(p, cputime);
4128 p->gtime = cputime_add(p->gtime, cputime);
4130 cpustat->user = cputime64_add(cpustat->user, tmp);
4131 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4135 * Account scaled user cpu time to a process.
4136 * @p: the process that the cpu time gets accounted to
4137 * @cputime: the cpu time spent in user space since the last update
4139 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4141 p->utimescaled = cputime_add(p->utimescaled, cputime);
4145 * Account system cpu time to a process.
4146 * @p: the process that the cpu time gets accounted to
4147 * @hardirq_offset: the offset to subtract from hardirq_count()
4148 * @cputime: the cpu time spent in kernel space since the last update
4150 void account_system_time(struct task_struct *p, int hardirq_offset,
4151 cputime_t cputime)
4153 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4154 struct rq *rq = this_rq();
4155 cputime64_t tmp;
4157 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4158 account_guest_time(p, cputime);
4159 return;
4162 p->stime = cputime_add(p->stime, cputime);
4163 account_group_system_time(p, cputime);
4165 /* Add system time to cpustat. */
4166 tmp = cputime_to_cputime64(cputime);
4167 if (hardirq_count() - hardirq_offset)
4168 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4169 else if (softirq_count())
4170 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4171 else if (p != rq->idle)
4172 cpustat->system = cputime64_add(cpustat->system, tmp);
4173 else if (atomic_read(&rq->nr_iowait) > 0)
4174 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4175 else
4176 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4177 /* Account for system time used */
4178 acct_update_integrals(p);
4182 * Account scaled system cpu time to a process.
4183 * @p: the process that the cpu time gets accounted to
4184 * @hardirq_offset: the offset to subtract from hardirq_count()
4185 * @cputime: the cpu time spent in kernel space since the last update
4187 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4189 p->stimescaled = cputime_add(p->stimescaled, cputime);
4193 * Account for involuntary wait time.
4194 * @p: the process from which the cpu time has been stolen
4195 * @steal: the cpu time spent in involuntary wait
4197 void account_steal_time(struct task_struct *p, cputime_t steal)
4199 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4200 cputime64_t tmp = cputime_to_cputime64(steal);
4201 struct rq *rq = this_rq();
4203 if (p == rq->idle) {
4204 p->stime = cputime_add(p->stime, steal);
4205 account_group_system_time(p, steal);
4206 if (atomic_read(&rq->nr_iowait) > 0)
4207 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4208 else
4209 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4210 } else
4211 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4215 * Use precise platform statistics if available:
4217 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4218 cputime_t task_utime(struct task_struct *p)
4220 return p->utime;
4223 cputime_t task_stime(struct task_struct *p)
4225 return p->stime;
4227 #else
4228 cputime_t task_utime(struct task_struct *p)
4230 clock_t utime = cputime_to_clock_t(p->utime),
4231 total = utime + cputime_to_clock_t(p->stime);
4232 u64 temp;
4235 * Use CFS's precise accounting:
4237 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4239 if (total) {
4240 temp *= utime;
4241 do_div(temp, total);
4243 utime = (clock_t)temp;
4245 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4246 return p->prev_utime;
4249 cputime_t task_stime(struct task_struct *p)
4251 clock_t stime;
4254 * Use CFS's precise accounting. (we subtract utime from
4255 * the total, to make sure the total observed by userspace
4256 * grows monotonically - apps rely on that):
4258 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4259 cputime_to_clock_t(task_utime(p));
4261 if (stime >= 0)
4262 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4264 return p->prev_stime;
4266 #endif
4268 inline cputime_t task_gtime(struct task_struct *p)
4270 return p->gtime;
4274 * This function gets called by the timer code, with HZ frequency.
4275 * We call it with interrupts disabled.
4277 * It also gets called by the fork code, when changing the parent's
4278 * timeslices.
4280 void scheduler_tick(void)
4282 int cpu = smp_processor_id();
4283 struct rq *rq = cpu_rq(cpu);
4284 struct task_struct *curr = rq->curr;
4286 sched_clock_tick();
4288 spin_lock(&rq->lock);
4289 update_rq_clock(rq);
4290 update_cpu_load(rq);
4291 curr->sched_class->task_tick(rq, curr, 0);
4292 spin_unlock(&rq->lock);
4294 #ifdef CONFIG_SMP
4295 rq->idle_at_tick = idle_cpu(cpu);
4296 trigger_load_balance(rq, cpu);
4297 #endif
4300 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4301 defined(CONFIG_PREEMPT_TRACER))
4303 static inline unsigned long get_parent_ip(unsigned long addr)
4305 if (in_lock_functions(addr)) {
4306 addr = CALLER_ADDR2;
4307 if (in_lock_functions(addr))
4308 addr = CALLER_ADDR3;
4310 return addr;
4313 void __kprobes add_preempt_count(int val)
4315 #ifdef CONFIG_DEBUG_PREEMPT
4317 * Underflow?
4319 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4320 return;
4321 #endif
4322 preempt_count() += val;
4323 #ifdef CONFIG_DEBUG_PREEMPT
4325 * Spinlock count overflowing soon?
4327 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4328 PREEMPT_MASK - 10);
4329 #endif
4330 if (preempt_count() == val)
4331 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4333 EXPORT_SYMBOL(add_preempt_count);
4335 void __kprobes sub_preempt_count(int val)
4337 #ifdef CONFIG_DEBUG_PREEMPT
4339 * Underflow?
4341 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4342 return;
4344 * Is the spinlock portion underflowing?
4346 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4347 !(preempt_count() & PREEMPT_MASK)))
4348 return;
4349 #endif
4351 if (preempt_count() == val)
4352 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4353 preempt_count() -= val;
4355 EXPORT_SYMBOL(sub_preempt_count);
4357 #endif
4360 * Print scheduling while atomic bug:
4362 static noinline void __schedule_bug(struct task_struct *prev)
4364 struct pt_regs *regs = get_irq_regs();
4366 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4367 prev->comm, prev->pid, preempt_count());
4369 debug_show_held_locks(prev);
4370 print_modules();
4371 if (irqs_disabled())
4372 print_irqtrace_events(prev);
4374 if (regs)
4375 show_regs(regs);
4376 else
4377 dump_stack();
4381 * Various schedule()-time debugging checks and statistics:
4383 static inline void schedule_debug(struct task_struct *prev)
4386 * Test if we are atomic. Since do_exit() needs to call into
4387 * schedule() atomically, we ignore that path for now.
4388 * Otherwise, whine if we are scheduling when we should not be.
4390 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4391 __schedule_bug(prev);
4393 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4395 schedstat_inc(this_rq(), sched_count);
4396 #ifdef CONFIG_SCHEDSTATS
4397 if (unlikely(prev->lock_depth >= 0)) {
4398 schedstat_inc(this_rq(), bkl_count);
4399 schedstat_inc(prev, sched_info.bkl_count);
4401 #endif
4405 * Pick up the highest-prio task:
4407 static inline struct task_struct *
4408 pick_next_task(struct rq *rq, struct task_struct *prev)
4410 const struct sched_class *class;
4411 struct task_struct *p;
4414 * Optimization: we know that if all tasks are in
4415 * the fair class we can call that function directly:
4417 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4418 p = fair_sched_class.pick_next_task(rq);
4419 if (likely(p))
4420 return p;
4423 class = sched_class_highest;
4424 for ( ; ; ) {
4425 p = class->pick_next_task(rq);
4426 if (p)
4427 return p;
4429 * Will never be NULL as the idle class always
4430 * returns a non-NULL p:
4432 class = class->next;
4437 * schedule() is the main scheduler function.
4439 asmlinkage void __sched schedule(void)
4441 struct task_struct *prev, *next;
4442 unsigned long *switch_count;
4443 struct rq *rq;
4444 int cpu;
4446 need_resched:
4447 preempt_disable();
4448 cpu = smp_processor_id();
4449 rq = cpu_rq(cpu);
4450 rcu_qsctr_inc(cpu);
4451 prev = rq->curr;
4452 switch_count = &prev->nivcsw;
4454 release_kernel_lock(prev);
4455 need_resched_nonpreemptible:
4457 schedule_debug(prev);
4459 if (sched_feat(HRTICK))
4460 hrtick_clear(rq);
4462 spin_lock_irq(&rq->lock);
4463 update_rq_clock(rq);
4464 clear_tsk_need_resched(prev);
4466 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4467 if (unlikely(signal_pending_state(prev->state, prev)))
4468 prev->state = TASK_RUNNING;
4469 else
4470 deactivate_task(rq, prev, 1);
4471 switch_count = &prev->nvcsw;
4474 #ifdef CONFIG_SMP
4475 if (prev->sched_class->pre_schedule)
4476 prev->sched_class->pre_schedule(rq, prev);
4477 #endif
4479 if (unlikely(!rq->nr_running))
4480 idle_balance(cpu, rq);
4482 prev->sched_class->put_prev_task(rq, prev);
4483 next = pick_next_task(rq, prev);
4485 if (likely(prev != next)) {
4486 sched_info_switch(prev, next);
4488 rq->nr_switches++;
4489 rq->curr = next;
4490 ++*switch_count;
4492 context_switch(rq, prev, next); /* unlocks the rq */
4494 * the context switch might have flipped the stack from under
4495 * us, hence refresh the local variables.
4497 cpu = smp_processor_id();
4498 rq = cpu_rq(cpu);
4499 } else
4500 spin_unlock_irq(&rq->lock);
4502 if (unlikely(reacquire_kernel_lock(current) < 0))
4503 goto need_resched_nonpreemptible;
4505 preempt_enable_no_resched();
4506 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4507 goto need_resched;
4509 EXPORT_SYMBOL(schedule);
4511 #ifdef CONFIG_PREEMPT
4513 * this is the entry point to schedule() from in-kernel preemption
4514 * off of preempt_enable. Kernel preemptions off return from interrupt
4515 * occur there and call schedule directly.
4517 asmlinkage void __sched preempt_schedule(void)
4519 struct thread_info *ti = current_thread_info();
4522 * If there is a non-zero preempt_count or interrupts are disabled,
4523 * we do not want to preempt the current task. Just return..
4525 if (likely(ti->preempt_count || irqs_disabled()))
4526 return;
4528 do {
4529 add_preempt_count(PREEMPT_ACTIVE);
4530 schedule();
4531 sub_preempt_count(PREEMPT_ACTIVE);
4534 * Check again in case we missed a preemption opportunity
4535 * between schedule and now.
4537 barrier();
4538 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4540 EXPORT_SYMBOL(preempt_schedule);
4543 * this is the entry point to schedule() from kernel preemption
4544 * off of irq context.
4545 * Note, that this is called and return with irqs disabled. This will
4546 * protect us against recursive calling from irq.
4548 asmlinkage void __sched preempt_schedule_irq(void)
4550 struct thread_info *ti = current_thread_info();
4552 /* Catch callers which need to be fixed */
4553 BUG_ON(ti->preempt_count || !irqs_disabled());
4555 do {
4556 add_preempt_count(PREEMPT_ACTIVE);
4557 local_irq_enable();
4558 schedule();
4559 local_irq_disable();
4560 sub_preempt_count(PREEMPT_ACTIVE);
4563 * Check again in case we missed a preemption opportunity
4564 * between schedule and now.
4566 barrier();
4567 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4570 #endif /* CONFIG_PREEMPT */
4572 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4573 void *key)
4575 return try_to_wake_up(curr->private, mode, sync);
4577 EXPORT_SYMBOL(default_wake_function);
4580 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4581 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4582 * number) then we wake all the non-exclusive tasks and one exclusive task.
4584 * There are circumstances in which we can try to wake a task which has already
4585 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4586 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4588 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4589 int nr_exclusive, int sync, void *key)
4591 wait_queue_t *curr, *next;
4593 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4594 unsigned flags = curr->flags;
4596 if (curr->func(curr, mode, sync, key) &&
4597 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4598 break;
4603 * __wake_up - wake up threads blocked on a waitqueue.
4604 * @q: the waitqueue
4605 * @mode: which threads
4606 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4607 * @key: is directly passed to the wakeup function
4609 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4610 int nr_exclusive, void *key)
4612 unsigned long flags;
4614 spin_lock_irqsave(&q->lock, flags);
4615 __wake_up_common(q, mode, nr_exclusive, 0, key);
4616 spin_unlock_irqrestore(&q->lock, flags);
4618 EXPORT_SYMBOL(__wake_up);
4621 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4623 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4625 __wake_up_common(q, mode, 1, 0, NULL);
4629 * __wake_up_sync - wake up threads blocked on a waitqueue.
4630 * @q: the waitqueue
4631 * @mode: which threads
4632 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4634 * The sync wakeup differs that the waker knows that it will schedule
4635 * away soon, so while the target thread will be woken up, it will not
4636 * be migrated to another CPU - ie. the two threads are 'synchronized'
4637 * with each other. This can prevent needless bouncing between CPUs.
4639 * On UP it can prevent extra preemption.
4641 void
4642 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4644 unsigned long flags;
4645 int sync = 1;
4647 if (unlikely(!q))
4648 return;
4650 if (unlikely(!nr_exclusive))
4651 sync = 0;
4653 spin_lock_irqsave(&q->lock, flags);
4654 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4655 spin_unlock_irqrestore(&q->lock, flags);
4657 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4660 * complete: - signals a single thread waiting on this completion
4661 * @x: holds the state of this particular completion
4663 * This will wake up a single thread waiting on this completion. Threads will be
4664 * awakened in the same order in which they were queued.
4666 * See also complete_all(), wait_for_completion() and related routines.
4668 void complete(struct completion *x)
4670 unsigned long flags;
4672 spin_lock_irqsave(&x->wait.lock, flags);
4673 x->done++;
4674 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4675 spin_unlock_irqrestore(&x->wait.lock, flags);
4677 EXPORT_SYMBOL(complete);
4680 * complete_all: - signals all threads waiting on this completion
4681 * @x: holds the state of this particular completion
4683 * This will wake up all threads waiting on this particular completion event.
4685 void complete_all(struct completion *x)
4687 unsigned long flags;
4689 spin_lock_irqsave(&x->wait.lock, flags);
4690 x->done += UINT_MAX/2;
4691 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4692 spin_unlock_irqrestore(&x->wait.lock, flags);
4694 EXPORT_SYMBOL(complete_all);
4696 static inline long __sched
4697 do_wait_for_common(struct completion *x, long timeout, int state)
4699 if (!x->done) {
4700 DECLARE_WAITQUEUE(wait, current);
4702 wait.flags |= WQ_FLAG_EXCLUSIVE;
4703 __add_wait_queue_tail(&x->wait, &wait);
4704 do {
4705 if (signal_pending_state(state, current)) {
4706 timeout = -ERESTARTSYS;
4707 break;
4709 __set_current_state(state);
4710 spin_unlock_irq(&x->wait.lock);
4711 timeout = schedule_timeout(timeout);
4712 spin_lock_irq(&x->wait.lock);
4713 } while (!x->done && timeout);
4714 __remove_wait_queue(&x->wait, &wait);
4715 if (!x->done)
4716 return timeout;
4718 x->done--;
4719 return timeout ?: 1;
4722 static long __sched
4723 wait_for_common(struct completion *x, long timeout, int state)
4725 might_sleep();
4727 spin_lock_irq(&x->wait.lock);
4728 timeout = do_wait_for_common(x, timeout, state);
4729 spin_unlock_irq(&x->wait.lock);
4730 return timeout;
4734 * wait_for_completion: - waits for completion of a task
4735 * @x: holds the state of this particular completion
4737 * This waits to be signaled for completion of a specific task. It is NOT
4738 * interruptible and there is no timeout.
4740 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4741 * and interrupt capability. Also see complete().
4743 void __sched wait_for_completion(struct completion *x)
4745 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4747 EXPORT_SYMBOL(wait_for_completion);
4750 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4751 * @x: holds the state of this particular completion
4752 * @timeout: timeout value in jiffies
4754 * This waits for either a completion of a specific task to be signaled or for a
4755 * specified timeout to expire. The timeout is in jiffies. It is not
4756 * interruptible.
4758 unsigned long __sched
4759 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4761 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4763 EXPORT_SYMBOL(wait_for_completion_timeout);
4766 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4767 * @x: holds the state of this particular completion
4769 * This waits for completion of a specific task to be signaled. It is
4770 * interruptible.
4772 int __sched wait_for_completion_interruptible(struct completion *x)
4774 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4775 if (t == -ERESTARTSYS)
4776 return t;
4777 return 0;
4779 EXPORT_SYMBOL(wait_for_completion_interruptible);
4782 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4783 * @x: holds the state of this particular completion
4784 * @timeout: timeout value in jiffies
4786 * This waits for either a completion of a specific task to be signaled or for a
4787 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4789 unsigned long __sched
4790 wait_for_completion_interruptible_timeout(struct completion *x,
4791 unsigned long timeout)
4793 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4795 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4798 * wait_for_completion_killable: - waits for completion of a task (killable)
4799 * @x: holds the state of this particular completion
4801 * This waits to be signaled for completion of a specific task. It can be
4802 * interrupted by a kill signal.
4804 int __sched wait_for_completion_killable(struct completion *x)
4806 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4807 if (t == -ERESTARTSYS)
4808 return t;
4809 return 0;
4811 EXPORT_SYMBOL(wait_for_completion_killable);
4814 * try_wait_for_completion - try to decrement a completion without blocking
4815 * @x: completion structure
4817 * Returns: 0 if a decrement cannot be done without blocking
4818 * 1 if a decrement succeeded.
4820 * If a completion is being used as a counting completion,
4821 * attempt to decrement the counter without blocking. This
4822 * enables us to avoid waiting if the resource the completion
4823 * is protecting is not available.
4825 bool try_wait_for_completion(struct completion *x)
4827 int ret = 1;
4829 spin_lock_irq(&x->wait.lock);
4830 if (!x->done)
4831 ret = 0;
4832 else
4833 x->done--;
4834 spin_unlock_irq(&x->wait.lock);
4835 return ret;
4837 EXPORT_SYMBOL(try_wait_for_completion);
4840 * completion_done - Test to see if a completion has any waiters
4841 * @x: completion structure
4843 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4844 * 1 if there are no waiters.
4847 bool completion_done(struct completion *x)
4849 int ret = 1;
4851 spin_lock_irq(&x->wait.lock);
4852 if (!x->done)
4853 ret = 0;
4854 spin_unlock_irq(&x->wait.lock);
4855 return ret;
4857 EXPORT_SYMBOL(completion_done);
4859 static long __sched
4860 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4862 unsigned long flags;
4863 wait_queue_t wait;
4865 init_waitqueue_entry(&wait, current);
4867 __set_current_state(state);
4869 spin_lock_irqsave(&q->lock, flags);
4870 __add_wait_queue(q, &wait);
4871 spin_unlock(&q->lock);
4872 timeout = schedule_timeout(timeout);
4873 spin_lock_irq(&q->lock);
4874 __remove_wait_queue(q, &wait);
4875 spin_unlock_irqrestore(&q->lock, flags);
4877 return timeout;
4880 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4882 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4884 EXPORT_SYMBOL(interruptible_sleep_on);
4886 long __sched
4887 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4889 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4891 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4893 void __sched sleep_on(wait_queue_head_t *q)
4895 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4897 EXPORT_SYMBOL(sleep_on);
4899 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4901 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4903 EXPORT_SYMBOL(sleep_on_timeout);
4905 #ifdef CONFIG_RT_MUTEXES
4908 * rt_mutex_setprio - set the current priority of a task
4909 * @p: task
4910 * @prio: prio value (kernel-internal form)
4912 * This function changes the 'effective' priority of a task. It does
4913 * not touch ->normal_prio like __setscheduler().
4915 * Used by the rt_mutex code to implement priority inheritance logic.
4917 void rt_mutex_setprio(struct task_struct *p, int prio)
4919 unsigned long flags;
4920 int oldprio, on_rq, running;
4921 struct rq *rq;
4922 const struct sched_class *prev_class = p->sched_class;
4924 BUG_ON(prio < 0 || prio > MAX_PRIO);
4926 rq = task_rq_lock(p, &flags);
4927 update_rq_clock(rq);
4929 oldprio = p->prio;
4930 on_rq = p->se.on_rq;
4931 running = task_current(rq, p);
4932 if (on_rq)
4933 dequeue_task(rq, p, 0);
4934 if (running)
4935 p->sched_class->put_prev_task(rq, p);
4937 if (rt_prio(prio))
4938 p->sched_class = &rt_sched_class;
4939 else
4940 p->sched_class = &fair_sched_class;
4942 p->prio = prio;
4944 if (running)
4945 p->sched_class->set_curr_task(rq);
4946 if (on_rq) {
4947 enqueue_task(rq, p, 0);
4949 check_class_changed(rq, p, prev_class, oldprio, running);
4951 task_rq_unlock(rq, &flags);
4954 #endif
4956 void set_user_nice(struct task_struct *p, long nice)
4958 int old_prio, delta, on_rq;
4959 unsigned long flags;
4960 struct rq *rq;
4962 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4963 return;
4965 * We have to be careful, if called from sys_setpriority(),
4966 * the task might be in the middle of scheduling on another CPU.
4968 rq = task_rq_lock(p, &flags);
4969 update_rq_clock(rq);
4971 * The RT priorities are set via sched_setscheduler(), but we still
4972 * allow the 'normal' nice value to be set - but as expected
4973 * it wont have any effect on scheduling until the task is
4974 * SCHED_FIFO/SCHED_RR:
4976 if (task_has_rt_policy(p)) {
4977 p->static_prio = NICE_TO_PRIO(nice);
4978 goto out_unlock;
4980 on_rq = p->se.on_rq;
4981 if (on_rq)
4982 dequeue_task(rq, p, 0);
4984 p->static_prio = NICE_TO_PRIO(nice);
4985 set_load_weight(p);
4986 old_prio = p->prio;
4987 p->prio = effective_prio(p);
4988 delta = p->prio - old_prio;
4990 if (on_rq) {
4991 enqueue_task(rq, p, 0);
4993 * If the task increased its priority or is running and
4994 * lowered its priority, then reschedule its CPU:
4996 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4997 resched_task(rq->curr);
4999 out_unlock:
5000 task_rq_unlock(rq, &flags);
5002 EXPORT_SYMBOL(set_user_nice);
5005 * can_nice - check if a task can reduce its nice value
5006 * @p: task
5007 * @nice: nice value
5009 int can_nice(const struct task_struct *p, const int nice)
5011 /* convert nice value [19,-20] to rlimit style value [1,40] */
5012 int nice_rlim = 20 - nice;
5014 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5015 capable(CAP_SYS_NICE));
5018 #ifdef __ARCH_WANT_SYS_NICE
5021 * sys_nice - change the priority of the current process.
5022 * @increment: priority increment
5024 * sys_setpriority is a more generic, but much slower function that
5025 * does similar things.
5027 asmlinkage long sys_nice(int increment)
5029 long nice, retval;
5032 * Setpriority might change our priority at the same moment.
5033 * We don't have to worry. Conceptually one call occurs first
5034 * and we have a single winner.
5036 if (increment < -40)
5037 increment = -40;
5038 if (increment > 40)
5039 increment = 40;
5041 nice = PRIO_TO_NICE(current->static_prio) + increment;
5042 if (nice < -20)
5043 nice = -20;
5044 if (nice > 19)
5045 nice = 19;
5047 if (increment < 0 && !can_nice(current, nice))
5048 return -EPERM;
5050 retval = security_task_setnice(current, nice);
5051 if (retval)
5052 return retval;
5054 set_user_nice(current, nice);
5055 return 0;
5058 #endif
5061 * task_prio - return the priority value of a given task.
5062 * @p: the task in question.
5064 * This is the priority value as seen by users in /proc.
5065 * RT tasks are offset by -200. Normal tasks are centered
5066 * around 0, value goes from -16 to +15.
5068 int task_prio(const struct task_struct *p)
5070 return p->prio - MAX_RT_PRIO;
5074 * task_nice - return the nice value of a given task.
5075 * @p: the task in question.
5077 int task_nice(const struct task_struct *p)
5079 return TASK_NICE(p);
5081 EXPORT_SYMBOL(task_nice);
5084 * idle_cpu - is a given cpu idle currently?
5085 * @cpu: the processor in question.
5087 int idle_cpu(int cpu)
5089 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5093 * idle_task - return the idle task for a given cpu.
5094 * @cpu: the processor in question.
5096 struct task_struct *idle_task(int cpu)
5098 return cpu_rq(cpu)->idle;
5102 * find_process_by_pid - find a process with a matching PID value.
5103 * @pid: the pid in question.
5105 static struct task_struct *find_process_by_pid(pid_t pid)
5107 return pid ? find_task_by_vpid(pid) : current;
5110 /* Actually do priority change: must hold rq lock. */
5111 static void
5112 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5114 BUG_ON(p->se.on_rq);
5116 p->policy = policy;
5117 switch (p->policy) {
5118 case SCHED_NORMAL:
5119 case SCHED_BATCH:
5120 case SCHED_IDLE:
5121 p->sched_class = &fair_sched_class;
5122 break;
5123 case SCHED_FIFO:
5124 case SCHED_RR:
5125 p->sched_class = &rt_sched_class;
5126 break;
5129 p->rt_priority = prio;
5130 p->normal_prio = normal_prio(p);
5131 /* we are holding p->pi_lock already */
5132 p->prio = rt_mutex_getprio(p);
5133 set_load_weight(p);
5136 static int __sched_setscheduler(struct task_struct *p, int policy,
5137 struct sched_param *param, bool user)
5139 int retval, oldprio, oldpolicy = -1, on_rq, running;
5140 unsigned long flags;
5141 const struct sched_class *prev_class = p->sched_class;
5142 struct rq *rq;
5144 /* may grab non-irq protected spin_locks */
5145 BUG_ON(in_interrupt());
5146 recheck:
5147 /* double check policy once rq lock held */
5148 if (policy < 0)
5149 policy = oldpolicy = p->policy;
5150 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5151 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5152 policy != SCHED_IDLE)
5153 return -EINVAL;
5155 * Valid priorities for SCHED_FIFO and SCHED_RR are
5156 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5157 * SCHED_BATCH and SCHED_IDLE is 0.
5159 if (param->sched_priority < 0 ||
5160 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5161 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5162 return -EINVAL;
5163 if (rt_policy(policy) != (param->sched_priority != 0))
5164 return -EINVAL;
5167 * Allow unprivileged RT tasks to decrease priority:
5169 if (user && !capable(CAP_SYS_NICE)) {
5170 if (rt_policy(policy)) {
5171 unsigned long rlim_rtprio;
5173 if (!lock_task_sighand(p, &flags))
5174 return -ESRCH;
5175 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5176 unlock_task_sighand(p, &flags);
5178 /* can't set/change the rt policy */
5179 if (policy != p->policy && !rlim_rtprio)
5180 return -EPERM;
5182 /* can't increase priority */
5183 if (param->sched_priority > p->rt_priority &&
5184 param->sched_priority > rlim_rtprio)
5185 return -EPERM;
5188 * Like positive nice levels, dont allow tasks to
5189 * move out of SCHED_IDLE either:
5191 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5192 return -EPERM;
5194 /* can't change other user's priorities */
5195 if ((current->euid != p->euid) &&
5196 (current->euid != p->uid))
5197 return -EPERM;
5200 if (user) {
5201 #ifdef CONFIG_RT_GROUP_SCHED
5203 * Do not allow realtime tasks into groups that have no runtime
5204 * assigned.
5206 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5207 task_group(p)->rt_bandwidth.rt_runtime == 0)
5208 return -EPERM;
5209 #endif
5211 retval = security_task_setscheduler(p, policy, param);
5212 if (retval)
5213 return retval;
5217 * make sure no PI-waiters arrive (or leave) while we are
5218 * changing the priority of the task:
5220 spin_lock_irqsave(&p->pi_lock, flags);
5222 * To be able to change p->policy safely, the apropriate
5223 * runqueue lock must be held.
5225 rq = __task_rq_lock(p);
5226 /* recheck policy now with rq lock held */
5227 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5228 policy = oldpolicy = -1;
5229 __task_rq_unlock(rq);
5230 spin_unlock_irqrestore(&p->pi_lock, flags);
5231 goto recheck;
5233 update_rq_clock(rq);
5234 on_rq = p->se.on_rq;
5235 running = task_current(rq, p);
5236 if (on_rq)
5237 deactivate_task(rq, p, 0);
5238 if (running)
5239 p->sched_class->put_prev_task(rq, p);
5241 oldprio = p->prio;
5242 __setscheduler(rq, p, policy, param->sched_priority);
5244 if (running)
5245 p->sched_class->set_curr_task(rq);
5246 if (on_rq) {
5247 activate_task(rq, p, 0);
5249 check_class_changed(rq, p, prev_class, oldprio, running);
5251 __task_rq_unlock(rq);
5252 spin_unlock_irqrestore(&p->pi_lock, flags);
5254 rt_mutex_adjust_pi(p);
5256 return 0;
5260 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5261 * @p: the task in question.
5262 * @policy: new policy.
5263 * @param: structure containing the new RT priority.
5265 * NOTE that the task may be already dead.
5267 int sched_setscheduler(struct task_struct *p, int policy,
5268 struct sched_param *param)
5270 return __sched_setscheduler(p, policy, param, true);
5272 EXPORT_SYMBOL_GPL(sched_setscheduler);
5275 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5276 * @p: the task in question.
5277 * @policy: new policy.
5278 * @param: structure containing the new RT priority.
5280 * Just like sched_setscheduler, only don't bother checking if the
5281 * current context has permission. For example, this is needed in
5282 * stop_machine(): we create temporary high priority worker threads,
5283 * but our caller might not have that capability.
5285 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5286 struct sched_param *param)
5288 return __sched_setscheduler(p, policy, param, false);
5291 static int
5292 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5294 struct sched_param lparam;
5295 struct task_struct *p;
5296 int retval;
5298 if (!param || pid < 0)
5299 return -EINVAL;
5300 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5301 return -EFAULT;
5303 rcu_read_lock();
5304 retval = -ESRCH;
5305 p = find_process_by_pid(pid);
5306 if (p != NULL)
5307 retval = sched_setscheduler(p, policy, &lparam);
5308 rcu_read_unlock();
5310 return retval;
5314 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5315 * @pid: the pid in question.
5316 * @policy: new policy.
5317 * @param: structure containing the new RT priority.
5319 asmlinkage long
5320 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5322 /* negative values for policy are not valid */
5323 if (policy < 0)
5324 return -EINVAL;
5326 return do_sched_setscheduler(pid, policy, param);
5330 * sys_sched_setparam - set/change the RT priority of a thread
5331 * @pid: the pid in question.
5332 * @param: structure containing the new RT priority.
5334 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5336 return do_sched_setscheduler(pid, -1, param);
5340 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5341 * @pid: the pid in question.
5343 asmlinkage long sys_sched_getscheduler(pid_t pid)
5345 struct task_struct *p;
5346 int retval;
5348 if (pid < 0)
5349 return -EINVAL;
5351 retval = -ESRCH;
5352 read_lock(&tasklist_lock);
5353 p = find_process_by_pid(pid);
5354 if (p) {
5355 retval = security_task_getscheduler(p);
5356 if (!retval)
5357 retval = p->policy;
5359 read_unlock(&tasklist_lock);
5360 return retval;
5364 * sys_sched_getscheduler - get the RT priority of a thread
5365 * @pid: the pid in question.
5366 * @param: structure containing the RT priority.
5368 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5370 struct sched_param lp;
5371 struct task_struct *p;
5372 int retval;
5374 if (!param || pid < 0)
5375 return -EINVAL;
5377 read_lock(&tasklist_lock);
5378 p = find_process_by_pid(pid);
5379 retval = -ESRCH;
5380 if (!p)
5381 goto out_unlock;
5383 retval = security_task_getscheduler(p);
5384 if (retval)
5385 goto out_unlock;
5387 lp.sched_priority = p->rt_priority;
5388 read_unlock(&tasklist_lock);
5391 * This one might sleep, we cannot do it with a spinlock held ...
5393 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5395 return retval;
5397 out_unlock:
5398 read_unlock(&tasklist_lock);
5399 return retval;
5402 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5404 cpumask_t cpus_allowed;
5405 cpumask_t new_mask = *in_mask;
5406 struct task_struct *p;
5407 int retval;
5409 get_online_cpus();
5410 read_lock(&tasklist_lock);
5412 p = find_process_by_pid(pid);
5413 if (!p) {
5414 read_unlock(&tasklist_lock);
5415 put_online_cpus();
5416 return -ESRCH;
5420 * It is not safe to call set_cpus_allowed with the
5421 * tasklist_lock held. We will bump the task_struct's
5422 * usage count and then drop tasklist_lock.
5424 get_task_struct(p);
5425 read_unlock(&tasklist_lock);
5427 retval = -EPERM;
5428 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5429 !capable(CAP_SYS_NICE))
5430 goto out_unlock;
5432 retval = security_task_setscheduler(p, 0, NULL);
5433 if (retval)
5434 goto out_unlock;
5436 cpuset_cpus_allowed(p, &cpus_allowed);
5437 cpus_and(new_mask, new_mask, cpus_allowed);
5438 again:
5439 retval = set_cpus_allowed_ptr(p, &new_mask);
5441 if (!retval) {
5442 cpuset_cpus_allowed(p, &cpus_allowed);
5443 if (!cpus_subset(new_mask, cpus_allowed)) {
5445 * We must have raced with a concurrent cpuset
5446 * update. Just reset the cpus_allowed to the
5447 * cpuset's cpus_allowed
5449 new_mask = cpus_allowed;
5450 goto again;
5453 out_unlock:
5454 put_task_struct(p);
5455 put_online_cpus();
5456 return retval;
5459 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5460 cpumask_t *new_mask)
5462 if (len < sizeof(cpumask_t)) {
5463 memset(new_mask, 0, sizeof(cpumask_t));
5464 } else if (len > sizeof(cpumask_t)) {
5465 len = sizeof(cpumask_t);
5467 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5471 * sys_sched_setaffinity - set the cpu affinity of a process
5472 * @pid: pid of the process
5473 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5474 * @user_mask_ptr: user-space pointer to the new cpu mask
5476 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5477 unsigned long __user *user_mask_ptr)
5479 cpumask_t new_mask;
5480 int retval;
5482 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5483 if (retval)
5484 return retval;
5486 return sched_setaffinity(pid, &new_mask);
5489 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5491 struct task_struct *p;
5492 int retval;
5494 get_online_cpus();
5495 read_lock(&tasklist_lock);
5497 retval = -ESRCH;
5498 p = find_process_by_pid(pid);
5499 if (!p)
5500 goto out_unlock;
5502 retval = security_task_getscheduler(p);
5503 if (retval)
5504 goto out_unlock;
5506 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5508 out_unlock:
5509 read_unlock(&tasklist_lock);
5510 put_online_cpus();
5512 return retval;
5516 * sys_sched_getaffinity - get the cpu affinity of a process
5517 * @pid: pid of the process
5518 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5519 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5521 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5522 unsigned long __user *user_mask_ptr)
5524 int ret;
5525 cpumask_t mask;
5527 if (len < sizeof(cpumask_t))
5528 return -EINVAL;
5530 ret = sched_getaffinity(pid, &mask);
5531 if (ret < 0)
5532 return ret;
5534 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5535 return -EFAULT;
5537 return sizeof(cpumask_t);
5541 * sys_sched_yield - yield the current processor to other threads.
5543 * This function yields the current CPU to other tasks. If there are no
5544 * other threads running on this CPU then this function will return.
5546 asmlinkage long sys_sched_yield(void)
5548 struct rq *rq = this_rq_lock();
5550 schedstat_inc(rq, yld_count);
5551 current->sched_class->yield_task(rq);
5554 * Since we are going to call schedule() anyway, there's
5555 * no need to preempt or enable interrupts:
5557 __release(rq->lock);
5558 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5559 _raw_spin_unlock(&rq->lock);
5560 preempt_enable_no_resched();
5562 schedule();
5564 return 0;
5567 static void __cond_resched(void)
5569 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5570 __might_sleep(__FILE__, __LINE__);
5571 #endif
5573 * The BKS might be reacquired before we have dropped
5574 * PREEMPT_ACTIVE, which could trigger a second
5575 * cond_resched() call.
5577 do {
5578 add_preempt_count(PREEMPT_ACTIVE);
5579 schedule();
5580 sub_preempt_count(PREEMPT_ACTIVE);
5581 } while (need_resched());
5584 int __sched _cond_resched(void)
5586 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5587 system_state == SYSTEM_RUNNING) {
5588 __cond_resched();
5589 return 1;
5591 return 0;
5593 EXPORT_SYMBOL(_cond_resched);
5596 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5597 * call schedule, and on return reacquire the lock.
5599 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5600 * operations here to prevent schedule() from being called twice (once via
5601 * spin_unlock(), once by hand).
5603 int cond_resched_lock(spinlock_t *lock)
5605 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5606 int ret = 0;
5608 if (spin_needbreak(lock) || resched) {
5609 spin_unlock(lock);
5610 if (resched && need_resched())
5611 __cond_resched();
5612 else
5613 cpu_relax();
5614 ret = 1;
5615 spin_lock(lock);
5617 return ret;
5619 EXPORT_SYMBOL(cond_resched_lock);
5621 int __sched cond_resched_softirq(void)
5623 BUG_ON(!in_softirq());
5625 if (need_resched() && system_state == SYSTEM_RUNNING) {
5626 local_bh_enable();
5627 __cond_resched();
5628 local_bh_disable();
5629 return 1;
5631 return 0;
5633 EXPORT_SYMBOL(cond_resched_softirq);
5636 * yield - yield the current processor to other threads.
5638 * This is a shortcut for kernel-space yielding - it marks the
5639 * thread runnable and calls sys_sched_yield().
5641 void __sched yield(void)
5643 set_current_state(TASK_RUNNING);
5644 sys_sched_yield();
5646 EXPORT_SYMBOL(yield);
5649 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5650 * that process accounting knows that this is a task in IO wait state.
5652 * But don't do that if it is a deliberate, throttling IO wait (this task
5653 * has set its backing_dev_info: the queue against which it should throttle)
5655 void __sched io_schedule(void)
5657 struct rq *rq = &__raw_get_cpu_var(runqueues);
5659 delayacct_blkio_start();
5660 atomic_inc(&rq->nr_iowait);
5661 schedule();
5662 atomic_dec(&rq->nr_iowait);
5663 delayacct_blkio_end();
5665 EXPORT_SYMBOL(io_schedule);
5667 long __sched io_schedule_timeout(long timeout)
5669 struct rq *rq = &__raw_get_cpu_var(runqueues);
5670 long ret;
5672 delayacct_blkio_start();
5673 atomic_inc(&rq->nr_iowait);
5674 ret = schedule_timeout(timeout);
5675 atomic_dec(&rq->nr_iowait);
5676 delayacct_blkio_end();
5677 return ret;
5681 * sys_sched_get_priority_max - return maximum RT priority.
5682 * @policy: scheduling class.
5684 * this syscall returns the maximum rt_priority that can be used
5685 * by a given scheduling class.
5687 asmlinkage long sys_sched_get_priority_max(int policy)
5689 int ret = -EINVAL;
5691 switch (policy) {
5692 case SCHED_FIFO:
5693 case SCHED_RR:
5694 ret = MAX_USER_RT_PRIO-1;
5695 break;
5696 case SCHED_NORMAL:
5697 case SCHED_BATCH:
5698 case SCHED_IDLE:
5699 ret = 0;
5700 break;
5702 return ret;
5706 * sys_sched_get_priority_min - return minimum RT priority.
5707 * @policy: scheduling class.
5709 * this syscall returns the minimum rt_priority that can be used
5710 * by a given scheduling class.
5712 asmlinkage long sys_sched_get_priority_min(int policy)
5714 int ret = -EINVAL;
5716 switch (policy) {
5717 case SCHED_FIFO:
5718 case SCHED_RR:
5719 ret = 1;
5720 break;
5721 case SCHED_NORMAL:
5722 case SCHED_BATCH:
5723 case SCHED_IDLE:
5724 ret = 0;
5726 return ret;
5730 * sys_sched_rr_get_interval - return the default timeslice of a process.
5731 * @pid: pid of the process.
5732 * @interval: userspace pointer to the timeslice value.
5734 * this syscall writes the default timeslice value of a given process
5735 * into the user-space timespec buffer. A value of '0' means infinity.
5737 asmlinkage
5738 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5740 struct task_struct *p;
5741 unsigned int time_slice;
5742 int retval;
5743 struct timespec t;
5745 if (pid < 0)
5746 return -EINVAL;
5748 retval = -ESRCH;
5749 read_lock(&tasklist_lock);
5750 p = find_process_by_pid(pid);
5751 if (!p)
5752 goto out_unlock;
5754 retval = security_task_getscheduler(p);
5755 if (retval)
5756 goto out_unlock;
5759 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5760 * tasks that are on an otherwise idle runqueue:
5762 time_slice = 0;
5763 if (p->policy == SCHED_RR) {
5764 time_slice = DEF_TIMESLICE;
5765 } else if (p->policy != SCHED_FIFO) {
5766 struct sched_entity *se = &p->se;
5767 unsigned long flags;
5768 struct rq *rq;
5770 rq = task_rq_lock(p, &flags);
5771 if (rq->cfs.load.weight)
5772 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5773 task_rq_unlock(rq, &flags);
5775 read_unlock(&tasklist_lock);
5776 jiffies_to_timespec(time_slice, &t);
5777 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5778 return retval;
5780 out_unlock:
5781 read_unlock(&tasklist_lock);
5782 return retval;
5785 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5787 void sched_show_task(struct task_struct *p)
5789 unsigned long free = 0;
5790 unsigned state;
5792 state = p->state ? __ffs(p->state) + 1 : 0;
5793 printk(KERN_INFO "%-13.13s %c", p->comm,
5794 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5795 #if BITS_PER_LONG == 32
5796 if (state == TASK_RUNNING)
5797 printk(KERN_CONT " running ");
5798 else
5799 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5800 #else
5801 if (state == TASK_RUNNING)
5802 printk(KERN_CONT " running task ");
5803 else
5804 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5805 #endif
5806 #ifdef CONFIG_DEBUG_STACK_USAGE
5808 unsigned long *n = end_of_stack(p);
5809 while (!*n)
5810 n++;
5811 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5813 #endif
5814 printk(KERN_CONT "%5lu %5d %6d\n", free,
5815 task_pid_nr(p), task_pid_nr(p->real_parent));
5817 show_stack(p, NULL);
5820 void show_state_filter(unsigned long state_filter)
5822 struct task_struct *g, *p;
5824 #if BITS_PER_LONG == 32
5825 printk(KERN_INFO
5826 " task PC stack pid father\n");
5827 #else
5828 printk(KERN_INFO
5829 " task PC stack pid father\n");
5830 #endif
5831 read_lock(&tasklist_lock);
5832 do_each_thread(g, p) {
5834 * reset the NMI-timeout, listing all files on a slow
5835 * console might take alot of time:
5837 touch_nmi_watchdog();
5838 if (!state_filter || (p->state & state_filter))
5839 sched_show_task(p);
5840 } while_each_thread(g, p);
5842 touch_all_softlockup_watchdogs();
5844 #ifdef CONFIG_SCHED_DEBUG
5845 sysrq_sched_debug_show();
5846 #endif
5847 read_unlock(&tasklist_lock);
5849 * Only show locks if all tasks are dumped:
5851 if (state_filter == -1)
5852 debug_show_all_locks();
5855 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5857 idle->sched_class = &idle_sched_class;
5861 * init_idle - set up an idle thread for a given CPU
5862 * @idle: task in question
5863 * @cpu: cpu the idle task belongs to
5865 * NOTE: this function does not set the idle thread's NEED_RESCHED
5866 * flag, to make booting more robust.
5868 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5870 struct rq *rq = cpu_rq(cpu);
5871 unsigned long flags;
5873 spin_lock_irqsave(&rq->lock, flags);
5875 __sched_fork(idle);
5876 idle->se.exec_start = sched_clock();
5878 idle->prio = idle->normal_prio = MAX_PRIO;
5879 idle->cpus_allowed = cpumask_of_cpu(cpu);
5880 __set_task_cpu(idle, cpu);
5882 rq->curr = rq->idle = idle;
5883 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5884 idle->oncpu = 1;
5885 #endif
5886 spin_unlock_irqrestore(&rq->lock, flags);
5888 /* Set the preempt count _outside_ the spinlocks! */
5889 #if defined(CONFIG_PREEMPT)
5890 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5891 #else
5892 task_thread_info(idle)->preempt_count = 0;
5893 #endif
5895 * The idle tasks have their own, simple scheduling class:
5897 idle->sched_class = &idle_sched_class;
5901 * In a system that switches off the HZ timer nohz_cpu_mask
5902 * indicates which cpus entered this state. This is used
5903 * in the rcu update to wait only for active cpus. For system
5904 * which do not switch off the HZ timer nohz_cpu_mask should
5905 * always be CPU_MASK_NONE.
5907 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5910 * Increase the granularity value when there are more CPUs,
5911 * because with more CPUs the 'effective latency' as visible
5912 * to users decreases. But the relationship is not linear,
5913 * so pick a second-best guess by going with the log2 of the
5914 * number of CPUs.
5916 * This idea comes from the SD scheduler of Con Kolivas:
5918 static inline void sched_init_granularity(void)
5920 unsigned int factor = 1 + ilog2(num_online_cpus());
5921 const unsigned long limit = 200000000;
5923 sysctl_sched_min_granularity *= factor;
5924 if (sysctl_sched_min_granularity > limit)
5925 sysctl_sched_min_granularity = limit;
5927 sysctl_sched_latency *= factor;
5928 if (sysctl_sched_latency > limit)
5929 sysctl_sched_latency = limit;
5931 sysctl_sched_wakeup_granularity *= factor;
5933 sysctl_sched_shares_ratelimit *= factor;
5936 #ifdef CONFIG_SMP
5938 * This is how migration works:
5940 * 1) we queue a struct migration_req structure in the source CPU's
5941 * runqueue and wake up that CPU's migration thread.
5942 * 2) we down() the locked semaphore => thread blocks.
5943 * 3) migration thread wakes up (implicitly it forces the migrated
5944 * thread off the CPU)
5945 * 4) it gets the migration request and checks whether the migrated
5946 * task is still in the wrong runqueue.
5947 * 5) if it's in the wrong runqueue then the migration thread removes
5948 * it and puts it into the right queue.
5949 * 6) migration thread up()s the semaphore.
5950 * 7) we wake up and the migration is done.
5954 * Change a given task's CPU affinity. Migrate the thread to a
5955 * proper CPU and schedule it away if the CPU it's executing on
5956 * is removed from the allowed bitmask.
5958 * NOTE: the caller must have a valid reference to the task, the
5959 * task must not exit() & deallocate itself prematurely. The
5960 * call is not atomic; no spinlocks may be held.
5962 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5964 struct migration_req req;
5965 unsigned long flags;
5966 struct rq *rq;
5967 int ret = 0;
5969 rq = task_rq_lock(p, &flags);
5970 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5971 ret = -EINVAL;
5972 goto out;
5975 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5976 !cpus_equal(p->cpus_allowed, *new_mask))) {
5977 ret = -EINVAL;
5978 goto out;
5981 if (p->sched_class->set_cpus_allowed)
5982 p->sched_class->set_cpus_allowed(p, new_mask);
5983 else {
5984 p->cpus_allowed = *new_mask;
5985 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5988 /* Can the task run on the task's current CPU? If so, we're done */
5989 if (cpu_isset(task_cpu(p), *new_mask))
5990 goto out;
5992 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
5993 /* Need help from migration thread: drop lock and wait. */
5994 task_rq_unlock(rq, &flags);
5995 wake_up_process(rq->migration_thread);
5996 wait_for_completion(&req.done);
5997 tlb_migrate_finish(p->mm);
5998 return 0;
6000 out:
6001 task_rq_unlock(rq, &flags);
6003 return ret;
6005 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6008 * Move (not current) task off this cpu, onto dest cpu. We're doing
6009 * this because either it can't run here any more (set_cpus_allowed()
6010 * away from this CPU, or CPU going down), or because we're
6011 * attempting to rebalance this task on exec (sched_exec).
6013 * So we race with normal scheduler movements, but that's OK, as long
6014 * as the task is no longer on this CPU.
6016 * Returns non-zero if task was successfully migrated.
6018 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6020 struct rq *rq_dest, *rq_src;
6021 int ret = 0, on_rq;
6023 if (unlikely(!cpu_active(dest_cpu)))
6024 return ret;
6026 rq_src = cpu_rq(src_cpu);
6027 rq_dest = cpu_rq(dest_cpu);
6029 double_rq_lock(rq_src, rq_dest);
6030 /* Already moved. */
6031 if (task_cpu(p) != src_cpu)
6032 goto done;
6033 /* Affinity changed (again). */
6034 if (!cpu_isset(dest_cpu, p->cpus_allowed))
6035 goto fail;
6037 on_rq = p->se.on_rq;
6038 if (on_rq)
6039 deactivate_task(rq_src, p, 0);
6041 set_task_cpu(p, dest_cpu);
6042 if (on_rq) {
6043 activate_task(rq_dest, p, 0);
6044 check_preempt_curr(rq_dest, p, 0);
6046 done:
6047 ret = 1;
6048 fail:
6049 double_rq_unlock(rq_src, rq_dest);
6050 return ret;
6054 * migration_thread - this is a highprio system thread that performs
6055 * thread migration by bumping thread off CPU then 'pushing' onto
6056 * another runqueue.
6058 static int migration_thread(void *data)
6060 int cpu = (long)data;
6061 struct rq *rq;
6063 rq = cpu_rq(cpu);
6064 BUG_ON(rq->migration_thread != current);
6066 set_current_state(TASK_INTERRUPTIBLE);
6067 while (!kthread_should_stop()) {
6068 struct migration_req *req;
6069 struct list_head *head;
6071 spin_lock_irq(&rq->lock);
6073 if (cpu_is_offline(cpu)) {
6074 spin_unlock_irq(&rq->lock);
6075 goto wait_to_die;
6078 if (rq->active_balance) {
6079 active_load_balance(rq, cpu);
6080 rq->active_balance = 0;
6083 head = &rq->migration_queue;
6085 if (list_empty(head)) {
6086 spin_unlock_irq(&rq->lock);
6087 schedule();
6088 set_current_state(TASK_INTERRUPTIBLE);
6089 continue;
6091 req = list_entry(head->next, struct migration_req, list);
6092 list_del_init(head->next);
6094 spin_unlock(&rq->lock);
6095 __migrate_task(req->task, cpu, req->dest_cpu);
6096 local_irq_enable();
6098 complete(&req->done);
6100 __set_current_state(TASK_RUNNING);
6101 return 0;
6103 wait_to_die:
6104 /* Wait for kthread_stop */
6105 set_current_state(TASK_INTERRUPTIBLE);
6106 while (!kthread_should_stop()) {
6107 schedule();
6108 set_current_state(TASK_INTERRUPTIBLE);
6110 __set_current_state(TASK_RUNNING);
6111 return 0;
6114 #ifdef CONFIG_HOTPLUG_CPU
6116 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6118 int ret;
6120 local_irq_disable();
6121 ret = __migrate_task(p, src_cpu, dest_cpu);
6122 local_irq_enable();
6123 return ret;
6127 * Figure out where task on dead CPU should go, use force if necessary.
6128 * NOTE: interrupts should be disabled by the caller
6130 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6132 unsigned long flags;
6133 cpumask_t mask;
6134 struct rq *rq;
6135 int dest_cpu;
6137 do {
6138 /* On same node? */
6139 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6140 cpus_and(mask, mask, p->cpus_allowed);
6141 dest_cpu = any_online_cpu(mask);
6143 /* On any allowed CPU? */
6144 if (dest_cpu >= nr_cpu_ids)
6145 dest_cpu = any_online_cpu(p->cpus_allowed);
6147 /* No more Mr. Nice Guy. */
6148 if (dest_cpu >= nr_cpu_ids) {
6149 cpumask_t cpus_allowed;
6151 cpuset_cpus_allowed_locked(p, &cpus_allowed);
6153 * Try to stay on the same cpuset, where the
6154 * current cpuset may be a subset of all cpus.
6155 * The cpuset_cpus_allowed_locked() variant of
6156 * cpuset_cpus_allowed() will not block. It must be
6157 * called within calls to cpuset_lock/cpuset_unlock.
6159 rq = task_rq_lock(p, &flags);
6160 p->cpus_allowed = cpus_allowed;
6161 dest_cpu = any_online_cpu(p->cpus_allowed);
6162 task_rq_unlock(rq, &flags);
6165 * Don't tell them about moving exiting tasks or
6166 * kernel threads (both mm NULL), since they never
6167 * leave kernel.
6169 if (p->mm && printk_ratelimit()) {
6170 printk(KERN_INFO "process %d (%s) no "
6171 "longer affine to cpu%d\n",
6172 task_pid_nr(p), p->comm, dead_cpu);
6175 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
6179 * While a dead CPU has no uninterruptible tasks queued at this point,
6180 * it might still have a nonzero ->nr_uninterruptible counter, because
6181 * for performance reasons the counter is not stricly tracking tasks to
6182 * their home CPUs. So we just add the counter to another CPU's counter,
6183 * to keep the global sum constant after CPU-down:
6185 static void migrate_nr_uninterruptible(struct rq *rq_src)
6187 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
6188 unsigned long flags;
6190 local_irq_save(flags);
6191 double_rq_lock(rq_src, rq_dest);
6192 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6193 rq_src->nr_uninterruptible = 0;
6194 double_rq_unlock(rq_src, rq_dest);
6195 local_irq_restore(flags);
6198 /* Run through task list and migrate tasks from the dead cpu. */
6199 static void migrate_live_tasks(int src_cpu)
6201 struct task_struct *p, *t;
6203 read_lock(&tasklist_lock);
6205 do_each_thread(t, p) {
6206 if (p == current)
6207 continue;
6209 if (task_cpu(p) == src_cpu)
6210 move_task_off_dead_cpu(src_cpu, p);
6211 } while_each_thread(t, p);
6213 read_unlock(&tasklist_lock);
6217 * Schedules idle task to be the next runnable task on current CPU.
6218 * It does so by boosting its priority to highest possible.
6219 * Used by CPU offline code.
6221 void sched_idle_next(void)
6223 int this_cpu = smp_processor_id();
6224 struct rq *rq = cpu_rq(this_cpu);
6225 struct task_struct *p = rq->idle;
6226 unsigned long flags;
6228 /* cpu has to be offline */
6229 BUG_ON(cpu_online(this_cpu));
6232 * Strictly not necessary since rest of the CPUs are stopped by now
6233 * and interrupts disabled on the current cpu.
6235 spin_lock_irqsave(&rq->lock, flags);
6237 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6239 update_rq_clock(rq);
6240 activate_task(rq, p, 0);
6242 spin_unlock_irqrestore(&rq->lock, flags);
6246 * Ensures that the idle task is using init_mm right before its cpu goes
6247 * offline.
6249 void idle_task_exit(void)
6251 struct mm_struct *mm = current->active_mm;
6253 BUG_ON(cpu_online(smp_processor_id()));
6255 if (mm != &init_mm)
6256 switch_mm(mm, &init_mm, current);
6257 mmdrop(mm);
6260 /* called under rq->lock with disabled interrupts */
6261 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6263 struct rq *rq = cpu_rq(dead_cpu);
6265 /* Must be exiting, otherwise would be on tasklist. */
6266 BUG_ON(!p->exit_state);
6268 /* Cannot have done final schedule yet: would have vanished. */
6269 BUG_ON(p->state == TASK_DEAD);
6271 get_task_struct(p);
6274 * Drop lock around migration; if someone else moves it,
6275 * that's OK. No task can be added to this CPU, so iteration is
6276 * fine.
6278 spin_unlock_irq(&rq->lock);
6279 move_task_off_dead_cpu(dead_cpu, p);
6280 spin_lock_irq(&rq->lock);
6282 put_task_struct(p);
6285 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6286 static void migrate_dead_tasks(unsigned int dead_cpu)
6288 struct rq *rq = cpu_rq(dead_cpu);
6289 struct task_struct *next;
6291 for ( ; ; ) {
6292 if (!rq->nr_running)
6293 break;
6294 update_rq_clock(rq);
6295 next = pick_next_task(rq, rq->curr);
6296 if (!next)
6297 break;
6298 next->sched_class->put_prev_task(rq, next);
6299 migrate_dead(dead_cpu, next);
6303 #endif /* CONFIG_HOTPLUG_CPU */
6305 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6307 static struct ctl_table sd_ctl_dir[] = {
6309 .procname = "sched_domain",
6310 .mode = 0555,
6312 {0, },
6315 static struct ctl_table sd_ctl_root[] = {
6317 .ctl_name = CTL_KERN,
6318 .procname = "kernel",
6319 .mode = 0555,
6320 .child = sd_ctl_dir,
6322 {0, },
6325 static struct ctl_table *sd_alloc_ctl_entry(int n)
6327 struct ctl_table *entry =
6328 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6330 return entry;
6333 static void sd_free_ctl_entry(struct ctl_table **tablep)
6335 struct ctl_table *entry;
6338 * In the intermediate directories, both the child directory and
6339 * procname are dynamically allocated and could fail but the mode
6340 * will always be set. In the lowest directory the names are
6341 * static strings and all have proc handlers.
6343 for (entry = *tablep; entry->mode; entry++) {
6344 if (entry->child)
6345 sd_free_ctl_entry(&entry->child);
6346 if (entry->proc_handler == NULL)
6347 kfree(entry->procname);
6350 kfree(*tablep);
6351 *tablep = NULL;
6354 static void
6355 set_table_entry(struct ctl_table *entry,
6356 const char *procname, void *data, int maxlen,
6357 mode_t mode, proc_handler *proc_handler)
6359 entry->procname = procname;
6360 entry->data = data;
6361 entry->maxlen = maxlen;
6362 entry->mode = mode;
6363 entry->proc_handler = proc_handler;
6366 static struct ctl_table *
6367 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6369 struct ctl_table *table = sd_alloc_ctl_entry(13);
6371 if (table == NULL)
6372 return NULL;
6374 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6375 sizeof(long), 0644, proc_doulongvec_minmax);
6376 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6377 sizeof(long), 0644, proc_doulongvec_minmax);
6378 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6379 sizeof(int), 0644, proc_dointvec_minmax);
6380 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6381 sizeof(int), 0644, proc_dointvec_minmax);
6382 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6383 sizeof(int), 0644, proc_dointvec_minmax);
6384 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6385 sizeof(int), 0644, proc_dointvec_minmax);
6386 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6387 sizeof(int), 0644, proc_dointvec_minmax);
6388 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6389 sizeof(int), 0644, proc_dointvec_minmax);
6390 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6391 sizeof(int), 0644, proc_dointvec_minmax);
6392 set_table_entry(&table[9], "cache_nice_tries",
6393 &sd->cache_nice_tries,
6394 sizeof(int), 0644, proc_dointvec_minmax);
6395 set_table_entry(&table[10], "flags", &sd->flags,
6396 sizeof(int), 0644, proc_dointvec_minmax);
6397 set_table_entry(&table[11], "name", sd->name,
6398 CORENAME_MAX_SIZE, 0444, proc_dostring);
6399 /* &table[12] is terminator */
6401 return table;
6404 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6406 struct ctl_table *entry, *table;
6407 struct sched_domain *sd;
6408 int domain_num = 0, i;
6409 char buf[32];
6411 for_each_domain(cpu, sd)
6412 domain_num++;
6413 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6414 if (table == NULL)
6415 return NULL;
6417 i = 0;
6418 for_each_domain(cpu, sd) {
6419 snprintf(buf, 32, "domain%d", i);
6420 entry->procname = kstrdup(buf, GFP_KERNEL);
6421 entry->mode = 0555;
6422 entry->child = sd_alloc_ctl_domain_table(sd);
6423 entry++;
6424 i++;
6426 return table;
6429 static struct ctl_table_header *sd_sysctl_header;
6430 static void register_sched_domain_sysctl(void)
6432 int i, cpu_num = num_online_cpus();
6433 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6434 char buf[32];
6436 WARN_ON(sd_ctl_dir[0].child);
6437 sd_ctl_dir[0].child = entry;
6439 if (entry == NULL)
6440 return;
6442 for_each_online_cpu(i) {
6443 snprintf(buf, 32, "cpu%d", i);
6444 entry->procname = kstrdup(buf, GFP_KERNEL);
6445 entry->mode = 0555;
6446 entry->child = sd_alloc_ctl_cpu_table(i);
6447 entry++;
6450 WARN_ON(sd_sysctl_header);
6451 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6454 /* may be called multiple times per register */
6455 static void unregister_sched_domain_sysctl(void)
6457 if (sd_sysctl_header)
6458 unregister_sysctl_table(sd_sysctl_header);
6459 sd_sysctl_header = NULL;
6460 if (sd_ctl_dir[0].child)
6461 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6463 #else
6464 static void register_sched_domain_sysctl(void)
6467 static void unregister_sched_domain_sysctl(void)
6470 #endif
6472 static void set_rq_online(struct rq *rq)
6474 if (!rq->online) {
6475 const struct sched_class *class;
6477 cpu_set(rq->cpu, rq->rd->online);
6478 rq->online = 1;
6480 for_each_class(class) {
6481 if (class->rq_online)
6482 class->rq_online(rq);
6487 static void set_rq_offline(struct rq *rq)
6489 if (rq->online) {
6490 const struct sched_class *class;
6492 for_each_class(class) {
6493 if (class->rq_offline)
6494 class->rq_offline(rq);
6497 cpu_clear(rq->cpu, rq->rd->online);
6498 rq->online = 0;
6503 * migration_call - callback that gets triggered when a CPU is added.
6504 * Here we can start up the necessary migration thread for the new CPU.
6506 static int __cpuinit
6507 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6509 struct task_struct *p;
6510 int cpu = (long)hcpu;
6511 unsigned long flags;
6512 struct rq *rq;
6514 switch (action) {
6516 case CPU_UP_PREPARE:
6517 case CPU_UP_PREPARE_FROZEN:
6518 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6519 if (IS_ERR(p))
6520 return NOTIFY_BAD;
6521 kthread_bind(p, cpu);
6522 /* Must be high prio: stop_machine expects to yield to it. */
6523 rq = task_rq_lock(p, &flags);
6524 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6525 task_rq_unlock(rq, &flags);
6526 cpu_rq(cpu)->migration_thread = p;
6527 break;
6529 case CPU_ONLINE:
6530 case CPU_ONLINE_FROZEN:
6531 /* Strictly unnecessary, as first user will wake it. */
6532 wake_up_process(cpu_rq(cpu)->migration_thread);
6534 /* Update our root-domain */
6535 rq = cpu_rq(cpu);
6536 spin_lock_irqsave(&rq->lock, flags);
6537 if (rq->rd) {
6538 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6540 set_rq_online(rq);
6542 spin_unlock_irqrestore(&rq->lock, flags);
6543 break;
6545 #ifdef CONFIG_HOTPLUG_CPU
6546 case CPU_UP_CANCELED:
6547 case CPU_UP_CANCELED_FROZEN:
6548 if (!cpu_rq(cpu)->migration_thread)
6549 break;
6550 /* Unbind it from offline cpu so it can run. Fall thru. */
6551 kthread_bind(cpu_rq(cpu)->migration_thread,
6552 any_online_cpu(cpu_online_map));
6553 kthread_stop(cpu_rq(cpu)->migration_thread);
6554 cpu_rq(cpu)->migration_thread = NULL;
6555 break;
6557 case CPU_DEAD:
6558 case CPU_DEAD_FROZEN:
6559 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6560 migrate_live_tasks(cpu);
6561 rq = cpu_rq(cpu);
6562 kthread_stop(rq->migration_thread);
6563 rq->migration_thread = NULL;
6564 /* Idle task back to normal (off runqueue, low prio) */
6565 spin_lock_irq(&rq->lock);
6566 update_rq_clock(rq);
6567 deactivate_task(rq, rq->idle, 0);
6568 rq->idle->static_prio = MAX_PRIO;
6569 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6570 rq->idle->sched_class = &idle_sched_class;
6571 migrate_dead_tasks(cpu);
6572 spin_unlock_irq(&rq->lock);
6573 cpuset_unlock();
6574 migrate_nr_uninterruptible(rq);
6575 BUG_ON(rq->nr_running != 0);
6578 * No need to migrate the tasks: it was best-effort if
6579 * they didn't take sched_hotcpu_mutex. Just wake up
6580 * the requestors.
6582 spin_lock_irq(&rq->lock);
6583 while (!list_empty(&rq->migration_queue)) {
6584 struct migration_req *req;
6586 req = list_entry(rq->migration_queue.next,
6587 struct migration_req, list);
6588 list_del_init(&req->list);
6589 complete(&req->done);
6591 spin_unlock_irq(&rq->lock);
6592 break;
6594 case CPU_DYING:
6595 case CPU_DYING_FROZEN:
6596 /* Update our root-domain */
6597 rq = cpu_rq(cpu);
6598 spin_lock_irqsave(&rq->lock, flags);
6599 if (rq->rd) {
6600 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6601 set_rq_offline(rq);
6603 spin_unlock_irqrestore(&rq->lock, flags);
6604 break;
6605 #endif
6607 return NOTIFY_OK;
6610 /* Register at highest priority so that task migration (migrate_all_tasks)
6611 * happens before everything else.
6613 static struct notifier_block __cpuinitdata migration_notifier = {
6614 .notifier_call = migration_call,
6615 .priority = 10
6618 static int __init migration_init(void)
6620 void *cpu = (void *)(long)smp_processor_id();
6621 int err;
6623 /* Start one for the boot CPU: */
6624 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6625 BUG_ON(err == NOTIFY_BAD);
6626 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6627 register_cpu_notifier(&migration_notifier);
6629 return err;
6631 early_initcall(migration_init);
6632 #endif
6634 #ifdef CONFIG_SMP
6636 #ifdef CONFIG_SCHED_DEBUG
6638 static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6640 switch (lvl) {
6641 case SD_LV_NONE:
6642 return "NONE";
6643 case SD_LV_SIBLING:
6644 return "SIBLING";
6645 case SD_LV_MC:
6646 return "MC";
6647 case SD_LV_CPU:
6648 return "CPU";
6649 case SD_LV_NODE:
6650 return "NODE";
6651 case SD_LV_ALLNODES:
6652 return "ALLNODES";
6653 case SD_LV_MAX:
6654 return "MAX";
6657 return "MAX";
6660 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6661 cpumask_t *groupmask)
6663 struct sched_group *group = sd->groups;
6664 char str[256];
6666 cpulist_scnprintf(str, sizeof(str), sd->span);
6667 cpus_clear(*groupmask);
6669 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6671 if (!(sd->flags & SD_LOAD_BALANCE)) {
6672 printk("does not load-balance\n");
6673 if (sd->parent)
6674 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6675 " has parent");
6676 return -1;
6679 printk(KERN_CONT "span %s level %s\n",
6680 str, sd_level_to_string(sd->level));
6682 if (!cpu_isset(cpu, sd->span)) {
6683 printk(KERN_ERR "ERROR: domain->span does not contain "
6684 "CPU%d\n", cpu);
6686 if (!cpu_isset(cpu, group->cpumask)) {
6687 printk(KERN_ERR "ERROR: domain->groups does not contain"
6688 " CPU%d\n", cpu);
6691 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6692 do {
6693 if (!group) {
6694 printk("\n");
6695 printk(KERN_ERR "ERROR: group is NULL\n");
6696 break;
6699 if (!group->__cpu_power) {
6700 printk(KERN_CONT "\n");
6701 printk(KERN_ERR "ERROR: domain->cpu_power not "
6702 "set\n");
6703 break;
6706 if (!cpus_weight(group->cpumask)) {
6707 printk(KERN_CONT "\n");
6708 printk(KERN_ERR "ERROR: empty group\n");
6709 break;
6712 if (cpus_intersects(*groupmask, group->cpumask)) {
6713 printk(KERN_CONT "\n");
6714 printk(KERN_ERR "ERROR: repeated CPUs\n");
6715 break;
6718 cpus_or(*groupmask, *groupmask, group->cpumask);
6720 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6721 printk(KERN_CONT " %s", str);
6723 group = group->next;
6724 } while (group != sd->groups);
6725 printk(KERN_CONT "\n");
6727 if (!cpus_equal(sd->span, *groupmask))
6728 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6730 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6731 printk(KERN_ERR "ERROR: parent span is not a superset "
6732 "of domain->span\n");
6733 return 0;
6736 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6738 cpumask_t *groupmask;
6739 int level = 0;
6741 if (!sd) {
6742 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6743 return;
6746 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6748 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6749 if (!groupmask) {
6750 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6751 return;
6754 for (;;) {
6755 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6756 break;
6757 level++;
6758 sd = sd->parent;
6759 if (!sd)
6760 break;
6762 kfree(groupmask);
6764 #else /* !CONFIG_SCHED_DEBUG */
6765 # define sched_domain_debug(sd, cpu) do { } while (0)
6766 #endif /* CONFIG_SCHED_DEBUG */
6768 static int sd_degenerate(struct sched_domain *sd)
6770 if (cpus_weight(sd->span) == 1)
6771 return 1;
6773 /* Following flags need at least 2 groups */
6774 if (sd->flags & (SD_LOAD_BALANCE |
6775 SD_BALANCE_NEWIDLE |
6776 SD_BALANCE_FORK |
6777 SD_BALANCE_EXEC |
6778 SD_SHARE_CPUPOWER |
6779 SD_SHARE_PKG_RESOURCES)) {
6780 if (sd->groups != sd->groups->next)
6781 return 0;
6784 /* Following flags don't use groups */
6785 if (sd->flags & (SD_WAKE_IDLE |
6786 SD_WAKE_AFFINE |
6787 SD_WAKE_BALANCE))
6788 return 0;
6790 return 1;
6793 static int
6794 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6796 unsigned long cflags = sd->flags, pflags = parent->flags;
6798 if (sd_degenerate(parent))
6799 return 1;
6801 if (!cpus_equal(sd->span, parent->span))
6802 return 0;
6804 /* Does parent contain flags not in child? */
6805 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6806 if (cflags & SD_WAKE_AFFINE)
6807 pflags &= ~SD_WAKE_BALANCE;
6808 /* Flags needing groups don't count if only 1 group in parent */
6809 if (parent->groups == parent->groups->next) {
6810 pflags &= ~(SD_LOAD_BALANCE |
6811 SD_BALANCE_NEWIDLE |
6812 SD_BALANCE_FORK |
6813 SD_BALANCE_EXEC |
6814 SD_SHARE_CPUPOWER |
6815 SD_SHARE_PKG_RESOURCES);
6817 if (~cflags & pflags)
6818 return 0;
6820 return 1;
6823 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6825 unsigned long flags;
6827 spin_lock_irqsave(&rq->lock, flags);
6829 if (rq->rd) {
6830 struct root_domain *old_rd = rq->rd;
6832 if (cpu_isset(rq->cpu, old_rd->online))
6833 set_rq_offline(rq);
6835 cpu_clear(rq->cpu, old_rd->span);
6837 if (atomic_dec_and_test(&old_rd->refcount))
6838 kfree(old_rd);
6841 atomic_inc(&rd->refcount);
6842 rq->rd = rd;
6844 cpu_set(rq->cpu, rd->span);
6845 if (cpu_isset(rq->cpu, cpu_online_map))
6846 set_rq_online(rq);
6848 spin_unlock_irqrestore(&rq->lock, flags);
6851 static void init_rootdomain(struct root_domain *rd)
6853 memset(rd, 0, sizeof(*rd));
6855 cpus_clear(rd->span);
6856 cpus_clear(rd->online);
6858 cpupri_init(&rd->cpupri);
6861 static void init_defrootdomain(void)
6863 init_rootdomain(&def_root_domain);
6864 atomic_set(&def_root_domain.refcount, 1);
6867 static struct root_domain *alloc_rootdomain(void)
6869 struct root_domain *rd;
6871 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6872 if (!rd)
6873 return NULL;
6875 init_rootdomain(rd);
6877 return rd;
6881 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6882 * hold the hotplug lock.
6884 static void
6885 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6887 struct rq *rq = cpu_rq(cpu);
6888 struct sched_domain *tmp;
6890 /* Remove the sched domains which do not contribute to scheduling. */
6891 for (tmp = sd; tmp; ) {
6892 struct sched_domain *parent = tmp->parent;
6893 if (!parent)
6894 break;
6896 if (sd_parent_degenerate(tmp, parent)) {
6897 tmp->parent = parent->parent;
6898 if (parent->parent)
6899 parent->parent->child = tmp;
6900 } else
6901 tmp = tmp->parent;
6904 if (sd && sd_degenerate(sd)) {
6905 sd = sd->parent;
6906 if (sd)
6907 sd->child = NULL;
6910 sched_domain_debug(sd, cpu);
6912 rq_attach_root(rq, rd);
6913 rcu_assign_pointer(rq->sd, sd);
6916 /* cpus with isolated domains */
6917 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6919 /* Setup the mask of cpus configured for isolated domains */
6920 static int __init isolated_cpu_setup(char *str)
6922 static int __initdata ints[NR_CPUS];
6923 int i;
6925 str = get_options(str, ARRAY_SIZE(ints), ints);
6926 cpus_clear(cpu_isolated_map);
6927 for (i = 1; i <= ints[0]; i++)
6928 if (ints[i] < NR_CPUS)
6929 cpu_set(ints[i], cpu_isolated_map);
6930 return 1;
6933 __setup("isolcpus=", isolated_cpu_setup);
6936 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6937 * to a function which identifies what group(along with sched group) a CPU
6938 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6939 * (due to the fact that we keep track of groups covered with a cpumask_t).
6941 * init_sched_build_groups will build a circular linked list of the groups
6942 * covered by the given span, and will set each group's ->cpumask correctly,
6943 * and ->cpu_power to 0.
6945 static void
6946 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6947 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6948 struct sched_group **sg,
6949 cpumask_t *tmpmask),
6950 cpumask_t *covered, cpumask_t *tmpmask)
6952 struct sched_group *first = NULL, *last = NULL;
6953 int i;
6955 cpus_clear(*covered);
6957 for_each_cpu_mask_nr(i, *span) {
6958 struct sched_group *sg;
6959 int group = group_fn(i, cpu_map, &sg, tmpmask);
6960 int j;
6962 if (cpu_isset(i, *covered))
6963 continue;
6965 cpus_clear(sg->cpumask);
6966 sg->__cpu_power = 0;
6968 for_each_cpu_mask_nr(j, *span) {
6969 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6970 continue;
6972 cpu_set(j, *covered);
6973 cpu_set(j, sg->cpumask);
6975 if (!first)
6976 first = sg;
6977 if (last)
6978 last->next = sg;
6979 last = sg;
6981 last->next = first;
6984 #define SD_NODES_PER_DOMAIN 16
6986 #ifdef CONFIG_NUMA
6989 * find_next_best_node - find the next node to include in a sched_domain
6990 * @node: node whose sched_domain we're building
6991 * @used_nodes: nodes already in the sched_domain
6993 * Find the next node to include in a given scheduling domain. Simply
6994 * finds the closest node not already in the @used_nodes map.
6996 * Should use nodemask_t.
6998 static int find_next_best_node(int node, nodemask_t *used_nodes)
7000 int i, n, val, min_val, best_node = 0;
7002 min_val = INT_MAX;
7004 for (i = 0; i < nr_node_ids; i++) {
7005 /* Start at @node */
7006 n = (node + i) % nr_node_ids;
7008 if (!nr_cpus_node(n))
7009 continue;
7011 /* Skip already used nodes */
7012 if (node_isset(n, *used_nodes))
7013 continue;
7015 /* Simple min distance search */
7016 val = node_distance(node, n);
7018 if (val < min_val) {
7019 min_val = val;
7020 best_node = n;
7024 node_set(best_node, *used_nodes);
7025 return best_node;
7029 * sched_domain_node_span - get a cpumask for a node's sched_domain
7030 * @node: node whose cpumask we're constructing
7031 * @span: resulting cpumask
7033 * Given a node, construct a good cpumask for its sched_domain to span. It
7034 * should be one that prevents unnecessary balancing, but also spreads tasks
7035 * out optimally.
7037 static void sched_domain_node_span(int node, cpumask_t *span)
7039 nodemask_t used_nodes;
7040 node_to_cpumask_ptr(nodemask, node);
7041 int i;
7043 cpus_clear(*span);
7044 nodes_clear(used_nodes);
7046 cpus_or(*span, *span, *nodemask);
7047 node_set(node, used_nodes);
7049 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7050 int next_node = find_next_best_node(node, &used_nodes);
7052 node_to_cpumask_ptr_next(nodemask, next_node);
7053 cpus_or(*span, *span, *nodemask);
7056 #endif /* CONFIG_NUMA */
7058 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7061 * SMT sched-domains:
7063 #ifdef CONFIG_SCHED_SMT
7064 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7065 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7067 static int
7068 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7069 cpumask_t *unused)
7071 if (sg)
7072 *sg = &per_cpu(sched_group_cpus, cpu);
7073 return cpu;
7075 #endif /* CONFIG_SCHED_SMT */
7078 * multi-core sched-domains:
7080 #ifdef CONFIG_SCHED_MC
7081 static DEFINE_PER_CPU(struct sched_domain, core_domains);
7082 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7083 #endif /* CONFIG_SCHED_MC */
7085 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7086 static int
7087 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7088 cpumask_t *mask)
7090 int group;
7092 *mask = per_cpu(cpu_sibling_map, cpu);
7093 cpus_and(*mask, *mask, *cpu_map);
7094 group = first_cpu(*mask);
7095 if (sg)
7096 *sg = &per_cpu(sched_group_core, group);
7097 return group;
7099 #elif defined(CONFIG_SCHED_MC)
7100 static int
7101 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7102 cpumask_t *unused)
7104 if (sg)
7105 *sg = &per_cpu(sched_group_core, cpu);
7106 return cpu;
7108 #endif
7110 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7111 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7113 static int
7114 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7115 cpumask_t *mask)
7117 int group;
7118 #ifdef CONFIG_SCHED_MC
7119 *mask = cpu_coregroup_map(cpu);
7120 cpus_and(*mask, *mask, *cpu_map);
7121 group = first_cpu(*mask);
7122 #elif defined(CONFIG_SCHED_SMT)
7123 *mask = per_cpu(cpu_sibling_map, cpu);
7124 cpus_and(*mask, *mask, *cpu_map);
7125 group = first_cpu(*mask);
7126 #else
7127 group = cpu;
7128 #endif
7129 if (sg)
7130 *sg = &per_cpu(sched_group_phys, group);
7131 return group;
7134 #ifdef CONFIG_NUMA
7136 * The init_sched_build_groups can't handle what we want to do with node
7137 * groups, so roll our own. Now each node has its own list of groups which
7138 * gets dynamically allocated.
7140 static DEFINE_PER_CPU(struct sched_domain, node_domains);
7141 static struct sched_group ***sched_group_nodes_bycpu;
7143 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7144 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7146 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7147 struct sched_group **sg, cpumask_t *nodemask)
7149 int group;
7151 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7152 cpus_and(*nodemask, *nodemask, *cpu_map);
7153 group = first_cpu(*nodemask);
7155 if (sg)
7156 *sg = &per_cpu(sched_group_allnodes, group);
7157 return group;
7160 static void init_numa_sched_groups_power(struct sched_group *group_head)
7162 struct sched_group *sg = group_head;
7163 int j;
7165 if (!sg)
7166 return;
7167 do {
7168 for_each_cpu_mask_nr(j, sg->cpumask) {
7169 struct sched_domain *sd;
7171 sd = &per_cpu(phys_domains, j);
7172 if (j != first_cpu(sd->groups->cpumask)) {
7174 * Only add "power" once for each
7175 * physical package.
7177 continue;
7180 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7182 sg = sg->next;
7183 } while (sg != group_head);
7185 #endif /* CONFIG_NUMA */
7187 #ifdef CONFIG_NUMA
7188 /* Free memory allocated for various sched_group structures */
7189 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7191 int cpu, i;
7193 for_each_cpu_mask_nr(cpu, *cpu_map) {
7194 struct sched_group **sched_group_nodes
7195 = sched_group_nodes_bycpu[cpu];
7197 if (!sched_group_nodes)
7198 continue;
7200 for (i = 0; i < nr_node_ids; i++) {
7201 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7203 *nodemask = node_to_cpumask(i);
7204 cpus_and(*nodemask, *nodemask, *cpu_map);
7205 if (cpus_empty(*nodemask))
7206 continue;
7208 if (sg == NULL)
7209 continue;
7210 sg = sg->next;
7211 next_sg:
7212 oldsg = sg;
7213 sg = sg->next;
7214 kfree(oldsg);
7215 if (oldsg != sched_group_nodes[i])
7216 goto next_sg;
7218 kfree(sched_group_nodes);
7219 sched_group_nodes_bycpu[cpu] = NULL;
7222 #else /* !CONFIG_NUMA */
7223 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7226 #endif /* CONFIG_NUMA */
7229 * Initialize sched groups cpu_power.
7231 * cpu_power indicates the capacity of sched group, which is used while
7232 * distributing the load between different sched groups in a sched domain.
7233 * Typically cpu_power for all the groups in a sched domain will be same unless
7234 * there are asymmetries in the topology. If there are asymmetries, group
7235 * having more cpu_power will pickup more load compared to the group having
7236 * less cpu_power.
7238 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7239 * the maximum number of tasks a group can handle in the presence of other idle
7240 * or lightly loaded groups in the same sched domain.
7242 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7244 struct sched_domain *child;
7245 struct sched_group *group;
7247 WARN_ON(!sd || !sd->groups);
7249 if (cpu != first_cpu(sd->groups->cpumask))
7250 return;
7252 child = sd->child;
7254 sd->groups->__cpu_power = 0;
7257 * For perf policy, if the groups in child domain share resources
7258 * (for example cores sharing some portions of the cache hierarchy
7259 * or SMT), then set this domain groups cpu_power such that each group
7260 * can handle only one task, when there are other idle groups in the
7261 * same sched domain.
7263 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7264 (child->flags &
7265 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7266 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7267 return;
7271 * add cpu_power of each child group to this groups cpu_power
7273 group = child->groups;
7274 do {
7275 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7276 group = group->next;
7277 } while (group != child->groups);
7281 * Initializers for schedule domains
7282 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7285 #ifdef CONFIG_SCHED_DEBUG
7286 # define SD_INIT_NAME(sd, type) sd->name = #type
7287 #else
7288 # define SD_INIT_NAME(sd, type) do { } while (0)
7289 #endif
7291 #define SD_INIT(sd, type) sd_init_##type(sd)
7293 #define SD_INIT_FUNC(type) \
7294 static noinline void sd_init_##type(struct sched_domain *sd) \
7296 memset(sd, 0, sizeof(*sd)); \
7297 *sd = SD_##type##_INIT; \
7298 sd->level = SD_LV_##type; \
7299 SD_INIT_NAME(sd, type); \
7302 SD_INIT_FUNC(CPU)
7303 #ifdef CONFIG_NUMA
7304 SD_INIT_FUNC(ALLNODES)
7305 SD_INIT_FUNC(NODE)
7306 #endif
7307 #ifdef CONFIG_SCHED_SMT
7308 SD_INIT_FUNC(SIBLING)
7309 #endif
7310 #ifdef CONFIG_SCHED_MC
7311 SD_INIT_FUNC(MC)
7312 #endif
7315 * To minimize stack usage kmalloc room for cpumasks and share the
7316 * space as the usage in build_sched_domains() dictates. Used only
7317 * if the amount of space is significant.
7319 struct allmasks {
7320 cpumask_t tmpmask; /* make this one first */
7321 union {
7322 cpumask_t nodemask;
7323 cpumask_t this_sibling_map;
7324 cpumask_t this_core_map;
7326 cpumask_t send_covered;
7328 #ifdef CONFIG_NUMA
7329 cpumask_t domainspan;
7330 cpumask_t covered;
7331 cpumask_t notcovered;
7332 #endif
7335 #if NR_CPUS > 128
7336 #define SCHED_CPUMASK_ALLOC 1
7337 #define SCHED_CPUMASK_FREE(v) kfree(v)
7338 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7339 #else
7340 #define SCHED_CPUMASK_ALLOC 0
7341 #define SCHED_CPUMASK_FREE(v)
7342 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7343 #endif
7345 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7346 ((unsigned long)(a) + offsetof(struct allmasks, v))
7348 static int default_relax_domain_level = -1;
7350 static int __init setup_relax_domain_level(char *str)
7352 unsigned long val;
7354 val = simple_strtoul(str, NULL, 0);
7355 if (val < SD_LV_MAX)
7356 default_relax_domain_level = val;
7358 return 1;
7360 __setup("relax_domain_level=", setup_relax_domain_level);
7362 static void set_domain_attribute(struct sched_domain *sd,
7363 struct sched_domain_attr *attr)
7365 int request;
7367 if (!attr || attr->relax_domain_level < 0) {
7368 if (default_relax_domain_level < 0)
7369 return;
7370 else
7371 request = default_relax_domain_level;
7372 } else
7373 request = attr->relax_domain_level;
7374 if (request < sd->level) {
7375 /* turn off idle balance on this domain */
7376 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7377 } else {
7378 /* turn on idle balance on this domain */
7379 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7384 * Build sched domains for a given set of cpus and attach the sched domains
7385 * to the individual cpus
7387 static int __build_sched_domains(const cpumask_t *cpu_map,
7388 struct sched_domain_attr *attr)
7390 int i;
7391 struct root_domain *rd;
7392 SCHED_CPUMASK_DECLARE(allmasks);
7393 cpumask_t *tmpmask;
7394 #ifdef CONFIG_NUMA
7395 struct sched_group **sched_group_nodes = NULL;
7396 int sd_allnodes = 0;
7399 * Allocate the per-node list of sched groups
7401 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7402 GFP_KERNEL);
7403 if (!sched_group_nodes) {
7404 printk(KERN_WARNING "Can not alloc sched group node list\n");
7405 return -ENOMEM;
7407 #endif
7409 rd = alloc_rootdomain();
7410 if (!rd) {
7411 printk(KERN_WARNING "Cannot alloc root domain\n");
7412 #ifdef CONFIG_NUMA
7413 kfree(sched_group_nodes);
7414 #endif
7415 return -ENOMEM;
7418 #if SCHED_CPUMASK_ALLOC
7419 /* get space for all scratch cpumask variables */
7420 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7421 if (!allmasks) {
7422 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7423 kfree(rd);
7424 #ifdef CONFIG_NUMA
7425 kfree(sched_group_nodes);
7426 #endif
7427 return -ENOMEM;
7429 #endif
7430 tmpmask = (cpumask_t *)allmasks;
7433 #ifdef CONFIG_NUMA
7434 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7435 #endif
7438 * Set up domains for cpus specified by the cpu_map.
7440 for_each_cpu_mask_nr(i, *cpu_map) {
7441 struct sched_domain *sd = NULL, *p;
7442 SCHED_CPUMASK_VAR(nodemask, allmasks);
7444 *nodemask = node_to_cpumask(cpu_to_node(i));
7445 cpus_and(*nodemask, *nodemask, *cpu_map);
7447 #ifdef CONFIG_NUMA
7448 if (cpus_weight(*cpu_map) >
7449 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7450 sd = &per_cpu(allnodes_domains, i);
7451 SD_INIT(sd, ALLNODES);
7452 set_domain_attribute(sd, attr);
7453 sd->span = *cpu_map;
7454 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7455 p = sd;
7456 sd_allnodes = 1;
7457 } else
7458 p = NULL;
7460 sd = &per_cpu(node_domains, i);
7461 SD_INIT(sd, NODE);
7462 set_domain_attribute(sd, attr);
7463 sched_domain_node_span(cpu_to_node(i), &sd->span);
7464 sd->parent = p;
7465 if (p)
7466 p->child = sd;
7467 cpus_and(sd->span, sd->span, *cpu_map);
7468 #endif
7470 p = sd;
7471 sd = &per_cpu(phys_domains, i);
7472 SD_INIT(sd, CPU);
7473 set_domain_attribute(sd, attr);
7474 sd->span = *nodemask;
7475 sd->parent = p;
7476 if (p)
7477 p->child = sd;
7478 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7480 #ifdef CONFIG_SCHED_MC
7481 p = sd;
7482 sd = &per_cpu(core_domains, i);
7483 SD_INIT(sd, MC);
7484 set_domain_attribute(sd, attr);
7485 sd->span = cpu_coregroup_map(i);
7486 cpus_and(sd->span, sd->span, *cpu_map);
7487 sd->parent = p;
7488 p->child = sd;
7489 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7490 #endif
7492 #ifdef CONFIG_SCHED_SMT
7493 p = sd;
7494 sd = &per_cpu(cpu_domains, i);
7495 SD_INIT(sd, SIBLING);
7496 set_domain_attribute(sd, attr);
7497 sd->span = per_cpu(cpu_sibling_map, i);
7498 cpus_and(sd->span, sd->span, *cpu_map);
7499 sd->parent = p;
7500 p->child = sd;
7501 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7502 #endif
7505 #ifdef CONFIG_SCHED_SMT
7506 /* Set up CPU (sibling) groups */
7507 for_each_cpu_mask_nr(i, *cpu_map) {
7508 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7509 SCHED_CPUMASK_VAR(send_covered, allmasks);
7511 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7512 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7513 if (i != first_cpu(*this_sibling_map))
7514 continue;
7516 init_sched_build_groups(this_sibling_map, cpu_map,
7517 &cpu_to_cpu_group,
7518 send_covered, tmpmask);
7520 #endif
7522 #ifdef CONFIG_SCHED_MC
7523 /* Set up multi-core groups */
7524 for_each_cpu_mask_nr(i, *cpu_map) {
7525 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7526 SCHED_CPUMASK_VAR(send_covered, allmasks);
7528 *this_core_map = cpu_coregroup_map(i);
7529 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7530 if (i != first_cpu(*this_core_map))
7531 continue;
7533 init_sched_build_groups(this_core_map, cpu_map,
7534 &cpu_to_core_group,
7535 send_covered, tmpmask);
7537 #endif
7539 /* Set up physical groups */
7540 for (i = 0; i < nr_node_ids; i++) {
7541 SCHED_CPUMASK_VAR(nodemask, allmasks);
7542 SCHED_CPUMASK_VAR(send_covered, allmasks);
7544 *nodemask = node_to_cpumask(i);
7545 cpus_and(*nodemask, *nodemask, *cpu_map);
7546 if (cpus_empty(*nodemask))
7547 continue;
7549 init_sched_build_groups(nodemask, cpu_map,
7550 &cpu_to_phys_group,
7551 send_covered, tmpmask);
7554 #ifdef CONFIG_NUMA
7555 /* Set up node groups */
7556 if (sd_allnodes) {
7557 SCHED_CPUMASK_VAR(send_covered, allmasks);
7559 init_sched_build_groups(cpu_map, cpu_map,
7560 &cpu_to_allnodes_group,
7561 send_covered, tmpmask);
7564 for (i = 0; i < nr_node_ids; i++) {
7565 /* Set up node groups */
7566 struct sched_group *sg, *prev;
7567 SCHED_CPUMASK_VAR(nodemask, allmasks);
7568 SCHED_CPUMASK_VAR(domainspan, allmasks);
7569 SCHED_CPUMASK_VAR(covered, allmasks);
7570 int j;
7572 *nodemask = node_to_cpumask(i);
7573 cpus_clear(*covered);
7575 cpus_and(*nodemask, *nodemask, *cpu_map);
7576 if (cpus_empty(*nodemask)) {
7577 sched_group_nodes[i] = NULL;
7578 continue;
7581 sched_domain_node_span(i, domainspan);
7582 cpus_and(*domainspan, *domainspan, *cpu_map);
7584 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7585 if (!sg) {
7586 printk(KERN_WARNING "Can not alloc domain group for "
7587 "node %d\n", i);
7588 goto error;
7590 sched_group_nodes[i] = sg;
7591 for_each_cpu_mask_nr(j, *nodemask) {
7592 struct sched_domain *sd;
7594 sd = &per_cpu(node_domains, j);
7595 sd->groups = sg;
7597 sg->__cpu_power = 0;
7598 sg->cpumask = *nodemask;
7599 sg->next = sg;
7600 cpus_or(*covered, *covered, *nodemask);
7601 prev = sg;
7603 for (j = 0; j < nr_node_ids; j++) {
7604 SCHED_CPUMASK_VAR(notcovered, allmasks);
7605 int n = (i + j) % nr_node_ids;
7606 node_to_cpumask_ptr(pnodemask, n);
7608 cpus_complement(*notcovered, *covered);
7609 cpus_and(*tmpmask, *notcovered, *cpu_map);
7610 cpus_and(*tmpmask, *tmpmask, *domainspan);
7611 if (cpus_empty(*tmpmask))
7612 break;
7614 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7615 if (cpus_empty(*tmpmask))
7616 continue;
7618 sg = kmalloc_node(sizeof(struct sched_group),
7619 GFP_KERNEL, i);
7620 if (!sg) {
7621 printk(KERN_WARNING
7622 "Can not alloc domain group for node %d\n", j);
7623 goto error;
7625 sg->__cpu_power = 0;
7626 sg->cpumask = *tmpmask;
7627 sg->next = prev->next;
7628 cpus_or(*covered, *covered, *tmpmask);
7629 prev->next = sg;
7630 prev = sg;
7633 #endif
7635 /* Calculate CPU power for physical packages and nodes */
7636 #ifdef CONFIG_SCHED_SMT
7637 for_each_cpu_mask_nr(i, *cpu_map) {
7638 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7640 init_sched_groups_power(i, sd);
7642 #endif
7643 #ifdef CONFIG_SCHED_MC
7644 for_each_cpu_mask_nr(i, *cpu_map) {
7645 struct sched_domain *sd = &per_cpu(core_domains, i);
7647 init_sched_groups_power(i, sd);
7649 #endif
7651 for_each_cpu_mask_nr(i, *cpu_map) {
7652 struct sched_domain *sd = &per_cpu(phys_domains, i);
7654 init_sched_groups_power(i, sd);
7657 #ifdef CONFIG_NUMA
7658 for (i = 0; i < nr_node_ids; i++)
7659 init_numa_sched_groups_power(sched_group_nodes[i]);
7661 if (sd_allnodes) {
7662 struct sched_group *sg;
7664 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7665 tmpmask);
7666 init_numa_sched_groups_power(sg);
7668 #endif
7670 /* Attach the domains */
7671 for_each_cpu_mask_nr(i, *cpu_map) {
7672 struct sched_domain *sd;
7673 #ifdef CONFIG_SCHED_SMT
7674 sd = &per_cpu(cpu_domains, i);
7675 #elif defined(CONFIG_SCHED_MC)
7676 sd = &per_cpu(core_domains, i);
7677 #else
7678 sd = &per_cpu(phys_domains, i);
7679 #endif
7680 cpu_attach_domain(sd, rd, i);
7683 SCHED_CPUMASK_FREE((void *)allmasks);
7684 return 0;
7686 #ifdef CONFIG_NUMA
7687 error:
7688 free_sched_groups(cpu_map, tmpmask);
7689 SCHED_CPUMASK_FREE((void *)allmasks);
7690 kfree(rd);
7691 return -ENOMEM;
7692 #endif
7695 static int build_sched_domains(const cpumask_t *cpu_map)
7697 return __build_sched_domains(cpu_map, NULL);
7700 static cpumask_t *doms_cur; /* current sched domains */
7701 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7702 static struct sched_domain_attr *dattr_cur;
7703 /* attribues of custom domains in 'doms_cur' */
7706 * Special case: If a kmalloc of a doms_cur partition (array of
7707 * cpumask_t) fails, then fallback to a single sched domain,
7708 * as determined by the single cpumask_t fallback_doms.
7710 static cpumask_t fallback_doms;
7712 void __attribute__((weak)) arch_update_cpu_topology(void)
7717 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7718 * For now this just excludes isolated cpus, but could be used to
7719 * exclude other special cases in the future.
7721 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7723 int err;
7725 arch_update_cpu_topology();
7726 ndoms_cur = 1;
7727 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7728 if (!doms_cur)
7729 doms_cur = &fallback_doms;
7730 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7731 dattr_cur = NULL;
7732 err = build_sched_domains(doms_cur);
7733 register_sched_domain_sysctl();
7735 return err;
7738 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7739 cpumask_t *tmpmask)
7741 free_sched_groups(cpu_map, tmpmask);
7745 * Detach sched domains from a group of cpus specified in cpu_map
7746 * These cpus will now be attached to the NULL domain
7748 static void detach_destroy_domains(const cpumask_t *cpu_map)
7750 cpumask_t tmpmask;
7751 int i;
7753 unregister_sched_domain_sysctl();
7755 for_each_cpu_mask_nr(i, *cpu_map)
7756 cpu_attach_domain(NULL, &def_root_domain, i);
7757 synchronize_sched();
7758 arch_destroy_sched_domains(cpu_map, &tmpmask);
7761 /* handle null as "default" */
7762 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7763 struct sched_domain_attr *new, int idx_new)
7765 struct sched_domain_attr tmp;
7767 /* fast path */
7768 if (!new && !cur)
7769 return 1;
7771 tmp = SD_ATTR_INIT;
7772 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7773 new ? (new + idx_new) : &tmp,
7774 sizeof(struct sched_domain_attr));
7778 * Partition sched domains as specified by the 'ndoms_new'
7779 * cpumasks in the array doms_new[] of cpumasks. This compares
7780 * doms_new[] to the current sched domain partitioning, doms_cur[].
7781 * It destroys each deleted domain and builds each new domain.
7783 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7784 * The masks don't intersect (don't overlap.) We should setup one
7785 * sched domain for each mask. CPUs not in any of the cpumasks will
7786 * not be load balanced. If the same cpumask appears both in the
7787 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7788 * it as it is.
7790 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7791 * ownership of it and will kfree it when done with it. If the caller
7792 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7793 * ndoms_new == 1, and partition_sched_domains() will fallback to
7794 * the single partition 'fallback_doms', it also forces the domains
7795 * to be rebuilt.
7797 * If doms_new == NULL it will be replaced with cpu_online_map.
7798 * ndoms_new == 0 is a special case for destroying existing domains,
7799 * and it will not create the default domain.
7801 * Call with hotplug lock held
7803 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7804 struct sched_domain_attr *dattr_new)
7806 int i, j, n;
7808 mutex_lock(&sched_domains_mutex);
7810 /* always unregister in case we don't destroy any domains */
7811 unregister_sched_domain_sysctl();
7813 n = doms_new ? ndoms_new : 0;
7815 /* Destroy deleted domains */
7816 for (i = 0; i < ndoms_cur; i++) {
7817 for (j = 0; j < n; j++) {
7818 if (cpus_equal(doms_cur[i], doms_new[j])
7819 && dattrs_equal(dattr_cur, i, dattr_new, j))
7820 goto match1;
7822 /* no match - a current sched domain not in new doms_new[] */
7823 detach_destroy_domains(doms_cur + i);
7824 match1:
7828 if (doms_new == NULL) {
7829 ndoms_cur = 0;
7830 doms_new = &fallback_doms;
7831 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7832 dattr_new = NULL;
7835 /* Build new domains */
7836 for (i = 0; i < ndoms_new; i++) {
7837 for (j = 0; j < ndoms_cur; j++) {
7838 if (cpus_equal(doms_new[i], doms_cur[j])
7839 && dattrs_equal(dattr_new, i, dattr_cur, j))
7840 goto match2;
7842 /* no match - add a new doms_new */
7843 __build_sched_domains(doms_new + i,
7844 dattr_new ? dattr_new + i : NULL);
7845 match2:
7849 /* Remember the new sched domains */
7850 if (doms_cur != &fallback_doms)
7851 kfree(doms_cur);
7852 kfree(dattr_cur); /* kfree(NULL) is safe */
7853 doms_cur = doms_new;
7854 dattr_cur = dattr_new;
7855 ndoms_cur = ndoms_new;
7857 register_sched_domain_sysctl();
7859 mutex_unlock(&sched_domains_mutex);
7862 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7863 int arch_reinit_sched_domains(void)
7865 get_online_cpus();
7867 /* Destroy domains first to force the rebuild */
7868 partition_sched_domains(0, NULL, NULL);
7870 rebuild_sched_domains();
7871 put_online_cpus();
7873 return 0;
7876 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7878 int ret;
7880 if (buf[0] != '0' && buf[0] != '1')
7881 return -EINVAL;
7883 if (smt)
7884 sched_smt_power_savings = (buf[0] == '1');
7885 else
7886 sched_mc_power_savings = (buf[0] == '1');
7888 ret = arch_reinit_sched_domains();
7890 return ret ? ret : count;
7893 #ifdef CONFIG_SCHED_MC
7894 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7895 char *page)
7897 return sprintf(page, "%u\n", sched_mc_power_savings);
7899 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7900 const char *buf, size_t count)
7902 return sched_power_savings_store(buf, count, 0);
7904 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7905 sched_mc_power_savings_show,
7906 sched_mc_power_savings_store);
7907 #endif
7909 #ifdef CONFIG_SCHED_SMT
7910 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7911 char *page)
7913 return sprintf(page, "%u\n", sched_smt_power_savings);
7915 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7916 const char *buf, size_t count)
7918 return sched_power_savings_store(buf, count, 1);
7920 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7921 sched_smt_power_savings_show,
7922 sched_smt_power_savings_store);
7923 #endif
7925 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7927 int err = 0;
7929 #ifdef CONFIG_SCHED_SMT
7930 if (smt_capable())
7931 err = sysfs_create_file(&cls->kset.kobj,
7932 &attr_sched_smt_power_savings.attr);
7933 #endif
7934 #ifdef CONFIG_SCHED_MC
7935 if (!err && mc_capable())
7936 err = sysfs_create_file(&cls->kset.kobj,
7937 &attr_sched_mc_power_savings.attr);
7938 #endif
7939 return err;
7941 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7943 #ifndef CONFIG_CPUSETS
7945 * Add online and remove offline CPUs from the scheduler domains.
7946 * When cpusets are enabled they take over this function.
7948 static int update_sched_domains(struct notifier_block *nfb,
7949 unsigned long action, void *hcpu)
7951 switch (action) {
7952 case CPU_ONLINE:
7953 case CPU_ONLINE_FROZEN:
7954 case CPU_DEAD:
7955 case CPU_DEAD_FROZEN:
7956 partition_sched_domains(1, NULL, NULL);
7957 return NOTIFY_OK;
7959 default:
7960 return NOTIFY_DONE;
7963 #endif
7965 static int update_runtime(struct notifier_block *nfb,
7966 unsigned long action, void *hcpu)
7968 int cpu = (int)(long)hcpu;
7970 switch (action) {
7971 case CPU_DOWN_PREPARE:
7972 case CPU_DOWN_PREPARE_FROZEN:
7973 disable_runtime(cpu_rq(cpu));
7974 return NOTIFY_OK;
7976 case CPU_DOWN_FAILED:
7977 case CPU_DOWN_FAILED_FROZEN:
7978 case CPU_ONLINE:
7979 case CPU_ONLINE_FROZEN:
7980 enable_runtime(cpu_rq(cpu));
7981 return NOTIFY_OK;
7983 default:
7984 return NOTIFY_DONE;
7988 void __init sched_init_smp(void)
7990 cpumask_t non_isolated_cpus;
7992 #if defined(CONFIG_NUMA)
7993 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7994 GFP_KERNEL);
7995 BUG_ON(sched_group_nodes_bycpu == NULL);
7996 #endif
7997 get_online_cpus();
7998 mutex_lock(&sched_domains_mutex);
7999 arch_init_sched_domains(&cpu_online_map);
8000 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
8001 if (cpus_empty(non_isolated_cpus))
8002 cpu_set(smp_processor_id(), non_isolated_cpus);
8003 mutex_unlock(&sched_domains_mutex);
8004 put_online_cpus();
8006 #ifndef CONFIG_CPUSETS
8007 /* XXX: Theoretical race here - CPU may be hotplugged now */
8008 hotcpu_notifier(update_sched_domains, 0);
8009 #endif
8011 /* RT runtime code needs to handle some hotplug events */
8012 hotcpu_notifier(update_runtime, 0);
8014 init_hrtick();
8016 /* Move init over to a non-isolated CPU */
8017 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
8018 BUG();
8019 sched_init_granularity();
8021 #else
8022 void __init sched_init_smp(void)
8024 sched_init_granularity();
8026 #endif /* CONFIG_SMP */
8028 int in_sched_functions(unsigned long addr)
8030 return in_lock_functions(addr) ||
8031 (addr >= (unsigned long)__sched_text_start
8032 && addr < (unsigned long)__sched_text_end);
8035 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8037 cfs_rq->tasks_timeline = RB_ROOT;
8038 INIT_LIST_HEAD(&cfs_rq->tasks);
8039 #ifdef CONFIG_FAIR_GROUP_SCHED
8040 cfs_rq->rq = rq;
8041 #endif
8042 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8045 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8047 struct rt_prio_array *array;
8048 int i;
8050 array = &rt_rq->active;
8051 for (i = 0; i < MAX_RT_PRIO; i++) {
8052 INIT_LIST_HEAD(array->queue + i);
8053 __clear_bit(i, array->bitmap);
8055 /* delimiter for bitsearch: */
8056 __set_bit(MAX_RT_PRIO, array->bitmap);
8058 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8059 rt_rq->highest_prio = MAX_RT_PRIO;
8060 #endif
8061 #ifdef CONFIG_SMP
8062 rt_rq->rt_nr_migratory = 0;
8063 rt_rq->overloaded = 0;
8064 #endif
8066 rt_rq->rt_time = 0;
8067 rt_rq->rt_throttled = 0;
8068 rt_rq->rt_runtime = 0;
8069 spin_lock_init(&rt_rq->rt_runtime_lock);
8071 #ifdef CONFIG_RT_GROUP_SCHED
8072 rt_rq->rt_nr_boosted = 0;
8073 rt_rq->rq = rq;
8074 #endif
8077 #ifdef CONFIG_FAIR_GROUP_SCHED
8078 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8079 struct sched_entity *se, int cpu, int add,
8080 struct sched_entity *parent)
8082 struct rq *rq = cpu_rq(cpu);
8083 tg->cfs_rq[cpu] = cfs_rq;
8084 init_cfs_rq(cfs_rq, rq);
8085 cfs_rq->tg = tg;
8086 if (add)
8087 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8089 tg->se[cpu] = se;
8090 /* se could be NULL for init_task_group */
8091 if (!se)
8092 return;
8094 if (!parent)
8095 se->cfs_rq = &rq->cfs;
8096 else
8097 se->cfs_rq = parent->my_q;
8099 se->my_q = cfs_rq;
8100 se->load.weight = tg->shares;
8101 se->load.inv_weight = 0;
8102 se->parent = parent;
8104 #endif
8106 #ifdef CONFIG_RT_GROUP_SCHED
8107 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8108 struct sched_rt_entity *rt_se, int cpu, int add,
8109 struct sched_rt_entity *parent)
8111 struct rq *rq = cpu_rq(cpu);
8113 tg->rt_rq[cpu] = rt_rq;
8114 init_rt_rq(rt_rq, rq);
8115 rt_rq->tg = tg;
8116 rt_rq->rt_se = rt_se;
8117 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8118 if (add)
8119 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8121 tg->rt_se[cpu] = rt_se;
8122 if (!rt_se)
8123 return;
8125 if (!parent)
8126 rt_se->rt_rq = &rq->rt;
8127 else
8128 rt_se->rt_rq = parent->my_q;
8130 rt_se->my_q = rt_rq;
8131 rt_se->parent = parent;
8132 INIT_LIST_HEAD(&rt_se->run_list);
8134 #endif
8136 void __init sched_init(void)
8138 int i, j;
8139 unsigned long alloc_size = 0, ptr;
8141 #ifdef CONFIG_FAIR_GROUP_SCHED
8142 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8143 #endif
8144 #ifdef CONFIG_RT_GROUP_SCHED
8145 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8146 #endif
8147 #ifdef CONFIG_USER_SCHED
8148 alloc_size *= 2;
8149 #endif
8151 * As sched_init() is called before page_alloc is setup,
8152 * we use alloc_bootmem().
8154 if (alloc_size) {
8155 ptr = (unsigned long)alloc_bootmem(alloc_size);
8157 #ifdef CONFIG_FAIR_GROUP_SCHED
8158 init_task_group.se = (struct sched_entity **)ptr;
8159 ptr += nr_cpu_ids * sizeof(void **);
8161 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8162 ptr += nr_cpu_ids * sizeof(void **);
8164 #ifdef CONFIG_USER_SCHED
8165 root_task_group.se = (struct sched_entity **)ptr;
8166 ptr += nr_cpu_ids * sizeof(void **);
8168 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8169 ptr += nr_cpu_ids * sizeof(void **);
8170 #endif /* CONFIG_USER_SCHED */
8171 #endif /* CONFIG_FAIR_GROUP_SCHED */
8172 #ifdef CONFIG_RT_GROUP_SCHED
8173 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8174 ptr += nr_cpu_ids * sizeof(void **);
8176 init_task_group.rt_rq = (struct rt_rq **)ptr;
8177 ptr += nr_cpu_ids * sizeof(void **);
8179 #ifdef CONFIG_USER_SCHED
8180 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8181 ptr += nr_cpu_ids * sizeof(void **);
8183 root_task_group.rt_rq = (struct rt_rq **)ptr;
8184 ptr += nr_cpu_ids * sizeof(void **);
8185 #endif /* CONFIG_USER_SCHED */
8186 #endif /* CONFIG_RT_GROUP_SCHED */
8189 #ifdef CONFIG_SMP
8190 init_defrootdomain();
8191 #endif
8193 init_rt_bandwidth(&def_rt_bandwidth,
8194 global_rt_period(), global_rt_runtime());
8196 #ifdef CONFIG_RT_GROUP_SCHED
8197 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8198 global_rt_period(), global_rt_runtime());
8199 #ifdef CONFIG_USER_SCHED
8200 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8201 global_rt_period(), RUNTIME_INF);
8202 #endif /* CONFIG_USER_SCHED */
8203 #endif /* CONFIG_RT_GROUP_SCHED */
8205 #ifdef CONFIG_GROUP_SCHED
8206 list_add(&init_task_group.list, &task_groups);
8207 INIT_LIST_HEAD(&init_task_group.children);
8209 #ifdef CONFIG_USER_SCHED
8210 INIT_LIST_HEAD(&root_task_group.children);
8211 init_task_group.parent = &root_task_group;
8212 list_add(&init_task_group.siblings, &root_task_group.children);
8213 #endif /* CONFIG_USER_SCHED */
8214 #endif /* CONFIG_GROUP_SCHED */
8216 for_each_possible_cpu(i) {
8217 struct rq *rq;
8219 rq = cpu_rq(i);
8220 spin_lock_init(&rq->lock);
8221 rq->nr_running = 0;
8222 init_cfs_rq(&rq->cfs, rq);
8223 init_rt_rq(&rq->rt, rq);
8224 #ifdef CONFIG_FAIR_GROUP_SCHED
8225 init_task_group.shares = init_task_group_load;
8226 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8227 #ifdef CONFIG_CGROUP_SCHED
8229 * How much cpu bandwidth does init_task_group get?
8231 * In case of task-groups formed thr' the cgroup filesystem, it
8232 * gets 100% of the cpu resources in the system. This overall
8233 * system cpu resource is divided among the tasks of
8234 * init_task_group and its child task-groups in a fair manner,
8235 * based on each entity's (task or task-group's) weight
8236 * (se->load.weight).
8238 * In other words, if init_task_group has 10 tasks of weight
8239 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8240 * then A0's share of the cpu resource is:
8242 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8244 * We achieve this by letting init_task_group's tasks sit
8245 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8247 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8248 #elif defined CONFIG_USER_SCHED
8249 root_task_group.shares = NICE_0_LOAD;
8250 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8252 * In case of task-groups formed thr' the user id of tasks,
8253 * init_task_group represents tasks belonging to root user.
8254 * Hence it forms a sibling of all subsequent groups formed.
8255 * In this case, init_task_group gets only a fraction of overall
8256 * system cpu resource, based on the weight assigned to root
8257 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8258 * by letting tasks of init_task_group sit in a separate cfs_rq
8259 * (init_cfs_rq) and having one entity represent this group of
8260 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8262 init_tg_cfs_entry(&init_task_group,
8263 &per_cpu(init_cfs_rq, i),
8264 &per_cpu(init_sched_entity, i), i, 1,
8265 root_task_group.se[i]);
8267 #endif
8268 #endif /* CONFIG_FAIR_GROUP_SCHED */
8270 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8271 #ifdef CONFIG_RT_GROUP_SCHED
8272 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8273 #ifdef CONFIG_CGROUP_SCHED
8274 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8275 #elif defined CONFIG_USER_SCHED
8276 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8277 init_tg_rt_entry(&init_task_group,
8278 &per_cpu(init_rt_rq, i),
8279 &per_cpu(init_sched_rt_entity, i), i, 1,
8280 root_task_group.rt_se[i]);
8281 #endif
8282 #endif
8284 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8285 rq->cpu_load[j] = 0;
8286 #ifdef CONFIG_SMP
8287 rq->sd = NULL;
8288 rq->rd = NULL;
8289 rq->active_balance = 0;
8290 rq->next_balance = jiffies;
8291 rq->push_cpu = 0;
8292 rq->cpu = i;
8293 rq->online = 0;
8294 rq->migration_thread = NULL;
8295 INIT_LIST_HEAD(&rq->migration_queue);
8296 rq_attach_root(rq, &def_root_domain);
8297 #endif
8298 init_rq_hrtick(rq);
8299 atomic_set(&rq->nr_iowait, 0);
8302 set_load_weight(&init_task);
8304 #ifdef CONFIG_PREEMPT_NOTIFIERS
8305 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8306 #endif
8308 #ifdef CONFIG_SMP
8309 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8310 #endif
8312 #ifdef CONFIG_RT_MUTEXES
8313 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8314 #endif
8317 * The boot idle thread does lazy MMU switching as well:
8319 atomic_inc(&init_mm.mm_count);
8320 enter_lazy_tlb(&init_mm, current);
8323 * Make us the idle thread. Technically, schedule() should not be
8324 * called from this thread, however somewhere below it might be,
8325 * but because we are the idle thread, we just pick up running again
8326 * when this runqueue becomes "idle".
8328 init_idle(current, smp_processor_id());
8330 * During early bootup we pretend to be a normal task:
8332 current->sched_class = &fair_sched_class;
8334 scheduler_running = 1;
8337 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8338 void __might_sleep(char *file, int line)
8340 #ifdef in_atomic
8341 static unsigned long prev_jiffy; /* ratelimiting */
8343 if ((!in_atomic() && !irqs_disabled()) ||
8344 system_state != SYSTEM_RUNNING || oops_in_progress)
8345 return;
8346 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8347 return;
8348 prev_jiffy = jiffies;
8350 printk(KERN_ERR
8351 "BUG: sleeping function called from invalid context at %s:%d\n",
8352 file, line);
8353 printk(KERN_ERR
8354 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8355 in_atomic(), irqs_disabled(),
8356 current->pid, current->comm);
8358 debug_show_held_locks(current);
8359 if (irqs_disabled())
8360 print_irqtrace_events(current);
8361 dump_stack();
8362 #endif
8364 EXPORT_SYMBOL(__might_sleep);
8365 #endif
8367 #ifdef CONFIG_MAGIC_SYSRQ
8368 static void normalize_task(struct rq *rq, struct task_struct *p)
8370 int on_rq;
8372 update_rq_clock(rq);
8373 on_rq = p->se.on_rq;
8374 if (on_rq)
8375 deactivate_task(rq, p, 0);
8376 __setscheduler(rq, p, SCHED_NORMAL, 0);
8377 if (on_rq) {
8378 activate_task(rq, p, 0);
8379 resched_task(rq->curr);
8383 void normalize_rt_tasks(void)
8385 struct task_struct *g, *p;
8386 unsigned long flags;
8387 struct rq *rq;
8389 read_lock_irqsave(&tasklist_lock, flags);
8390 do_each_thread(g, p) {
8392 * Only normalize user tasks:
8394 if (!p->mm)
8395 continue;
8397 p->se.exec_start = 0;
8398 #ifdef CONFIG_SCHEDSTATS
8399 p->se.wait_start = 0;
8400 p->se.sleep_start = 0;
8401 p->se.block_start = 0;
8402 #endif
8404 if (!rt_task(p)) {
8406 * Renice negative nice level userspace
8407 * tasks back to 0:
8409 if (TASK_NICE(p) < 0 && p->mm)
8410 set_user_nice(p, 0);
8411 continue;
8414 spin_lock(&p->pi_lock);
8415 rq = __task_rq_lock(p);
8417 normalize_task(rq, p);
8419 __task_rq_unlock(rq);
8420 spin_unlock(&p->pi_lock);
8421 } while_each_thread(g, p);
8423 read_unlock_irqrestore(&tasklist_lock, flags);
8426 #endif /* CONFIG_MAGIC_SYSRQ */
8428 #ifdef CONFIG_IA64
8430 * These functions are only useful for the IA64 MCA handling.
8432 * They can only be called when the whole system has been
8433 * stopped - every CPU needs to be quiescent, and no scheduling
8434 * activity can take place. Using them for anything else would
8435 * be a serious bug, and as a result, they aren't even visible
8436 * under any other configuration.
8440 * curr_task - return the current task for a given cpu.
8441 * @cpu: the processor in question.
8443 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8445 struct task_struct *curr_task(int cpu)
8447 return cpu_curr(cpu);
8451 * set_curr_task - set the current task for a given cpu.
8452 * @cpu: the processor in question.
8453 * @p: the task pointer to set.
8455 * Description: This function must only be used when non-maskable interrupts
8456 * are serviced on a separate stack. It allows the architecture to switch the
8457 * notion of the current task on a cpu in a non-blocking manner. This function
8458 * must be called with all CPU's synchronized, and interrupts disabled, the
8459 * and caller must save the original value of the current task (see
8460 * curr_task() above) and restore that value before reenabling interrupts and
8461 * re-starting the system.
8463 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8465 void set_curr_task(int cpu, struct task_struct *p)
8467 cpu_curr(cpu) = p;
8470 #endif
8472 #ifdef CONFIG_FAIR_GROUP_SCHED
8473 static void free_fair_sched_group(struct task_group *tg)
8475 int i;
8477 for_each_possible_cpu(i) {
8478 if (tg->cfs_rq)
8479 kfree(tg->cfs_rq[i]);
8480 if (tg->se)
8481 kfree(tg->se[i]);
8484 kfree(tg->cfs_rq);
8485 kfree(tg->se);
8488 static
8489 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8491 struct cfs_rq *cfs_rq;
8492 struct sched_entity *se, *parent_se;
8493 struct rq *rq;
8494 int i;
8496 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8497 if (!tg->cfs_rq)
8498 goto err;
8499 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8500 if (!tg->se)
8501 goto err;
8503 tg->shares = NICE_0_LOAD;
8505 for_each_possible_cpu(i) {
8506 rq = cpu_rq(i);
8508 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8509 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8510 if (!cfs_rq)
8511 goto err;
8513 se = kmalloc_node(sizeof(struct sched_entity),
8514 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8515 if (!se)
8516 goto err;
8518 parent_se = parent ? parent->se[i] : NULL;
8519 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8522 return 1;
8524 err:
8525 return 0;
8528 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8530 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8531 &cpu_rq(cpu)->leaf_cfs_rq_list);
8534 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8536 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8538 #else /* !CONFG_FAIR_GROUP_SCHED */
8539 static inline void free_fair_sched_group(struct task_group *tg)
8543 static inline
8544 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8546 return 1;
8549 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8553 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8556 #endif /* CONFIG_FAIR_GROUP_SCHED */
8558 #ifdef CONFIG_RT_GROUP_SCHED
8559 static void free_rt_sched_group(struct task_group *tg)
8561 int i;
8563 destroy_rt_bandwidth(&tg->rt_bandwidth);
8565 for_each_possible_cpu(i) {
8566 if (tg->rt_rq)
8567 kfree(tg->rt_rq[i]);
8568 if (tg->rt_se)
8569 kfree(tg->rt_se[i]);
8572 kfree(tg->rt_rq);
8573 kfree(tg->rt_se);
8576 static
8577 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8579 struct rt_rq *rt_rq;
8580 struct sched_rt_entity *rt_se, *parent_se;
8581 struct rq *rq;
8582 int i;
8584 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8585 if (!tg->rt_rq)
8586 goto err;
8587 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8588 if (!tg->rt_se)
8589 goto err;
8591 init_rt_bandwidth(&tg->rt_bandwidth,
8592 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8594 for_each_possible_cpu(i) {
8595 rq = cpu_rq(i);
8597 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8598 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8599 if (!rt_rq)
8600 goto err;
8602 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8603 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8604 if (!rt_se)
8605 goto err;
8607 parent_se = parent ? parent->rt_se[i] : NULL;
8608 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8611 return 1;
8613 err:
8614 return 0;
8617 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8619 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8620 &cpu_rq(cpu)->leaf_rt_rq_list);
8623 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8625 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8627 #else /* !CONFIG_RT_GROUP_SCHED */
8628 static inline void free_rt_sched_group(struct task_group *tg)
8632 static inline
8633 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8635 return 1;
8638 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8642 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8645 #endif /* CONFIG_RT_GROUP_SCHED */
8647 #ifdef CONFIG_GROUP_SCHED
8648 static void free_sched_group(struct task_group *tg)
8650 free_fair_sched_group(tg);
8651 free_rt_sched_group(tg);
8652 kfree(tg);
8655 /* allocate runqueue etc for a new task group */
8656 struct task_group *sched_create_group(struct task_group *parent)
8658 struct task_group *tg;
8659 unsigned long flags;
8660 int i;
8662 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8663 if (!tg)
8664 return ERR_PTR(-ENOMEM);
8666 if (!alloc_fair_sched_group(tg, parent))
8667 goto err;
8669 if (!alloc_rt_sched_group(tg, parent))
8670 goto err;
8672 spin_lock_irqsave(&task_group_lock, flags);
8673 for_each_possible_cpu(i) {
8674 register_fair_sched_group(tg, i);
8675 register_rt_sched_group(tg, i);
8677 list_add_rcu(&tg->list, &task_groups);
8679 WARN_ON(!parent); /* root should already exist */
8681 tg->parent = parent;
8682 INIT_LIST_HEAD(&tg->children);
8683 list_add_rcu(&tg->siblings, &parent->children);
8684 spin_unlock_irqrestore(&task_group_lock, flags);
8686 return tg;
8688 err:
8689 free_sched_group(tg);
8690 return ERR_PTR(-ENOMEM);
8693 /* rcu callback to free various structures associated with a task group */
8694 static void free_sched_group_rcu(struct rcu_head *rhp)
8696 /* now it should be safe to free those cfs_rqs */
8697 free_sched_group(container_of(rhp, struct task_group, rcu));
8700 /* Destroy runqueue etc associated with a task group */
8701 void sched_destroy_group(struct task_group *tg)
8703 unsigned long flags;
8704 int i;
8706 spin_lock_irqsave(&task_group_lock, flags);
8707 for_each_possible_cpu(i) {
8708 unregister_fair_sched_group(tg, i);
8709 unregister_rt_sched_group(tg, i);
8711 list_del_rcu(&tg->list);
8712 list_del_rcu(&tg->siblings);
8713 spin_unlock_irqrestore(&task_group_lock, flags);
8715 /* wait for possible concurrent references to cfs_rqs complete */
8716 call_rcu(&tg->rcu, free_sched_group_rcu);
8719 /* change task's runqueue when it moves between groups.
8720 * The caller of this function should have put the task in its new group
8721 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8722 * reflect its new group.
8724 void sched_move_task(struct task_struct *tsk)
8726 int on_rq, running;
8727 unsigned long flags;
8728 struct rq *rq;
8730 rq = task_rq_lock(tsk, &flags);
8732 update_rq_clock(rq);
8734 running = task_current(rq, tsk);
8735 on_rq = tsk->se.on_rq;
8737 if (on_rq)
8738 dequeue_task(rq, tsk, 0);
8739 if (unlikely(running))
8740 tsk->sched_class->put_prev_task(rq, tsk);
8742 set_task_rq(tsk, task_cpu(tsk));
8744 #ifdef CONFIG_FAIR_GROUP_SCHED
8745 if (tsk->sched_class->moved_group)
8746 tsk->sched_class->moved_group(tsk);
8747 #endif
8749 if (unlikely(running))
8750 tsk->sched_class->set_curr_task(rq);
8751 if (on_rq)
8752 enqueue_task(rq, tsk, 0);
8754 task_rq_unlock(rq, &flags);
8756 #endif /* CONFIG_GROUP_SCHED */
8758 #ifdef CONFIG_FAIR_GROUP_SCHED
8759 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8761 struct cfs_rq *cfs_rq = se->cfs_rq;
8762 int on_rq;
8764 on_rq = se->on_rq;
8765 if (on_rq)
8766 dequeue_entity(cfs_rq, se, 0);
8768 se->load.weight = shares;
8769 se->load.inv_weight = 0;
8771 if (on_rq)
8772 enqueue_entity(cfs_rq, se, 0);
8775 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8777 struct cfs_rq *cfs_rq = se->cfs_rq;
8778 struct rq *rq = cfs_rq->rq;
8779 unsigned long flags;
8781 spin_lock_irqsave(&rq->lock, flags);
8782 __set_se_shares(se, shares);
8783 spin_unlock_irqrestore(&rq->lock, flags);
8786 static DEFINE_MUTEX(shares_mutex);
8788 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8790 int i;
8791 unsigned long flags;
8794 * We can't change the weight of the root cgroup.
8796 if (!tg->se[0])
8797 return -EINVAL;
8799 if (shares < MIN_SHARES)
8800 shares = MIN_SHARES;
8801 else if (shares > MAX_SHARES)
8802 shares = MAX_SHARES;
8804 mutex_lock(&shares_mutex);
8805 if (tg->shares == shares)
8806 goto done;
8808 spin_lock_irqsave(&task_group_lock, flags);
8809 for_each_possible_cpu(i)
8810 unregister_fair_sched_group(tg, i);
8811 list_del_rcu(&tg->siblings);
8812 spin_unlock_irqrestore(&task_group_lock, flags);
8814 /* wait for any ongoing reference to this group to finish */
8815 synchronize_sched();
8818 * Now we are free to modify the group's share on each cpu
8819 * w/o tripping rebalance_share or load_balance_fair.
8821 tg->shares = shares;
8822 for_each_possible_cpu(i) {
8824 * force a rebalance
8826 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8827 set_se_shares(tg->se[i], shares);
8831 * Enable load balance activity on this group, by inserting it back on
8832 * each cpu's rq->leaf_cfs_rq_list.
8834 spin_lock_irqsave(&task_group_lock, flags);
8835 for_each_possible_cpu(i)
8836 register_fair_sched_group(tg, i);
8837 list_add_rcu(&tg->siblings, &tg->parent->children);
8838 spin_unlock_irqrestore(&task_group_lock, flags);
8839 done:
8840 mutex_unlock(&shares_mutex);
8841 return 0;
8844 unsigned long sched_group_shares(struct task_group *tg)
8846 return tg->shares;
8848 #endif
8850 #ifdef CONFIG_RT_GROUP_SCHED
8852 * Ensure that the real time constraints are schedulable.
8854 static DEFINE_MUTEX(rt_constraints_mutex);
8856 static unsigned long to_ratio(u64 period, u64 runtime)
8858 if (runtime == RUNTIME_INF)
8859 return 1ULL << 20;
8861 return div64_u64(runtime << 20, period);
8864 /* Must be called with tasklist_lock held */
8865 static inline int tg_has_rt_tasks(struct task_group *tg)
8867 struct task_struct *g, *p;
8869 do_each_thread(g, p) {
8870 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8871 return 1;
8872 } while_each_thread(g, p);
8874 return 0;
8877 struct rt_schedulable_data {
8878 struct task_group *tg;
8879 u64 rt_period;
8880 u64 rt_runtime;
8883 static int tg_schedulable(struct task_group *tg, void *data)
8885 struct rt_schedulable_data *d = data;
8886 struct task_group *child;
8887 unsigned long total, sum = 0;
8888 u64 period, runtime;
8890 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8891 runtime = tg->rt_bandwidth.rt_runtime;
8893 if (tg == d->tg) {
8894 period = d->rt_period;
8895 runtime = d->rt_runtime;
8899 * Cannot have more runtime than the period.
8901 if (runtime > period && runtime != RUNTIME_INF)
8902 return -EINVAL;
8905 * Ensure we don't starve existing RT tasks.
8907 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8908 return -EBUSY;
8910 total = to_ratio(period, runtime);
8913 * Nobody can have more than the global setting allows.
8915 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8916 return -EINVAL;
8919 * The sum of our children's runtime should not exceed our own.
8921 list_for_each_entry_rcu(child, &tg->children, siblings) {
8922 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8923 runtime = child->rt_bandwidth.rt_runtime;
8925 if (child == d->tg) {
8926 period = d->rt_period;
8927 runtime = d->rt_runtime;
8930 sum += to_ratio(period, runtime);
8933 if (sum > total)
8934 return -EINVAL;
8936 return 0;
8939 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8941 struct rt_schedulable_data data = {
8942 .tg = tg,
8943 .rt_period = period,
8944 .rt_runtime = runtime,
8947 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8950 static int tg_set_bandwidth(struct task_group *tg,
8951 u64 rt_period, u64 rt_runtime)
8953 int i, err = 0;
8955 mutex_lock(&rt_constraints_mutex);
8956 read_lock(&tasklist_lock);
8957 err = __rt_schedulable(tg, rt_period, rt_runtime);
8958 if (err)
8959 goto unlock;
8961 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8962 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8963 tg->rt_bandwidth.rt_runtime = rt_runtime;
8965 for_each_possible_cpu(i) {
8966 struct rt_rq *rt_rq = tg->rt_rq[i];
8968 spin_lock(&rt_rq->rt_runtime_lock);
8969 rt_rq->rt_runtime = rt_runtime;
8970 spin_unlock(&rt_rq->rt_runtime_lock);
8972 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8973 unlock:
8974 read_unlock(&tasklist_lock);
8975 mutex_unlock(&rt_constraints_mutex);
8977 return err;
8980 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8982 u64 rt_runtime, rt_period;
8984 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8985 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8986 if (rt_runtime_us < 0)
8987 rt_runtime = RUNTIME_INF;
8989 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8992 long sched_group_rt_runtime(struct task_group *tg)
8994 u64 rt_runtime_us;
8996 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8997 return -1;
8999 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9000 do_div(rt_runtime_us, NSEC_PER_USEC);
9001 return rt_runtime_us;
9004 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9006 u64 rt_runtime, rt_period;
9008 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9009 rt_runtime = tg->rt_bandwidth.rt_runtime;
9011 if (rt_period == 0)
9012 return -EINVAL;
9014 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9017 long sched_group_rt_period(struct task_group *tg)
9019 u64 rt_period_us;
9021 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9022 do_div(rt_period_us, NSEC_PER_USEC);
9023 return rt_period_us;
9026 static int sched_rt_global_constraints(void)
9028 u64 runtime, period;
9029 int ret = 0;
9031 if (sysctl_sched_rt_period <= 0)
9032 return -EINVAL;
9034 runtime = global_rt_runtime();
9035 period = global_rt_period();
9038 * Sanity check on the sysctl variables.
9040 if (runtime > period && runtime != RUNTIME_INF)
9041 return -EINVAL;
9043 mutex_lock(&rt_constraints_mutex);
9044 read_lock(&tasklist_lock);
9045 ret = __rt_schedulable(NULL, 0, 0);
9046 read_unlock(&tasklist_lock);
9047 mutex_unlock(&rt_constraints_mutex);
9049 return ret;
9051 #else /* !CONFIG_RT_GROUP_SCHED */
9052 static int sched_rt_global_constraints(void)
9054 unsigned long flags;
9055 int i;
9057 if (sysctl_sched_rt_period <= 0)
9058 return -EINVAL;
9060 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9061 for_each_possible_cpu(i) {
9062 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9064 spin_lock(&rt_rq->rt_runtime_lock);
9065 rt_rq->rt_runtime = global_rt_runtime();
9066 spin_unlock(&rt_rq->rt_runtime_lock);
9068 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9070 return 0;
9072 #endif /* CONFIG_RT_GROUP_SCHED */
9074 int sched_rt_handler(struct ctl_table *table, int write,
9075 struct file *filp, void __user *buffer, size_t *lenp,
9076 loff_t *ppos)
9078 int ret;
9079 int old_period, old_runtime;
9080 static DEFINE_MUTEX(mutex);
9082 mutex_lock(&mutex);
9083 old_period = sysctl_sched_rt_period;
9084 old_runtime = sysctl_sched_rt_runtime;
9086 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9088 if (!ret && write) {
9089 ret = sched_rt_global_constraints();
9090 if (ret) {
9091 sysctl_sched_rt_period = old_period;
9092 sysctl_sched_rt_runtime = old_runtime;
9093 } else {
9094 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9095 def_rt_bandwidth.rt_period =
9096 ns_to_ktime(global_rt_period());
9099 mutex_unlock(&mutex);
9101 return ret;
9104 #ifdef CONFIG_CGROUP_SCHED
9106 /* return corresponding task_group object of a cgroup */
9107 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9109 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9110 struct task_group, css);
9113 static struct cgroup_subsys_state *
9114 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9116 struct task_group *tg, *parent;
9118 if (!cgrp->parent) {
9119 /* This is early initialization for the top cgroup */
9120 return &init_task_group.css;
9123 parent = cgroup_tg(cgrp->parent);
9124 tg = sched_create_group(parent);
9125 if (IS_ERR(tg))
9126 return ERR_PTR(-ENOMEM);
9128 return &tg->css;
9131 static void
9132 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9134 struct task_group *tg = cgroup_tg(cgrp);
9136 sched_destroy_group(tg);
9139 static int
9140 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9141 struct task_struct *tsk)
9143 #ifdef CONFIG_RT_GROUP_SCHED
9144 /* Don't accept realtime tasks when there is no way for them to run */
9145 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9146 return -EINVAL;
9147 #else
9148 /* We don't support RT-tasks being in separate groups */
9149 if (tsk->sched_class != &fair_sched_class)
9150 return -EINVAL;
9151 #endif
9153 return 0;
9156 static void
9157 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9158 struct cgroup *old_cont, struct task_struct *tsk)
9160 sched_move_task(tsk);
9163 #ifdef CONFIG_FAIR_GROUP_SCHED
9164 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9165 u64 shareval)
9167 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9170 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9172 struct task_group *tg = cgroup_tg(cgrp);
9174 return (u64) tg->shares;
9176 #endif /* CONFIG_FAIR_GROUP_SCHED */
9178 #ifdef CONFIG_RT_GROUP_SCHED
9179 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9180 s64 val)
9182 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9185 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9187 return sched_group_rt_runtime(cgroup_tg(cgrp));
9190 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9191 u64 rt_period_us)
9193 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9196 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9198 return sched_group_rt_period(cgroup_tg(cgrp));
9200 #endif /* CONFIG_RT_GROUP_SCHED */
9202 static struct cftype cpu_files[] = {
9203 #ifdef CONFIG_FAIR_GROUP_SCHED
9205 .name = "shares",
9206 .read_u64 = cpu_shares_read_u64,
9207 .write_u64 = cpu_shares_write_u64,
9209 #endif
9210 #ifdef CONFIG_RT_GROUP_SCHED
9212 .name = "rt_runtime_us",
9213 .read_s64 = cpu_rt_runtime_read,
9214 .write_s64 = cpu_rt_runtime_write,
9217 .name = "rt_period_us",
9218 .read_u64 = cpu_rt_period_read_uint,
9219 .write_u64 = cpu_rt_period_write_uint,
9221 #endif
9224 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9226 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9229 struct cgroup_subsys cpu_cgroup_subsys = {
9230 .name = "cpu",
9231 .create = cpu_cgroup_create,
9232 .destroy = cpu_cgroup_destroy,
9233 .can_attach = cpu_cgroup_can_attach,
9234 .attach = cpu_cgroup_attach,
9235 .populate = cpu_cgroup_populate,
9236 .subsys_id = cpu_cgroup_subsys_id,
9237 .early_init = 1,
9240 #endif /* CONFIG_CGROUP_SCHED */
9242 #ifdef CONFIG_CGROUP_CPUACCT
9245 * CPU accounting code for task groups.
9247 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9248 * (balbir@in.ibm.com).
9251 /* track cpu usage of a group of tasks */
9252 struct cpuacct {
9253 struct cgroup_subsys_state css;
9254 /* cpuusage holds pointer to a u64-type object on every cpu */
9255 u64 *cpuusage;
9258 struct cgroup_subsys cpuacct_subsys;
9260 /* return cpu accounting group corresponding to this container */
9261 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9263 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9264 struct cpuacct, css);
9267 /* return cpu accounting group to which this task belongs */
9268 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9270 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9271 struct cpuacct, css);
9274 /* create a new cpu accounting group */
9275 static struct cgroup_subsys_state *cpuacct_create(
9276 struct cgroup_subsys *ss, struct cgroup *cgrp)
9278 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9280 if (!ca)
9281 return ERR_PTR(-ENOMEM);
9283 ca->cpuusage = alloc_percpu(u64);
9284 if (!ca->cpuusage) {
9285 kfree(ca);
9286 return ERR_PTR(-ENOMEM);
9289 return &ca->css;
9292 /* destroy an existing cpu accounting group */
9293 static void
9294 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9296 struct cpuacct *ca = cgroup_ca(cgrp);
9298 free_percpu(ca->cpuusage);
9299 kfree(ca);
9302 /* return total cpu usage (in nanoseconds) of a group */
9303 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9305 struct cpuacct *ca = cgroup_ca(cgrp);
9306 u64 totalcpuusage = 0;
9307 int i;
9309 for_each_possible_cpu(i) {
9310 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9313 * Take rq->lock to make 64-bit addition safe on 32-bit
9314 * platforms.
9316 spin_lock_irq(&cpu_rq(i)->lock);
9317 totalcpuusage += *cpuusage;
9318 spin_unlock_irq(&cpu_rq(i)->lock);
9321 return totalcpuusage;
9324 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9325 u64 reset)
9327 struct cpuacct *ca = cgroup_ca(cgrp);
9328 int err = 0;
9329 int i;
9331 if (reset) {
9332 err = -EINVAL;
9333 goto out;
9336 for_each_possible_cpu(i) {
9337 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9339 spin_lock_irq(&cpu_rq(i)->lock);
9340 *cpuusage = 0;
9341 spin_unlock_irq(&cpu_rq(i)->lock);
9343 out:
9344 return err;
9347 static struct cftype files[] = {
9349 .name = "usage",
9350 .read_u64 = cpuusage_read,
9351 .write_u64 = cpuusage_write,
9355 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9357 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9361 * charge this task's execution time to its accounting group.
9363 * called with rq->lock held.
9365 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9367 struct cpuacct *ca;
9369 if (!cpuacct_subsys.active)
9370 return;
9372 ca = task_ca(tsk);
9373 if (ca) {
9374 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9376 *cpuusage += cputime;
9380 struct cgroup_subsys cpuacct_subsys = {
9381 .name = "cpuacct",
9382 .create = cpuacct_create,
9383 .destroy = cpuacct_destroy,
9384 .populate = cpuacct_populate,
9385 .subsys_id = cpuacct_subsys_id,
9387 #endif /* CONFIG_CGROUP_CPUACCT */