[PATCH] sched: TASK_NONINTERACTIVE
[linux-2.6/sactl.git] / kernel / sched.c
blob6da13bba3e23c18add93ec275e904106dfdda2af
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
50 #include <asm/tlb.h>
52 #include <asm/unistd.h>
55 * Convert user-nice values [ -20 ... 0 ... 19 ]
56 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57 * and back.
59 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
64 * 'User priority' is the nice value converted to something we
65 * can work with better when scaling various scheduler parameters,
66 * it's a [ 0 ... 39 ] range.
68 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
73 * Some helpers for converting nanosecond timing to jiffy resolution
75 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
79 * These are the 'tuning knobs' of the scheduler:
81 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83 * Timeslices get refilled after they expire.
85 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT 30
88 #define CHILD_PENALTY 95
89 #define PARENT_PENALTY 100
90 #define EXIT_WEIGHT 3
91 #define PRIO_BONUS_RATIO 25
92 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA 2
94 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
99 * If a task is 'interactive' then we reinsert it in the active
100 * array after it has expired its current timeslice. (it will not
101 * continue to run immediately, it will still roundrobin with
102 * other interactive tasks.)
104 * This part scales the interactivity limit depending on niceness.
106 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107 * Here are a few examples of different nice levels:
109 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
112 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
115 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116 * priority range a task can explore, a value of '1' means the
117 * task is rated interactive.)
119 * Ie. nice +19 tasks can never get 'interactive' enough to be
120 * reinserted into the active array. And only heavily CPU-hog nice -20
121 * tasks will be expired. Default nice 0 tasks are somewhere between,
122 * it takes some effort for them to get interactive, but it's not
123 * too hard.
126 #define CURRENT_BONUS(p) \
127 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128 MAX_SLEEP_AVG)
130 #define GRANULARITY (10 * HZ / 1000 ? : 1)
132 #ifdef CONFIG_SMP
133 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
134 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135 num_online_cpus())
136 #else
137 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
138 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139 #endif
141 #define SCALE(v1,v1_max,v2_max) \
142 (v1) * (v2_max) / (v1_max)
144 #define DELTA(p) \
145 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
147 #define TASK_INTERACTIVE(p) \
148 ((p)->prio <= (p)->static_prio - DELTA(p))
150 #define INTERACTIVE_SLEEP(p) \
151 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
154 #define TASK_PREEMPTS_CURR(p, rq) \
155 ((p)->prio < (rq)->curr->prio)
158 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159 * to time slice values: [800ms ... 100ms ... 5ms]
161 * The higher a thread's priority, the bigger timeslices
162 * it gets during one round of execution. But even the lowest
163 * priority thread gets MIN_TIMESLICE worth of execution time.
166 #define SCALE_PRIO(x, prio) \
167 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
169 static unsigned int task_timeslice(task_t *p)
171 if (p->static_prio < NICE_TO_PRIO(0))
172 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173 else
174 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
177 < (long long) (sd)->cache_hot_time)
180 * These are the runqueue data structures:
183 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
185 typedef struct runqueue runqueue_t;
187 struct prio_array {
188 unsigned int nr_active;
189 unsigned long bitmap[BITMAP_SIZE];
190 struct list_head queue[MAX_PRIO];
194 * This is the main, per-CPU runqueue data structure.
196 * Locking rule: those places that want to lock multiple runqueues
197 * (such as the load balancing or the thread migration code), lock
198 * acquire operations must be ordered by ascending &runqueue.
200 struct runqueue {
201 spinlock_t lock;
204 * nr_running and cpu_load should be in the same cacheline because
205 * remote CPUs use both these fields when doing load calculation.
207 unsigned long nr_running;
208 #ifdef CONFIG_SMP
209 unsigned long cpu_load[3];
210 #endif
211 unsigned long long nr_switches;
214 * This is part of a global counter where only the total sum
215 * over all CPUs matters. A task can increase this counter on
216 * one CPU and if it got migrated afterwards it may decrease
217 * it on another CPU. Always updated under the runqueue lock:
219 unsigned long nr_uninterruptible;
221 unsigned long expired_timestamp;
222 unsigned long long timestamp_last_tick;
223 task_t *curr, *idle;
224 struct mm_struct *prev_mm;
225 prio_array_t *active, *expired, arrays[2];
226 int best_expired_prio;
227 atomic_t nr_iowait;
229 #ifdef CONFIG_SMP
230 struct sched_domain *sd;
232 /* For active balancing */
233 int active_balance;
234 int push_cpu;
236 task_t *migration_thread;
237 struct list_head migration_queue;
238 #endif
240 #ifdef CONFIG_SCHEDSTATS
241 /* latency stats */
242 struct sched_info rq_sched_info;
244 /* sys_sched_yield() stats */
245 unsigned long yld_exp_empty;
246 unsigned long yld_act_empty;
247 unsigned long yld_both_empty;
248 unsigned long yld_cnt;
250 /* schedule() stats */
251 unsigned long sched_switch;
252 unsigned long sched_cnt;
253 unsigned long sched_goidle;
255 /* try_to_wake_up() stats */
256 unsigned long ttwu_cnt;
257 unsigned long ttwu_local;
258 #endif
261 static DEFINE_PER_CPU(struct runqueue, runqueues);
264 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
265 * See detach_destroy_domains: synchronize_sched for details.
267 * The domain tree of any CPU may only be accessed from within
268 * preempt-disabled sections.
270 #define for_each_domain(cpu, domain) \
271 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
273 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
274 #define this_rq() (&__get_cpu_var(runqueues))
275 #define task_rq(p) cpu_rq(task_cpu(p))
276 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
278 #ifndef prepare_arch_switch
279 # define prepare_arch_switch(next) do { } while (0)
280 #endif
281 #ifndef finish_arch_switch
282 # define finish_arch_switch(prev) do { } while (0)
283 #endif
285 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
286 static inline int task_running(runqueue_t *rq, task_t *p)
288 return rq->curr == p;
291 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
295 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
297 spin_unlock_irq(&rq->lock);
300 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
301 static inline int task_running(runqueue_t *rq, task_t *p)
303 #ifdef CONFIG_SMP
304 return p->oncpu;
305 #else
306 return rq->curr == p;
307 #endif
310 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
312 #ifdef CONFIG_SMP
314 * We can optimise this out completely for !SMP, because the
315 * SMP rebalancing from interrupt is the only thing that cares
316 * here.
318 next->oncpu = 1;
319 #endif
320 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
321 spin_unlock_irq(&rq->lock);
322 #else
323 spin_unlock(&rq->lock);
324 #endif
327 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
329 #ifdef CONFIG_SMP
331 * After ->oncpu is cleared, the task can be moved to a different CPU.
332 * We must ensure this doesn't happen until the switch is completely
333 * finished.
335 smp_wmb();
336 prev->oncpu = 0;
337 #endif
338 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
339 local_irq_enable();
340 #endif
342 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
345 * task_rq_lock - lock the runqueue a given task resides on and disable
346 * interrupts. Note the ordering: we can safely lookup the task_rq without
347 * explicitly disabling preemption.
349 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
350 __acquires(rq->lock)
352 struct runqueue *rq;
354 repeat_lock_task:
355 local_irq_save(*flags);
356 rq = task_rq(p);
357 spin_lock(&rq->lock);
358 if (unlikely(rq != task_rq(p))) {
359 spin_unlock_irqrestore(&rq->lock, *flags);
360 goto repeat_lock_task;
362 return rq;
365 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
366 __releases(rq->lock)
368 spin_unlock_irqrestore(&rq->lock, *flags);
371 #ifdef CONFIG_SCHEDSTATS
373 * bump this up when changing the output format or the meaning of an existing
374 * format, so that tools can adapt (or abort)
376 #define SCHEDSTAT_VERSION 12
378 static int show_schedstat(struct seq_file *seq, void *v)
380 int cpu;
382 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
383 seq_printf(seq, "timestamp %lu\n", jiffies);
384 for_each_online_cpu(cpu) {
385 runqueue_t *rq = cpu_rq(cpu);
386 #ifdef CONFIG_SMP
387 struct sched_domain *sd;
388 int dcnt = 0;
389 #endif
391 /* runqueue-specific stats */
392 seq_printf(seq,
393 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
394 cpu, rq->yld_both_empty,
395 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
396 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
397 rq->ttwu_cnt, rq->ttwu_local,
398 rq->rq_sched_info.cpu_time,
399 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
401 seq_printf(seq, "\n");
403 #ifdef CONFIG_SMP
404 /* domain-specific stats */
405 preempt_disable();
406 for_each_domain(cpu, sd) {
407 enum idle_type itype;
408 char mask_str[NR_CPUS];
410 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
411 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
412 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
413 itype++) {
414 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
415 sd->lb_cnt[itype],
416 sd->lb_balanced[itype],
417 sd->lb_failed[itype],
418 sd->lb_imbalance[itype],
419 sd->lb_gained[itype],
420 sd->lb_hot_gained[itype],
421 sd->lb_nobusyq[itype],
422 sd->lb_nobusyg[itype]);
424 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
425 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
426 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
427 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
428 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
430 preempt_enable();
431 #endif
433 return 0;
436 static int schedstat_open(struct inode *inode, struct file *file)
438 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
439 char *buf = kmalloc(size, GFP_KERNEL);
440 struct seq_file *m;
441 int res;
443 if (!buf)
444 return -ENOMEM;
445 res = single_open(file, show_schedstat, NULL);
446 if (!res) {
447 m = file->private_data;
448 m->buf = buf;
449 m->size = size;
450 } else
451 kfree(buf);
452 return res;
455 struct file_operations proc_schedstat_operations = {
456 .open = schedstat_open,
457 .read = seq_read,
458 .llseek = seq_lseek,
459 .release = single_release,
462 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
463 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
464 #else /* !CONFIG_SCHEDSTATS */
465 # define schedstat_inc(rq, field) do { } while (0)
466 # define schedstat_add(rq, field, amt) do { } while (0)
467 #endif
470 * rq_lock - lock a given runqueue and disable interrupts.
472 static inline runqueue_t *this_rq_lock(void)
473 __acquires(rq->lock)
475 runqueue_t *rq;
477 local_irq_disable();
478 rq = this_rq();
479 spin_lock(&rq->lock);
481 return rq;
484 #ifdef CONFIG_SCHEDSTATS
486 * Called when a process is dequeued from the active array and given
487 * the cpu. We should note that with the exception of interactive
488 * tasks, the expired queue will become the active queue after the active
489 * queue is empty, without explicitly dequeuing and requeuing tasks in the
490 * expired queue. (Interactive tasks may be requeued directly to the
491 * active queue, thus delaying tasks in the expired queue from running;
492 * see scheduler_tick()).
494 * This function is only called from sched_info_arrive(), rather than
495 * dequeue_task(). Even though a task may be queued and dequeued multiple
496 * times as it is shuffled about, we're really interested in knowing how
497 * long it was from the *first* time it was queued to the time that it
498 * finally hit a cpu.
500 static inline void sched_info_dequeued(task_t *t)
502 t->sched_info.last_queued = 0;
506 * Called when a task finally hits the cpu. We can now calculate how
507 * long it was waiting to run. We also note when it began so that we
508 * can keep stats on how long its timeslice is.
510 static inline void sched_info_arrive(task_t *t)
512 unsigned long now = jiffies, diff = 0;
513 struct runqueue *rq = task_rq(t);
515 if (t->sched_info.last_queued)
516 diff = now - t->sched_info.last_queued;
517 sched_info_dequeued(t);
518 t->sched_info.run_delay += diff;
519 t->sched_info.last_arrival = now;
520 t->sched_info.pcnt++;
522 if (!rq)
523 return;
525 rq->rq_sched_info.run_delay += diff;
526 rq->rq_sched_info.pcnt++;
530 * Called when a process is queued into either the active or expired
531 * array. The time is noted and later used to determine how long we
532 * had to wait for us to reach the cpu. Since the expired queue will
533 * become the active queue after active queue is empty, without dequeuing
534 * and requeuing any tasks, we are interested in queuing to either. It
535 * is unusual but not impossible for tasks to be dequeued and immediately
536 * requeued in the same or another array: this can happen in sched_yield(),
537 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
538 * to runqueue.
540 * This function is only called from enqueue_task(), but also only updates
541 * the timestamp if it is already not set. It's assumed that
542 * sched_info_dequeued() will clear that stamp when appropriate.
544 static inline void sched_info_queued(task_t *t)
546 if (!t->sched_info.last_queued)
547 t->sched_info.last_queued = jiffies;
551 * Called when a process ceases being the active-running process, either
552 * voluntarily or involuntarily. Now we can calculate how long we ran.
554 static inline void sched_info_depart(task_t *t)
556 struct runqueue *rq = task_rq(t);
557 unsigned long diff = jiffies - t->sched_info.last_arrival;
559 t->sched_info.cpu_time += diff;
561 if (rq)
562 rq->rq_sched_info.cpu_time += diff;
566 * Called when tasks are switched involuntarily due, typically, to expiring
567 * their time slice. (This may also be called when switching to or from
568 * the idle task.) We are only called when prev != next.
570 static inline void sched_info_switch(task_t *prev, task_t *next)
572 struct runqueue *rq = task_rq(prev);
575 * prev now departs the cpu. It's not interesting to record
576 * stats about how efficient we were at scheduling the idle
577 * process, however.
579 if (prev != rq->idle)
580 sched_info_depart(prev);
582 if (next != rq->idle)
583 sched_info_arrive(next);
585 #else
586 #define sched_info_queued(t) do { } while (0)
587 #define sched_info_switch(t, next) do { } while (0)
588 #endif /* CONFIG_SCHEDSTATS */
591 * Adding/removing a task to/from a priority array:
593 static void dequeue_task(struct task_struct *p, prio_array_t *array)
595 array->nr_active--;
596 list_del(&p->run_list);
597 if (list_empty(array->queue + p->prio))
598 __clear_bit(p->prio, array->bitmap);
601 static void enqueue_task(struct task_struct *p, prio_array_t *array)
603 sched_info_queued(p);
604 list_add_tail(&p->run_list, array->queue + p->prio);
605 __set_bit(p->prio, array->bitmap);
606 array->nr_active++;
607 p->array = array;
611 * Put task to the end of the run list without the overhead of dequeue
612 * followed by enqueue.
614 static void requeue_task(struct task_struct *p, prio_array_t *array)
616 list_move_tail(&p->run_list, array->queue + p->prio);
619 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
621 list_add(&p->run_list, array->queue + p->prio);
622 __set_bit(p->prio, array->bitmap);
623 array->nr_active++;
624 p->array = array;
628 * effective_prio - return the priority that is based on the static
629 * priority but is modified by bonuses/penalties.
631 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
632 * into the -5 ... 0 ... +5 bonus/penalty range.
634 * We use 25% of the full 0...39 priority range so that:
636 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
637 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
639 * Both properties are important to certain workloads.
641 static int effective_prio(task_t *p)
643 int bonus, prio;
645 if (rt_task(p))
646 return p->prio;
648 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
650 prio = p->static_prio - bonus;
651 if (prio < MAX_RT_PRIO)
652 prio = MAX_RT_PRIO;
653 if (prio > MAX_PRIO-1)
654 prio = MAX_PRIO-1;
655 return prio;
659 * __activate_task - move a task to the runqueue.
661 static inline void __activate_task(task_t *p, runqueue_t *rq)
663 enqueue_task(p, rq->active);
664 rq->nr_running++;
668 * __activate_idle_task - move idle task to the _front_ of runqueue.
670 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
672 enqueue_task_head(p, rq->active);
673 rq->nr_running++;
676 static int recalc_task_prio(task_t *p, unsigned long long now)
678 /* Caller must always ensure 'now >= p->timestamp' */
679 unsigned long long __sleep_time = now - p->timestamp;
680 unsigned long sleep_time;
682 if (__sleep_time > NS_MAX_SLEEP_AVG)
683 sleep_time = NS_MAX_SLEEP_AVG;
684 else
685 sleep_time = (unsigned long)__sleep_time;
687 if (likely(sleep_time > 0)) {
689 * User tasks that sleep a long time are categorised as
690 * idle and will get just interactive status to stay active &
691 * prevent them suddenly becoming cpu hogs and starving
692 * other processes.
694 if (p->mm && p->activated != -1 &&
695 sleep_time > INTERACTIVE_SLEEP(p)) {
696 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
697 DEF_TIMESLICE);
698 } else {
700 * The lower the sleep avg a task has the more
701 * rapidly it will rise with sleep time.
703 sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
706 * Tasks waking from uninterruptible sleep are
707 * limited in their sleep_avg rise as they
708 * are likely to be waiting on I/O
710 if (p->activated == -1 && p->mm) {
711 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
712 sleep_time = 0;
713 else if (p->sleep_avg + sleep_time >=
714 INTERACTIVE_SLEEP(p)) {
715 p->sleep_avg = INTERACTIVE_SLEEP(p);
716 sleep_time = 0;
721 * This code gives a bonus to interactive tasks.
723 * The boost works by updating the 'average sleep time'
724 * value here, based on ->timestamp. The more time a
725 * task spends sleeping, the higher the average gets -
726 * and the higher the priority boost gets as well.
728 p->sleep_avg += sleep_time;
730 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
731 p->sleep_avg = NS_MAX_SLEEP_AVG;
735 return effective_prio(p);
739 * activate_task - move a task to the runqueue and do priority recalculation
741 * Update all the scheduling statistics stuff. (sleep average
742 * calculation, priority modifiers, etc.)
744 static void activate_task(task_t *p, runqueue_t *rq, int local)
746 unsigned long long now;
748 now = sched_clock();
749 #ifdef CONFIG_SMP
750 if (!local) {
751 /* Compensate for drifting sched_clock */
752 runqueue_t *this_rq = this_rq();
753 now = (now - this_rq->timestamp_last_tick)
754 + rq->timestamp_last_tick;
756 #endif
758 p->prio = recalc_task_prio(p, now);
761 * This checks to make sure it's not an uninterruptible task
762 * that is now waking up.
764 if (!p->activated) {
766 * Tasks which were woken up by interrupts (ie. hw events)
767 * are most likely of interactive nature. So we give them
768 * the credit of extending their sleep time to the period
769 * of time they spend on the runqueue, waiting for execution
770 * on a CPU, first time around:
772 if (in_interrupt())
773 p->activated = 2;
774 else {
776 * Normal first-time wakeups get a credit too for
777 * on-runqueue time, but it will be weighted down:
779 p->activated = 1;
782 p->timestamp = now;
784 __activate_task(p, rq);
788 * deactivate_task - remove a task from the runqueue.
790 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
792 rq->nr_running--;
793 dequeue_task(p, p->array);
794 p->array = NULL;
798 * resched_task - mark a task 'to be rescheduled now'.
800 * On UP this means the setting of the need_resched flag, on SMP it
801 * might also involve a cross-CPU call to trigger the scheduler on
802 * the target CPU.
804 #ifdef CONFIG_SMP
805 static void resched_task(task_t *p)
807 int need_resched, nrpolling;
809 assert_spin_locked(&task_rq(p)->lock);
811 /* minimise the chance of sending an interrupt to poll_idle() */
812 nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
813 need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
814 nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
816 if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
817 smp_send_reschedule(task_cpu(p));
819 #else
820 static inline void resched_task(task_t *p)
822 set_tsk_need_resched(p);
824 #endif
827 * task_curr - is this task currently executing on a CPU?
828 * @p: the task in question.
830 inline int task_curr(const task_t *p)
832 return cpu_curr(task_cpu(p)) == p;
835 #ifdef CONFIG_SMP
836 typedef struct {
837 struct list_head list;
839 task_t *task;
840 int dest_cpu;
842 struct completion done;
843 } migration_req_t;
846 * The task's runqueue lock must be held.
847 * Returns true if you have to wait for migration thread.
849 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
851 runqueue_t *rq = task_rq(p);
854 * If the task is not on a runqueue (and not running), then
855 * it is sufficient to simply update the task's cpu field.
857 if (!p->array && !task_running(rq, p)) {
858 set_task_cpu(p, dest_cpu);
859 return 0;
862 init_completion(&req->done);
863 req->task = p;
864 req->dest_cpu = dest_cpu;
865 list_add(&req->list, &rq->migration_queue);
866 return 1;
870 * wait_task_inactive - wait for a thread to unschedule.
872 * The caller must ensure that the task *will* unschedule sometime soon,
873 * else this function might spin for a *long* time. This function can't
874 * be called with interrupts off, or it may introduce deadlock with
875 * smp_call_function() if an IPI is sent by the same process we are
876 * waiting to become inactive.
878 void wait_task_inactive(task_t *p)
880 unsigned long flags;
881 runqueue_t *rq;
882 int preempted;
884 repeat:
885 rq = task_rq_lock(p, &flags);
886 /* Must be off runqueue entirely, not preempted. */
887 if (unlikely(p->array || task_running(rq, p))) {
888 /* If it's preempted, we yield. It could be a while. */
889 preempted = !task_running(rq, p);
890 task_rq_unlock(rq, &flags);
891 cpu_relax();
892 if (preempted)
893 yield();
894 goto repeat;
896 task_rq_unlock(rq, &flags);
899 /***
900 * kick_process - kick a running thread to enter/exit the kernel
901 * @p: the to-be-kicked thread
903 * Cause a process which is running on another CPU to enter
904 * kernel-mode, without any delay. (to get signals handled.)
906 * NOTE: this function doesnt have to take the runqueue lock,
907 * because all it wants to ensure is that the remote task enters
908 * the kernel. If the IPI races and the task has been migrated
909 * to another CPU then no harm is done and the purpose has been
910 * achieved as well.
912 void kick_process(task_t *p)
914 int cpu;
916 preempt_disable();
917 cpu = task_cpu(p);
918 if ((cpu != smp_processor_id()) && task_curr(p))
919 smp_send_reschedule(cpu);
920 preempt_enable();
924 * Return a low guess at the load of a migration-source cpu.
926 * We want to under-estimate the load of migration sources, to
927 * balance conservatively.
929 static inline unsigned long source_load(int cpu, int type)
931 runqueue_t *rq = cpu_rq(cpu);
932 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
933 if (type == 0)
934 return load_now;
936 return min(rq->cpu_load[type-1], load_now);
940 * Return a high guess at the load of a migration-target cpu
942 static inline unsigned long target_load(int cpu, int type)
944 runqueue_t *rq = cpu_rq(cpu);
945 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
946 if (type == 0)
947 return load_now;
949 return max(rq->cpu_load[type-1], load_now);
953 * find_idlest_group finds and returns the least busy CPU group within the
954 * domain.
956 static struct sched_group *
957 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
959 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
960 unsigned long min_load = ULONG_MAX, this_load = 0;
961 int load_idx = sd->forkexec_idx;
962 int imbalance = 100 + (sd->imbalance_pct-100)/2;
964 do {
965 unsigned long load, avg_load;
966 int local_group;
967 int i;
969 /* Skip over this group if it has no CPUs allowed */
970 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
971 goto nextgroup;
973 local_group = cpu_isset(this_cpu, group->cpumask);
975 /* Tally up the load of all CPUs in the group */
976 avg_load = 0;
978 for_each_cpu_mask(i, group->cpumask) {
979 /* Bias balancing toward cpus of our domain */
980 if (local_group)
981 load = source_load(i, load_idx);
982 else
983 load = target_load(i, load_idx);
985 avg_load += load;
988 /* Adjust by relative CPU power of the group */
989 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
991 if (local_group) {
992 this_load = avg_load;
993 this = group;
994 } else if (avg_load < min_load) {
995 min_load = avg_load;
996 idlest = group;
998 nextgroup:
999 group = group->next;
1000 } while (group != sd->groups);
1002 if (!idlest || 100*this_load < imbalance*min_load)
1003 return NULL;
1004 return idlest;
1008 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1010 static int
1011 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1013 cpumask_t tmp;
1014 unsigned long load, min_load = ULONG_MAX;
1015 int idlest = -1;
1016 int i;
1018 /* Traverse only the allowed CPUs */
1019 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1021 for_each_cpu_mask(i, tmp) {
1022 load = source_load(i, 0);
1024 if (load < min_load || (load == min_load && i == this_cpu)) {
1025 min_load = load;
1026 idlest = i;
1030 return idlest;
1034 * sched_balance_self: balance the current task (running on cpu) in domains
1035 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1036 * SD_BALANCE_EXEC.
1038 * Balance, ie. select the least loaded group.
1040 * Returns the target CPU number, or the same CPU if no balancing is needed.
1042 * preempt must be disabled.
1044 static int sched_balance_self(int cpu, int flag)
1046 struct task_struct *t = current;
1047 struct sched_domain *tmp, *sd = NULL;
1049 for_each_domain(cpu, tmp)
1050 if (tmp->flags & flag)
1051 sd = tmp;
1053 while (sd) {
1054 cpumask_t span;
1055 struct sched_group *group;
1056 int new_cpu;
1057 int weight;
1059 span = sd->span;
1060 group = find_idlest_group(sd, t, cpu);
1061 if (!group)
1062 goto nextlevel;
1064 new_cpu = find_idlest_cpu(group, t, cpu);
1065 if (new_cpu == -1 || new_cpu == cpu)
1066 goto nextlevel;
1068 /* Now try balancing at a lower domain level */
1069 cpu = new_cpu;
1070 nextlevel:
1071 sd = NULL;
1072 weight = cpus_weight(span);
1073 for_each_domain(cpu, tmp) {
1074 if (weight <= cpus_weight(tmp->span))
1075 break;
1076 if (tmp->flags & flag)
1077 sd = tmp;
1079 /* while loop will break here if sd == NULL */
1082 return cpu;
1085 #endif /* CONFIG_SMP */
1088 * wake_idle() will wake a task on an idle cpu if task->cpu is
1089 * not idle and an idle cpu is available. The span of cpus to
1090 * search starts with cpus closest then further out as needed,
1091 * so we always favor a closer, idle cpu.
1093 * Returns the CPU we should wake onto.
1095 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1096 static int wake_idle(int cpu, task_t *p)
1098 cpumask_t tmp;
1099 struct sched_domain *sd;
1100 int i;
1102 if (idle_cpu(cpu))
1103 return cpu;
1105 for_each_domain(cpu, sd) {
1106 if (sd->flags & SD_WAKE_IDLE) {
1107 cpus_and(tmp, sd->span, p->cpus_allowed);
1108 for_each_cpu_mask(i, tmp) {
1109 if (idle_cpu(i))
1110 return i;
1113 else
1114 break;
1116 return cpu;
1118 #else
1119 static inline int wake_idle(int cpu, task_t *p)
1121 return cpu;
1123 #endif
1125 /***
1126 * try_to_wake_up - wake up a thread
1127 * @p: the to-be-woken-up thread
1128 * @state: the mask of task states that can be woken
1129 * @sync: do a synchronous wakeup?
1131 * Put it on the run-queue if it's not already there. The "current"
1132 * thread is always on the run-queue (except when the actual
1133 * re-schedule is in progress), and as such you're allowed to do
1134 * the simpler "current->state = TASK_RUNNING" to mark yourself
1135 * runnable without the overhead of this.
1137 * returns failure only if the task is already active.
1139 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1141 int cpu, this_cpu, success = 0;
1142 unsigned long flags;
1143 long old_state;
1144 runqueue_t *rq;
1145 #ifdef CONFIG_SMP
1146 unsigned long load, this_load;
1147 struct sched_domain *sd, *this_sd = NULL;
1148 int new_cpu;
1149 #endif
1151 rq = task_rq_lock(p, &flags);
1152 old_state = p->state;
1153 if (!(old_state & state))
1154 goto out;
1156 if (p->array)
1157 goto out_running;
1159 cpu = task_cpu(p);
1160 this_cpu = smp_processor_id();
1162 #ifdef CONFIG_SMP
1163 if (unlikely(task_running(rq, p)))
1164 goto out_activate;
1166 new_cpu = cpu;
1168 schedstat_inc(rq, ttwu_cnt);
1169 if (cpu == this_cpu) {
1170 schedstat_inc(rq, ttwu_local);
1171 goto out_set_cpu;
1174 for_each_domain(this_cpu, sd) {
1175 if (cpu_isset(cpu, sd->span)) {
1176 schedstat_inc(sd, ttwu_wake_remote);
1177 this_sd = sd;
1178 break;
1182 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1183 goto out_set_cpu;
1186 * Check for affine wakeup and passive balancing possibilities.
1188 if (this_sd) {
1189 int idx = this_sd->wake_idx;
1190 unsigned int imbalance;
1192 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1194 load = source_load(cpu, idx);
1195 this_load = target_load(this_cpu, idx);
1197 new_cpu = this_cpu; /* Wake to this CPU if we can */
1199 if (this_sd->flags & SD_WAKE_AFFINE) {
1200 unsigned long tl = this_load;
1202 * If sync wakeup then subtract the (maximum possible)
1203 * effect of the currently running task from the load
1204 * of the current CPU:
1206 if (sync)
1207 tl -= SCHED_LOAD_SCALE;
1209 if ((tl <= load &&
1210 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1211 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1213 * This domain has SD_WAKE_AFFINE and
1214 * p is cache cold in this domain, and
1215 * there is no bad imbalance.
1217 schedstat_inc(this_sd, ttwu_move_affine);
1218 goto out_set_cpu;
1223 * Start passive balancing when half the imbalance_pct
1224 * limit is reached.
1226 if (this_sd->flags & SD_WAKE_BALANCE) {
1227 if (imbalance*this_load <= 100*load) {
1228 schedstat_inc(this_sd, ttwu_move_balance);
1229 goto out_set_cpu;
1234 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1235 out_set_cpu:
1236 new_cpu = wake_idle(new_cpu, p);
1237 if (new_cpu != cpu) {
1238 set_task_cpu(p, new_cpu);
1239 task_rq_unlock(rq, &flags);
1240 /* might preempt at this point */
1241 rq = task_rq_lock(p, &flags);
1242 old_state = p->state;
1243 if (!(old_state & state))
1244 goto out;
1245 if (p->array)
1246 goto out_running;
1248 this_cpu = smp_processor_id();
1249 cpu = task_cpu(p);
1252 out_activate:
1253 #endif /* CONFIG_SMP */
1254 if (old_state == TASK_UNINTERRUPTIBLE) {
1255 rq->nr_uninterruptible--;
1257 * Tasks on involuntary sleep don't earn
1258 * sleep_avg beyond just interactive state.
1260 p->activated = -1;
1264 * Tasks that have marked their sleep as noninteractive get
1265 * woken up without updating their sleep average. (i.e. their
1266 * sleep is handled in a priority-neutral manner, no priority
1267 * boost and no penalty.)
1269 if (old_state & TASK_NONINTERACTIVE)
1270 __activate_task(p, rq);
1271 else
1272 activate_task(p, rq, cpu == this_cpu);
1274 * Sync wakeups (i.e. those types of wakeups where the waker
1275 * has indicated that it will leave the CPU in short order)
1276 * don't trigger a preemption, if the woken up task will run on
1277 * this cpu. (in this case the 'I will reschedule' promise of
1278 * the waker guarantees that the freshly woken up task is going
1279 * to be considered on this CPU.)
1281 if (!sync || cpu != this_cpu) {
1282 if (TASK_PREEMPTS_CURR(p, rq))
1283 resched_task(rq->curr);
1285 success = 1;
1287 out_running:
1288 p->state = TASK_RUNNING;
1289 out:
1290 task_rq_unlock(rq, &flags);
1292 return success;
1295 int fastcall wake_up_process(task_t *p)
1297 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1298 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1301 EXPORT_SYMBOL(wake_up_process);
1303 int fastcall wake_up_state(task_t *p, unsigned int state)
1305 return try_to_wake_up(p, state, 0);
1309 * Perform scheduler related setup for a newly forked process p.
1310 * p is forked by current.
1312 void fastcall sched_fork(task_t *p, int clone_flags)
1314 int cpu = get_cpu();
1316 #ifdef CONFIG_SMP
1317 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1318 #endif
1319 set_task_cpu(p, cpu);
1322 * We mark the process as running here, but have not actually
1323 * inserted it onto the runqueue yet. This guarantees that
1324 * nobody will actually run it, and a signal or other external
1325 * event cannot wake it up and insert it on the runqueue either.
1327 p->state = TASK_RUNNING;
1328 INIT_LIST_HEAD(&p->run_list);
1329 p->array = NULL;
1330 #ifdef CONFIG_SCHEDSTATS
1331 memset(&p->sched_info, 0, sizeof(p->sched_info));
1332 #endif
1333 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1334 p->oncpu = 0;
1335 #endif
1336 #ifdef CONFIG_PREEMPT
1337 /* Want to start with kernel preemption disabled. */
1338 p->thread_info->preempt_count = 1;
1339 #endif
1341 * Share the timeslice between parent and child, thus the
1342 * total amount of pending timeslices in the system doesn't change,
1343 * resulting in more scheduling fairness.
1345 local_irq_disable();
1346 p->time_slice = (current->time_slice + 1) >> 1;
1348 * The remainder of the first timeslice might be recovered by
1349 * the parent if the child exits early enough.
1351 p->first_time_slice = 1;
1352 current->time_slice >>= 1;
1353 p->timestamp = sched_clock();
1354 if (unlikely(!current->time_slice)) {
1356 * This case is rare, it happens when the parent has only
1357 * a single jiffy left from its timeslice. Taking the
1358 * runqueue lock is not a problem.
1360 current->time_slice = 1;
1361 scheduler_tick();
1363 local_irq_enable();
1364 put_cpu();
1368 * wake_up_new_task - wake up a newly created task for the first time.
1370 * This function will do some initial scheduler statistics housekeeping
1371 * that must be done for every newly created context, then puts the task
1372 * on the runqueue and wakes it.
1374 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1376 unsigned long flags;
1377 int this_cpu, cpu;
1378 runqueue_t *rq, *this_rq;
1380 rq = task_rq_lock(p, &flags);
1381 BUG_ON(p->state != TASK_RUNNING);
1382 this_cpu = smp_processor_id();
1383 cpu = task_cpu(p);
1386 * We decrease the sleep average of forking parents
1387 * and children as well, to keep max-interactive tasks
1388 * from forking tasks that are max-interactive. The parent
1389 * (current) is done further down, under its lock.
1391 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1392 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1394 p->prio = effective_prio(p);
1396 if (likely(cpu == this_cpu)) {
1397 if (!(clone_flags & CLONE_VM)) {
1399 * The VM isn't cloned, so we're in a good position to
1400 * do child-runs-first in anticipation of an exec. This
1401 * usually avoids a lot of COW overhead.
1403 if (unlikely(!current->array))
1404 __activate_task(p, rq);
1405 else {
1406 p->prio = current->prio;
1407 list_add_tail(&p->run_list, &current->run_list);
1408 p->array = current->array;
1409 p->array->nr_active++;
1410 rq->nr_running++;
1412 set_need_resched();
1413 } else
1414 /* Run child last */
1415 __activate_task(p, rq);
1417 * We skip the following code due to cpu == this_cpu
1419 * task_rq_unlock(rq, &flags);
1420 * this_rq = task_rq_lock(current, &flags);
1422 this_rq = rq;
1423 } else {
1424 this_rq = cpu_rq(this_cpu);
1427 * Not the local CPU - must adjust timestamp. This should
1428 * get optimised away in the !CONFIG_SMP case.
1430 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1431 + rq->timestamp_last_tick;
1432 __activate_task(p, rq);
1433 if (TASK_PREEMPTS_CURR(p, rq))
1434 resched_task(rq->curr);
1437 * Parent and child are on different CPUs, now get the
1438 * parent runqueue to update the parent's ->sleep_avg:
1440 task_rq_unlock(rq, &flags);
1441 this_rq = task_rq_lock(current, &flags);
1443 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1444 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1445 task_rq_unlock(this_rq, &flags);
1449 * Potentially available exiting-child timeslices are
1450 * retrieved here - this way the parent does not get
1451 * penalized for creating too many threads.
1453 * (this cannot be used to 'generate' timeslices
1454 * artificially, because any timeslice recovered here
1455 * was given away by the parent in the first place.)
1457 void fastcall sched_exit(task_t *p)
1459 unsigned long flags;
1460 runqueue_t *rq;
1463 * If the child was a (relative-) CPU hog then decrease
1464 * the sleep_avg of the parent as well.
1466 rq = task_rq_lock(p->parent, &flags);
1467 if (p->first_time_slice) {
1468 p->parent->time_slice += p->time_slice;
1469 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1470 p->parent->time_slice = task_timeslice(p);
1472 if (p->sleep_avg < p->parent->sleep_avg)
1473 p->parent->sleep_avg = p->parent->sleep_avg /
1474 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1475 (EXIT_WEIGHT + 1);
1476 task_rq_unlock(rq, &flags);
1480 * prepare_task_switch - prepare to switch tasks
1481 * @rq: the runqueue preparing to switch
1482 * @next: the task we are going to switch to.
1484 * This is called with the rq lock held and interrupts off. It must
1485 * be paired with a subsequent finish_task_switch after the context
1486 * switch.
1488 * prepare_task_switch sets up locking and calls architecture specific
1489 * hooks.
1491 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1493 prepare_lock_switch(rq, next);
1494 prepare_arch_switch(next);
1498 * finish_task_switch - clean up after a task-switch
1499 * @rq: runqueue associated with task-switch
1500 * @prev: the thread we just switched away from.
1502 * finish_task_switch must be called after the context switch, paired
1503 * with a prepare_task_switch call before the context switch.
1504 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1505 * and do any other architecture-specific cleanup actions.
1507 * Note that we may have delayed dropping an mm in context_switch(). If
1508 * so, we finish that here outside of the runqueue lock. (Doing it
1509 * with the lock held can cause deadlocks; see schedule() for
1510 * details.)
1512 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1513 __releases(rq->lock)
1515 struct mm_struct *mm = rq->prev_mm;
1516 unsigned long prev_task_flags;
1518 rq->prev_mm = NULL;
1521 * A task struct has one reference for the use as "current".
1522 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1523 * calls schedule one last time. The schedule call will never return,
1524 * and the scheduled task must drop that reference.
1525 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1526 * still held, otherwise prev could be scheduled on another cpu, die
1527 * there before we look at prev->state, and then the reference would
1528 * be dropped twice.
1529 * Manfred Spraul <manfred@colorfullife.com>
1531 prev_task_flags = prev->flags;
1532 #ifdef CONFIG_DEBUG_SPINLOCK
1533 /* this is a valid case when another task releases the spinlock */
1534 rq->lock.owner = current;
1535 #endif
1536 finish_arch_switch(prev);
1537 finish_lock_switch(rq, prev);
1538 if (mm)
1539 mmdrop(mm);
1540 if (unlikely(prev_task_flags & PF_DEAD))
1541 put_task_struct(prev);
1545 * schedule_tail - first thing a freshly forked thread must call.
1546 * @prev: the thread we just switched away from.
1548 asmlinkage void schedule_tail(task_t *prev)
1549 __releases(rq->lock)
1551 runqueue_t *rq = this_rq();
1552 finish_task_switch(rq, prev);
1553 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1554 /* In this case, finish_task_switch does not reenable preemption */
1555 preempt_enable();
1556 #endif
1557 if (current->set_child_tid)
1558 put_user(current->pid, current->set_child_tid);
1562 * context_switch - switch to the new MM and the new
1563 * thread's register state.
1565 static inline
1566 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1568 struct mm_struct *mm = next->mm;
1569 struct mm_struct *oldmm = prev->active_mm;
1571 if (unlikely(!mm)) {
1572 next->active_mm = oldmm;
1573 atomic_inc(&oldmm->mm_count);
1574 enter_lazy_tlb(oldmm, next);
1575 } else
1576 switch_mm(oldmm, mm, next);
1578 if (unlikely(!prev->mm)) {
1579 prev->active_mm = NULL;
1580 WARN_ON(rq->prev_mm);
1581 rq->prev_mm = oldmm;
1584 /* Here we just switch the register state and the stack. */
1585 switch_to(prev, next, prev);
1587 return prev;
1591 * nr_running, nr_uninterruptible and nr_context_switches:
1593 * externally visible scheduler statistics: current number of runnable
1594 * threads, current number of uninterruptible-sleeping threads, total
1595 * number of context switches performed since bootup.
1597 unsigned long nr_running(void)
1599 unsigned long i, sum = 0;
1601 for_each_online_cpu(i)
1602 sum += cpu_rq(i)->nr_running;
1604 return sum;
1607 unsigned long nr_uninterruptible(void)
1609 unsigned long i, sum = 0;
1611 for_each_cpu(i)
1612 sum += cpu_rq(i)->nr_uninterruptible;
1615 * Since we read the counters lockless, it might be slightly
1616 * inaccurate. Do not allow it to go below zero though:
1618 if (unlikely((long)sum < 0))
1619 sum = 0;
1621 return sum;
1624 unsigned long long nr_context_switches(void)
1626 unsigned long long i, sum = 0;
1628 for_each_cpu(i)
1629 sum += cpu_rq(i)->nr_switches;
1631 return sum;
1634 unsigned long nr_iowait(void)
1636 unsigned long i, sum = 0;
1638 for_each_cpu(i)
1639 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1641 return sum;
1644 #ifdef CONFIG_SMP
1647 * double_rq_lock - safely lock two runqueues
1649 * Note this does not disable interrupts like task_rq_lock,
1650 * you need to do so manually before calling.
1652 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1653 __acquires(rq1->lock)
1654 __acquires(rq2->lock)
1656 if (rq1 == rq2) {
1657 spin_lock(&rq1->lock);
1658 __acquire(rq2->lock); /* Fake it out ;) */
1659 } else {
1660 if (rq1 < rq2) {
1661 spin_lock(&rq1->lock);
1662 spin_lock(&rq2->lock);
1663 } else {
1664 spin_lock(&rq2->lock);
1665 spin_lock(&rq1->lock);
1671 * double_rq_unlock - safely unlock two runqueues
1673 * Note this does not restore interrupts like task_rq_unlock,
1674 * you need to do so manually after calling.
1676 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1677 __releases(rq1->lock)
1678 __releases(rq2->lock)
1680 spin_unlock(&rq1->lock);
1681 if (rq1 != rq2)
1682 spin_unlock(&rq2->lock);
1683 else
1684 __release(rq2->lock);
1688 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1690 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1691 __releases(this_rq->lock)
1692 __acquires(busiest->lock)
1693 __acquires(this_rq->lock)
1695 if (unlikely(!spin_trylock(&busiest->lock))) {
1696 if (busiest < this_rq) {
1697 spin_unlock(&this_rq->lock);
1698 spin_lock(&busiest->lock);
1699 spin_lock(&this_rq->lock);
1700 } else
1701 spin_lock(&busiest->lock);
1706 * If dest_cpu is allowed for this process, migrate the task to it.
1707 * This is accomplished by forcing the cpu_allowed mask to only
1708 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1709 * the cpu_allowed mask is restored.
1711 static void sched_migrate_task(task_t *p, int dest_cpu)
1713 migration_req_t req;
1714 runqueue_t *rq;
1715 unsigned long flags;
1717 rq = task_rq_lock(p, &flags);
1718 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1719 || unlikely(cpu_is_offline(dest_cpu)))
1720 goto out;
1722 /* force the process onto the specified CPU */
1723 if (migrate_task(p, dest_cpu, &req)) {
1724 /* Need to wait for migration thread (might exit: take ref). */
1725 struct task_struct *mt = rq->migration_thread;
1726 get_task_struct(mt);
1727 task_rq_unlock(rq, &flags);
1728 wake_up_process(mt);
1729 put_task_struct(mt);
1730 wait_for_completion(&req.done);
1731 return;
1733 out:
1734 task_rq_unlock(rq, &flags);
1738 * sched_exec - execve() is a valuable balancing opportunity, because at
1739 * this point the task has the smallest effective memory and cache footprint.
1741 void sched_exec(void)
1743 int new_cpu, this_cpu = get_cpu();
1744 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1745 put_cpu();
1746 if (new_cpu != this_cpu)
1747 sched_migrate_task(current, new_cpu);
1751 * pull_task - move a task from a remote runqueue to the local runqueue.
1752 * Both runqueues must be locked.
1754 static inline
1755 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1756 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1758 dequeue_task(p, src_array);
1759 src_rq->nr_running--;
1760 set_task_cpu(p, this_cpu);
1761 this_rq->nr_running++;
1762 enqueue_task(p, this_array);
1763 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1764 + this_rq->timestamp_last_tick;
1766 * Note that idle threads have a prio of MAX_PRIO, for this test
1767 * to be always true for them.
1769 if (TASK_PREEMPTS_CURR(p, this_rq))
1770 resched_task(this_rq->curr);
1774 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1776 static inline
1777 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1778 struct sched_domain *sd, enum idle_type idle,
1779 int *all_pinned)
1782 * We do not migrate tasks that are:
1783 * 1) running (obviously), or
1784 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1785 * 3) are cache-hot on their current CPU.
1787 if (!cpu_isset(this_cpu, p->cpus_allowed))
1788 return 0;
1789 *all_pinned = 0;
1791 if (task_running(rq, p))
1792 return 0;
1795 * Aggressive migration if:
1796 * 1) task is cache cold, or
1797 * 2) too many balance attempts have failed.
1800 if (sd->nr_balance_failed > sd->cache_nice_tries)
1801 return 1;
1803 if (task_hot(p, rq->timestamp_last_tick, sd))
1804 return 0;
1805 return 1;
1809 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1810 * as part of a balancing operation within "domain". Returns the number of
1811 * tasks moved.
1813 * Called with both runqueues locked.
1815 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1816 unsigned long max_nr_move, struct sched_domain *sd,
1817 enum idle_type idle, int *all_pinned)
1819 prio_array_t *array, *dst_array;
1820 struct list_head *head, *curr;
1821 int idx, pulled = 0, pinned = 0;
1822 task_t *tmp;
1824 if (max_nr_move == 0)
1825 goto out;
1827 pinned = 1;
1830 * We first consider expired tasks. Those will likely not be
1831 * executed in the near future, and they are most likely to
1832 * be cache-cold, thus switching CPUs has the least effect
1833 * on them.
1835 if (busiest->expired->nr_active) {
1836 array = busiest->expired;
1837 dst_array = this_rq->expired;
1838 } else {
1839 array = busiest->active;
1840 dst_array = this_rq->active;
1843 new_array:
1844 /* Start searching at priority 0: */
1845 idx = 0;
1846 skip_bitmap:
1847 if (!idx)
1848 idx = sched_find_first_bit(array->bitmap);
1849 else
1850 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1851 if (idx >= MAX_PRIO) {
1852 if (array == busiest->expired && busiest->active->nr_active) {
1853 array = busiest->active;
1854 dst_array = this_rq->active;
1855 goto new_array;
1857 goto out;
1860 head = array->queue + idx;
1861 curr = head->prev;
1862 skip_queue:
1863 tmp = list_entry(curr, task_t, run_list);
1865 curr = curr->prev;
1867 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1868 if (curr != head)
1869 goto skip_queue;
1870 idx++;
1871 goto skip_bitmap;
1874 #ifdef CONFIG_SCHEDSTATS
1875 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1876 schedstat_inc(sd, lb_hot_gained[idle]);
1877 #endif
1879 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1880 pulled++;
1882 /* We only want to steal up to the prescribed number of tasks. */
1883 if (pulled < max_nr_move) {
1884 if (curr != head)
1885 goto skip_queue;
1886 idx++;
1887 goto skip_bitmap;
1889 out:
1891 * Right now, this is the only place pull_task() is called,
1892 * so we can safely collect pull_task() stats here rather than
1893 * inside pull_task().
1895 schedstat_add(sd, lb_gained[idle], pulled);
1897 if (all_pinned)
1898 *all_pinned = pinned;
1899 return pulled;
1903 * find_busiest_group finds and returns the busiest CPU group within the
1904 * domain. It calculates and returns the number of tasks which should be
1905 * moved to restore balance via the imbalance parameter.
1907 static struct sched_group *
1908 find_busiest_group(struct sched_domain *sd, int this_cpu,
1909 unsigned long *imbalance, enum idle_type idle)
1911 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1912 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1913 int load_idx;
1915 max_load = this_load = total_load = total_pwr = 0;
1916 if (idle == NOT_IDLE)
1917 load_idx = sd->busy_idx;
1918 else if (idle == NEWLY_IDLE)
1919 load_idx = sd->newidle_idx;
1920 else
1921 load_idx = sd->idle_idx;
1923 do {
1924 unsigned long load;
1925 int local_group;
1926 int i;
1928 local_group = cpu_isset(this_cpu, group->cpumask);
1930 /* Tally up the load of all CPUs in the group */
1931 avg_load = 0;
1933 for_each_cpu_mask(i, group->cpumask) {
1934 /* Bias balancing toward cpus of our domain */
1935 if (local_group)
1936 load = target_load(i, load_idx);
1937 else
1938 load = source_load(i, load_idx);
1940 avg_load += load;
1943 total_load += avg_load;
1944 total_pwr += group->cpu_power;
1946 /* Adjust by relative CPU power of the group */
1947 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1949 if (local_group) {
1950 this_load = avg_load;
1951 this = group;
1952 } else if (avg_load > max_load) {
1953 max_load = avg_load;
1954 busiest = group;
1956 group = group->next;
1957 } while (group != sd->groups);
1959 if (!busiest || this_load >= max_load)
1960 goto out_balanced;
1962 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1964 if (this_load >= avg_load ||
1965 100*max_load <= sd->imbalance_pct*this_load)
1966 goto out_balanced;
1969 * We're trying to get all the cpus to the average_load, so we don't
1970 * want to push ourselves above the average load, nor do we wish to
1971 * reduce the max loaded cpu below the average load, as either of these
1972 * actions would just result in more rebalancing later, and ping-pong
1973 * tasks around. Thus we look for the minimum possible imbalance.
1974 * Negative imbalances (*we* are more loaded than anyone else) will
1975 * be counted as no imbalance for these purposes -- we can't fix that
1976 * by pulling tasks to us. Be careful of negative numbers as they'll
1977 * appear as very large values with unsigned longs.
1979 /* How much load to actually move to equalise the imbalance */
1980 *imbalance = min((max_load - avg_load) * busiest->cpu_power,
1981 (avg_load - this_load) * this->cpu_power)
1982 / SCHED_LOAD_SCALE;
1984 if (*imbalance < SCHED_LOAD_SCALE) {
1985 unsigned long pwr_now = 0, pwr_move = 0;
1986 unsigned long tmp;
1988 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
1989 *imbalance = 1;
1990 return busiest;
1994 * OK, we don't have enough imbalance to justify moving tasks,
1995 * however we may be able to increase total CPU power used by
1996 * moving them.
1999 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2000 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2001 pwr_now /= SCHED_LOAD_SCALE;
2003 /* Amount of load we'd subtract */
2004 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2005 if (max_load > tmp)
2006 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2007 max_load - tmp);
2009 /* Amount of load we'd add */
2010 if (max_load*busiest->cpu_power <
2011 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2012 tmp = max_load*busiest->cpu_power/this->cpu_power;
2013 else
2014 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2015 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2016 pwr_move /= SCHED_LOAD_SCALE;
2018 /* Move if we gain throughput */
2019 if (pwr_move <= pwr_now)
2020 goto out_balanced;
2022 *imbalance = 1;
2023 return busiest;
2026 /* Get rid of the scaling factor, rounding down as we divide */
2027 *imbalance = *imbalance / SCHED_LOAD_SCALE;
2028 return busiest;
2030 out_balanced:
2032 *imbalance = 0;
2033 return NULL;
2037 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2039 static runqueue_t *find_busiest_queue(struct sched_group *group)
2041 unsigned long load, max_load = 0;
2042 runqueue_t *busiest = NULL;
2043 int i;
2045 for_each_cpu_mask(i, group->cpumask) {
2046 load = source_load(i, 0);
2048 if (load > max_load) {
2049 max_load = load;
2050 busiest = cpu_rq(i);
2054 return busiest;
2058 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2059 * so long as it is large enough.
2061 #define MAX_PINNED_INTERVAL 512
2064 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2065 * tasks if there is an imbalance.
2067 * Called with this_rq unlocked.
2069 static int load_balance(int this_cpu, runqueue_t *this_rq,
2070 struct sched_domain *sd, enum idle_type idle)
2072 struct sched_group *group;
2073 runqueue_t *busiest;
2074 unsigned long imbalance;
2075 int nr_moved, all_pinned = 0;
2076 int active_balance = 0;
2078 spin_lock(&this_rq->lock);
2079 schedstat_inc(sd, lb_cnt[idle]);
2081 group = find_busiest_group(sd, this_cpu, &imbalance, idle);
2082 if (!group) {
2083 schedstat_inc(sd, lb_nobusyg[idle]);
2084 goto out_balanced;
2087 busiest = find_busiest_queue(group);
2088 if (!busiest) {
2089 schedstat_inc(sd, lb_nobusyq[idle]);
2090 goto out_balanced;
2093 BUG_ON(busiest == this_rq);
2095 schedstat_add(sd, lb_imbalance[idle], imbalance);
2097 nr_moved = 0;
2098 if (busiest->nr_running > 1) {
2100 * Attempt to move tasks. If find_busiest_group has found
2101 * an imbalance but busiest->nr_running <= 1, the group is
2102 * still unbalanced. nr_moved simply stays zero, so it is
2103 * correctly treated as an imbalance.
2105 double_lock_balance(this_rq, busiest);
2106 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2107 imbalance, sd, idle,
2108 &all_pinned);
2109 spin_unlock(&busiest->lock);
2111 /* All tasks on this runqueue were pinned by CPU affinity */
2112 if (unlikely(all_pinned))
2113 goto out_balanced;
2116 spin_unlock(&this_rq->lock);
2118 if (!nr_moved) {
2119 schedstat_inc(sd, lb_failed[idle]);
2120 sd->nr_balance_failed++;
2122 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2124 spin_lock(&busiest->lock);
2125 if (!busiest->active_balance) {
2126 busiest->active_balance = 1;
2127 busiest->push_cpu = this_cpu;
2128 active_balance = 1;
2130 spin_unlock(&busiest->lock);
2131 if (active_balance)
2132 wake_up_process(busiest->migration_thread);
2135 * We've kicked active balancing, reset the failure
2136 * counter.
2138 sd->nr_balance_failed = sd->cache_nice_tries+1;
2140 } else
2141 sd->nr_balance_failed = 0;
2143 if (likely(!active_balance)) {
2144 /* We were unbalanced, so reset the balancing interval */
2145 sd->balance_interval = sd->min_interval;
2146 } else {
2148 * If we've begun active balancing, start to back off. This
2149 * case may not be covered by the all_pinned logic if there
2150 * is only 1 task on the busy runqueue (because we don't call
2151 * move_tasks).
2153 if (sd->balance_interval < sd->max_interval)
2154 sd->balance_interval *= 2;
2157 return nr_moved;
2159 out_balanced:
2160 spin_unlock(&this_rq->lock);
2162 schedstat_inc(sd, lb_balanced[idle]);
2164 sd->nr_balance_failed = 0;
2165 /* tune up the balancing interval */
2166 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2167 (sd->balance_interval < sd->max_interval))
2168 sd->balance_interval *= 2;
2170 return 0;
2174 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2175 * tasks if there is an imbalance.
2177 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2178 * this_rq is locked.
2180 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2181 struct sched_domain *sd)
2183 struct sched_group *group;
2184 runqueue_t *busiest = NULL;
2185 unsigned long imbalance;
2186 int nr_moved = 0;
2188 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2189 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE);
2190 if (!group) {
2191 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2192 goto out_balanced;
2195 busiest = find_busiest_queue(group);
2196 if (!busiest) {
2197 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2198 goto out_balanced;
2201 BUG_ON(busiest == this_rq);
2203 /* Attempt to move tasks */
2204 double_lock_balance(this_rq, busiest);
2206 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2207 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2208 imbalance, sd, NEWLY_IDLE, NULL);
2209 if (!nr_moved)
2210 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2211 else
2212 sd->nr_balance_failed = 0;
2214 spin_unlock(&busiest->lock);
2215 return nr_moved;
2217 out_balanced:
2218 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2219 sd->nr_balance_failed = 0;
2220 return 0;
2224 * idle_balance is called by schedule() if this_cpu is about to become
2225 * idle. Attempts to pull tasks from other CPUs.
2227 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2229 struct sched_domain *sd;
2231 for_each_domain(this_cpu, sd) {
2232 if (sd->flags & SD_BALANCE_NEWIDLE) {
2233 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2234 /* We've pulled tasks over so stop searching */
2235 break;
2242 * active_load_balance is run by migration threads. It pushes running tasks
2243 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2244 * running on each physical CPU where possible, and avoids physical /
2245 * logical imbalances.
2247 * Called with busiest_rq locked.
2249 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2251 struct sched_domain *sd;
2252 runqueue_t *target_rq;
2253 int target_cpu = busiest_rq->push_cpu;
2255 if (busiest_rq->nr_running <= 1)
2256 /* no task to move */
2257 return;
2259 target_rq = cpu_rq(target_cpu);
2262 * This condition is "impossible", if it occurs
2263 * we need to fix it. Originally reported by
2264 * Bjorn Helgaas on a 128-cpu setup.
2266 BUG_ON(busiest_rq == target_rq);
2268 /* move a task from busiest_rq to target_rq */
2269 double_lock_balance(busiest_rq, target_rq);
2271 /* Search for an sd spanning us and the target CPU. */
2272 for_each_domain(target_cpu, sd)
2273 if ((sd->flags & SD_LOAD_BALANCE) &&
2274 cpu_isset(busiest_cpu, sd->span))
2275 break;
2277 if (unlikely(sd == NULL))
2278 goto out;
2280 schedstat_inc(sd, alb_cnt);
2282 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2283 schedstat_inc(sd, alb_pushed);
2284 else
2285 schedstat_inc(sd, alb_failed);
2286 out:
2287 spin_unlock(&target_rq->lock);
2291 * rebalance_tick will get called every timer tick, on every CPU.
2293 * It checks each scheduling domain to see if it is due to be balanced,
2294 * and initiates a balancing operation if so.
2296 * Balancing parameters are set up in arch_init_sched_domains.
2299 /* Don't have all balancing operations going off at once */
2300 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2302 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2303 enum idle_type idle)
2305 unsigned long old_load, this_load;
2306 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2307 struct sched_domain *sd;
2308 int i;
2310 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2311 /* Update our load */
2312 for (i = 0; i < 3; i++) {
2313 unsigned long new_load = this_load;
2314 int scale = 1 << i;
2315 old_load = this_rq->cpu_load[i];
2317 * Round up the averaging division if load is increasing. This
2318 * prevents us from getting stuck on 9 if the load is 10, for
2319 * example.
2321 if (new_load > old_load)
2322 new_load += scale-1;
2323 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2326 for_each_domain(this_cpu, sd) {
2327 unsigned long interval;
2329 if (!(sd->flags & SD_LOAD_BALANCE))
2330 continue;
2332 interval = sd->balance_interval;
2333 if (idle != SCHED_IDLE)
2334 interval *= sd->busy_factor;
2336 /* scale ms to jiffies */
2337 interval = msecs_to_jiffies(interval);
2338 if (unlikely(!interval))
2339 interval = 1;
2341 if (j - sd->last_balance >= interval) {
2342 if (load_balance(this_cpu, this_rq, sd, idle)) {
2343 /* We've pulled tasks over so no longer idle */
2344 idle = NOT_IDLE;
2346 sd->last_balance += interval;
2350 #else
2352 * on UP we do not need to balance between CPUs:
2354 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2357 static inline void idle_balance(int cpu, runqueue_t *rq)
2360 #endif
2362 static inline int wake_priority_sleeper(runqueue_t *rq)
2364 int ret = 0;
2365 #ifdef CONFIG_SCHED_SMT
2366 spin_lock(&rq->lock);
2368 * If an SMT sibling task has been put to sleep for priority
2369 * reasons reschedule the idle task to see if it can now run.
2371 if (rq->nr_running) {
2372 resched_task(rq->idle);
2373 ret = 1;
2375 spin_unlock(&rq->lock);
2376 #endif
2377 return ret;
2380 DEFINE_PER_CPU(struct kernel_stat, kstat);
2382 EXPORT_PER_CPU_SYMBOL(kstat);
2385 * This is called on clock ticks and on context switches.
2386 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2388 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2389 unsigned long long now)
2391 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2392 p->sched_time += now - last;
2396 * Return current->sched_time plus any more ns on the sched_clock
2397 * that have not yet been banked.
2399 unsigned long long current_sched_time(const task_t *tsk)
2401 unsigned long long ns;
2402 unsigned long flags;
2403 local_irq_save(flags);
2404 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2405 ns = tsk->sched_time + (sched_clock() - ns);
2406 local_irq_restore(flags);
2407 return ns;
2411 * We place interactive tasks back into the active array, if possible.
2413 * To guarantee that this does not starve expired tasks we ignore the
2414 * interactivity of a task if the first expired task had to wait more
2415 * than a 'reasonable' amount of time. This deadline timeout is
2416 * load-dependent, as the frequency of array switched decreases with
2417 * increasing number of running tasks. We also ignore the interactivity
2418 * if a better static_prio task has expired:
2420 #define EXPIRED_STARVING(rq) \
2421 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2422 (jiffies - (rq)->expired_timestamp >= \
2423 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2424 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2427 * Account user cpu time to a process.
2428 * @p: the process that the cpu time gets accounted to
2429 * @hardirq_offset: the offset to subtract from hardirq_count()
2430 * @cputime: the cpu time spent in user space since the last update
2432 void account_user_time(struct task_struct *p, cputime_t cputime)
2434 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2435 cputime64_t tmp;
2437 p->utime = cputime_add(p->utime, cputime);
2439 /* Add user time to cpustat. */
2440 tmp = cputime_to_cputime64(cputime);
2441 if (TASK_NICE(p) > 0)
2442 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2443 else
2444 cpustat->user = cputime64_add(cpustat->user, tmp);
2448 * Account system cpu time to a process.
2449 * @p: the process that the cpu time gets accounted to
2450 * @hardirq_offset: the offset to subtract from hardirq_count()
2451 * @cputime: the cpu time spent in kernel space since the last update
2453 void account_system_time(struct task_struct *p, int hardirq_offset,
2454 cputime_t cputime)
2456 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2457 runqueue_t *rq = this_rq();
2458 cputime64_t tmp;
2460 p->stime = cputime_add(p->stime, cputime);
2462 /* Add system time to cpustat. */
2463 tmp = cputime_to_cputime64(cputime);
2464 if (hardirq_count() - hardirq_offset)
2465 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2466 else if (softirq_count())
2467 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2468 else if (p != rq->idle)
2469 cpustat->system = cputime64_add(cpustat->system, tmp);
2470 else if (atomic_read(&rq->nr_iowait) > 0)
2471 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2472 else
2473 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2474 /* Account for system time used */
2475 acct_update_integrals(p);
2476 /* Update rss highwater mark */
2477 update_mem_hiwater(p);
2481 * Account for involuntary wait time.
2482 * @p: the process from which the cpu time has been stolen
2483 * @steal: the cpu time spent in involuntary wait
2485 void account_steal_time(struct task_struct *p, cputime_t steal)
2487 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2488 cputime64_t tmp = cputime_to_cputime64(steal);
2489 runqueue_t *rq = this_rq();
2491 if (p == rq->idle) {
2492 p->stime = cputime_add(p->stime, steal);
2493 if (atomic_read(&rq->nr_iowait) > 0)
2494 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2495 else
2496 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2497 } else
2498 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2502 * This function gets called by the timer code, with HZ frequency.
2503 * We call it with interrupts disabled.
2505 * It also gets called by the fork code, when changing the parent's
2506 * timeslices.
2508 void scheduler_tick(void)
2510 int cpu = smp_processor_id();
2511 runqueue_t *rq = this_rq();
2512 task_t *p = current;
2513 unsigned long long now = sched_clock();
2515 update_cpu_clock(p, rq, now);
2517 rq->timestamp_last_tick = now;
2519 if (p == rq->idle) {
2520 if (wake_priority_sleeper(rq))
2521 goto out;
2522 rebalance_tick(cpu, rq, SCHED_IDLE);
2523 return;
2526 /* Task might have expired already, but not scheduled off yet */
2527 if (p->array != rq->active) {
2528 set_tsk_need_resched(p);
2529 goto out;
2531 spin_lock(&rq->lock);
2533 * The task was running during this tick - update the
2534 * time slice counter. Note: we do not update a thread's
2535 * priority until it either goes to sleep or uses up its
2536 * timeslice. This makes it possible for interactive tasks
2537 * to use up their timeslices at their highest priority levels.
2539 if (rt_task(p)) {
2541 * RR tasks need a special form of timeslice management.
2542 * FIFO tasks have no timeslices.
2544 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2545 p->time_slice = task_timeslice(p);
2546 p->first_time_slice = 0;
2547 set_tsk_need_resched(p);
2549 /* put it at the end of the queue: */
2550 requeue_task(p, rq->active);
2552 goto out_unlock;
2554 if (!--p->time_slice) {
2555 dequeue_task(p, rq->active);
2556 set_tsk_need_resched(p);
2557 p->prio = effective_prio(p);
2558 p->time_slice = task_timeslice(p);
2559 p->first_time_slice = 0;
2561 if (!rq->expired_timestamp)
2562 rq->expired_timestamp = jiffies;
2563 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2564 enqueue_task(p, rq->expired);
2565 if (p->static_prio < rq->best_expired_prio)
2566 rq->best_expired_prio = p->static_prio;
2567 } else
2568 enqueue_task(p, rq->active);
2569 } else {
2571 * Prevent a too long timeslice allowing a task to monopolize
2572 * the CPU. We do this by splitting up the timeslice into
2573 * smaller pieces.
2575 * Note: this does not mean the task's timeslices expire or
2576 * get lost in any way, they just might be preempted by
2577 * another task of equal priority. (one with higher
2578 * priority would have preempted this task already.) We
2579 * requeue this task to the end of the list on this priority
2580 * level, which is in essence a round-robin of tasks with
2581 * equal priority.
2583 * This only applies to tasks in the interactive
2584 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2586 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2587 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2588 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2589 (p->array == rq->active)) {
2591 requeue_task(p, rq->active);
2592 set_tsk_need_resched(p);
2595 out_unlock:
2596 spin_unlock(&rq->lock);
2597 out:
2598 rebalance_tick(cpu, rq, NOT_IDLE);
2601 #ifdef CONFIG_SCHED_SMT
2602 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2604 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2605 if (rq->curr == rq->idle && rq->nr_running)
2606 resched_task(rq->idle);
2609 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2611 struct sched_domain *tmp, *sd = NULL;
2612 cpumask_t sibling_map;
2613 int i;
2615 for_each_domain(this_cpu, tmp)
2616 if (tmp->flags & SD_SHARE_CPUPOWER)
2617 sd = tmp;
2619 if (!sd)
2620 return;
2623 * Unlock the current runqueue because we have to lock in
2624 * CPU order to avoid deadlocks. Caller knows that we might
2625 * unlock. We keep IRQs disabled.
2627 spin_unlock(&this_rq->lock);
2629 sibling_map = sd->span;
2631 for_each_cpu_mask(i, sibling_map)
2632 spin_lock(&cpu_rq(i)->lock);
2634 * We clear this CPU from the mask. This both simplifies the
2635 * inner loop and keps this_rq locked when we exit:
2637 cpu_clear(this_cpu, sibling_map);
2639 for_each_cpu_mask(i, sibling_map) {
2640 runqueue_t *smt_rq = cpu_rq(i);
2642 wakeup_busy_runqueue(smt_rq);
2645 for_each_cpu_mask(i, sibling_map)
2646 spin_unlock(&cpu_rq(i)->lock);
2648 * We exit with this_cpu's rq still held and IRQs
2649 * still disabled:
2653 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2655 struct sched_domain *tmp, *sd = NULL;
2656 cpumask_t sibling_map;
2657 prio_array_t *array;
2658 int ret = 0, i;
2659 task_t *p;
2661 for_each_domain(this_cpu, tmp)
2662 if (tmp->flags & SD_SHARE_CPUPOWER)
2663 sd = tmp;
2665 if (!sd)
2666 return 0;
2669 * The same locking rules and details apply as for
2670 * wake_sleeping_dependent():
2672 spin_unlock(&this_rq->lock);
2673 sibling_map = sd->span;
2674 for_each_cpu_mask(i, sibling_map)
2675 spin_lock(&cpu_rq(i)->lock);
2676 cpu_clear(this_cpu, sibling_map);
2679 * Establish next task to be run - it might have gone away because
2680 * we released the runqueue lock above:
2682 if (!this_rq->nr_running)
2683 goto out_unlock;
2684 array = this_rq->active;
2685 if (!array->nr_active)
2686 array = this_rq->expired;
2687 BUG_ON(!array->nr_active);
2689 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2690 task_t, run_list);
2692 for_each_cpu_mask(i, sibling_map) {
2693 runqueue_t *smt_rq = cpu_rq(i);
2694 task_t *smt_curr = smt_rq->curr;
2696 /* Kernel threads do not participate in dependent sleeping */
2697 if (!p->mm || !smt_curr->mm || rt_task(p))
2698 goto check_smt_task;
2701 * If a user task with lower static priority than the
2702 * running task on the SMT sibling is trying to schedule,
2703 * delay it till there is proportionately less timeslice
2704 * left of the sibling task to prevent a lower priority
2705 * task from using an unfair proportion of the
2706 * physical cpu's resources. -ck
2708 if (rt_task(smt_curr)) {
2710 * With real time tasks we run non-rt tasks only
2711 * per_cpu_gain% of the time.
2713 if ((jiffies % DEF_TIMESLICE) >
2714 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2715 ret = 1;
2716 } else
2717 if (((smt_curr->time_slice * (100 - sd->per_cpu_gain) /
2718 100) > task_timeslice(p)))
2719 ret = 1;
2721 check_smt_task:
2722 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2723 rt_task(smt_curr))
2724 continue;
2725 if (!p->mm) {
2726 wakeup_busy_runqueue(smt_rq);
2727 continue;
2731 * Reschedule a lower priority task on the SMT sibling for
2732 * it to be put to sleep, or wake it up if it has been put to
2733 * sleep for priority reasons to see if it should run now.
2735 if (rt_task(p)) {
2736 if ((jiffies % DEF_TIMESLICE) >
2737 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2738 resched_task(smt_curr);
2739 } else {
2740 if ((p->time_slice * (100 - sd->per_cpu_gain) / 100) >
2741 task_timeslice(smt_curr))
2742 resched_task(smt_curr);
2743 else
2744 wakeup_busy_runqueue(smt_rq);
2747 out_unlock:
2748 for_each_cpu_mask(i, sibling_map)
2749 spin_unlock(&cpu_rq(i)->lock);
2750 return ret;
2752 #else
2753 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2757 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2759 return 0;
2761 #endif
2763 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2765 void fastcall add_preempt_count(int val)
2768 * Underflow?
2770 BUG_ON((preempt_count() < 0));
2771 preempt_count() += val;
2773 * Spinlock count overflowing soon?
2775 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2777 EXPORT_SYMBOL(add_preempt_count);
2779 void fastcall sub_preempt_count(int val)
2782 * Underflow?
2784 BUG_ON(val > preempt_count());
2786 * Is the spinlock portion underflowing?
2788 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2789 preempt_count() -= val;
2791 EXPORT_SYMBOL(sub_preempt_count);
2793 #endif
2796 * schedule() is the main scheduler function.
2798 asmlinkage void __sched schedule(void)
2800 long *switch_count;
2801 task_t *prev, *next;
2802 runqueue_t *rq;
2803 prio_array_t *array;
2804 struct list_head *queue;
2805 unsigned long long now;
2806 unsigned long run_time;
2807 int cpu, idx, new_prio;
2810 * Test if we are atomic. Since do_exit() needs to call into
2811 * schedule() atomically, we ignore that path for now.
2812 * Otherwise, whine if we are scheduling when we should not be.
2814 if (likely(!current->exit_state)) {
2815 if (unlikely(in_atomic())) {
2816 printk(KERN_ERR "scheduling while atomic: "
2817 "%s/0x%08x/%d\n",
2818 current->comm, preempt_count(), current->pid);
2819 dump_stack();
2822 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2824 need_resched:
2825 preempt_disable();
2826 prev = current;
2827 release_kernel_lock(prev);
2828 need_resched_nonpreemptible:
2829 rq = this_rq();
2832 * The idle thread is not allowed to schedule!
2833 * Remove this check after it has been exercised a bit.
2835 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2836 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2837 dump_stack();
2840 schedstat_inc(rq, sched_cnt);
2841 now = sched_clock();
2842 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2843 run_time = now - prev->timestamp;
2844 if (unlikely((long long)(now - prev->timestamp) < 0))
2845 run_time = 0;
2846 } else
2847 run_time = NS_MAX_SLEEP_AVG;
2850 * Tasks charged proportionately less run_time at high sleep_avg to
2851 * delay them losing their interactive status
2853 run_time /= (CURRENT_BONUS(prev) ? : 1);
2855 spin_lock_irq(&rq->lock);
2857 if (unlikely(prev->flags & PF_DEAD))
2858 prev->state = EXIT_DEAD;
2860 switch_count = &prev->nivcsw;
2861 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2862 switch_count = &prev->nvcsw;
2863 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2864 unlikely(signal_pending(prev))))
2865 prev->state = TASK_RUNNING;
2866 else {
2867 if (prev->state == TASK_UNINTERRUPTIBLE)
2868 rq->nr_uninterruptible++;
2869 deactivate_task(prev, rq);
2873 cpu = smp_processor_id();
2874 if (unlikely(!rq->nr_running)) {
2875 go_idle:
2876 idle_balance(cpu, rq);
2877 if (!rq->nr_running) {
2878 next = rq->idle;
2879 rq->expired_timestamp = 0;
2880 wake_sleeping_dependent(cpu, rq);
2882 * wake_sleeping_dependent() might have released
2883 * the runqueue, so break out if we got new
2884 * tasks meanwhile:
2886 if (!rq->nr_running)
2887 goto switch_tasks;
2889 } else {
2890 if (dependent_sleeper(cpu, rq)) {
2891 next = rq->idle;
2892 goto switch_tasks;
2895 * dependent_sleeper() releases and reacquires the runqueue
2896 * lock, hence go into the idle loop if the rq went
2897 * empty meanwhile:
2899 if (unlikely(!rq->nr_running))
2900 goto go_idle;
2903 array = rq->active;
2904 if (unlikely(!array->nr_active)) {
2906 * Switch the active and expired arrays.
2908 schedstat_inc(rq, sched_switch);
2909 rq->active = rq->expired;
2910 rq->expired = array;
2911 array = rq->active;
2912 rq->expired_timestamp = 0;
2913 rq->best_expired_prio = MAX_PRIO;
2916 idx = sched_find_first_bit(array->bitmap);
2917 queue = array->queue + idx;
2918 next = list_entry(queue->next, task_t, run_list);
2920 if (!rt_task(next) && next->activated > 0) {
2921 unsigned long long delta = now - next->timestamp;
2922 if (unlikely((long long)(now - next->timestamp) < 0))
2923 delta = 0;
2925 if (next->activated == 1)
2926 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2928 array = next->array;
2929 new_prio = recalc_task_prio(next, next->timestamp + delta);
2931 if (unlikely(next->prio != new_prio)) {
2932 dequeue_task(next, array);
2933 next->prio = new_prio;
2934 enqueue_task(next, array);
2935 } else
2936 requeue_task(next, array);
2938 next->activated = 0;
2939 switch_tasks:
2940 if (next == rq->idle)
2941 schedstat_inc(rq, sched_goidle);
2942 prefetch(next);
2943 prefetch_stack(next);
2944 clear_tsk_need_resched(prev);
2945 rcu_qsctr_inc(task_cpu(prev));
2947 update_cpu_clock(prev, rq, now);
2949 prev->sleep_avg -= run_time;
2950 if ((long)prev->sleep_avg <= 0)
2951 prev->sleep_avg = 0;
2952 prev->timestamp = prev->last_ran = now;
2954 sched_info_switch(prev, next);
2955 if (likely(prev != next)) {
2956 next->timestamp = now;
2957 rq->nr_switches++;
2958 rq->curr = next;
2959 ++*switch_count;
2961 prepare_task_switch(rq, next);
2962 prev = context_switch(rq, prev, next);
2963 barrier();
2965 * this_rq must be evaluated again because prev may have moved
2966 * CPUs since it called schedule(), thus the 'rq' on its stack
2967 * frame will be invalid.
2969 finish_task_switch(this_rq(), prev);
2970 } else
2971 spin_unlock_irq(&rq->lock);
2973 prev = current;
2974 if (unlikely(reacquire_kernel_lock(prev) < 0))
2975 goto need_resched_nonpreemptible;
2976 preempt_enable_no_resched();
2977 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2978 goto need_resched;
2981 EXPORT_SYMBOL(schedule);
2983 #ifdef CONFIG_PREEMPT
2985 * this is is the entry point to schedule() from in-kernel preemption
2986 * off of preempt_enable. Kernel preemptions off return from interrupt
2987 * occur there and call schedule directly.
2989 asmlinkage void __sched preempt_schedule(void)
2991 struct thread_info *ti = current_thread_info();
2992 #ifdef CONFIG_PREEMPT_BKL
2993 struct task_struct *task = current;
2994 int saved_lock_depth;
2995 #endif
2997 * If there is a non-zero preempt_count or interrupts are disabled,
2998 * we do not want to preempt the current task. Just return..
3000 if (unlikely(ti->preempt_count || irqs_disabled()))
3001 return;
3003 need_resched:
3004 add_preempt_count(PREEMPT_ACTIVE);
3006 * We keep the big kernel semaphore locked, but we
3007 * clear ->lock_depth so that schedule() doesnt
3008 * auto-release the semaphore:
3010 #ifdef CONFIG_PREEMPT_BKL
3011 saved_lock_depth = task->lock_depth;
3012 task->lock_depth = -1;
3013 #endif
3014 schedule();
3015 #ifdef CONFIG_PREEMPT_BKL
3016 task->lock_depth = saved_lock_depth;
3017 #endif
3018 sub_preempt_count(PREEMPT_ACTIVE);
3020 /* we could miss a preemption opportunity between schedule and now */
3021 barrier();
3022 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3023 goto need_resched;
3026 EXPORT_SYMBOL(preempt_schedule);
3029 * this is is the entry point to schedule() from kernel preemption
3030 * off of irq context.
3031 * Note, that this is called and return with irqs disabled. This will
3032 * protect us against recursive calling from irq.
3034 asmlinkage void __sched preempt_schedule_irq(void)
3036 struct thread_info *ti = current_thread_info();
3037 #ifdef CONFIG_PREEMPT_BKL
3038 struct task_struct *task = current;
3039 int saved_lock_depth;
3040 #endif
3041 /* Catch callers which need to be fixed*/
3042 BUG_ON(ti->preempt_count || !irqs_disabled());
3044 need_resched:
3045 add_preempt_count(PREEMPT_ACTIVE);
3047 * We keep the big kernel semaphore locked, but we
3048 * clear ->lock_depth so that schedule() doesnt
3049 * auto-release the semaphore:
3051 #ifdef CONFIG_PREEMPT_BKL
3052 saved_lock_depth = task->lock_depth;
3053 task->lock_depth = -1;
3054 #endif
3055 local_irq_enable();
3056 schedule();
3057 local_irq_disable();
3058 #ifdef CONFIG_PREEMPT_BKL
3059 task->lock_depth = saved_lock_depth;
3060 #endif
3061 sub_preempt_count(PREEMPT_ACTIVE);
3063 /* we could miss a preemption opportunity between schedule and now */
3064 barrier();
3065 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3066 goto need_resched;
3069 #endif /* CONFIG_PREEMPT */
3071 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3072 void *key)
3074 task_t *p = curr->private;
3075 return try_to_wake_up(p, mode, sync);
3078 EXPORT_SYMBOL(default_wake_function);
3081 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3082 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3083 * number) then we wake all the non-exclusive tasks and one exclusive task.
3085 * There are circumstances in which we can try to wake a task which has already
3086 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3087 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3089 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3090 int nr_exclusive, int sync, void *key)
3092 struct list_head *tmp, *next;
3094 list_for_each_safe(tmp, next, &q->task_list) {
3095 wait_queue_t *curr;
3096 unsigned flags;
3097 curr = list_entry(tmp, wait_queue_t, task_list);
3098 flags = curr->flags;
3099 if (curr->func(curr, mode, sync, key) &&
3100 (flags & WQ_FLAG_EXCLUSIVE) &&
3101 !--nr_exclusive)
3102 break;
3107 * __wake_up - wake up threads blocked on a waitqueue.
3108 * @q: the waitqueue
3109 * @mode: which threads
3110 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3111 * @key: is directly passed to the wakeup function
3113 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3114 int nr_exclusive, void *key)
3116 unsigned long flags;
3118 spin_lock_irqsave(&q->lock, flags);
3119 __wake_up_common(q, mode, nr_exclusive, 0, key);
3120 spin_unlock_irqrestore(&q->lock, flags);
3123 EXPORT_SYMBOL(__wake_up);
3126 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3128 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3130 __wake_up_common(q, mode, 1, 0, NULL);
3134 * __wake_up_sync - wake up threads blocked on a waitqueue.
3135 * @q: the waitqueue
3136 * @mode: which threads
3137 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3139 * The sync wakeup differs that the waker knows that it will schedule
3140 * away soon, so while the target thread will be woken up, it will not
3141 * be migrated to another CPU - ie. the two threads are 'synchronized'
3142 * with each other. This can prevent needless bouncing between CPUs.
3144 * On UP it can prevent extra preemption.
3146 void fastcall
3147 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3149 unsigned long flags;
3150 int sync = 1;
3152 if (unlikely(!q))
3153 return;
3155 if (unlikely(!nr_exclusive))
3156 sync = 0;
3158 spin_lock_irqsave(&q->lock, flags);
3159 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3160 spin_unlock_irqrestore(&q->lock, flags);
3162 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3164 void fastcall complete(struct completion *x)
3166 unsigned long flags;
3168 spin_lock_irqsave(&x->wait.lock, flags);
3169 x->done++;
3170 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3171 1, 0, NULL);
3172 spin_unlock_irqrestore(&x->wait.lock, flags);
3174 EXPORT_SYMBOL(complete);
3176 void fastcall complete_all(struct completion *x)
3178 unsigned long flags;
3180 spin_lock_irqsave(&x->wait.lock, flags);
3181 x->done += UINT_MAX/2;
3182 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3183 0, 0, NULL);
3184 spin_unlock_irqrestore(&x->wait.lock, flags);
3186 EXPORT_SYMBOL(complete_all);
3188 void fastcall __sched wait_for_completion(struct completion *x)
3190 might_sleep();
3191 spin_lock_irq(&x->wait.lock);
3192 if (!x->done) {
3193 DECLARE_WAITQUEUE(wait, current);
3195 wait.flags |= WQ_FLAG_EXCLUSIVE;
3196 __add_wait_queue_tail(&x->wait, &wait);
3197 do {
3198 __set_current_state(TASK_UNINTERRUPTIBLE);
3199 spin_unlock_irq(&x->wait.lock);
3200 schedule();
3201 spin_lock_irq(&x->wait.lock);
3202 } while (!x->done);
3203 __remove_wait_queue(&x->wait, &wait);
3205 x->done--;
3206 spin_unlock_irq(&x->wait.lock);
3208 EXPORT_SYMBOL(wait_for_completion);
3210 unsigned long fastcall __sched
3211 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3213 might_sleep();
3215 spin_lock_irq(&x->wait.lock);
3216 if (!x->done) {
3217 DECLARE_WAITQUEUE(wait, current);
3219 wait.flags |= WQ_FLAG_EXCLUSIVE;
3220 __add_wait_queue_tail(&x->wait, &wait);
3221 do {
3222 __set_current_state(TASK_UNINTERRUPTIBLE);
3223 spin_unlock_irq(&x->wait.lock);
3224 timeout = schedule_timeout(timeout);
3225 spin_lock_irq(&x->wait.lock);
3226 if (!timeout) {
3227 __remove_wait_queue(&x->wait, &wait);
3228 goto out;
3230 } while (!x->done);
3231 __remove_wait_queue(&x->wait, &wait);
3233 x->done--;
3234 out:
3235 spin_unlock_irq(&x->wait.lock);
3236 return timeout;
3238 EXPORT_SYMBOL(wait_for_completion_timeout);
3240 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3242 int ret = 0;
3244 might_sleep();
3246 spin_lock_irq(&x->wait.lock);
3247 if (!x->done) {
3248 DECLARE_WAITQUEUE(wait, current);
3250 wait.flags |= WQ_FLAG_EXCLUSIVE;
3251 __add_wait_queue_tail(&x->wait, &wait);
3252 do {
3253 if (signal_pending(current)) {
3254 ret = -ERESTARTSYS;
3255 __remove_wait_queue(&x->wait, &wait);
3256 goto out;
3258 __set_current_state(TASK_INTERRUPTIBLE);
3259 spin_unlock_irq(&x->wait.lock);
3260 schedule();
3261 spin_lock_irq(&x->wait.lock);
3262 } while (!x->done);
3263 __remove_wait_queue(&x->wait, &wait);
3265 x->done--;
3266 out:
3267 spin_unlock_irq(&x->wait.lock);
3269 return ret;
3271 EXPORT_SYMBOL(wait_for_completion_interruptible);
3273 unsigned long fastcall __sched
3274 wait_for_completion_interruptible_timeout(struct completion *x,
3275 unsigned long timeout)
3277 might_sleep();
3279 spin_lock_irq(&x->wait.lock);
3280 if (!x->done) {
3281 DECLARE_WAITQUEUE(wait, current);
3283 wait.flags |= WQ_FLAG_EXCLUSIVE;
3284 __add_wait_queue_tail(&x->wait, &wait);
3285 do {
3286 if (signal_pending(current)) {
3287 timeout = -ERESTARTSYS;
3288 __remove_wait_queue(&x->wait, &wait);
3289 goto out;
3291 __set_current_state(TASK_INTERRUPTIBLE);
3292 spin_unlock_irq(&x->wait.lock);
3293 timeout = schedule_timeout(timeout);
3294 spin_lock_irq(&x->wait.lock);
3295 if (!timeout) {
3296 __remove_wait_queue(&x->wait, &wait);
3297 goto out;
3299 } while (!x->done);
3300 __remove_wait_queue(&x->wait, &wait);
3302 x->done--;
3303 out:
3304 spin_unlock_irq(&x->wait.lock);
3305 return timeout;
3307 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3310 #define SLEEP_ON_VAR \
3311 unsigned long flags; \
3312 wait_queue_t wait; \
3313 init_waitqueue_entry(&wait, current);
3315 #define SLEEP_ON_HEAD \
3316 spin_lock_irqsave(&q->lock,flags); \
3317 __add_wait_queue(q, &wait); \
3318 spin_unlock(&q->lock);
3320 #define SLEEP_ON_TAIL \
3321 spin_lock_irq(&q->lock); \
3322 __remove_wait_queue(q, &wait); \
3323 spin_unlock_irqrestore(&q->lock, flags);
3325 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3327 SLEEP_ON_VAR
3329 current->state = TASK_INTERRUPTIBLE;
3331 SLEEP_ON_HEAD
3332 schedule();
3333 SLEEP_ON_TAIL
3336 EXPORT_SYMBOL(interruptible_sleep_on);
3338 long fastcall __sched
3339 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3341 SLEEP_ON_VAR
3343 current->state = TASK_INTERRUPTIBLE;
3345 SLEEP_ON_HEAD
3346 timeout = schedule_timeout(timeout);
3347 SLEEP_ON_TAIL
3349 return timeout;
3352 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3354 void fastcall __sched sleep_on(wait_queue_head_t *q)
3356 SLEEP_ON_VAR
3358 current->state = TASK_UNINTERRUPTIBLE;
3360 SLEEP_ON_HEAD
3361 schedule();
3362 SLEEP_ON_TAIL
3365 EXPORT_SYMBOL(sleep_on);
3367 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3369 SLEEP_ON_VAR
3371 current->state = TASK_UNINTERRUPTIBLE;
3373 SLEEP_ON_HEAD
3374 timeout = schedule_timeout(timeout);
3375 SLEEP_ON_TAIL
3377 return timeout;
3380 EXPORT_SYMBOL(sleep_on_timeout);
3382 void set_user_nice(task_t *p, long nice)
3384 unsigned long flags;
3385 prio_array_t *array;
3386 runqueue_t *rq;
3387 int old_prio, new_prio, delta;
3389 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3390 return;
3392 * We have to be careful, if called from sys_setpriority(),
3393 * the task might be in the middle of scheduling on another CPU.
3395 rq = task_rq_lock(p, &flags);
3397 * The RT priorities are set via sched_setscheduler(), but we still
3398 * allow the 'normal' nice value to be set - but as expected
3399 * it wont have any effect on scheduling until the task is
3400 * not SCHED_NORMAL:
3402 if (rt_task(p)) {
3403 p->static_prio = NICE_TO_PRIO(nice);
3404 goto out_unlock;
3406 array = p->array;
3407 if (array)
3408 dequeue_task(p, array);
3410 old_prio = p->prio;
3411 new_prio = NICE_TO_PRIO(nice);
3412 delta = new_prio - old_prio;
3413 p->static_prio = NICE_TO_PRIO(nice);
3414 p->prio += delta;
3416 if (array) {
3417 enqueue_task(p, array);
3419 * If the task increased its priority or is running and
3420 * lowered its priority, then reschedule its CPU:
3422 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3423 resched_task(rq->curr);
3425 out_unlock:
3426 task_rq_unlock(rq, &flags);
3429 EXPORT_SYMBOL(set_user_nice);
3432 * can_nice - check if a task can reduce its nice value
3433 * @p: task
3434 * @nice: nice value
3436 int can_nice(const task_t *p, const int nice)
3438 /* convert nice value [19,-20] to rlimit style value [1,40] */
3439 int nice_rlim = 20 - nice;
3440 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3441 capable(CAP_SYS_NICE));
3444 #ifdef __ARCH_WANT_SYS_NICE
3447 * sys_nice - change the priority of the current process.
3448 * @increment: priority increment
3450 * sys_setpriority is a more generic, but much slower function that
3451 * does similar things.
3453 asmlinkage long sys_nice(int increment)
3455 int retval;
3456 long nice;
3459 * Setpriority might change our priority at the same moment.
3460 * We don't have to worry. Conceptually one call occurs first
3461 * and we have a single winner.
3463 if (increment < -40)
3464 increment = -40;
3465 if (increment > 40)
3466 increment = 40;
3468 nice = PRIO_TO_NICE(current->static_prio) + increment;
3469 if (nice < -20)
3470 nice = -20;
3471 if (nice > 19)
3472 nice = 19;
3474 if (increment < 0 && !can_nice(current, nice))
3475 return -EPERM;
3477 retval = security_task_setnice(current, nice);
3478 if (retval)
3479 return retval;
3481 set_user_nice(current, nice);
3482 return 0;
3485 #endif
3488 * task_prio - return the priority value of a given task.
3489 * @p: the task in question.
3491 * This is the priority value as seen by users in /proc.
3492 * RT tasks are offset by -200. Normal tasks are centered
3493 * around 0, value goes from -16 to +15.
3495 int task_prio(const task_t *p)
3497 return p->prio - MAX_RT_PRIO;
3501 * task_nice - return the nice value of a given task.
3502 * @p: the task in question.
3504 int task_nice(const task_t *p)
3506 return TASK_NICE(p);
3508 EXPORT_SYMBOL_GPL(task_nice);
3511 * idle_cpu - is a given cpu idle currently?
3512 * @cpu: the processor in question.
3514 int idle_cpu(int cpu)
3516 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3519 EXPORT_SYMBOL_GPL(idle_cpu);
3522 * idle_task - return the idle task for a given cpu.
3523 * @cpu: the processor in question.
3525 task_t *idle_task(int cpu)
3527 return cpu_rq(cpu)->idle;
3531 * find_process_by_pid - find a process with a matching PID value.
3532 * @pid: the pid in question.
3534 static inline task_t *find_process_by_pid(pid_t pid)
3536 return pid ? find_task_by_pid(pid) : current;
3539 /* Actually do priority change: must hold rq lock. */
3540 static void __setscheduler(struct task_struct *p, int policy, int prio)
3542 BUG_ON(p->array);
3543 p->policy = policy;
3544 p->rt_priority = prio;
3545 if (policy != SCHED_NORMAL)
3546 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3547 else
3548 p->prio = p->static_prio;
3552 * sched_setscheduler - change the scheduling policy and/or RT priority of
3553 * a thread.
3554 * @p: the task in question.
3555 * @policy: new policy.
3556 * @param: structure containing the new RT priority.
3558 int sched_setscheduler(struct task_struct *p, int policy,
3559 struct sched_param *param)
3561 int retval;
3562 int oldprio, oldpolicy = -1;
3563 prio_array_t *array;
3564 unsigned long flags;
3565 runqueue_t *rq;
3567 recheck:
3568 /* double check policy once rq lock held */
3569 if (policy < 0)
3570 policy = oldpolicy = p->policy;
3571 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3572 policy != SCHED_NORMAL)
3573 return -EINVAL;
3575 * Valid priorities for SCHED_FIFO and SCHED_RR are
3576 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3578 if (param->sched_priority < 0 ||
3579 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3580 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3581 return -EINVAL;
3582 if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3583 return -EINVAL;
3586 * Allow unprivileged RT tasks to decrease priority:
3588 if (!capable(CAP_SYS_NICE)) {
3589 /* can't change policy */
3590 if (policy != p->policy &&
3591 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3592 return -EPERM;
3593 /* can't increase priority */
3594 if (policy != SCHED_NORMAL &&
3595 param->sched_priority > p->rt_priority &&
3596 param->sched_priority >
3597 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3598 return -EPERM;
3599 /* can't change other user's priorities */
3600 if ((current->euid != p->euid) &&
3601 (current->euid != p->uid))
3602 return -EPERM;
3605 retval = security_task_setscheduler(p, policy, param);
3606 if (retval)
3607 return retval;
3609 * To be able to change p->policy safely, the apropriate
3610 * runqueue lock must be held.
3612 rq = task_rq_lock(p, &flags);
3613 /* recheck policy now with rq lock held */
3614 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3615 policy = oldpolicy = -1;
3616 task_rq_unlock(rq, &flags);
3617 goto recheck;
3619 array = p->array;
3620 if (array)
3621 deactivate_task(p, rq);
3622 oldprio = p->prio;
3623 __setscheduler(p, policy, param->sched_priority);
3624 if (array) {
3625 __activate_task(p, rq);
3627 * Reschedule if we are currently running on this runqueue and
3628 * our priority decreased, or if we are not currently running on
3629 * this runqueue and our priority is higher than the current's
3631 if (task_running(rq, p)) {
3632 if (p->prio > oldprio)
3633 resched_task(rq->curr);
3634 } else if (TASK_PREEMPTS_CURR(p, rq))
3635 resched_task(rq->curr);
3637 task_rq_unlock(rq, &flags);
3638 return 0;
3640 EXPORT_SYMBOL_GPL(sched_setscheduler);
3642 static int
3643 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3645 int retval;
3646 struct sched_param lparam;
3647 struct task_struct *p;
3649 if (!param || pid < 0)
3650 return -EINVAL;
3651 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3652 return -EFAULT;
3653 read_lock_irq(&tasklist_lock);
3654 p = find_process_by_pid(pid);
3655 if (!p) {
3656 read_unlock_irq(&tasklist_lock);
3657 return -ESRCH;
3659 retval = sched_setscheduler(p, policy, &lparam);
3660 read_unlock_irq(&tasklist_lock);
3661 return retval;
3665 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3666 * @pid: the pid in question.
3667 * @policy: new policy.
3668 * @param: structure containing the new RT priority.
3670 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3671 struct sched_param __user *param)
3673 return do_sched_setscheduler(pid, policy, param);
3677 * sys_sched_setparam - set/change the RT priority of a thread
3678 * @pid: the pid in question.
3679 * @param: structure containing the new RT priority.
3681 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3683 return do_sched_setscheduler(pid, -1, param);
3687 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3688 * @pid: the pid in question.
3690 asmlinkage long sys_sched_getscheduler(pid_t pid)
3692 int retval = -EINVAL;
3693 task_t *p;
3695 if (pid < 0)
3696 goto out_nounlock;
3698 retval = -ESRCH;
3699 read_lock(&tasklist_lock);
3700 p = find_process_by_pid(pid);
3701 if (p) {
3702 retval = security_task_getscheduler(p);
3703 if (!retval)
3704 retval = p->policy;
3706 read_unlock(&tasklist_lock);
3708 out_nounlock:
3709 return retval;
3713 * sys_sched_getscheduler - get the RT priority of a thread
3714 * @pid: the pid in question.
3715 * @param: structure containing the RT priority.
3717 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3719 struct sched_param lp;
3720 int retval = -EINVAL;
3721 task_t *p;
3723 if (!param || pid < 0)
3724 goto out_nounlock;
3726 read_lock(&tasklist_lock);
3727 p = find_process_by_pid(pid);
3728 retval = -ESRCH;
3729 if (!p)
3730 goto out_unlock;
3732 retval = security_task_getscheduler(p);
3733 if (retval)
3734 goto out_unlock;
3736 lp.sched_priority = p->rt_priority;
3737 read_unlock(&tasklist_lock);
3740 * This one might sleep, we cannot do it with a spinlock held ...
3742 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3744 out_nounlock:
3745 return retval;
3747 out_unlock:
3748 read_unlock(&tasklist_lock);
3749 return retval;
3752 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3754 task_t *p;
3755 int retval;
3756 cpumask_t cpus_allowed;
3758 lock_cpu_hotplug();
3759 read_lock(&tasklist_lock);
3761 p = find_process_by_pid(pid);
3762 if (!p) {
3763 read_unlock(&tasklist_lock);
3764 unlock_cpu_hotplug();
3765 return -ESRCH;
3769 * It is not safe to call set_cpus_allowed with the
3770 * tasklist_lock held. We will bump the task_struct's
3771 * usage count and then drop tasklist_lock.
3773 get_task_struct(p);
3774 read_unlock(&tasklist_lock);
3776 retval = -EPERM;
3777 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3778 !capable(CAP_SYS_NICE))
3779 goto out_unlock;
3781 cpus_allowed = cpuset_cpus_allowed(p);
3782 cpus_and(new_mask, new_mask, cpus_allowed);
3783 retval = set_cpus_allowed(p, new_mask);
3785 out_unlock:
3786 put_task_struct(p);
3787 unlock_cpu_hotplug();
3788 return retval;
3791 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3792 cpumask_t *new_mask)
3794 if (len < sizeof(cpumask_t)) {
3795 memset(new_mask, 0, sizeof(cpumask_t));
3796 } else if (len > sizeof(cpumask_t)) {
3797 len = sizeof(cpumask_t);
3799 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3803 * sys_sched_setaffinity - set the cpu affinity of a process
3804 * @pid: pid of the process
3805 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3806 * @user_mask_ptr: user-space pointer to the new cpu mask
3808 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3809 unsigned long __user *user_mask_ptr)
3811 cpumask_t new_mask;
3812 int retval;
3814 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3815 if (retval)
3816 return retval;
3818 return sched_setaffinity(pid, new_mask);
3822 * Represents all cpu's present in the system
3823 * In systems capable of hotplug, this map could dynamically grow
3824 * as new cpu's are detected in the system via any platform specific
3825 * method, such as ACPI for e.g.
3828 cpumask_t cpu_present_map;
3829 EXPORT_SYMBOL(cpu_present_map);
3831 #ifndef CONFIG_SMP
3832 cpumask_t cpu_online_map = CPU_MASK_ALL;
3833 cpumask_t cpu_possible_map = CPU_MASK_ALL;
3834 #endif
3836 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3838 int retval;
3839 task_t *p;
3841 lock_cpu_hotplug();
3842 read_lock(&tasklist_lock);
3844 retval = -ESRCH;
3845 p = find_process_by_pid(pid);
3846 if (!p)
3847 goto out_unlock;
3849 retval = 0;
3850 cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3852 out_unlock:
3853 read_unlock(&tasklist_lock);
3854 unlock_cpu_hotplug();
3855 if (retval)
3856 return retval;
3858 return 0;
3862 * sys_sched_getaffinity - get the cpu affinity of a process
3863 * @pid: pid of the process
3864 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3865 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3867 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3868 unsigned long __user *user_mask_ptr)
3870 int ret;
3871 cpumask_t mask;
3873 if (len < sizeof(cpumask_t))
3874 return -EINVAL;
3876 ret = sched_getaffinity(pid, &mask);
3877 if (ret < 0)
3878 return ret;
3880 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3881 return -EFAULT;
3883 return sizeof(cpumask_t);
3887 * sys_sched_yield - yield the current processor to other threads.
3889 * this function yields the current CPU by moving the calling thread
3890 * to the expired array. If there are no other threads running on this
3891 * CPU then this function will return.
3893 asmlinkage long sys_sched_yield(void)
3895 runqueue_t *rq = this_rq_lock();
3896 prio_array_t *array = current->array;
3897 prio_array_t *target = rq->expired;
3899 schedstat_inc(rq, yld_cnt);
3901 * We implement yielding by moving the task into the expired
3902 * queue.
3904 * (special rule: RT tasks will just roundrobin in the active
3905 * array.)
3907 if (rt_task(current))
3908 target = rq->active;
3910 if (current->array->nr_active == 1) {
3911 schedstat_inc(rq, yld_act_empty);
3912 if (!rq->expired->nr_active)
3913 schedstat_inc(rq, yld_both_empty);
3914 } else if (!rq->expired->nr_active)
3915 schedstat_inc(rq, yld_exp_empty);
3917 if (array != target) {
3918 dequeue_task(current, array);
3919 enqueue_task(current, target);
3920 } else
3922 * requeue_task is cheaper so perform that if possible.
3924 requeue_task(current, array);
3927 * Since we are going to call schedule() anyway, there's
3928 * no need to preempt or enable interrupts:
3930 __release(rq->lock);
3931 _raw_spin_unlock(&rq->lock);
3932 preempt_enable_no_resched();
3934 schedule();
3936 return 0;
3939 static inline void __cond_resched(void)
3942 * The BKS might be reacquired before we have dropped
3943 * PREEMPT_ACTIVE, which could trigger a second
3944 * cond_resched() call.
3946 if (unlikely(preempt_count()))
3947 return;
3948 do {
3949 add_preempt_count(PREEMPT_ACTIVE);
3950 schedule();
3951 sub_preempt_count(PREEMPT_ACTIVE);
3952 } while (need_resched());
3955 int __sched cond_resched(void)
3957 if (need_resched()) {
3958 __cond_resched();
3959 return 1;
3961 return 0;
3964 EXPORT_SYMBOL(cond_resched);
3967 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
3968 * call schedule, and on return reacquire the lock.
3970 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3971 * operations here to prevent schedule() from being called twice (once via
3972 * spin_unlock(), once by hand).
3974 int cond_resched_lock(spinlock_t *lock)
3976 int ret = 0;
3978 if (need_lockbreak(lock)) {
3979 spin_unlock(lock);
3980 cpu_relax();
3981 ret = 1;
3982 spin_lock(lock);
3984 if (need_resched()) {
3985 _raw_spin_unlock(lock);
3986 preempt_enable_no_resched();
3987 __cond_resched();
3988 ret = 1;
3989 spin_lock(lock);
3991 return ret;
3994 EXPORT_SYMBOL(cond_resched_lock);
3996 int __sched cond_resched_softirq(void)
3998 BUG_ON(!in_softirq());
4000 if (need_resched()) {
4001 __local_bh_enable();
4002 __cond_resched();
4003 local_bh_disable();
4004 return 1;
4006 return 0;
4009 EXPORT_SYMBOL(cond_resched_softirq);
4013 * yield - yield the current processor to other threads.
4015 * this is a shortcut for kernel-space yielding - it marks the
4016 * thread runnable and calls sys_sched_yield().
4018 void __sched yield(void)
4020 set_current_state(TASK_RUNNING);
4021 sys_sched_yield();
4024 EXPORT_SYMBOL(yield);
4027 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4028 * that process accounting knows that this is a task in IO wait state.
4030 * But don't do that if it is a deliberate, throttling IO wait (this task
4031 * has set its backing_dev_info: the queue against which it should throttle)
4033 void __sched io_schedule(void)
4035 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4037 atomic_inc(&rq->nr_iowait);
4038 schedule();
4039 atomic_dec(&rq->nr_iowait);
4042 EXPORT_SYMBOL(io_schedule);
4044 long __sched io_schedule_timeout(long timeout)
4046 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4047 long ret;
4049 atomic_inc(&rq->nr_iowait);
4050 ret = schedule_timeout(timeout);
4051 atomic_dec(&rq->nr_iowait);
4052 return ret;
4056 * sys_sched_get_priority_max - return maximum RT priority.
4057 * @policy: scheduling class.
4059 * this syscall returns the maximum rt_priority that can be used
4060 * by a given scheduling class.
4062 asmlinkage long sys_sched_get_priority_max(int policy)
4064 int ret = -EINVAL;
4066 switch (policy) {
4067 case SCHED_FIFO:
4068 case SCHED_RR:
4069 ret = MAX_USER_RT_PRIO-1;
4070 break;
4071 case SCHED_NORMAL:
4072 ret = 0;
4073 break;
4075 return ret;
4079 * sys_sched_get_priority_min - return minimum RT priority.
4080 * @policy: scheduling class.
4082 * this syscall returns the minimum rt_priority that can be used
4083 * by a given scheduling class.
4085 asmlinkage long sys_sched_get_priority_min(int policy)
4087 int ret = -EINVAL;
4089 switch (policy) {
4090 case SCHED_FIFO:
4091 case SCHED_RR:
4092 ret = 1;
4093 break;
4094 case SCHED_NORMAL:
4095 ret = 0;
4097 return ret;
4101 * sys_sched_rr_get_interval - return the default timeslice of a process.
4102 * @pid: pid of the process.
4103 * @interval: userspace pointer to the timeslice value.
4105 * this syscall writes the default timeslice value of a given process
4106 * into the user-space timespec buffer. A value of '0' means infinity.
4108 asmlinkage
4109 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4111 int retval = -EINVAL;
4112 struct timespec t;
4113 task_t *p;
4115 if (pid < 0)
4116 goto out_nounlock;
4118 retval = -ESRCH;
4119 read_lock(&tasklist_lock);
4120 p = find_process_by_pid(pid);
4121 if (!p)
4122 goto out_unlock;
4124 retval = security_task_getscheduler(p);
4125 if (retval)
4126 goto out_unlock;
4128 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4129 0 : task_timeslice(p), &t);
4130 read_unlock(&tasklist_lock);
4131 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4132 out_nounlock:
4133 return retval;
4134 out_unlock:
4135 read_unlock(&tasklist_lock);
4136 return retval;
4139 static inline struct task_struct *eldest_child(struct task_struct *p)
4141 if (list_empty(&p->children)) return NULL;
4142 return list_entry(p->children.next,struct task_struct,sibling);
4145 static inline struct task_struct *older_sibling(struct task_struct *p)
4147 if (p->sibling.prev==&p->parent->children) return NULL;
4148 return list_entry(p->sibling.prev,struct task_struct,sibling);
4151 static inline struct task_struct *younger_sibling(struct task_struct *p)
4153 if (p->sibling.next==&p->parent->children) return NULL;
4154 return list_entry(p->sibling.next,struct task_struct,sibling);
4157 static void show_task(task_t *p)
4159 task_t *relative;
4160 unsigned state;
4161 unsigned long free = 0;
4162 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4164 printk("%-13.13s ", p->comm);
4165 state = p->state ? __ffs(p->state) + 1 : 0;
4166 if (state < ARRAY_SIZE(stat_nam))
4167 printk(stat_nam[state]);
4168 else
4169 printk("?");
4170 #if (BITS_PER_LONG == 32)
4171 if (state == TASK_RUNNING)
4172 printk(" running ");
4173 else
4174 printk(" %08lX ", thread_saved_pc(p));
4175 #else
4176 if (state == TASK_RUNNING)
4177 printk(" running task ");
4178 else
4179 printk(" %016lx ", thread_saved_pc(p));
4180 #endif
4181 #ifdef CONFIG_DEBUG_STACK_USAGE
4183 unsigned long *n = (unsigned long *) (p->thread_info+1);
4184 while (!*n)
4185 n++;
4186 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
4188 #endif
4189 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4190 if ((relative = eldest_child(p)))
4191 printk("%5d ", relative->pid);
4192 else
4193 printk(" ");
4194 if ((relative = younger_sibling(p)))
4195 printk("%7d", relative->pid);
4196 else
4197 printk(" ");
4198 if ((relative = older_sibling(p)))
4199 printk(" %5d", relative->pid);
4200 else
4201 printk(" ");
4202 if (!p->mm)
4203 printk(" (L-TLB)\n");
4204 else
4205 printk(" (NOTLB)\n");
4207 if (state != TASK_RUNNING)
4208 show_stack(p, NULL);
4211 void show_state(void)
4213 task_t *g, *p;
4215 #if (BITS_PER_LONG == 32)
4216 printk("\n"
4217 " sibling\n");
4218 printk(" task PC pid father child younger older\n");
4219 #else
4220 printk("\n"
4221 " sibling\n");
4222 printk(" task PC pid father child younger older\n");
4223 #endif
4224 read_lock(&tasklist_lock);
4225 do_each_thread(g, p) {
4227 * reset the NMI-timeout, listing all files on a slow
4228 * console might take alot of time:
4230 touch_nmi_watchdog();
4231 show_task(p);
4232 } while_each_thread(g, p);
4234 read_unlock(&tasklist_lock);
4238 * init_idle - set up an idle thread for a given CPU
4239 * @idle: task in question
4240 * @cpu: cpu the idle task belongs to
4242 * NOTE: this function does not set the idle thread's NEED_RESCHED
4243 * flag, to make booting more robust.
4245 void __devinit init_idle(task_t *idle, int cpu)
4247 runqueue_t *rq = cpu_rq(cpu);
4248 unsigned long flags;
4250 idle->sleep_avg = 0;
4251 idle->array = NULL;
4252 idle->prio = MAX_PRIO;
4253 idle->state = TASK_RUNNING;
4254 idle->cpus_allowed = cpumask_of_cpu(cpu);
4255 set_task_cpu(idle, cpu);
4257 spin_lock_irqsave(&rq->lock, flags);
4258 rq->curr = rq->idle = idle;
4259 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4260 idle->oncpu = 1;
4261 #endif
4262 spin_unlock_irqrestore(&rq->lock, flags);
4264 /* Set the preempt count _outside_ the spinlocks! */
4265 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4266 idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4267 #else
4268 idle->thread_info->preempt_count = 0;
4269 #endif
4273 * In a system that switches off the HZ timer nohz_cpu_mask
4274 * indicates which cpus entered this state. This is used
4275 * in the rcu update to wait only for active cpus. For system
4276 * which do not switch off the HZ timer nohz_cpu_mask should
4277 * always be CPU_MASK_NONE.
4279 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4281 #ifdef CONFIG_SMP
4283 * This is how migration works:
4285 * 1) we queue a migration_req_t structure in the source CPU's
4286 * runqueue and wake up that CPU's migration thread.
4287 * 2) we down() the locked semaphore => thread blocks.
4288 * 3) migration thread wakes up (implicitly it forces the migrated
4289 * thread off the CPU)
4290 * 4) it gets the migration request and checks whether the migrated
4291 * task is still in the wrong runqueue.
4292 * 5) if it's in the wrong runqueue then the migration thread removes
4293 * it and puts it into the right queue.
4294 * 6) migration thread up()s the semaphore.
4295 * 7) we wake up and the migration is done.
4299 * Change a given task's CPU affinity. Migrate the thread to a
4300 * proper CPU and schedule it away if the CPU it's executing on
4301 * is removed from the allowed bitmask.
4303 * NOTE: the caller must have a valid reference to the task, the
4304 * task must not exit() & deallocate itself prematurely. The
4305 * call is not atomic; no spinlocks may be held.
4307 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4309 unsigned long flags;
4310 int ret = 0;
4311 migration_req_t req;
4312 runqueue_t *rq;
4314 rq = task_rq_lock(p, &flags);
4315 if (!cpus_intersects(new_mask, cpu_online_map)) {
4316 ret = -EINVAL;
4317 goto out;
4320 p->cpus_allowed = new_mask;
4321 /* Can the task run on the task's current CPU? If so, we're done */
4322 if (cpu_isset(task_cpu(p), new_mask))
4323 goto out;
4325 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4326 /* Need help from migration thread: drop lock and wait. */
4327 task_rq_unlock(rq, &flags);
4328 wake_up_process(rq->migration_thread);
4329 wait_for_completion(&req.done);
4330 tlb_migrate_finish(p->mm);
4331 return 0;
4333 out:
4334 task_rq_unlock(rq, &flags);
4335 return ret;
4338 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4341 * Move (not current) task off this cpu, onto dest cpu. We're doing
4342 * this because either it can't run here any more (set_cpus_allowed()
4343 * away from this CPU, or CPU going down), or because we're
4344 * attempting to rebalance this task on exec (sched_exec).
4346 * So we race with normal scheduler movements, but that's OK, as long
4347 * as the task is no longer on this CPU.
4349 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4351 runqueue_t *rq_dest, *rq_src;
4353 if (unlikely(cpu_is_offline(dest_cpu)))
4354 return;
4356 rq_src = cpu_rq(src_cpu);
4357 rq_dest = cpu_rq(dest_cpu);
4359 double_rq_lock(rq_src, rq_dest);
4360 /* Already moved. */
4361 if (task_cpu(p) != src_cpu)
4362 goto out;
4363 /* Affinity changed (again). */
4364 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4365 goto out;
4367 set_task_cpu(p, dest_cpu);
4368 if (p->array) {
4370 * Sync timestamp with rq_dest's before activating.
4371 * The same thing could be achieved by doing this step
4372 * afterwards, and pretending it was a local activate.
4373 * This way is cleaner and logically correct.
4375 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4376 + rq_dest->timestamp_last_tick;
4377 deactivate_task(p, rq_src);
4378 activate_task(p, rq_dest, 0);
4379 if (TASK_PREEMPTS_CURR(p, rq_dest))
4380 resched_task(rq_dest->curr);
4383 out:
4384 double_rq_unlock(rq_src, rq_dest);
4388 * migration_thread - this is a highprio system thread that performs
4389 * thread migration by bumping thread off CPU then 'pushing' onto
4390 * another runqueue.
4392 static int migration_thread(void *data)
4394 runqueue_t *rq;
4395 int cpu = (long)data;
4397 rq = cpu_rq(cpu);
4398 BUG_ON(rq->migration_thread != current);
4400 set_current_state(TASK_INTERRUPTIBLE);
4401 while (!kthread_should_stop()) {
4402 struct list_head *head;
4403 migration_req_t *req;
4405 try_to_freeze();
4407 spin_lock_irq(&rq->lock);
4409 if (cpu_is_offline(cpu)) {
4410 spin_unlock_irq(&rq->lock);
4411 goto wait_to_die;
4414 if (rq->active_balance) {
4415 active_load_balance(rq, cpu);
4416 rq->active_balance = 0;
4419 head = &rq->migration_queue;
4421 if (list_empty(head)) {
4422 spin_unlock_irq(&rq->lock);
4423 schedule();
4424 set_current_state(TASK_INTERRUPTIBLE);
4425 continue;
4427 req = list_entry(head->next, migration_req_t, list);
4428 list_del_init(head->next);
4430 spin_unlock(&rq->lock);
4431 __migrate_task(req->task, cpu, req->dest_cpu);
4432 local_irq_enable();
4434 complete(&req->done);
4436 __set_current_state(TASK_RUNNING);
4437 return 0;
4439 wait_to_die:
4440 /* Wait for kthread_stop */
4441 set_current_state(TASK_INTERRUPTIBLE);
4442 while (!kthread_should_stop()) {
4443 schedule();
4444 set_current_state(TASK_INTERRUPTIBLE);
4446 __set_current_state(TASK_RUNNING);
4447 return 0;
4450 #ifdef CONFIG_HOTPLUG_CPU
4451 /* Figure out where task on dead CPU should go, use force if neccessary. */
4452 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4454 int dest_cpu;
4455 cpumask_t mask;
4457 /* On same node? */
4458 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4459 cpus_and(mask, mask, tsk->cpus_allowed);
4460 dest_cpu = any_online_cpu(mask);
4462 /* On any allowed CPU? */
4463 if (dest_cpu == NR_CPUS)
4464 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4466 /* No more Mr. Nice Guy. */
4467 if (dest_cpu == NR_CPUS) {
4468 cpus_setall(tsk->cpus_allowed);
4469 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4472 * Don't tell them about moving exiting tasks or
4473 * kernel threads (both mm NULL), since they never
4474 * leave kernel.
4476 if (tsk->mm && printk_ratelimit())
4477 printk(KERN_INFO "process %d (%s) no "
4478 "longer affine to cpu%d\n",
4479 tsk->pid, tsk->comm, dead_cpu);
4481 __migrate_task(tsk, dead_cpu, dest_cpu);
4485 * While a dead CPU has no uninterruptible tasks queued at this point,
4486 * it might still have a nonzero ->nr_uninterruptible counter, because
4487 * for performance reasons the counter is not stricly tracking tasks to
4488 * their home CPUs. So we just add the counter to another CPU's counter,
4489 * to keep the global sum constant after CPU-down:
4491 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4493 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4494 unsigned long flags;
4496 local_irq_save(flags);
4497 double_rq_lock(rq_src, rq_dest);
4498 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4499 rq_src->nr_uninterruptible = 0;
4500 double_rq_unlock(rq_src, rq_dest);
4501 local_irq_restore(flags);
4504 /* Run through task list and migrate tasks from the dead cpu. */
4505 static void migrate_live_tasks(int src_cpu)
4507 struct task_struct *tsk, *t;
4509 write_lock_irq(&tasklist_lock);
4511 do_each_thread(t, tsk) {
4512 if (tsk == current)
4513 continue;
4515 if (task_cpu(tsk) == src_cpu)
4516 move_task_off_dead_cpu(src_cpu, tsk);
4517 } while_each_thread(t, tsk);
4519 write_unlock_irq(&tasklist_lock);
4522 /* Schedules idle task to be the next runnable task on current CPU.
4523 * It does so by boosting its priority to highest possible and adding it to
4524 * the _front_ of runqueue. Used by CPU offline code.
4526 void sched_idle_next(void)
4528 int cpu = smp_processor_id();
4529 runqueue_t *rq = this_rq();
4530 struct task_struct *p = rq->idle;
4531 unsigned long flags;
4533 /* cpu has to be offline */
4534 BUG_ON(cpu_online(cpu));
4536 /* Strictly not necessary since rest of the CPUs are stopped by now
4537 * and interrupts disabled on current cpu.
4539 spin_lock_irqsave(&rq->lock, flags);
4541 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4542 /* Add idle task to _front_ of it's priority queue */
4543 __activate_idle_task(p, rq);
4545 spin_unlock_irqrestore(&rq->lock, flags);
4548 /* Ensures that the idle task is using init_mm right before its cpu goes
4549 * offline.
4551 void idle_task_exit(void)
4553 struct mm_struct *mm = current->active_mm;
4555 BUG_ON(cpu_online(smp_processor_id()));
4557 if (mm != &init_mm)
4558 switch_mm(mm, &init_mm, current);
4559 mmdrop(mm);
4562 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4564 struct runqueue *rq = cpu_rq(dead_cpu);
4566 /* Must be exiting, otherwise would be on tasklist. */
4567 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4569 /* Cannot have done final schedule yet: would have vanished. */
4570 BUG_ON(tsk->flags & PF_DEAD);
4572 get_task_struct(tsk);
4575 * Drop lock around migration; if someone else moves it,
4576 * that's OK. No task can be added to this CPU, so iteration is
4577 * fine.
4579 spin_unlock_irq(&rq->lock);
4580 move_task_off_dead_cpu(dead_cpu, tsk);
4581 spin_lock_irq(&rq->lock);
4583 put_task_struct(tsk);
4586 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4587 static void migrate_dead_tasks(unsigned int dead_cpu)
4589 unsigned arr, i;
4590 struct runqueue *rq = cpu_rq(dead_cpu);
4592 for (arr = 0; arr < 2; arr++) {
4593 for (i = 0; i < MAX_PRIO; i++) {
4594 struct list_head *list = &rq->arrays[arr].queue[i];
4595 while (!list_empty(list))
4596 migrate_dead(dead_cpu,
4597 list_entry(list->next, task_t,
4598 run_list));
4602 #endif /* CONFIG_HOTPLUG_CPU */
4605 * migration_call - callback that gets triggered when a CPU is added.
4606 * Here we can start up the necessary migration thread for the new CPU.
4608 static int migration_call(struct notifier_block *nfb, unsigned long action,
4609 void *hcpu)
4611 int cpu = (long)hcpu;
4612 struct task_struct *p;
4613 struct runqueue *rq;
4614 unsigned long flags;
4616 switch (action) {
4617 case CPU_UP_PREPARE:
4618 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4619 if (IS_ERR(p))
4620 return NOTIFY_BAD;
4621 p->flags |= PF_NOFREEZE;
4622 kthread_bind(p, cpu);
4623 /* Must be high prio: stop_machine expects to yield to it. */
4624 rq = task_rq_lock(p, &flags);
4625 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4626 task_rq_unlock(rq, &flags);
4627 cpu_rq(cpu)->migration_thread = p;
4628 break;
4629 case CPU_ONLINE:
4630 /* Strictly unneccessary, as first user will wake it. */
4631 wake_up_process(cpu_rq(cpu)->migration_thread);
4632 break;
4633 #ifdef CONFIG_HOTPLUG_CPU
4634 case CPU_UP_CANCELED:
4635 /* Unbind it from offline cpu so it can run. Fall thru. */
4636 kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
4637 kthread_stop(cpu_rq(cpu)->migration_thread);
4638 cpu_rq(cpu)->migration_thread = NULL;
4639 break;
4640 case CPU_DEAD:
4641 migrate_live_tasks(cpu);
4642 rq = cpu_rq(cpu);
4643 kthread_stop(rq->migration_thread);
4644 rq->migration_thread = NULL;
4645 /* Idle task back to normal (off runqueue, low prio) */
4646 rq = task_rq_lock(rq->idle, &flags);
4647 deactivate_task(rq->idle, rq);
4648 rq->idle->static_prio = MAX_PRIO;
4649 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4650 migrate_dead_tasks(cpu);
4651 task_rq_unlock(rq, &flags);
4652 migrate_nr_uninterruptible(rq);
4653 BUG_ON(rq->nr_running != 0);
4655 /* No need to migrate the tasks: it was best-effort if
4656 * they didn't do lock_cpu_hotplug(). Just wake up
4657 * the requestors. */
4658 spin_lock_irq(&rq->lock);
4659 while (!list_empty(&rq->migration_queue)) {
4660 migration_req_t *req;
4661 req = list_entry(rq->migration_queue.next,
4662 migration_req_t, list);
4663 list_del_init(&req->list);
4664 complete(&req->done);
4666 spin_unlock_irq(&rq->lock);
4667 break;
4668 #endif
4670 return NOTIFY_OK;
4673 /* Register at highest priority so that task migration (migrate_all_tasks)
4674 * happens before everything else.
4676 static struct notifier_block __devinitdata migration_notifier = {
4677 .notifier_call = migration_call,
4678 .priority = 10
4681 int __init migration_init(void)
4683 void *cpu = (void *)(long)smp_processor_id();
4684 /* Start one for boot CPU. */
4685 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4686 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4687 register_cpu_notifier(&migration_notifier);
4688 return 0;
4690 #endif
4692 #ifdef CONFIG_SMP
4693 #undef SCHED_DOMAIN_DEBUG
4694 #ifdef SCHED_DOMAIN_DEBUG
4695 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4697 int level = 0;
4699 if (!sd) {
4700 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4701 return;
4704 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4706 do {
4707 int i;
4708 char str[NR_CPUS];
4709 struct sched_group *group = sd->groups;
4710 cpumask_t groupmask;
4712 cpumask_scnprintf(str, NR_CPUS, sd->span);
4713 cpus_clear(groupmask);
4715 printk(KERN_DEBUG);
4716 for (i = 0; i < level + 1; i++)
4717 printk(" ");
4718 printk("domain %d: ", level);
4720 if (!(sd->flags & SD_LOAD_BALANCE)) {
4721 printk("does not load-balance\n");
4722 if (sd->parent)
4723 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4724 break;
4727 printk("span %s\n", str);
4729 if (!cpu_isset(cpu, sd->span))
4730 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4731 if (!cpu_isset(cpu, group->cpumask))
4732 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4734 printk(KERN_DEBUG);
4735 for (i = 0; i < level + 2; i++)
4736 printk(" ");
4737 printk("groups:");
4738 do {
4739 if (!group) {
4740 printk("\n");
4741 printk(KERN_ERR "ERROR: group is NULL\n");
4742 break;
4745 if (!group->cpu_power) {
4746 printk("\n");
4747 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4750 if (!cpus_weight(group->cpumask)) {
4751 printk("\n");
4752 printk(KERN_ERR "ERROR: empty group\n");
4755 if (cpus_intersects(groupmask, group->cpumask)) {
4756 printk("\n");
4757 printk(KERN_ERR "ERROR: repeated CPUs\n");
4760 cpus_or(groupmask, groupmask, group->cpumask);
4762 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4763 printk(" %s", str);
4765 group = group->next;
4766 } while (group != sd->groups);
4767 printk("\n");
4769 if (!cpus_equal(sd->span, groupmask))
4770 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4772 level++;
4773 sd = sd->parent;
4775 if (sd) {
4776 if (!cpus_subset(groupmask, sd->span))
4777 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4780 } while (sd);
4782 #else
4783 #define sched_domain_debug(sd, cpu) {}
4784 #endif
4786 static int sd_degenerate(struct sched_domain *sd)
4788 if (cpus_weight(sd->span) == 1)
4789 return 1;
4791 /* Following flags need at least 2 groups */
4792 if (sd->flags & (SD_LOAD_BALANCE |
4793 SD_BALANCE_NEWIDLE |
4794 SD_BALANCE_FORK |
4795 SD_BALANCE_EXEC)) {
4796 if (sd->groups != sd->groups->next)
4797 return 0;
4800 /* Following flags don't use groups */
4801 if (sd->flags & (SD_WAKE_IDLE |
4802 SD_WAKE_AFFINE |
4803 SD_WAKE_BALANCE))
4804 return 0;
4806 return 1;
4809 static int sd_parent_degenerate(struct sched_domain *sd,
4810 struct sched_domain *parent)
4812 unsigned long cflags = sd->flags, pflags = parent->flags;
4814 if (sd_degenerate(parent))
4815 return 1;
4817 if (!cpus_equal(sd->span, parent->span))
4818 return 0;
4820 /* Does parent contain flags not in child? */
4821 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4822 if (cflags & SD_WAKE_AFFINE)
4823 pflags &= ~SD_WAKE_BALANCE;
4824 /* Flags needing groups don't count if only 1 group in parent */
4825 if (parent->groups == parent->groups->next) {
4826 pflags &= ~(SD_LOAD_BALANCE |
4827 SD_BALANCE_NEWIDLE |
4828 SD_BALANCE_FORK |
4829 SD_BALANCE_EXEC);
4831 if (~cflags & pflags)
4832 return 0;
4834 return 1;
4838 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4839 * hold the hotplug lock.
4841 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4843 runqueue_t *rq = cpu_rq(cpu);
4844 struct sched_domain *tmp;
4846 /* Remove the sched domains which do not contribute to scheduling. */
4847 for (tmp = sd; tmp; tmp = tmp->parent) {
4848 struct sched_domain *parent = tmp->parent;
4849 if (!parent)
4850 break;
4851 if (sd_parent_degenerate(tmp, parent))
4852 tmp->parent = parent->parent;
4855 if (sd && sd_degenerate(sd))
4856 sd = sd->parent;
4858 sched_domain_debug(sd, cpu);
4860 rcu_assign_pointer(rq->sd, sd);
4863 /* cpus with isolated domains */
4864 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4866 /* Setup the mask of cpus configured for isolated domains */
4867 static int __init isolated_cpu_setup(char *str)
4869 int ints[NR_CPUS], i;
4871 str = get_options(str, ARRAY_SIZE(ints), ints);
4872 cpus_clear(cpu_isolated_map);
4873 for (i = 1; i <= ints[0]; i++)
4874 if (ints[i] < NR_CPUS)
4875 cpu_set(ints[i], cpu_isolated_map);
4876 return 1;
4879 __setup ("isolcpus=", isolated_cpu_setup);
4882 * init_sched_build_groups takes an array of groups, the cpumask we wish
4883 * to span, and a pointer to a function which identifies what group a CPU
4884 * belongs to. The return value of group_fn must be a valid index into the
4885 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4886 * keep track of groups covered with a cpumask_t).
4888 * init_sched_build_groups will build a circular linked list of the groups
4889 * covered by the given span, and will set each group's ->cpumask correctly,
4890 * and ->cpu_power to 0.
4892 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
4893 int (*group_fn)(int cpu))
4895 struct sched_group *first = NULL, *last = NULL;
4896 cpumask_t covered = CPU_MASK_NONE;
4897 int i;
4899 for_each_cpu_mask(i, span) {
4900 int group = group_fn(i);
4901 struct sched_group *sg = &groups[group];
4902 int j;
4904 if (cpu_isset(i, covered))
4905 continue;
4907 sg->cpumask = CPU_MASK_NONE;
4908 sg->cpu_power = 0;
4910 for_each_cpu_mask(j, span) {
4911 if (group_fn(j) != group)
4912 continue;
4914 cpu_set(j, covered);
4915 cpu_set(j, sg->cpumask);
4917 if (!first)
4918 first = sg;
4919 if (last)
4920 last->next = sg;
4921 last = sg;
4923 last->next = first;
4926 #define SD_NODES_PER_DOMAIN 16
4928 #ifdef CONFIG_NUMA
4930 * find_next_best_node - find the next node to include in a sched_domain
4931 * @node: node whose sched_domain we're building
4932 * @used_nodes: nodes already in the sched_domain
4934 * Find the next node to include in a given scheduling domain. Simply
4935 * finds the closest node not already in the @used_nodes map.
4937 * Should use nodemask_t.
4939 static int find_next_best_node(int node, unsigned long *used_nodes)
4941 int i, n, val, min_val, best_node = 0;
4943 min_val = INT_MAX;
4945 for (i = 0; i < MAX_NUMNODES; i++) {
4946 /* Start at @node */
4947 n = (node + i) % MAX_NUMNODES;
4949 if (!nr_cpus_node(n))
4950 continue;
4952 /* Skip already used nodes */
4953 if (test_bit(n, used_nodes))
4954 continue;
4956 /* Simple min distance search */
4957 val = node_distance(node, n);
4959 if (val < min_val) {
4960 min_val = val;
4961 best_node = n;
4965 set_bit(best_node, used_nodes);
4966 return best_node;
4970 * sched_domain_node_span - get a cpumask for a node's sched_domain
4971 * @node: node whose cpumask we're constructing
4972 * @size: number of nodes to include in this span
4974 * Given a node, construct a good cpumask for its sched_domain to span. It
4975 * should be one that prevents unnecessary balancing, but also spreads tasks
4976 * out optimally.
4978 static cpumask_t sched_domain_node_span(int node)
4980 int i;
4981 cpumask_t span, nodemask;
4982 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
4984 cpus_clear(span);
4985 bitmap_zero(used_nodes, MAX_NUMNODES);
4987 nodemask = node_to_cpumask(node);
4988 cpus_or(span, span, nodemask);
4989 set_bit(node, used_nodes);
4991 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
4992 int next_node = find_next_best_node(node, used_nodes);
4993 nodemask = node_to_cpumask(next_node);
4994 cpus_or(span, span, nodemask);
4997 return span;
4999 #endif
5002 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5003 * can switch it on easily if needed.
5005 #ifdef CONFIG_SCHED_SMT
5006 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5007 static struct sched_group sched_group_cpus[NR_CPUS];
5008 static int cpu_to_cpu_group(int cpu)
5010 return cpu;
5012 #endif
5014 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5015 static struct sched_group sched_group_phys[NR_CPUS];
5016 static int cpu_to_phys_group(int cpu)
5018 #ifdef CONFIG_SCHED_SMT
5019 return first_cpu(cpu_sibling_map[cpu]);
5020 #else
5021 return cpu;
5022 #endif
5025 #ifdef CONFIG_NUMA
5027 * The init_sched_build_groups can't handle what we want to do with node
5028 * groups, so roll our own. Now each node has its own list of groups which
5029 * gets dynamically allocated.
5031 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5032 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5034 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5035 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5037 static int cpu_to_allnodes_group(int cpu)
5039 return cpu_to_node(cpu);
5041 #endif
5044 * Build sched domains for a given set of cpus and attach the sched domains
5045 * to the individual cpus
5047 void build_sched_domains(const cpumask_t *cpu_map)
5049 int i;
5050 #ifdef CONFIG_NUMA
5051 struct sched_group **sched_group_nodes = NULL;
5052 struct sched_group *sched_group_allnodes = NULL;
5055 * Allocate the per-node list of sched groups
5057 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5058 GFP_ATOMIC);
5059 if (!sched_group_nodes) {
5060 printk(KERN_WARNING "Can not alloc sched group node list\n");
5061 return;
5063 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5064 #endif
5067 * Set up domains for cpus specified by the cpu_map.
5069 for_each_cpu_mask(i, *cpu_map) {
5070 int group;
5071 struct sched_domain *sd = NULL, *p;
5072 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5074 cpus_and(nodemask, nodemask, *cpu_map);
5076 #ifdef CONFIG_NUMA
5077 if (cpus_weight(*cpu_map)
5078 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5079 if (!sched_group_allnodes) {
5080 sched_group_allnodes
5081 = kmalloc(sizeof(struct sched_group)
5082 * MAX_NUMNODES,
5083 GFP_KERNEL);
5084 if (!sched_group_allnodes) {
5085 printk(KERN_WARNING
5086 "Can not alloc allnodes sched group\n");
5087 break;
5089 sched_group_allnodes_bycpu[i]
5090 = sched_group_allnodes;
5092 sd = &per_cpu(allnodes_domains, i);
5093 *sd = SD_ALLNODES_INIT;
5094 sd->span = *cpu_map;
5095 group = cpu_to_allnodes_group(i);
5096 sd->groups = &sched_group_allnodes[group];
5097 p = sd;
5098 } else
5099 p = NULL;
5101 sd = &per_cpu(node_domains, i);
5102 *sd = SD_NODE_INIT;
5103 sd->span = sched_domain_node_span(cpu_to_node(i));
5104 sd->parent = p;
5105 cpus_and(sd->span, sd->span, *cpu_map);
5106 #endif
5108 p = sd;
5109 sd = &per_cpu(phys_domains, i);
5110 group = cpu_to_phys_group(i);
5111 *sd = SD_CPU_INIT;
5112 sd->span = nodemask;
5113 sd->parent = p;
5114 sd->groups = &sched_group_phys[group];
5116 #ifdef CONFIG_SCHED_SMT
5117 p = sd;
5118 sd = &per_cpu(cpu_domains, i);
5119 group = cpu_to_cpu_group(i);
5120 *sd = SD_SIBLING_INIT;
5121 sd->span = cpu_sibling_map[i];
5122 cpus_and(sd->span, sd->span, *cpu_map);
5123 sd->parent = p;
5124 sd->groups = &sched_group_cpus[group];
5125 #endif
5128 #ifdef CONFIG_SCHED_SMT
5129 /* Set up CPU (sibling) groups */
5130 for_each_cpu_mask(i, *cpu_map) {
5131 cpumask_t this_sibling_map = cpu_sibling_map[i];
5132 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5133 if (i != first_cpu(this_sibling_map))
5134 continue;
5136 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5137 &cpu_to_cpu_group);
5139 #endif
5141 /* Set up physical groups */
5142 for (i = 0; i < MAX_NUMNODES; i++) {
5143 cpumask_t nodemask = node_to_cpumask(i);
5145 cpus_and(nodemask, nodemask, *cpu_map);
5146 if (cpus_empty(nodemask))
5147 continue;
5149 init_sched_build_groups(sched_group_phys, nodemask,
5150 &cpu_to_phys_group);
5153 #ifdef CONFIG_NUMA
5154 /* Set up node groups */
5155 if (sched_group_allnodes)
5156 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5157 &cpu_to_allnodes_group);
5159 for (i = 0; i < MAX_NUMNODES; i++) {
5160 /* Set up node groups */
5161 struct sched_group *sg, *prev;
5162 cpumask_t nodemask = node_to_cpumask(i);
5163 cpumask_t domainspan;
5164 cpumask_t covered = CPU_MASK_NONE;
5165 int j;
5167 cpus_and(nodemask, nodemask, *cpu_map);
5168 if (cpus_empty(nodemask)) {
5169 sched_group_nodes[i] = NULL;
5170 continue;
5173 domainspan = sched_domain_node_span(i);
5174 cpus_and(domainspan, domainspan, *cpu_map);
5176 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5177 sched_group_nodes[i] = sg;
5178 for_each_cpu_mask(j, nodemask) {
5179 struct sched_domain *sd;
5180 sd = &per_cpu(node_domains, j);
5181 sd->groups = sg;
5182 if (sd->groups == NULL) {
5183 /* Turn off balancing if we have no groups */
5184 sd->flags = 0;
5187 if (!sg) {
5188 printk(KERN_WARNING
5189 "Can not alloc domain group for node %d\n", i);
5190 continue;
5192 sg->cpu_power = 0;
5193 sg->cpumask = nodemask;
5194 cpus_or(covered, covered, nodemask);
5195 prev = sg;
5197 for (j = 0; j < MAX_NUMNODES; j++) {
5198 cpumask_t tmp, notcovered;
5199 int n = (i + j) % MAX_NUMNODES;
5201 cpus_complement(notcovered, covered);
5202 cpus_and(tmp, notcovered, *cpu_map);
5203 cpus_and(tmp, tmp, domainspan);
5204 if (cpus_empty(tmp))
5205 break;
5207 nodemask = node_to_cpumask(n);
5208 cpus_and(tmp, tmp, nodemask);
5209 if (cpus_empty(tmp))
5210 continue;
5212 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5213 if (!sg) {
5214 printk(KERN_WARNING
5215 "Can not alloc domain group for node %d\n", j);
5216 break;
5218 sg->cpu_power = 0;
5219 sg->cpumask = tmp;
5220 cpus_or(covered, covered, tmp);
5221 prev->next = sg;
5222 prev = sg;
5224 prev->next = sched_group_nodes[i];
5226 #endif
5228 /* Calculate CPU power for physical packages and nodes */
5229 for_each_cpu_mask(i, *cpu_map) {
5230 int power;
5231 struct sched_domain *sd;
5232 #ifdef CONFIG_SCHED_SMT
5233 sd = &per_cpu(cpu_domains, i);
5234 power = SCHED_LOAD_SCALE;
5235 sd->groups->cpu_power = power;
5236 #endif
5238 sd = &per_cpu(phys_domains, i);
5239 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5240 (cpus_weight(sd->groups->cpumask)-1) / 10;
5241 sd->groups->cpu_power = power;
5243 #ifdef CONFIG_NUMA
5244 sd = &per_cpu(allnodes_domains, i);
5245 if (sd->groups) {
5246 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5247 (cpus_weight(sd->groups->cpumask)-1) / 10;
5248 sd->groups->cpu_power = power;
5250 #endif
5253 #ifdef CONFIG_NUMA
5254 for (i = 0; i < MAX_NUMNODES; i++) {
5255 struct sched_group *sg = sched_group_nodes[i];
5256 int j;
5258 if (sg == NULL)
5259 continue;
5260 next_sg:
5261 for_each_cpu_mask(j, sg->cpumask) {
5262 struct sched_domain *sd;
5263 int power;
5265 sd = &per_cpu(phys_domains, j);
5266 if (j != first_cpu(sd->groups->cpumask)) {
5268 * Only add "power" once for each
5269 * physical package.
5271 continue;
5273 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5274 (cpus_weight(sd->groups->cpumask)-1) / 10;
5276 sg->cpu_power += power;
5278 sg = sg->next;
5279 if (sg != sched_group_nodes[i])
5280 goto next_sg;
5282 #endif
5284 /* Attach the domains */
5285 for_each_cpu_mask(i, *cpu_map) {
5286 struct sched_domain *sd;
5287 #ifdef CONFIG_SCHED_SMT
5288 sd = &per_cpu(cpu_domains, i);
5289 #else
5290 sd = &per_cpu(phys_domains, i);
5291 #endif
5292 cpu_attach_domain(sd, i);
5296 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5298 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5300 cpumask_t cpu_default_map;
5303 * Setup mask for cpus without special case scheduling requirements.
5304 * For now this just excludes isolated cpus, but could be used to
5305 * exclude other special cases in the future.
5307 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5309 build_sched_domains(&cpu_default_map);
5312 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5314 #ifdef CONFIG_NUMA
5315 int i;
5316 int cpu;
5318 for_each_cpu_mask(cpu, *cpu_map) {
5319 struct sched_group *sched_group_allnodes
5320 = sched_group_allnodes_bycpu[cpu];
5321 struct sched_group **sched_group_nodes
5322 = sched_group_nodes_bycpu[cpu];
5324 if (sched_group_allnodes) {
5325 kfree(sched_group_allnodes);
5326 sched_group_allnodes_bycpu[cpu] = NULL;
5329 if (!sched_group_nodes)
5330 continue;
5332 for (i = 0; i < MAX_NUMNODES; i++) {
5333 cpumask_t nodemask = node_to_cpumask(i);
5334 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5336 cpus_and(nodemask, nodemask, *cpu_map);
5337 if (cpus_empty(nodemask))
5338 continue;
5340 if (sg == NULL)
5341 continue;
5342 sg = sg->next;
5343 next_sg:
5344 oldsg = sg;
5345 sg = sg->next;
5346 kfree(oldsg);
5347 if (oldsg != sched_group_nodes[i])
5348 goto next_sg;
5350 kfree(sched_group_nodes);
5351 sched_group_nodes_bycpu[cpu] = NULL;
5353 #endif
5357 * Detach sched domains from a group of cpus specified in cpu_map
5358 * These cpus will now be attached to the NULL domain
5360 static inline void detach_destroy_domains(const cpumask_t *cpu_map)
5362 int i;
5364 for_each_cpu_mask(i, *cpu_map)
5365 cpu_attach_domain(NULL, i);
5366 synchronize_sched();
5367 arch_destroy_sched_domains(cpu_map);
5371 * Partition sched domains as specified by the cpumasks below.
5372 * This attaches all cpus from the cpumasks to the NULL domain,
5373 * waits for a RCU quiescent period, recalculates sched
5374 * domain information and then attaches them back to the
5375 * correct sched domains
5376 * Call with hotplug lock held
5378 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5380 cpumask_t change_map;
5382 cpus_and(*partition1, *partition1, cpu_online_map);
5383 cpus_and(*partition2, *partition2, cpu_online_map);
5384 cpus_or(change_map, *partition1, *partition2);
5386 /* Detach sched domains from all of the affected cpus */
5387 detach_destroy_domains(&change_map);
5388 if (!cpus_empty(*partition1))
5389 build_sched_domains(partition1);
5390 if (!cpus_empty(*partition2))
5391 build_sched_domains(partition2);
5394 #ifdef CONFIG_HOTPLUG_CPU
5396 * Force a reinitialization of the sched domains hierarchy. The domains
5397 * and groups cannot be updated in place without racing with the balancing
5398 * code, so we temporarily attach all running cpus to the NULL domain
5399 * which will prevent rebalancing while the sched domains are recalculated.
5401 static int update_sched_domains(struct notifier_block *nfb,
5402 unsigned long action, void *hcpu)
5404 switch (action) {
5405 case CPU_UP_PREPARE:
5406 case CPU_DOWN_PREPARE:
5407 detach_destroy_domains(&cpu_online_map);
5408 return NOTIFY_OK;
5410 case CPU_UP_CANCELED:
5411 case CPU_DOWN_FAILED:
5412 case CPU_ONLINE:
5413 case CPU_DEAD:
5415 * Fall through and re-initialise the domains.
5417 break;
5418 default:
5419 return NOTIFY_DONE;
5422 /* The hotplug lock is already held by cpu_up/cpu_down */
5423 arch_init_sched_domains(&cpu_online_map);
5425 return NOTIFY_OK;
5427 #endif
5429 void __init sched_init_smp(void)
5431 lock_cpu_hotplug();
5432 arch_init_sched_domains(&cpu_online_map);
5433 unlock_cpu_hotplug();
5434 /* XXX: Theoretical race here - CPU may be hotplugged now */
5435 hotcpu_notifier(update_sched_domains, 0);
5437 #else
5438 void __init sched_init_smp(void)
5441 #endif /* CONFIG_SMP */
5443 int in_sched_functions(unsigned long addr)
5445 /* Linker adds these: start and end of __sched functions */
5446 extern char __sched_text_start[], __sched_text_end[];
5447 return in_lock_functions(addr) ||
5448 (addr >= (unsigned long)__sched_text_start
5449 && addr < (unsigned long)__sched_text_end);
5452 void __init sched_init(void)
5454 runqueue_t *rq;
5455 int i, j, k;
5457 for (i = 0; i < NR_CPUS; i++) {
5458 prio_array_t *array;
5460 rq = cpu_rq(i);
5461 spin_lock_init(&rq->lock);
5462 rq->nr_running = 0;
5463 rq->active = rq->arrays;
5464 rq->expired = rq->arrays + 1;
5465 rq->best_expired_prio = MAX_PRIO;
5467 #ifdef CONFIG_SMP
5468 rq->sd = NULL;
5469 for (j = 1; j < 3; j++)
5470 rq->cpu_load[j] = 0;
5471 rq->active_balance = 0;
5472 rq->push_cpu = 0;
5473 rq->migration_thread = NULL;
5474 INIT_LIST_HEAD(&rq->migration_queue);
5475 #endif
5476 atomic_set(&rq->nr_iowait, 0);
5478 for (j = 0; j < 2; j++) {
5479 array = rq->arrays + j;
5480 for (k = 0; k < MAX_PRIO; k++) {
5481 INIT_LIST_HEAD(array->queue + k);
5482 __clear_bit(k, array->bitmap);
5484 // delimiter for bitsearch
5485 __set_bit(MAX_PRIO, array->bitmap);
5490 * The boot idle thread does lazy MMU switching as well:
5492 atomic_inc(&init_mm.mm_count);
5493 enter_lazy_tlb(&init_mm, current);
5496 * Make us the idle thread. Technically, schedule() should not be
5497 * called from this thread, however somewhere below it might be,
5498 * but because we are the idle thread, we just pick up running again
5499 * when this runqueue becomes "idle".
5501 init_idle(current, smp_processor_id());
5504 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5505 void __might_sleep(char *file, int line)
5507 #if defined(in_atomic)
5508 static unsigned long prev_jiffy; /* ratelimiting */
5510 if ((in_atomic() || irqs_disabled()) &&
5511 system_state == SYSTEM_RUNNING && !oops_in_progress) {
5512 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5513 return;
5514 prev_jiffy = jiffies;
5515 printk(KERN_ERR "Debug: sleeping function called from invalid"
5516 " context at %s:%d\n", file, line);
5517 printk("in_atomic():%d, irqs_disabled():%d\n",
5518 in_atomic(), irqs_disabled());
5519 dump_stack();
5521 #endif
5523 EXPORT_SYMBOL(__might_sleep);
5524 #endif
5526 #ifdef CONFIG_MAGIC_SYSRQ
5527 void normalize_rt_tasks(void)
5529 struct task_struct *p;
5530 prio_array_t *array;
5531 unsigned long flags;
5532 runqueue_t *rq;
5534 read_lock_irq(&tasklist_lock);
5535 for_each_process (p) {
5536 if (!rt_task(p))
5537 continue;
5539 rq = task_rq_lock(p, &flags);
5541 array = p->array;
5542 if (array)
5543 deactivate_task(p, task_rq(p));
5544 __setscheduler(p, SCHED_NORMAL, 0);
5545 if (array) {
5546 __activate_task(p, task_rq(p));
5547 resched_task(rq->curr);
5550 task_rq_unlock(rq, &flags);
5552 read_unlock_irq(&tasklist_lock);
5555 #endif /* CONFIG_MAGIC_SYSRQ */