sh: Move clock reporting to its own proc entry.
[linux-2.6/sactl.git] / arch / sh / kernel / setup.c
blobcab91a7665da3fa730c0d9c7bbe18edd4e8df56a
1 /*
2 * arch/sh/kernel/setup.c
4 * This file handles the architecture-dependent parts of initialization
6 * Copyright (C) 1999 Niibe Yutaka
7 * Copyright (C) 2002 - 2007 Paul Mundt
8 */
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <asm/uaccess.h>
24 #include <asm/io.h>
25 #include <asm/sections.h>
26 #include <asm/irq.h>
27 #include <asm/setup.h>
28 #include <asm/clock.h>
29 #include <asm/mmu_context.h>
31 extern void * __rd_start, * __rd_end;
34 * Machine setup..
38 * Initialize loops_per_jiffy as 10000000 (1000MIPS).
39 * This value will be used at the very early stage of serial setup.
40 * The bigger value means no problem.
42 struct sh_cpuinfo boot_cpu_data = { CPU_SH_NONE, 10000000, };
43 #ifdef CONFIG_VT
44 struct screen_info screen_info;
45 #endif
47 #if defined(CONFIG_SH_UNKNOWN)
48 struct sh_machine_vector sh_mv;
49 #endif
51 extern int root_mountflags;
53 #define MV_NAME_SIZE 32
55 static struct sh_machine_vector* __init get_mv_byname(const char* name);
58 * This is set up by the setup-routine at boot-time
60 #define PARAM ((unsigned char *)empty_zero_page)
62 #define MOUNT_ROOT_RDONLY (*(unsigned long *) (PARAM+0x000))
63 #define RAMDISK_FLAGS (*(unsigned long *) (PARAM+0x004))
64 #define ORIG_ROOT_DEV (*(unsigned long *) (PARAM+0x008))
65 #define LOADER_TYPE (*(unsigned long *) (PARAM+0x00c))
66 #define INITRD_START (*(unsigned long *) (PARAM+0x010))
67 #define INITRD_SIZE (*(unsigned long *) (PARAM+0x014))
68 /* ... */
69 #define COMMAND_LINE ((char *) (PARAM+0x100))
71 #define RAMDISK_IMAGE_START_MASK 0x07FF
72 #define RAMDISK_PROMPT_FLAG 0x8000
73 #define RAMDISK_LOAD_FLAG 0x4000
75 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
77 static struct resource code_resource = { .name = "Kernel code", };
78 static struct resource data_resource = { .name = "Kernel data", };
80 unsigned long memory_start, memory_end;
82 static inline void parse_cmdline (char ** cmdline_p, char mv_name[MV_NAME_SIZE],
83 struct sh_machine_vector** mvp,
84 unsigned long *mv_io_base)
86 char c = ' ', *to = command_line, *from = COMMAND_LINE;
87 int len = 0;
89 /* Save unparsed command line copy for /proc/cmdline */
90 memcpy(boot_command_line, COMMAND_LINE, COMMAND_LINE_SIZE);
91 boot_command_line[COMMAND_LINE_SIZE-1] = '\0';
93 memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START;
94 memory_end = memory_start + __MEMORY_SIZE;
96 for (;;) {
98 * "mem=XXX[kKmM]" defines a size of memory.
100 if (c == ' ' && !memcmp(from, "mem=", 4)) {
101 if (to != command_line)
102 to--;
104 unsigned long mem_size;
106 mem_size = memparse(from+4, &from);
107 memory_end = memory_start + mem_size;
111 if (c == ' ' && !memcmp(from, "sh_mv=", 6)) {
112 char* mv_end;
113 char* mv_comma;
114 int mv_len;
115 if (to != command_line)
116 to--;
117 from += 6;
118 mv_end = strchr(from, ' ');
119 if (mv_end == NULL)
120 mv_end = from + strlen(from);
122 mv_comma = strchr(from, ',');
123 if ((mv_comma != NULL) && (mv_comma < mv_end)) {
124 int ints[3];
125 get_options(mv_comma+1, ARRAY_SIZE(ints), ints);
126 *mv_io_base = ints[1];
127 mv_len = mv_comma - from;
128 } else {
129 mv_len = mv_end - from;
131 if (mv_len > (MV_NAME_SIZE-1))
132 mv_len = MV_NAME_SIZE-1;
133 memcpy(mv_name, from, mv_len);
134 mv_name[mv_len] = '\0';
135 from = mv_end;
137 *mvp = get_mv_byname(mv_name);
140 c = *(from++);
141 if (!c)
142 break;
143 if (COMMAND_LINE_SIZE <= ++len)
144 break;
145 *(to++) = c;
147 *to = '\0';
148 *cmdline_p = command_line;
151 static int __init sh_mv_setup(char **cmdline_p)
153 #ifdef CONFIG_SH_UNKNOWN
154 extern struct sh_machine_vector mv_unknown;
155 #endif
156 struct sh_machine_vector *mv = NULL;
157 char mv_name[MV_NAME_SIZE] = "";
158 unsigned long mv_io_base = 0;
160 parse_cmdline(cmdline_p, mv_name, &mv, &mv_io_base);
162 #ifdef CONFIG_SH_UNKNOWN
163 if (mv == NULL) {
164 mv = &mv_unknown;
165 if (*mv_name != '\0') {
166 printk("Warning: Unsupported machine %s, using unknown\n",
167 mv_name);
170 sh_mv = *mv;
171 #endif
174 * Manually walk the vec, fill in anything that the board hasn't yet
175 * by hand, wrapping to the generic implementation.
177 #define mv_set(elem) do { \
178 if (!sh_mv.mv_##elem) \
179 sh_mv.mv_##elem = generic_##elem; \
180 } while (0)
182 mv_set(inb); mv_set(inw); mv_set(inl);
183 mv_set(outb); mv_set(outw); mv_set(outl);
185 mv_set(inb_p); mv_set(inw_p); mv_set(inl_p);
186 mv_set(outb_p); mv_set(outw_p); mv_set(outl_p);
188 mv_set(insb); mv_set(insw); mv_set(insl);
189 mv_set(outsb); mv_set(outsw); mv_set(outsl);
191 mv_set(readb); mv_set(readw); mv_set(readl);
192 mv_set(writeb); mv_set(writew); mv_set(writel);
194 mv_set(ioport_map);
195 mv_set(ioport_unmap);
196 mv_set(irq_demux);
198 #ifdef CONFIG_SH_UNKNOWN
199 __set_io_port_base(mv_io_base);
200 #endif
202 if (!sh_mv.mv_nr_irqs)
203 sh_mv.mv_nr_irqs = NR_IRQS;
205 return 0;
209 * Register fully available low RAM pages with the bootmem allocator.
211 static void __init register_bootmem_low_pages(void)
213 unsigned long curr_pfn, last_pfn, pages;
216 * We are rounding up the start address of usable memory:
218 curr_pfn = PFN_UP(__MEMORY_START);
221 * ... and at the end of the usable range downwards:
223 last_pfn = PFN_DOWN(__pa(memory_end));
225 if (last_pfn > max_low_pfn)
226 last_pfn = max_low_pfn;
228 pages = last_pfn - curr_pfn;
229 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
232 void __init setup_bootmem_allocator(unsigned long start_pfn)
234 unsigned long bootmap_size;
237 * Find a proper area for the bootmem bitmap. After this
238 * bootstrap step all allocations (until the page allocator
239 * is intact) must be done via bootmem_alloc().
241 bootmap_size = init_bootmem_node(NODE_DATA(0), start_pfn,
242 min_low_pfn, max_low_pfn);
244 register_bootmem_low_pages();
246 node_set_online(0);
249 * Reserve the kernel text and
250 * Reserve the bootmem bitmap. We do this in two steps (first step
251 * was init_bootmem()), because this catches the (definitely buggy)
252 * case of us accidentally initializing the bootmem allocator with
253 * an invalid RAM area.
255 reserve_bootmem(__MEMORY_START+PAGE_SIZE,
256 (PFN_PHYS(start_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START);
259 * reserve physical page 0 - it's a special BIOS page on many boxes,
260 * enabling clean reboots, SMP operation, laptop functions.
262 reserve_bootmem(__MEMORY_START, PAGE_SIZE);
264 #ifdef CONFIG_BLK_DEV_INITRD
265 ROOT_DEV = MKDEV(RAMDISK_MAJOR, 0);
266 if (&__rd_start != &__rd_end) {
267 LOADER_TYPE = 1;
268 INITRD_START = PHYSADDR((unsigned long)&__rd_start) -
269 __MEMORY_START;
270 INITRD_SIZE = (unsigned long)&__rd_end -
271 (unsigned long)&__rd_start;
274 if (LOADER_TYPE && INITRD_START) {
275 if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) {
276 reserve_bootmem(INITRD_START + __MEMORY_START,
277 INITRD_SIZE);
278 initrd_start = INITRD_START + PAGE_OFFSET +
279 __MEMORY_START;
280 initrd_end = initrd_start + INITRD_SIZE;
281 } else {
282 printk("initrd extends beyond end of memory "
283 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
284 INITRD_START + INITRD_SIZE,
285 max_low_pfn << PAGE_SHIFT);
286 initrd_start = 0;
289 #endif
292 #ifndef CONFIG_NEED_MULTIPLE_NODES
293 static void __init setup_memory(void)
295 unsigned long start_pfn;
298 * Partially used pages are not usable - thus
299 * we are rounding upwards:
301 start_pfn = PFN_UP(__pa(_end));
302 setup_bootmem_allocator(start_pfn);
304 #else
305 extern void __init setup_memory(void);
306 #endif
308 void __init setup_arch(char **cmdline_p)
310 enable_mmu();
312 #ifdef CONFIG_CMDLINE_BOOL
313 strcpy(COMMAND_LINE, CONFIG_CMDLINE);
314 #endif
316 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
318 #ifdef CONFIG_BLK_DEV_RAM
319 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
320 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
321 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
322 #endif
324 if (!MOUNT_ROOT_RDONLY)
325 root_mountflags &= ~MS_RDONLY;
326 init_mm.start_code = (unsigned long) _text;
327 init_mm.end_code = (unsigned long) _etext;
328 init_mm.end_data = (unsigned long) _edata;
329 init_mm.brk = (unsigned long) _end;
331 code_resource.start = virt_to_phys(_text);
332 code_resource.end = virt_to_phys(_etext)-1;
333 data_resource.start = virt_to_phys(_etext);
334 data_resource.end = virt_to_phys(_edata)-1;
336 parse_early_param();
338 sh_mv_setup(cmdline_p);
341 * Find the highest page frame number we have available
343 max_pfn = PFN_DOWN(__pa(memory_end));
346 * Determine low and high memory ranges:
348 max_low_pfn = max_pfn;
349 min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
351 nodes_clear(node_online_map);
352 setup_memory();
353 paging_init();
354 sparse_init();
356 #ifdef CONFIG_DUMMY_CONSOLE
357 conswitchp = &dummy_con;
358 #endif
360 /* Perform the machine specific initialisation */
361 if (likely(sh_mv.mv_setup))
362 sh_mv.mv_setup(cmdline_p);
365 struct sh_machine_vector* __init get_mv_byname(const char* name)
367 extern long __machvec_start, __machvec_end;
368 struct sh_machine_vector *all_vecs =
369 (struct sh_machine_vector *)&__machvec_start;
371 int i, n = ((unsigned long)&__machvec_end
372 - (unsigned long)&__machvec_start)/
373 sizeof(struct sh_machine_vector);
375 for (i = 0; i < n; ++i) {
376 struct sh_machine_vector *mv = &all_vecs[i];
377 if (mv == NULL)
378 continue;
379 if (strcasecmp(name, get_system_type()) == 0) {
380 return mv;
383 return NULL;
386 static struct cpu cpu[NR_CPUS];
388 static int __init topology_init(void)
390 int cpu_id;
392 for_each_possible_cpu(cpu_id)
393 register_cpu(&cpu[cpu_id], cpu_id);
395 return 0;
398 subsys_initcall(topology_init);
400 static const char *cpu_name[] = {
401 [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619",
402 [CPU_SH7604] = "SH7604", [CPU_SH7300] = "SH7300",
403 [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706",
404 [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708",
405 [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710",
406 [CPU_SH7712] = "SH7712",
407 [CPU_SH7729] = "SH7729", [CPU_SH7750] = "SH7750",
408 [CPU_SH7750S] = "SH7750S", [CPU_SH7750R] = "SH7750R",
409 [CPU_SH7751] = "SH7751", [CPU_SH7751R] = "SH7751R",
410 [CPU_SH7760] = "SH7760", [CPU_SH73180] = "SH73180",
411 [CPU_ST40RA] = "ST40RA", [CPU_ST40GX1] = "ST40GX1",
412 [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501",
413 [CPU_SH7770] = "SH7770", [CPU_SH7780] = "SH7780",
414 [CPU_SH7781] = "SH7781", [CPU_SH7343] = "SH7343",
415 [CPU_SH7785] = "SH7785", [CPU_SH7722] = "SH7722",
416 [CPU_SH_NONE] = "Unknown"
419 const char *get_cpu_subtype(struct sh_cpuinfo *c)
421 return cpu_name[c->type];
424 #ifdef CONFIG_PROC_FS
425 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
426 static const char *cpu_flags[] = {
427 "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
428 "ptea", "llsc", "l2", NULL
431 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
433 unsigned long i;
435 seq_printf(m, "cpu flags\t:");
437 if (!c->flags) {
438 seq_printf(m, " %s\n", cpu_flags[0]);
439 return;
442 for (i = 0; cpu_flags[i]; i++)
443 if ((c->flags & (1 << i)))
444 seq_printf(m, " %s", cpu_flags[i+1]);
446 seq_printf(m, "\n");
449 static void show_cacheinfo(struct seq_file *m, const char *type,
450 struct cache_info info)
452 unsigned int cache_size;
454 cache_size = info.ways * info.sets * info.linesz;
456 seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
457 type, cache_size >> 10, info.ways);
461 * Get CPU information for use by the procfs.
463 static int show_cpuinfo(struct seq_file *m, void *v)
465 struct sh_cpuinfo *c = v;
466 unsigned int cpu = c - cpu_data;
468 if (!cpu_online(cpu))
469 return 0;
471 if (cpu == 0)
472 seq_printf(m, "machine\t\t: %s\n", get_system_type());
474 seq_printf(m, "processor\t: %d\n", cpu);
475 seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
476 seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
478 show_cpuflags(m, c);
480 seq_printf(m, "cache type\t: ");
483 * Check for what type of cache we have, we support both the
484 * unified cache on the SH-2 and SH-3, as well as the harvard
485 * style cache on the SH-4.
487 if (c->icache.flags & SH_CACHE_COMBINED) {
488 seq_printf(m, "unified\n");
489 show_cacheinfo(m, "cache", c->icache);
490 } else {
491 seq_printf(m, "split (harvard)\n");
492 show_cacheinfo(m, "icache", c->icache);
493 show_cacheinfo(m, "dcache", c->dcache);
496 /* Optional secondary cache */
497 if (c->flags & CPU_HAS_L2_CACHE)
498 show_cacheinfo(m, "scache", c->scache);
500 seq_printf(m, "bogomips\t: %lu.%02lu\n",
501 c->loops_per_jiffy/(500000/HZ),
502 (c->loops_per_jiffy/(5000/HZ)) % 100);
504 return 0;
507 static void *c_start(struct seq_file *m, loff_t *pos)
509 return *pos < NR_CPUS ? cpu_data + *pos : NULL;
511 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
513 ++*pos;
514 return c_start(m, pos);
516 static void c_stop(struct seq_file *m, void *v)
519 struct seq_operations cpuinfo_op = {
520 .start = c_start,
521 .next = c_next,
522 .stop = c_stop,
523 .show = show_cpuinfo,
525 #endif /* CONFIG_PROC_FS */