2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for futher copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include "dm-bio-list.h"
22 #include <linux/raid/raid10.h>
23 #include <linux/raid/bitmap.h>
26 * RAID10 provides a combination of RAID0 and RAID1 functionality.
27 * The layout of data is defined by
30 * near_copies (stored in low byte of layout)
31 * far_copies (stored in second byte of layout)
32 * far_offset (stored in bit 16 of layout )
34 * The data to be stored is divided into chunks using chunksize.
35 * Each device is divided into far_copies sections.
36 * In each section, chunks are laid out in a style similar to raid0, but
37 * near_copies copies of each chunk is stored (each on a different drive).
38 * The starting device for each section is offset near_copies from the starting
39 * device of the previous section.
40 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
42 * near_copies and far_copies must be at least one, and their product is at most
45 * If far_offset is true, then the far_copies are handled a bit differently.
46 * The copies are still in different stripes, but instead of be very far apart
47 * on disk, there are adjacent stripes.
51 * Number of guaranteed r10bios in case of extreme VM load:
53 #define NR_RAID10_BIOS 256
55 static void unplug_slaves(mddev_t
*mddev
);
57 static void allow_barrier(conf_t
*conf
);
58 static void lower_barrier(conf_t
*conf
);
60 static void * r10bio_pool_alloc(gfp_t gfp_flags
, void *data
)
64 int size
= offsetof(struct r10bio_s
, devs
[conf
->copies
]);
66 /* allocate a r10bio with room for raid_disks entries in the bios array */
67 r10_bio
= kzalloc(size
, gfp_flags
);
69 unplug_slaves(conf
->mddev
);
74 static void r10bio_pool_free(void *r10_bio
, void *data
)
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
83 #define RESYNC_WINDOW (2048*1024)
86 * When performing a resync, we need to read and compare, so
87 * we need as many pages are there are copies.
88 * When performing a recovery, we need 2 bios, one for read,
89 * one for write (we recover only one drive per r10buf)
92 static void * r10buf_pool_alloc(gfp_t gfp_flags
, void *data
)
101 r10_bio
= r10bio_pool_alloc(gfp_flags
, conf
);
103 unplug_slaves(conf
->mddev
);
107 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
))
108 nalloc
= conf
->copies
; /* resync */
110 nalloc
= 2; /* recovery */
115 for (j
= nalloc
; j
-- ; ) {
116 bio
= bio_alloc(gfp_flags
, RESYNC_PAGES
);
119 r10_bio
->devs
[j
].bio
= bio
;
122 * Allocate RESYNC_PAGES data pages and attach them
125 for (j
= 0 ; j
< nalloc
; j
++) {
126 bio
= r10_bio
->devs
[j
].bio
;
127 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
128 page
= alloc_page(gfp_flags
);
132 bio
->bi_io_vec
[i
].bv_page
= page
;
140 safe_put_page(bio
->bi_io_vec
[i
-1].bv_page
);
142 for (i
= 0; i
< RESYNC_PAGES
; i
++)
143 safe_put_page(r10_bio
->devs
[j
].bio
->bi_io_vec
[i
].bv_page
);
146 while ( ++j
< nalloc
)
147 bio_put(r10_bio
->devs
[j
].bio
);
148 r10bio_pool_free(r10_bio
, conf
);
152 static void r10buf_pool_free(void *__r10_bio
, void *data
)
156 r10bio_t
*r10bio
= __r10_bio
;
159 for (j
=0; j
< conf
->copies
; j
++) {
160 struct bio
*bio
= r10bio
->devs
[j
].bio
;
162 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
163 safe_put_page(bio
->bi_io_vec
[i
].bv_page
);
164 bio
->bi_io_vec
[i
].bv_page
= NULL
;
169 r10bio_pool_free(r10bio
, conf
);
172 static void put_all_bios(conf_t
*conf
, r10bio_t
*r10_bio
)
176 for (i
= 0; i
< conf
->copies
; i
++) {
177 struct bio
**bio
= & r10_bio
->devs
[i
].bio
;
178 if (*bio
&& *bio
!= IO_BLOCKED
)
184 static void free_r10bio(r10bio_t
*r10_bio
)
186 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
189 * Wake up any possible resync thread that waits for the device
194 put_all_bios(conf
, r10_bio
);
195 mempool_free(r10_bio
, conf
->r10bio_pool
);
198 static void put_buf(r10bio_t
*r10_bio
)
200 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
202 mempool_free(r10_bio
, conf
->r10buf_pool
);
207 static void reschedule_retry(r10bio_t
*r10_bio
)
210 mddev_t
*mddev
= r10_bio
->mddev
;
211 conf_t
*conf
= mddev_to_conf(mddev
);
213 spin_lock_irqsave(&conf
->device_lock
, flags
);
214 list_add(&r10_bio
->retry_list
, &conf
->retry_list
);
216 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
218 md_wakeup_thread(mddev
->thread
);
222 * raid_end_bio_io() is called when we have finished servicing a mirrored
223 * operation and are ready to return a success/failure code to the buffer
226 static void raid_end_bio_io(r10bio_t
*r10_bio
)
228 struct bio
*bio
= r10_bio
->master_bio
;
231 test_bit(R10BIO_Uptodate
, &r10_bio
->state
) ? 0 : -EIO
);
232 free_r10bio(r10_bio
);
236 * Update disk head position estimator based on IRQ completion info.
238 static inline void update_head_pos(int slot
, r10bio_t
*r10_bio
)
240 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
242 conf
->mirrors
[r10_bio
->devs
[slot
].devnum
].head_position
=
243 r10_bio
->devs
[slot
].addr
+ (r10_bio
->sectors
);
246 static void raid10_end_read_request(struct bio
*bio
, int error
)
248 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
249 r10bio_t
* r10_bio
= (r10bio_t
*)(bio
->bi_private
);
251 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
254 slot
= r10_bio
->read_slot
;
255 dev
= r10_bio
->devs
[slot
].devnum
;
257 * this branch is our 'one mirror IO has finished' event handler:
259 update_head_pos(slot
, r10_bio
);
263 * Set R10BIO_Uptodate in our master bio, so that
264 * we will return a good error code to the higher
265 * levels even if IO on some other mirrored buffer fails.
267 * The 'master' represents the composite IO operation to
268 * user-side. So if something waits for IO, then it will
269 * wait for the 'master' bio.
271 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
272 raid_end_bio_io(r10_bio
);
277 char b
[BDEVNAME_SIZE
];
278 if (printk_ratelimit())
279 printk(KERN_ERR
"raid10: %s: rescheduling sector %llu\n",
280 bdevname(conf
->mirrors
[dev
].rdev
->bdev
,b
), (unsigned long long)r10_bio
->sector
);
281 reschedule_retry(r10_bio
);
284 rdev_dec_pending(conf
->mirrors
[dev
].rdev
, conf
->mddev
);
287 static void raid10_end_write_request(struct bio
*bio
, int error
)
289 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
290 r10bio_t
* r10_bio
= (r10bio_t
*)(bio
->bi_private
);
292 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
294 for (slot
= 0; slot
< conf
->copies
; slot
++)
295 if (r10_bio
->devs
[slot
].bio
== bio
)
297 dev
= r10_bio
->devs
[slot
].devnum
;
300 * this branch is our 'one mirror IO has finished' event handler:
303 md_error(r10_bio
->mddev
, conf
->mirrors
[dev
].rdev
);
304 /* an I/O failed, we can't clear the bitmap */
305 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
308 * Set R10BIO_Uptodate in our master bio, so that
309 * we will return a good error code for to the higher
310 * levels even if IO on some other mirrored buffer fails.
312 * The 'master' represents the composite IO operation to
313 * user-side. So if something waits for IO, then it will
314 * wait for the 'master' bio.
316 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
318 update_head_pos(slot
, r10_bio
);
322 * Let's see if all mirrored write operations have finished
325 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
326 /* clear the bitmap if all writes complete successfully */
327 bitmap_endwrite(r10_bio
->mddev
->bitmap
, r10_bio
->sector
,
329 !test_bit(R10BIO_Degraded
, &r10_bio
->state
),
331 md_write_end(r10_bio
->mddev
);
332 raid_end_bio_io(r10_bio
);
335 rdev_dec_pending(conf
->mirrors
[dev
].rdev
, conf
->mddev
);
340 * RAID10 layout manager
341 * Aswell as the chunksize and raid_disks count, there are two
342 * parameters: near_copies and far_copies.
343 * near_copies * far_copies must be <= raid_disks.
344 * Normally one of these will be 1.
345 * If both are 1, we get raid0.
346 * If near_copies == raid_disks, we get raid1.
348 * Chunks are layed out in raid0 style with near_copies copies of the
349 * first chunk, followed by near_copies copies of the next chunk and
351 * If far_copies > 1, then after 1/far_copies of the array has been assigned
352 * as described above, we start again with a device offset of near_copies.
353 * So we effectively have another copy of the whole array further down all
354 * the drives, but with blocks on different drives.
355 * With this layout, and block is never stored twice on the one device.
357 * raid10_find_phys finds the sector offset of a given virtual sector
358 * on each device that it is on.
360 * raid10_find_virt does the reverse mapping, from a device and a
361 * sector offset to a virtual address
364 static void raid10_find_phys(conf_t
*conf
, r10bio_t
*r10bio
)
374 /* now calculate first sector/dev */
375 chunk
= r10bio
->sector
>> conf
->chunk_shift
;
376 sector
= r10bio
->sector
& conf
->chunk_mask
;
378 chunk
*= conf
->near_copies
;
380 dev
= sector_div(stripe
, conf
->raid_disks
);
381 if (conf
->far_offset
)
382 stripe
*= conf
->far_copies
;
384 sector
+= stripe
<< conf
->chunk_shift
;
386 /* and calculate all the others */
387 for (n
=0; n
< conf
->near_copies
; n
++) {
390 r10bio
->devs
[slot
].addr
= sector
;
391 r10bio
->devs
[slot
].devnum
= d
;
394 for (f
= 1; f
< conf
->far_copies
; f
++) {
395 d
+= conf
->near_copies
;
396 if (d
>= conf
->raid_disks
)
397 d
-= conf
->raid_disks
;
399 r10bio
->devs
[slot
].devnum
= d
;
400 r10bio
->devs
[slot
].addr
= s
;
404 if (dev
>= conf
->raid_disks
) {
406 sector
+= (conf
->chunk_mask
+ 1);
409 BUG_ON(slot
!= conf
->copies
);
412 static sector_t
raid10_find_virt(conf_t
*conf
, sector_t sector
, int dev
)
414 sector_t offset
, chunk
, vchunk
;
416 offset
= sector
& conf
->chunk_mask
;
417 if (conf
->far_offset
) {
419 chunk
= sector
>> conf
->chunk_shift
;
420 fc
= sector_div(chunk
, conf
->far_copies
);
421 dev
-= fc
* conf
->near_copies
;
423 dev
+= conf
->raid_disks
;
425 while (sector
>= conf
->stride
) {
426 sector
-= conf
->stride
;
427 if (dev
< conf
->near_copies
)
428 dev
+= conf
->raid_disks
- conf
->near_copies
;
430 dev
-= conf
->near_copies
;
432 chunk
= sector
>> conf
->chunk_shift
;
434 vchunk
= chunk
* conf
->raid_disks
+ dev
;
435 sector_div(vchunk
, conf
->near_copies
);
436 return (vchunk
<< conf
->chunk_shift
) + offset
;
440 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
442 * @bvm: properties of new bio
443 * @biovec: the request that could be merged to it.
445 * Return amount of bytes we can accept at this offset
446 * If near_copies == raid_disk, there are no striping issues,
447 * but in that case, the function isn't called at all.
449 static int raid10_mergeable_bvec(struct request_queue
*q
,
450 struct bvec_merge_data
*bvm
,
451 struct bio_vec
*biovec
)
453 mddev_t
*mddev
= q
->queuedata
;
454 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
456 unsigned int chunk_sectors
= mddev
->chunk_size
>> 9;
457 unsigned int bio_sectors
= bvm
->bi_size
>> 9;
459 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
460 if (max
< 0) max
= 0; /* bio_add cannot handle a negative return */
461 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
462 return biovec
->bv_len
;
468 * This routine returns the disk from which the requested read should
469 * be done. There is a per-array 'next expected sequential IO' sector
470 * number - if this matches on the next IO then we use the last disk.
471 * There is also a per-disk 'last know head position' sector that is
472 * maintained from IRQ contexts, both the normal and the resync IO
473 * completion handlers update this position correctly. If there is no
474 * perfect sequential match then we pick the disk whose head is closest.
476 * If there are 2 mirrors in the same 2 devices, performance degrades
477 * because position is mirror, not device based.
479 * The rdev for the device selected will have nr_pending incremented.
483 * FIXME: possibly should rethink readbalancing and do it differently
484 * depending on near_copies / far_copies geometry.
486 static int read_balance(conf_t
*conf
, r10bio_t
*r10_bio
)
488 const unsigned long this_sector
= r10_bio
->sector
;
489 int disk
, slot
, nslot
;
490 const int sectors
= r10_bio
->sectors
;
491 sector_t new_distance
, current_distance
;
494 raid10_find_phys(conf
, r10_bio
);
497 * Check if we can balance. We can balance on the whole
498 * device if no resync is going on (recovery is ok), or below
499 * the resync window. We take the first readable disk when
500 * above the resync window.
502 if (conf
->mddev
->recovery_cp
< MaxSector
503 && (this_sector
+ sectors
>= conf
->next_resync
)) {
504 /* make sure that disk is operational */
506 disk
= r10_bio
->devs
[slot
].devnum
;
508 while ((rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
)) == NULL
||
509 r10_bio
->devs
[slot
].bio
== IO_BLOCKED
||
510 !test_bit(In_sync
, &rdev
->flags
)) {
512 if (slot
== conf
->copies
) {
517 disk
= r10_bio
->devs
[slot
].devnum
;
523 /* make sure the disk is operational */
525 disk
= r10_bio
->devs
[slot
].devnum
;
526 while ((rdev
=rcu_dereference(conf
->mirrors
[disk
].rdev
)) == NULL
||
527 r10_bio
->devs
[slot
].bio
== IO_BLOCKED
||
528 !test_bit(In_sync
, &rdev
->flags
)) {
530 if (slot
== conf
->copies
) {
534 disk
= r10_bio
->devs
[slot
].devnum
;
538 current_distance
= abs(r10_bio
->devs
[slot
].addr
-
539 conf
->mirrors
[disk
].head_position
);
541 /* Find the disk whose head is closest,
542 * or - for far > 1 - find the closest to partition beginning */
544 for (nslot
= slot
; nslot
< conf
->copies
; nslot
++) {
545 int ndisk
= r10_bio
->devs
[nslot
].devnum
;
548 if ((rdev
=rcu_dereference(conf
->mirrors
[ndisk
].rdev
)) == NULL
||
549 r10_bio
->devs
[nslot
].bio
== IO_BLOCKED
||
550 !test_bit(In_sync
, &rdev
->flags
))
553 /* This optimisation is debatable, and completely destroys
554 * sequential read speed for 'far copies' arrays. So only
555 * keep it for 'near' arrays, and review those later.
557 if (conf
->near_copies
> 1 && !atomic_read(&rdev
->nr_pending
)) {
563 /* for far > 1 always use the lowest address */
564 if (conf
->far_copies
> 1)
565 new_distance
= r10_bio
->devs
[nslot
].addr
;
567 new_distance
= abs(r10_bio
->devs
[nslot
].addr
-
568 conf
->mirrors
[ndisk
].head_position
);
569 if (new_distance
< current_distance
) {
570 current_distance
= new_distance
;
577 r10_bio
->read_slot
= slot
;
578 /* conf->next_seq_sect = this_sector + sectors;*/
580 if (disk
>= 0 && (rdev
=rcu_dereference(conf
->mirrors
[disk
].rdev
))!= NULL
)
581 atomic_inc(&conf
->mirrors
[disk
].rdev
->nr_pending
);
589 static void unplug_slaves(mddev_t
*mddev
)
591 conf_t
*conf
= mddev_to_conf(mddev
);
595 for (i
=0; i
<mddev
->raid_disks
; i
++) {
596 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
597 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) && atomic_read(&rdev
->nr_pending
)) {
598 struct request_queue
*r_queue
= bdev_get_queue(rdev
->bdev
);
600 atomic_inc(&rdev
->nr_pending
);
605 rdev_dec_pending(rdev
, mddev
);
612 static void raid10_unplug(struct request_queue
*q
)
614 mddev_t
*mddev
= q
->queuedata
;
616 unplug_slaves(q
->queuedata
);
617 md_wakeup_thread(mddev
->thread
);
620 static int raid10_congested(void *data
, int bits
)
622 mddev_t
*mddev
= data
;
623 conf_t
*conf
= mddev_to_conf(mddev
);
627 for (i
= 0; i
< mddev
->raid_disks
&& ret
== 0; i
++) {
628 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
629 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
630 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
632 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
639 static int flush_pending_writes(conf_t
*conf
)
641 /* Any writes that have been queued but are awaiting
642 * bitmap updates get flushed here.
643 * We return 1 if any requests were actually submitted.
647 spin_lock_irq(&conf
->device_lock
);
649 if (conf
->pending_bio_list
.head
) {
651 bio
= bio_list_get(&conf
->pending_bio_list
);
652 blk_remove_plug(conf
->mddev
->queue
);
653 spin_unlock_irq(&conf
->device_lock
);
654 /* flush any pending bitmap writes to disk
655 * before proceeding w/ I/O */
656 bitmap_unplug(conf
->mddev
->bitmap
);
658 while (bio
) { /* submit pending writes */
659 struct bio
*next
= bio
->bi_next
;
661 generic_make_request(bio
);
666 spin_unlock_irq(&conf
->device_lock
);
670 * Sometimes we need to suspend IO while we do something else,
671 * either some resync/recovery, or reconfigure the array.
672 * To do this we raise a 'barrier'.
673 * The 'barrier' is a counter that can be raised multiple times
674 * to count how many activities are happening which preclude
676 * We can only raise the barrier if there is no pending IO.
677 * i.e. if nr_pending == 0.
678 * We choose only to raise the barrier if no-one is waiting for the
679 * barrier to go down. This means that as soon as an IO request
680 * is ready, no other operations which require a barrier will start
681 * until the IO request has had a chance.
683 * So: regular IO calls 'wait_barrier'. When that returns there
684 * is no backgroup IO happening, It must arrange to call
685 * allow_barrier when it has finished its IO.
686 * backgroup IO calls must call raise_barrier. Once that returns
687 * there is no normal IO happeing. It must arrange to call
688 * lower_barrier when the particular background IO completes.
690 #define RESYNC_DEPTH 32
692 static void raise_barrier(conf_t
*conf
, int force
)
694 BUG_ON(force
&& !conf
->barrier
);
695 spin_lock_irq(&conf
->resync_lock
);
697 /* Wait until no block IO is waiting (unless 'force') */
698 wait_event_lock_irq(conf
->wait_barrier
, force
|| !conf
->nr_waiting
,
700 raid10_unplug(conf
->mddev
->queue
));
702 /* block any new IO from starting */
705 /* No wait for all pending IO to complete */
706 wait_event_lock_irq(conf
->wait_barrier
,
707 !conf
->nr_pending
&& conf
->barrier
< RESYNC_DEPTH
,
709 raid10_unplug(conf
->mddev
->queue
));
711 spin_unlock_irq(&conf
->resync_lock
);
714 static void lower_barrier(conf_t
*conf
)
717 spin_lock_irqsave(&conf
->resync_lock
, flags
);
719 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
720 wake_up(&conf
->wait_barrier
);
723 static void wait_barrier(conf_t
*conf
)
725 spin_lock_irq(&conf
->resync_lock
);
728 wait_event_lock_irq(conf
->wait_barrier
, !conf
->barrier
,
730 raid10_unplug(conf
->mddev
->queue
));
734 spin_unlock_irq(&conf
->resync_lock
);
737 static void allow_barrier(conf_t
*conf
)
740 spin_lock_irqsave(&conf
->resync_lock
, flags
);
742 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
743 wake_up(&conf
->wait_barrier
);
746 static void freeze_array(conf_t
*conf
)
748 /* stop syncio and normal IO and wait for everything to
750 * We increment barrier and nr_waiting, and then
751 * wait until nr_pending match nr_queued+1
752 * This is called in the context of one normal IO request
753 * that has failed. Thus any sync request that might be pending
754 * will be blocked by nr_pending, and we need to wait for
755 * pending IO requests to complete or be queued for re-try.
756 * Thus the number queued (nr_queued) plus this request (1)
757 * must match the number of pending IOs (nr_pending) before
760 spin_lock_irq(&conf
->resync_lock
);
763 wait_event_lock_irq(conf
->wait_barrier
,
764 conf
->nr_pending
== conf
->nr_queued
+1,
766 ({ flush_pending_writes(conf
);
767 raid10_unplug(conf
->mddev
->queue
); }));
768 spin_unlock_irq(&conf
->resync_lock
);
771 static void unfreeze_array(conf_t
*conf
)
773 /* reverse the effect of the freeze */
774 spin_lock_irq(&conf
->resync_lock
);
777 wake_up(&conf
->wait_barrier
);
778 spin_unlock_irq(&conf
->resync_lock
);
781 static int make_request(struct request_queue
*q
, struct bio
* bio
)
783 mddev_t
*mddev
= q
->queuedata
;
784 conf_t
*conf
= mddev_to_conf(mddev
);
785 mirror_info_t
*mirror
;
787 struct bio
*read_bio
;
789 int chunk_sects
= conf
->chunk_mask
+ 1;
790 const int rw
= bio_data_dir(bio
);
791 const int do_sync
= bio_sync(bio
);
794 mdk_rdev_t
*blocked_rdev
;
796 if (unlikely(bio_barrier(bio
))) {
797 bio_endio(bio
, -EOPNOTSUPP
);
801 /* If this request crosses a chunk boundary, we need to
802 * split it. This will only happen for 1 PAGE (or less) requests.
804 if (unlikely( (bio
->bi_sector
& conf
->chunk_mask
) + (bio
->bi_size
>> 9)
806 conf
->near_copies
< conf
->raid_disks
)) {
808 /* Sanity check -- queue functions should prevent this happening */
809 if (bio
->bi_vcnt
!= 1 ||
812 /* This is a one page bio that upper layers
813 * refuse to split for us, so we need to split it.
815 bp
= bio_split(bio
, bio_split_pool
,
816 chunk_sects
- (bio
->bi_sector
& (chunk_sects
- 1)) );
817 if (make_request(q
, &bp
->bio1
))
818 generic_make_request(&bp
->bio1
);
819 if (make_request(q
, &bp
->bio2
))
820 generic_make_request(&bp
->bio2
);
822 bio_pair_release(bp
);
825 printk("raid10_make_request bug: can't convert block across chunks"
826 " or bigger than %dk %llu %d\n", chunk_sects
/2,
827 (unsigned long long)bio
->bi_sector
, bio
->bi_size
>> 10);
833 md_write_start(mddev
, bio
);
836 * Register the new request and wait if the reconstruction
837 * thread has put up a bar for new requests.
838 * Continue immediately if no resync is active currently.
842 disk_stat_inc(mddev
->gendisk
, ios
[rw
]);
843 disk_stat_add(mddev
->gendisk
, sectors
[rw
], bio_sectors(bio
));
845 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
847 r10_bio
->master_bio
= bio
;
848 r10_bio
->sectors
= bio
->bi_size
>> 9;
850 r10_bio
->mddev
= mddev
;
851 r10_bio
->sector
= bio
->bi_sector
;
856 * read balancing logic:
858 int disk
= read_balance(conf
, r10_bio
);
859 int slot
= r10_bio
->read_slot
;
861 raid_end_bio_io(r10_bio
);
864 mirror
= conf
->mirrors
+ disk
;
866 read_bio
= bio_clone(bio
, GFP_NOIO
);
868 r10_bio
->devs
[slot
].bio
= read_bio
;
870 read_bio
->bi_sector
= r10_bio
->devs
[slot
].addr
+
871 mirror
->rdev
->data_offset
;
872 read_bio
->bi_bdev
= mirror
->rdev
->bdev
;
873 read_bio
->bi_end_io
= raid10_end_read_request
;
874 read_bio
->bi_rw
= READ
| do_sync
;
875 read_bio
->bi_private
= r10_bio
;
877 generic_make_request(read_bio
);
884 /* first select target devices under rcu_lock and
885 * inc refcount on their rdev. Record them by setting
888 raid10_find_phys(conf
, r10_bio
);
892 for (i
= 0; i
< conf
->copies
; i
++) {
893 int d
= r10_bio
->devs
[i
].devnum
;
894 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
895 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
896 atomic_inc(&rdev
->nr_pending
);
900 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
901 atomic_inc(&rdev
->nr_pending
);
902 r10_bio
->devs
[i
].bio
= bio
;
904 r10_bio
->devs
[i
].bio
= NULL
;
905 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
910 if (unlikely(blocked_rdev
)) {
911 /* Have to wait for this device to get unblocked, then retry */
915 for (j
= 0; j
< i
; j
++)
916 if (r10_bio
->devs
[j
].bio
) {
917 d
= r10_bio
->devs
[j
].devnum
;
918 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
921 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
926 atomic_set(&r10_bio
->remaining
, 0);
929 for (i
= 0; i
< conf
->copies
; i
++) {
931 int d
= r10_bio
->devs
[i
].devnum
;
932 if (!r10_bio
->devs
[i
].bio
)
935 mbio
= bio_clone(bio
, GFP_NOIO
);
936 r10_bio
->devs
[i
].bio
= mbio
;
938 mbio
->bi_sector
= r10_bio
->devs
[i
].addr
+
939 conf
->mirrors
[d
].rdev
->data_offset
;
940 mbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
941 mbio
->bi_end_io
= raid10_end_write_request
;
942 mbio
->bi_rw
= WRITE
| do_sync
;
943 mbio
->bi_private
= r10_bio
;
945 atomic_inc(&r10_bio
->remaining
);
946 bio_list_add(&bl
, mbio
);
949 if (unlikely(!atomic_read(&r10_bio
->remaining
))) {
950 /* the array is dead */
952 raid_end_bio_io(r10_bio
);
956 bitmap_startwrite(mddev
->bitmap
, bio
->bi_sector
, r10_bio
->sectors
, 0);
957 spin_lock_irqsave(&conf
->device_lock
, flags
);
958 bio_list_merge(&conf
->pending_bio_list
, &bl
);
959 blk_plug_device(mddev
->queue
);
960 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
962 /* In case raid10d snuck in to freeze_array */
963 wake_up(&conf
->wait_barrier
);
966 md_wakeup_thread(mddev
->thread
);
971 static void status(struct seq_file
*seq
, mddev_t
*mddev
)
973 conf_t
*conf
= mddev_to_conf(mddev
);
976 if (conf
->near_copies
< conf
->raid_disks
)
977 seq_printf(seq
, " %dK chunks", mddev
->chunk_size
/1024);
978 if (conf
->near_copies
> 1)
979 seq_printf(seq
, " %d near-copies", conf
->near_copies
);
980 if (conf
->far_copies
> 1) {
981 if (conf
->far_offset
)
982 seq_printf(seq
, " %d offset-copies", conf
->far_copies
);
984 seq_printf(seq
, " %d far-copies", conf
->far_copies
);
986 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
987 conf
->raid_disks
- mddev
->degraded
);
988 for (i
= 0; i
< conf
->raid_disks
; i
++)
989 seq_printf(seq
, "%s",
990 conf
->mirrors
[i
].rdev
&&
991 test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ? "U" : "_");
992 seq_printf(seq
, "]");
995 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
997 char b
[BDEVNAME_SIZE
];
998 conf_t
*conf
= mddev_to_conf(mddev
);
1001 * If it is not operational, then we have already marked it as dead
1002 * else if it is the last working disks, ignore the error, let the
1003 * next level up know.
1004 * else mark the drive as failed
1006 if (test_bit(In_sync
, &rdev
->flags
)
1007 && conf
->raid_disks
-mddev
->degraded
== 1)
1009 * Don't fail the drive, just return an IO error.
1010 * The test should really be more sophisticated than
1011 * "working_disks == 1", but it isn't critical, and
1012 * can wait until we do more sophisticated "is the drive
1013 * really dead" tests...
1016 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1017 unsigned long flags
;
1018 spin_lock_irqsave(&conf
->device_lock
, flags
);
1020 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1022 * if recovery is running, make sure it aborts.
1024 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1026 set_bit(Faulty
, &rdev
->flags
);
1027 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1028 printk(KERN_ALERT
"raid10: Disk failure on %s, disabling device.\n"
1029 "raid10: Operation continuing on %d devices.\n",
1030 bdevname(rdev
->bdev
,b
), conf
->raid_disks
- mddev
->degraded
);
1033 static void print_conf(conf_t
*conf
)
1038 printk("RAID10 conf printout:\n");
1040 printk("(!conf)\n");
1043 printk(" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1046 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1047 char b
[BDEVNAME_SIZE
];
1048 tmp
= conf
->mirrors
+ i
;
1050 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1051 i
, !test_bit(In_sync
, &tmp
->rdev
->flags
),
1052 !test_bit(Faulty
, &tmp
->rdev
->flags
),
1053 bdevname(tmp
->rdev
->bdev
,b
));
1057 static void close_sync(conf_t
*conf
)
1060 allow_barrier(conf
);
1062 mempool_destroy(conf
->r10buf_pool
);
1063 conf
->r10buf_pool
= NULL
;
1066 /* check if there are enough drives for
1067 * every block to appear on atleast one
1069 static int enough(conf_t
*conf
)
1074 int n
= conf
->copies
;
1077 if (conf
->mirrors
[first
].rdev
)
1079 first
= (first
+1) % conf
->raid_disks
;
1083 } while (first
!= 0);
1087 static int raid10_spare_active(mddev_t
*mddev
)
1090 conf_t
*conf
= mddev
->private;
1094 * Find all non-in_sync disks within the RAID10 configuration
1095 * and mark them in_sync
1097 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1098 tmp
= conf
->mirrors
+ i
;
1100 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
1101 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
1102 unsigned long flags
;
1103 spin_lock_irqsave(&conf
->device_lock
, flags
);
1105 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1114 static int raid10_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1116 conf_t
*conf
= mddev
->private;
1121 int last
= mddev
->raid_disks
- 1;
1123 if (mddev
->recovery_cp
< MaxSector
)
1124 /* only hot-add to in-sync arrays, as recovery is
1125 * very different from resync
1131 if (rdev
->raid_disk
)
1132 first
= last
= rdev
->raid_disk
;
1134 if (rdev
->saved_raid_disk
>= 0 &&
1135 rdev
->saved_raid_disk
>= first
&&
1136 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1137 mirror
= rdev
->saved_raid_disk
;
1140 for ( ; mirror
<= last
; mirror
++)
1141 if ( !(p
=conf
->mirrors
+mirror
)->rdev
) {
1143 blk_queue_stack_limits(mddev
->queue
,
1144 rdev
->bdev
->bd_disk
->queue
);
1145 /* as we don't honour merge_bvec_fn, we must never risk
1146 * violating it, so limit ->max_sector to one PAGE, as
1147 * a one page request is never in violation.
1149 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
&&
1150 mddev
->queue
->max_sectors
> (PAGE_SIZE
>>9))
1151 mddev
->queue
->max_sectors
= (PAGE_SIZE
>>9);
1153 p
->head_position
= 0;
1154 rdev
->raid_disk
= mirror
;
1156 if (rdev
->saved_raid_disk
!= mirror
)
1158 rcu_assign_pointer(p
->rdev
, rdev
);
1166 static int raid10_remove_disk(mddev_t
*mddev
, int number
)
1168 conf_t
*conf
= mddev
->private;
1171 mirror_info_t
*p
= conf
->mirrors
+ number
;
1176 if (test_bit(In_sync
, &rdev
->flags
) ||
1177 atomic_read(&rdev
->nr_pending
)) {
1181 /* Only remove faulty devices in recovery
1184 if (!test_bit(Faulty
, &rdev
->flags
) &&
1191 if (atomic_read(&rdev
->nr_pending
)) {
1192 /* lost the race, try later */
1204 static void end_sync_read(struct bio
*bio
, int error
)
1206 r10bio_t
* r10_bio
= (r10bio_t
*)(bio
->bi_private
);
1207 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
1210 for (i
=0; i
<conf
->copies
; i
++)
1211 if (r10_bio
->devs
[i
].bio
== bio
)
1213 BUG_ON(i
== conf
->copies
);
1214 update_head_pos(i
, r10_bio
);
1215 d
= r10_bio
->devs
[i
].devnum
;
1217 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1218 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
1220 atomic_add(r10_bio
->sectors
,
1221 &conf
->mirrors
[d
].rdev
->corrected_errors
);
1222 if (!test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
))
1223 md_error(r10_bio
->mddev
,
1224 conf
->mirrors
[d
].rdev
);
1227 /* for reconstruct, we always reschedule after a read.
1228 * for resync, only after all reads
1230 if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
) ||
1231 atomic_dec_and_test(&r10_bio
->remaining
)) {
1232 /* we have read all the blocks,
1233 * do the comparison in process context in raid10d
1235 reschedule_retry(r10_bio
);
1237 rdev_dec_pending(conf
->mirrors
[d
].rdev
, conf
->mddev
);
1240 static void end_sync_write(struct bio
*bio
, int error
)
1242 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1243 r10bio_t
* r10_bio
= (r10bio_t
*)(bio
->bi_private
);
1244 mddev_t
*mddev
= r10_bio
->mddev
;
1245 conf_t
*conf
= mddev_to_conf(mddev
);
1248 for (i
= 0; i
< conf
->copies
; i
++)
1249 if (r10_bio
->devs
[i
].bio
== bio
)
1251 d
= r10_bio
->devs
[i
].devnum
;
1254 md_error(mddev
, conf
->mirrors
[d
].rdev
);
1256 update_head_pos(i
, r10_bio
);
1258 while (atomic_dec_and_test(&r10_bio
->remaining
)) {
1259 if (r10_bio
->master_bio
== NULL
) {
1260 /* the primary of several recovery bios */
1261 md_done_sync(mddev
, r10_bio
->sectors
, 1);
1265 r10bio_t
*r10_bio2
= (r10bio_t
*)r10_bio
->master_bio
;
1270 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1274 * Note: sync and recover and handled very differently for raid10
1275 * This code is for resync.
1276 * For resync, we read through virtual addresses and read all blocks.
1277 * If there is any error, we schedule a write. The lowest numbered
1278 * drive is authoritative.
1279 * However requests come for physical address, so we need to map.
1280 * For every physical address there are raid_disks/copies virtual addresses,
1281 * which is always are least one, but is not necessarly an integer.
1282 * This means that a physical address can span multiple chunks, so we may
1283 * have to submit multiple io requests for a single sync request.
1286 * We check if all blocks are in-sync and only write to blocks that
1289 static void sync_request_write(mddev_t
*mddev
, r10bio_t
*r10_bio
)
1291 conf_t
*conf
= mddev_to_conf(mddev
);
1293 struct bio
*tbio
, *fbio
;
1295 atomic_set(&r10_bio
->remaining
, 1);
1297 /* find the first device with a block */
1298 for (i
=0; i
<conf
->copies
; i
++)
1299 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
))
1302 if (i
== conf
->copies
)
1306 fbio
= r10_bio
->devs
[i
].bio
;
1308 /* now find blocks with errors */
1309 for (i
=0 ; i
< conf
->copies
; i
++) {
1311 int vcnt
= r10_bio
->sectors
>> (PAGE_SHIFT
-9);
1313 tbio
= r10_bio
->devs
[i
].bio
;
1315 if (tbio
->bi_end_io
!= end_sync_read
)
1319 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
)) {
1320 /* We know that the bi_io_vec layout is the same for
1321 * both 'first' and 'i', so we just compare them.
1322 * All vec entries are PAGE_SIZE;
1324 for (j
= 0; j
< vcnt
; j
++)
1325 if (memcmp(page_address(fbio
->bi_io_vec
[j
].bv_page
),
1326 page_address(tbio
->bi_io_vec
[j
].bv_page
),
1331 mddev
->resync_mismatches
+= r10_bio
->sectors
;
1333 if (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
))
1334 /* Don't fix anything. */
1336 /* Ok, we need to write this bio
1337 * First we need to fixup bv_offset, bv_len and
1338 * bi_vecs, as the read request might have corrupted these
1340 tbio
->bi_vcnt
= vcnt
;
1341 tbio
->bi_size
= r10_bio
->sectors
<< 9;
1343 tbio
->bi_phys_segments
= 0;
1344 tbio
->bi_hw_segments
= 0;
1345 tbio
->bi_hw_front_size
= 0;
1346 tbio
->bi_hw_back_size
= 0;
1347 tbio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1348 tbio
->bi_flags
|= 1 << BIO_UPTODATE
;
1349 tbio
->bi_next
= NULL
;
1350 tbio
->bi_rw
= WRITE
;
1351 tbio
->bi_private
= r10_bio
;
1352 tbio
->bi_sector
= r10_bio
->devs
[i
].addr
;
1354 for (j
=0; j
< vcnt
; j
++) {
1355 tbio
->bi_io_vec
[j
].bv_offset
= 0;
1356 tbio
->bi_io_vec
[j
].bv_len
= PAGE_SIZE
;
1358 memcpy(page_address(tbio
->bi_io_vec
[j
].bv_page
),
1359 page_address(fbio
->bi_io_vec
[j
].bv_page
),
1362 tbio
->bi_end_io
= end_sync_write
;
1364 d
= r10_bio
->devs
[i
].devnum
;
1365 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1366 atomic_inc(&r10_bio
->remaining
);
1367 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, tbio
->bi_size
>> 9);
1369 tbio
->bi_sector
+= conf
->mirrors
[d
].rdev
->data_offset
;
1370 tbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1371 generic_make_request(tbio
);
1375 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
1376 md_done_sync(mddev
, r10_bio
->sectors
, 1);
1382 * Now for the recovery code.
1383 * Recovery happens across physical sectors.
1384 * We recover all non-is_sync drives by finding the virtual address of
1385 * each, and then choose a working drive that also has that virt address.
1386 * There is a separate r10_bio for each non-in_sync drive.
1387 * Only the first two slots are in use. The first for reading,
1388 * The second for writing.
1392 static void recovery_request_write(mddev_t
*mddev
, r10bio_t
*r10_bio
)
1394 conf_t
*conf
= mddev_to_conf(mddev
);
1396 struct bio
*bio
, *wbio
;
1399 /* move the pages across to the second bio
1400 * and submit the write request
1402 bio
= r10_bio
->devs
[0].bio
;
1403 wbio
= r10_bio
->devs
[1].bio
;
1404 for (i
=0; i
< wbio
->bi_vcnt
; i
++) {
1405 struct page
*p
= bio
->bi_io_vec
[i
].bv_page
;
1406 bio
->bi_io_vec
[i
].bv_page
= wbio
->bi_io_vec
[i
].bv_page
;
1407 wbio
->bi_io_vec
[i
].bv_page
= p
;
1409 d
= r10_bio
->devs
[1].devnum
;
1411 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1412 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, wbio
->bi_size
>> 9);
1413 if (test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
1414 generic_make_request(wbio
);
1416 bio_endio(wbio
, -EIO
);
1421 * This is a kernel thread which:
1423 * 1. Retries failed read operations on working mirrors.
1424 * 2. Updates the raid superblock when problems encounter.
1425 * 3. Performs writes following reads for array synchronising.
1428 static void fix_read_error(conf_t
*conf
, mddev_t
*mddev
, r10bio_t
*r10_bio
)
1430 int sect
= 0; /* Offset from r10_bio->sector */
1431 int sectors
= r10_bio
->sectors
;
1435 int sl
= r10_bio
->read_slot
;
1439 if (s
> (PAGE_SIZE
>>9))
1444 int d
= r10_bio
->devs
[sl
].devnum
;
1445 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1447 test_bit(In_sync
, &rdev
->flags
)) {
1448 atomic_inc(&rdev
->nr_pending
);
1450 success
= sync_page_io(rdev
->bdev
,
1451 r10_bio
->devs
[sl
].addr
+
1452 sect
+ rdev
->data_offset
,
1454 conf
->tmppage
, READ
);
1455 rdev_dec_pending(rdev
, mddev
);
1461 if (sl
== conf
->copies
)
1463 } while (!success
&& sl
!= r10_bio
->read_slot
);
1467 /* Cannot read from anywhere -- bye bye array */
1468 int dn
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
1469 md_error(mddev
, conf
->mirrors
[dn
].rdev
);
1474 /* write it back and re-read */
1476 while (sl
!= r10_bio
->read_slot
) {
1481 d
= r10_bio
->devs
[sl
].devnum
;
1482 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1484 test_bit(In_sync
, &rdev
->flags
)) {
1485 atomic_inc(&rdev
->nr_pending
);
1487 atomic_add(s
, &rdev
->corrected_errors
);
1488 if (sync_page_io(rdev
->bdev
,
1489 r10_bio
->devs
[sl
].addr
+
1490 sect
+ rdev
->data_offset
,
1491 s
<<9, conf
->tmppage
, WRITE
)
1493 /* Well, this device is dead */
1494 md_error(mddev
, rdev
);
1495 rdev_dec_pending(rdev
, mddev
);
1500 while (sl
!= r10_bio
->read_slot
) {
1505 d
= r10_bio
->devs
[sl
].devnum
;
1506 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1508 test_bit(In_sync
, &rdev
->flags
)) {
1509 char b
[BDEVNAME_SIZE
];
1510 atomic_inc(&rdev
->nr_pending
);
1512 if (sync_page_io(rdev
->bdev
,
1513 r10_bio
->devs
[sl
].addr
+
1514 sect
+ rdev
->data_offset
,
1515 s
<<9, conf
->tmppage
, READ
) == 0)
1516 /* Well, this device is dead */
1517 md_error(mddev
, rdev
);
1520 "raid10:%s: read error corrected"
1521 " (%d sectors at %llu on %s)\n",
1523 (unsigned long long)(sect
+
1525 bdevname(rdev
->bdev
, b
));
1527 rdev_dec_pending(rdev
, mddev
);
1538 static void raid10d(mddev_t
*mddev
)
1542 unsigned long flags
;
1543 conf_t
*conf
= mddev_to_conf(mddev
);
1544 struct list_head
*head
= &conf
->retry_list
;
1548 md_check_recovery(mddev
);
1551 char b
[BDEVNAME_SIZE
];
1553 unplug
+= flush_pending_writes(conf
);
1555 spin_lock_irqsave(&conf
->device_lock
, flags
);
1556 if (list_empty(head
)) {
1557 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1560 r10_bio
= list_entry(head
->prev
, r10bio_t
, retry_list
);
1561 list_del(head
->prev
);
1563 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1565 mddev
= r10_bio
->mddev
;
1566 conf
= mddev_to_conf(mddev
);
1567 if (test_bit(R10BIO_IsSync
, &r10_bio
->state
)) {
1568 sync_request_write(mddev
, r10_bio
);
1570 } else if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
)) {
1571 recovery_request_write(mddev
, r10_bio
);
1575 /* we got a read error. Maybe the drive is bad. Maybe just
1576 * the block and we can fix it.
1577 * We freeze all other IO, and try reading the block from
1578 * other devices. When we find one, we re-write
1579 * and check it that fixes the read error.
1580 * This is all done synchronously while the array is
1583 if (mddev
->ro
== 0) {
1585 fix_read_error(conf
, mddev
, r10_bio
);
1586 unfreeze_array(conf
);
1589 bio
= r10_bio
->devs
[r10_bio
->read_slot
].bio
;
1590 r10_bio
->devs
[r10_bio
->read_slot
].bio
=
1591 mddev
->ro
? IO_BLOCKED
: NULL
;
1592 mirror
= read_balance(conf
, r10_bio
);
1594 printk(KERN_ALERT
"raid10: %s: unrecoverable I/O"
1595 " read error for block %llu\n",
1596 bdevname(bio
->bi_bdev
,b
),
1597 (unsigned long long)r10_bio
->sector
);
1598 raid_end_bio_io(r10_bio
);
1601 const int do_sync
= bio_sync(r10_bio
->master_bio
);
1603 rdev
= conf
->mirrors
[mirror
].rdev
;
1604 if (printk_ratelimit())
1605 printk(KERN_ERR
"raid10: %s: redirecting sector %llu to"
1606 " another mirror\n",
1607 bdevname(rdev
->bdev
,b
),
1608 (unsigned long long)r10_bio
->sector
);
1609 bio
= bio_clone(r10_bio
->master_bio
, GFP_NOIO
);
1610 r10_bio
->devs
[r10_bio
->read_slot
].bio
= bio
;
1611 bio
->bi_sector
= r10_bio
->devs
[r10_bio
->read_slot
].addr
1612 + rdev
->data_offset
;
1613 bio
->bi_bdev
= rdev
->bdev
;
1614 bio
->bi_rw
= READ
| do_sync
;
1615 bio
->bi_private
= r10_bio
;
1616 bio
->bi_end_io
= raid10_end_read_request
;
1618 generic_make_request(bio
);
1623 unplug_slaves(mddev
);
1627 static int init_resync(conf_t
*conf
)
1631 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
1632 BUG_ON(conf
->r10buf_pool
);
1633 conf
->r10buf_pool
= mempool_create(buffs
, r10buf_pool_alloc
, r10buf_pool_free
, conf
);
1634 if (!conf
->r10buf_pool
)
1636 conf
->next_resync
= 0;
1641 * perform a "sync" on one "block"
1643 * We need to make sure that no normal I/O request - particularly write
1644 * requests - conflict with active sync requests.
1646 * This is achieved by tracking pending requests and a 'barrier' concept
1647 * that can be installed to exclude normal IO requests.
1649 * Resync and recovery are handled very differently.
1650 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1652 * For resync, we iterate over virtual addresses, read all copies,
1653 * and update if there are differences. If only one copy is live,
1655 * For recovery, we iterate over physical addresses, read a good
1656 * value for each non-in_sync drive, and over-write.
1658 * So, for recovery we may have several outstanding complex requests for a
1659 * given address, one for each out-of-sync device. We model this by allocating
1660 * a number of r10_bio structures, one for each out-of-sync device.
1661 * As we setup these structures, we collect all bio's together into a list
1662 * which we then process collectively to add pages, and then process again
1663 * to pass to generic_make_request.
1665 * The r10_bio structures are linked using a borrowed master_bio pointer.
1666 * This link is counted in ->remaining. When the r10_bio that points to NULL
1667 * has its remaining count decremented to 0, the whole complex operation
1672 static sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
1674 conf_t
*conf
= mddev_to_conf(mddev
);
1676 struct bio
*biolist
= NULL
, *bio
;
1677 sector_t max_sector
, nr_sectors
;
1683 sector_t sectors_skipped
= 0;
1684 int chunks_skipped
= 0;
1686 if (!conf
->r10buf_pool
)
1687 if (init_resync(conf
))
1691 max_sector
= mddev
->size
<< 1;
1692 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
1693 max_sector
= mddev
->resync_max_sectors
;
1694 if (sector_nr
>= max_sector
) {
1695 /* If we aborted, we need to abort the
1696 * sync on the 'current' bitmap chucks (there can
1697 * be several when recovering multiple devices).
1698 * as we may have started syncing it but not finished.
1699 * We can find the current address in
1700 * mddev->curr_resync, but for recovery,
1701 * we need to convert that to several
1702 * virtual addresses.
1704 if (mddev
->curr_resync
< max_sector
) { /* aborted */
1705 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
1706 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
1708 else for (i
=0; i
<conf
->raid_disks
; i
++) {
1710 raid10_find_virt(conf
, mddev
->curr_resync
, i
);
1711 bitmap_end_sync(mddev
->bitmap
, sect
,
1714 } else /* completed sync */
1717 bitmap_close_sync(mddev
->bitmap
);
1720 return sectors_skipped
;
1722 if (chunks_skipped
>= conf
->raid_disks
) {
1723 /* if there has been nothing to do on any drive,
1724 * then there is nothing to do at all..
1727 return (max_sector
- sector_nr
) + sectors_skipped
;
1730 if (max_sector
> mddev
->resync_max
)
1731 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
1733 /* make sure whole request will fit in a chunk - if chunks
1736 if (conf
->near_copies
< conf
->raid_disks
&&
1737 max_sector
> (sector_nr
| conf
->chunk_mask
))
1738 max_sector
= (sector_nr
| conf
->chunk_mask
) + 1;
1740 * If there is non-resync activity waiting for us then
1741 * put in a delay to throttle resync.
1743 if (!go_faster
&& conf
->nr_waiting
)
1744 msleep_interruptible(1000);
1746 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
1748 /* Again, very different code for resync and recovery.
1749 * Both must result in an r10bio with a list of bios that
1750 * have bi_end_io, bi_sector, bi_bdev set,
1751 * and bi_private set to the r10bio.
1752 * For recovery, we may actually create several r10bios
1753 * with 2 bios in each, that correspond to the bios in the main one.
1754 * In this case, the subordinate r10bios link back through a
1755 * borrowed master_bio pointer, and the counter in the master
1756 * includes a ref from each subordinate.
1758 /* First, we decide what to do and set ->bi_end_io
1759 * To end_sync_read if we want to read, and
1760 * end_sync_write if we will want to write.
1763 max_sync
= RESYNC_PAGES
<< (PAGE_SHIFT
-9);
1764 if (!test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
1765 /* recovery... the complicated one */
1769 for (i
=0 ; i
<conf
->raid_disks
; i
++)
1770 if (conf
->mirrors
[i
].rdev
&&
1771 !test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
)) {
1772 int still_degraded
= 0;
1773 /* want to reconstruct this device */
1774 r10bio_t
*rb2
= r10_bio
;
1775 sector_t sect
= raid10_find_virt(conf
, sector_nr
, i
);
1777 /* Unless we are doing a full sync, we only need
1778 * to recover the block if it is set in the bitmap
1780 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
1782 if (sync_blocks
< max_sync
)
1783 max_sync
= sync_blocks
;
1786 /* yep, skip the sync_blocks here, but don't assume
1787 * that there will never be anything to do here
1789 chunks_skipped
= -1;
1793 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
1794 raise_barrier(conf
, rb2
!= NULL
);
1795 atomic_set(&r10_bio
->remaining
, 0);
1797 r10_bio
->master_bio
= (struct bio
*)rb2
;
1799 atomic_inc(&rb2
->remaining
);
1800 r10_bio
->mddev
= mddev
;
1801 set_bit(R10BIO_IsRecover
, &r10_bio
->state
);
1802 r10_bio
->sector
= sect
;
1804 raid10_find_phys(conf
, r10_bio
);
1805 /* Need to check if this section will still be
1808 for (j
=0; j
<conf
->copies
;j
++) {
1809 int d
= r10_bio
->devs
[j
].devnum
;
1810 if (conf
->mirrors
[d
].rdev
== NULL
||
1811 test_bit(Faulty
, &conf
->mirrors
[d
].rdev
->flags
)) {
1816 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
1817 &sync_blocks
, still_degraded
);
1819 for (j
=0; j
<conf
->copies
;j
++) {
1820 int d
= r10_bio
->devs
[j
].devnum
;
1821 if (conf
->mirrors
[d
].rdev
&&
1822 test_bit(In_sync
, &conf
->mirrors
[d
].rdev
->flags
)) {
1823 /* This is where we read from */
1824 bio
= r10_bio
->devs
[0].bio
;
1825 bio
->bi_next
= biolist
;
1827 bio
->bi_private
= r10_bio
;
1828 bio
->bi_end_io
= end_sync_read
;
1830 bio
->bi_sector
= r10_bio
->devs
[j
].addr
+
1831 conf
->mirrors
[d
].rdev
->data_offset
;
1832 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1833 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1834 atomic_inc(&r10_bio
->remaining
);
1835 /* and we write to 'i' */
1837 for (k
=0; k
<conf
->copies
; k
++)
1838 if (r10_bio
->devs
[k
].devnum
== i
)
1840 BUG_ON(k
== conf
->copies
);
1841 bio
= r10_bio
->devs
[1].bio
;
1842 bio
->bi_next
= biolist
;
1844 bio
->bi_private
= r10_bio
;
1845 bio
->bi_end_io
= end_sync_write
;
1847 bio
->bi_sector
= r10_bio
->devs
[k
].addr
+
1848 conf
->mirrors
[i
].rdev
->data_offset
;
1849 bio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1851 r10_bio
->devs
[0].devnum
= d
;
1852 r10_bio
->devs
[1].devnum
= i
;
1857 if (j
== conf
->copies
) {
1858 /* Cannot recover, so abort the recovery */
1861 atomic_dec(&rb2
->remaining
);
1863 if (!test_and_set_bit(MD_RECOVERY_INTR
,
1865 printk(KERN_INFO
"raid10: %s: insufficient working devices for recovery.\n",
1870 if (biolist
== NULL
) {
1872 r10bio_t
*rb2
= r10_bio
;
1873 r10_bio
= (r10bio_t
*) rb2
->master_bio
;
1874 rb2
->master_bio
= NULL
;
1880 /* resync. Schedule a read for every block at this virt offset */
1883 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
1884 &sync_blocks
, mddev
->degraded
) &&
1885 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
1886 /* We can skip this block */
1888 return sync_blocks
+ sectors_skipped
;
1890 if (sync_blocks
< max_sync
)
1891 max_sync
= sync_blocks
;
1892 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
1894 r10_bio
->mddev
= mddev
;
1895 atomic_set(&r10_bio
->remaining
, 0);
1896 raise_barrier(conf
, 0);
1897 conf
->next_resync
= sector_nr
;
1899 r10_bio
->master_bio
= NULL
;
1900 r10_bio
->sector
= sector_nr
;
1901 set_bit(R10BIO_IsSync
, &r10_bio
->state
);
1902 raid10_find_phys(conf
, r10_bio
);
1903 r10_bio
->sectors
= (sector_nr
| conf
->chunk_mask
) - sector_nr
+1;
1905 for (i
=0; i
<conf
->copies
; i
++) {
1906 int d
= r10_bio
->devs
[i
].devnum
;
1907 bio
= r10_bio
->devs
[i
].bio
;
1908 bio
->bi_end_io
= NULL
;
1909 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1910 if (conf
->mirrors
[d
].rdev
== NULL
||
1911 test_bit(Faulty
, &conf
->mirrors
[d
].rdev
->flags
))
1913 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1914 atomic_inc(&r10_bio
->remaining
);
1915 bio
->bi_next
= biolist
;
1917 bio
->bi_private
= r10_bio
;
1918 bio
->bi_end_io
= end_sync_read
;
1920 bio
->bi_sector
= r10_bio
->devs
[i
].addr
+
1921 conf
->mirrors
[d
].rdev
->data_offset
;
1922 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1927 for (i
=0; i
<conf
->copies
; i
++) {
1928 int d
= r10_bio
->devs
[i
].devnum
;
1929 if (r10_bio
->devs
[i
].bio
->bi_end_io
)
1930 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1938 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
1940 bio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1942 bio
->bi_flags
|= 1 << BIO_UPTODATE
;
1945 bio
->bi_phys_segments
= 0;
1946 bio
->bi_hw_segments
= 0;
1951 if (sector_nr
+ max_sync
< max_sector
)
1952 max_sector
= sector_nr
+ max_sync
;
1955 int len
= PAGE_SIZE
;
1957 if (sector_nr
+ (len
>>9) > max_sector
)
1958 len
= (max_sector
- sector_nr
) << 9;
1961 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
1962 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
1963 if (bio_add_page(bio
, page
, len
, 0) == 0) {
1966 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
1967 for (bio2
= biolist
; bio2
&& bio2
!= bio
; bio2
= bio2
->bi_next
) {
1968 /* remove last page from this bio */
1970 bio2
->bi_size
-= len
;
1971 bio2
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
1977 nr_sectors
+= len
>>9;
1978 sector_nr
+= len
>>9;
1979 } while (biolist
->bi_vcnt
< RESYNC_PAGES
);
1981 r10_bio
->sectors
= nr_sectors
;
1985 biolist
= biolist
->bi_next
;
1987 bio
->bi_next
= NULL
;
1988 r10_bio
= bio
->bi_private
;
1989 r10_bio
->sectors
= nr_sectors
;
1991 if (bio
->bi_end_io
== end_sync_read
) {
1992 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
1993 generic_make_request(bio
);
1997 if (sectors_skipped
)
1998 /* pretend they weren't skipped, it makes
1999 * no important difference in this case
2001 md_done_sync(mddev
, sectors_skipped
, 1);
2003 return sectors_skipped
+ nr_sectors
;
2005 /* There is nowhere to write, so all non-sync
2006 * drives must be failed, so try the next chunk...
2009 sector_t sec
= max_sector
- sector_nr
;
2010 sectors_skipped
+= sec
;
2012 sector_nr
= max_sector
;
2017 static int run(mddev_t
*mddev
)
2021 mirror_info_t
*disk
;
2023 struct list_head
*tmp
;
2025 sector_t stride
, size
;
2027 if (mddev
->chunk_size
== 0) {
2028 printk(KERN_ERR
"md/raid10: non-zero chunk size required.\n");
2032 nc
= mddev
->layout
& 255;
2033 fc
= (mddev
->layout
>> 8) & 255;
2034 fo
= mddev
->layout
& (1<<16);
2035 if ((nc
*fc
) <2 || (nc
*fc
) > mddev
->raid_disks
||
2036 (mddev
->layout
>> 17)) {
2037 printk(KERN_ERR
"raid10: %s: unsupported raid10 layout: 0x%8x\n",
2038 mdname(mddev
), mddev
->layout
);
2042 * copy the already verified devices into our private RAID10
2043 * bookkeeping area. [whatever we allocate in run(),
2044 * should be freed in stop()]
2046 conf
= kzalloc(sizeof(conf_t
), GFP_KERNEL
);
2047 mddev
->private = conf
;
2049 printk(KERN_ERR
"raid10: couldn't allocate memory for %s\n",
2053 conf
->mirrors
= kzalloc(sizeof(struct mirror_info
)*mddev
->raid_disks
,
2055 if (!conf
->mirrors
) {
2056 printk(KERN_ERR
"raid10: couldn't allocate memory for %s\n",
2061 conf
->tmppage
= alloc_page(GFP_KERNEL
);
2065 conf
->mddev
= mddev
;
2066 conf
->raid_disks
= mddev
->raid_disks
;
2067 conf
->near_copies
= nc
;
2068 conf
->far_copies
= fc
;
2069 conf
->copies
= nc
*fc
;
2070 conf
->far_offset
= fo
;
2071 conf
->chunk_mask
= (sector_t
)(mddev
->chunk_size
>>9)-1;
2072 conf
->chunk_shift
= ffz(~mddev
->chunk_size
) - 9;
2073 size
= mddev
->size
>> (conf
->chunk_shift
-1);
2074 sector_div(size
, fc
);
2075 size
= size
* conf
->raid_disks
;
2076 sector_div(size
, nc
);
2077 /* 'size' is now the number of chunks in the array */
2078 /* calculate "used chunks per device" in 'stride' */
2079 stride
= size
* conf
->copies
;
2081 /* We need to round up when dividing by raid_disks to
2082 * get the stride size.
2084 stride
+= conf
->raid_disks
- 1;
2085 sector_div(stride
, conf
->raid_disks
);
2086 mddev
->size
= stride
<< (conf
->chunk_shift
-1);
2091 sector_div(stride
, fc
);
2092 conf
->stride
= stride
<< conf
->chunk_shift
;
2094 conf
->r10bio_pool
= mempool_create(NR_RAID10_BIOS
, r10bio_pool_alloc
,
2095 r10bio_pool_free
, conf
);
2096 if (!conf
->r10bio_pool
) {
2097 printk(KERN_ERR
"raid10: couldn't allocate memory for %s\n",
2102 spin_lock_init(&conf
->device_lock
);
2103 mddev
->queue
->queue_lock
= &conf
->device_lock
;
2105 rdev_for_each(rdev
, tmp
, mddev
) {
2106 disk_idx
= rdev
->raid_disk
;
2107 if (disk_idx
>= mddev
->raid_disks
2110 disk
= conf
->mirrors
+ disk_idx
;
2114 blk_queue_stack_limits(mddev
->queue
,
2115 rdev
->bdev
->bd_disk
->queue
);
2116 /* as we don't honour merge_bvec_fn, we must never risk
2117 * violating it, so limit ->max_sector to one PAGE, as
2118 * a one page request is never in violation.
2120 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
&&
2121 mddev
->queue
->max_sectors
> (PAGE_SIZE
>>9))
2122 mddev
->queue
->max_sectors
= (PAGE_SIZE
>>9);
2124 disk
->head_position
= 0;
2126 INIT_LIST_HEAD(&conf
->retry_list
);
2128 spin_lock_init(&conf
->resync_lock
);
2129 init_waitqueue_head(&conf
->wait_barrier
);
2131 /* need to check that every block has at least one working mirror */
2132 if (!enough(conf
)) {
2133 printk(KERN_ERR
"raid10: not enough operational mirrors for %s\n",
2138 mddev
->degraded
= 0;
2139 for (i
= 0; i
< conf
->raid_disks
; i
++) {
2141 disk
= conf
->mirrors
+ i
;
2144 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
2145 disk
->head_position
= 0;
2153 mddev
->thread
= md_register_thread(raid10d
, mddev
, "%s_raid10");
2154 if (!mddev
->thread
) {
2156 "raid10: couldn't allocate thread for %s\n",
2162 "raid10: raid set %s active with %d out of %d devices\n",
2163 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
2166 * Ok, everything is just fine now
2168 mddev
->array_sectors
= size
<< conf
->chunk_shift
;
2169 mddev
->resync_max_sectors
= size
<< conf
->chunk_shift
;
2171 mddev
->queue
->unplug_fn
= raid10_unplug
;
2172 mddev
->queue
->backing_dev_info
.congested_fn
= raid10_congested
;
2173 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
2175 /* Calculate max read-ahead size.
2176 * We need to readahead at least twice a whole stripe....
2180 int stripe
= conf
->raid_disks
* (mddev
->chunk_size
/ PAGE_SIZE
);
2181 stripe
/= conf
->near_copies
;
2182 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2* stripe
)
2183 mddev
->queue
->backing_dev_info
.ra_pages
= 2* stripe
;
2186 if (conf
->near_copies
< mddev
->raid_disks
)
2187 blk_queue_merge_bvec(mddev
->queue
, raid10_mergeable_bvec
);
2191 if (conf
->r10bio_pool
)
2192 mempool_destroy(conf
->r10bio_pool
);
2193 safe_put_page(conf
->tmppage
);
2194 kfree(conf
->mirrors
);
2196 mddev
->private = NULL
;
2201 static int stop(mddev_t
*mddev
)
2203 conf_t
*conf
= mddev_to_conf(mddev
);
2205 md_unregister_thread(mddev
->thread
);
2206 mddev
->thread
= NULL
;
2207 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
2208 if (conf
->r10bio_pool
)
2209 mempool_destroy(conf
->r10bio_pool
);
2210 kfree(conf
->mirrors
);
2212 mddev
->private = NULL
;
2216 static void raid10_quiesce(mddev_t
*mddev
, int state
)
2218 conf_t
*conf
= mddev_to_conf(mddev
);
2222 raise_barrier(conf
, 0);
2225 lower_barrier(conf
);
2228 if (mddev
->thread
) {
2230 mddev
->thread
->timeout
= mddev
->bitmap
->daemon_sleep
* HZ
;
2232 mddev
->thread
->timeout
= MAX_SCHEDULE_TIMEOUT
;
2233 md_wakeup_thread(mddev
->thread
);
2237 static struct mdk_personality raid10_personality
=
2241 .owner
= THIS_MODULE
,
2242 .make_request
= make_request
,
2246 .error_handler
= error
,
2247 .hot_add_disk
= raid10_add_disk
,
2248 .hot_remove_disk
= raid10_remove_disk
,
2249 .spare_active
= raid10_spare_active
,
2250 .sync_request
= sync_request
,
2251 .quiesce
= raid10_quiesce
,
2254 static int __init
raid_init(void)
2256 return register_md_personality(&raid10_personality
);
2259 static void raid_exit(void)
2261 unregister_md_personality(&raid10_personality
);
2264 module_init(raid_init
);
2265 module_exit(raid_exit
);
2266 MODULE_LICENSE("GPL");
2267 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2268 MODULE_ALIAS("md-raid10");
2269 MODULE_ALIAS("md-level-10");