[PATCH] ieee80211: Mixed PTK/GTK CCMP/TKIP support
[linux-2.6/sactl.git] / kernel / cpuset.c
blob79866bc6b3a154d06c4b42daa3daec60aa96ebd9
1 /*
2 * kernel/cpuset.c
4 * Processor and Memory placement constraints for sets of tasks.
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004 Silicon Graphics, Inc.
9 * Portions derived from Patrick Mochel's sysfs code.
10 * sysfs is Copyright (c) 2001-3 Patrick Mochel
11 * Portions Copyright (c) 2004 Silicon Graphics, Inc.
13 * 2003-10-10 Written by Simon Derr <simon.derr@bull.net>
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson <pj@sgi.com>
17 * This file is subject to the terms and conditions of the GNU General Public
18 * License. See the file COPYING in the main directory of the Linux
19 * distribution for more details.
22 #include <linux/config.h>
23 #include <linux/cpu.h>
24 #include <linux/cpumask.h>
25 #include <linux/cpuset.h>
26 #include <linux/err.h>
27 #include <linux/errno.h>
28 #include <linux/file.h>
29 #include <linux/fs.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/kernel.h>
33 #include <linux/kmod.h>
34 #include <linux/list.h>
35 #include <linux/mm.h>
36 #include <linux/module.h>
37 #include <linux/mount.h>
38 #include <linux/namei.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/sched.h>
42 #include <linux/seq_file.h>
43 #include <linux/slab.h>
44 #include <linux/smp_lock.h>
45 #include <linux/spinlock.h>
46 #include <linux/stat.h>
47 #include <linux/string.h>
48 #include <linux/time.h>
49 #include <linux/backing-dev.h>
50 #include <linux/sort.h>
52 #include <asm/uaccess.h>
53 #include <asm/atomic.h>
54 #include <asm/semaphore.h>
56 #define CPUSET_SUPER_MAGIC 0x27e0eb
58 struct cpuset {
59 unsigned long flags; /* "unsigned long" so bitops work */
60 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
61 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
63 atomic_t count; /* count tasks using this cpuset */
66 * We link our 'sibling' struct into our parents 'children'.
67 * Our children link their 'sibling' into our 'children'.
69 struct list_head sibling; /* my parents children */
70 struct list_head children; /* my children */
72 struct cpuset *parent; /* my parent */
73 struct dentry *dentry; /* cpuset fs entry */
76 * Copy of global cpuset_mems_generation as of the most
77 * recent time this cpuset changed its mems_allowed.
79 int mems_generation;
82 /* bits in struct cpuset flags field */
83 typedef enum {
84 CS_CPU_EXCLUSIVE,
85 CS_MEM_EXCLUSIVE,
86 CS_REMOVED,
87 CS_NOTIFY_ON_RELEASE
88 } cpuset_flagbits_t;
90 /* convenient tests for these bits */
91 static inline int is_cpu_exclusive(const struct cpuset *cs)
93 return !!test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
96 static inline int is_mem_exclusive(const struct cpuset *cs)
98 return !!test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
101 static inline int is_removed(const struct cpuset *cs)
103 return !!test_bit(CS_REMOVED, &cs->flags);
106 static inline int notify_on_release(const struct cpuset *cs)
108 return !!test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
112 * Increment this atomic integer everytime any cpuset changes its
113 * mems_allowed value. Users of cpusets can track this generation
114 * number, and avoid having to lock and reload mems_allowed unless
115 * the cpuset they're using changes generation.
117 * A single, global generation is needed because attach_task() could
118 * reattach a task to a different cpuset, which must not have its
119 * generation numbers aliased with those of that tasks previous cpuset.
121 * Generations are needed for mems_allowed because one task cannot
122 * modify anothers memory placement. So we must enable every task,
123 * on every visit to __alloc_pages(), to efficiently check whether
124 * its current->cpuset->mems_allowed has changed, requiring an update
125 * of its current->mems_allowed.
127 static atomic_t cpuset_mems_generation = ATOMIC_INIT(1);
129 static struct cpuset top_cpuset = {
130 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
131 .cpus_allowed = CPU_MASK_ALL,
132 .mems_allowed = NODE_MASK_ALL,
133 .count = ATOMIC_INIT(0),
134 .sibling = LIST_HEAD_INIT(top_cpuset.sibling),
135 .children = LIST_HEAD_INIT(top_cpuset.children),
136 .parent = NULL,
137 .dentry = NULL,
138 .mems_generation = 0,
141 static struct vfsmount *cpuset_mount;
142 static struct super_block *cpuset_sb = NULL;
145 * cpuset_sem should be held by anyone who is depending on the children
146 * or sibling lists of any cpuset, or performing non-atomic operations
147 * on the flags or *_allowed values of a cpuset, such as raising the
148 * CS_REMOVED flag bit iff it is not already raised, or reading and
149 * conditionally modifying the *_allowed values. One kernel global
150 * cpuset semaphore should be sufficient - these things don't change
151 * that much.
153 * The code that modifies cpusets holds cpuset_sem across the entire
154 * operation, from cpuset_common_file_write() down, single threading
155 * all cpuset modifications (except for counter manipulations from
156 * fork and exit) across the system. This presumes that cpuset
157 * modifications are rare - better kept simple and safe, even if slow.
159 * The code that reads cpusets, such as in cpuset_common_file_read()
160 * and below, only holds cpuset_sem across small pieces of code, such
161 * as when reading out possibly multi-word cpumasks and nodemasks, as
162 * the risks are less, and the desire for performance a little greater.
163 * The proc_cpuset_show() routine needs to hold cpuset_sem to insure
164 * that no cs->dentry is NULL, as it walks up the cpuset tree to root.
166 * The hooks from fork and exit, cpuset_fork() and cpuset_exit(), don't
167 * (usually) grab cpuset_sem. These are the two most performance
168 * critical pieces of code here. The exception occurs on exit(),
169 * when a task in a notify_on_release cpuset exits. Then cpuset_sem
170 * is taken, and if the cpuset count is zero, a usermode call made
171 * to /sbin/cpuset_release_agent with the name of the cpuset (path
172 * relative to the root of cpuset file system) as the argument.
174 * A cpuset can only be deleted if both its 'count' of using tasks is
175 * zero, and its list of 'children' cpusets is empty. Since all tasks
176 * in the system use _some_ cpuset, and since there is always at least
177 * one task in the system (init, pid == 1), therefore, top_cpuset
178 * always has either children cpusets and/or using tasks. So no need
179 * for any special hack to ensure that top_cpuset cannot be deleted.
182 static DECLARE_MUTEX(cpuset_sem);
183 static struct task_struct *cpuset_sem_owner;
184 static int cpuset_sem_depth;
187 * The global cpuset semaphore cpuset_sem can be needed by the
188 * memory allocator to update a tasks mems_allowed (see the calls
189 * to cpuset_update_current_mems_allowed()) or to walk up the
190 * cpuset hierarchy to find a mem_exclusive cpuset see the calls
191 * to cpuset_excl_nodes_overlap()).
193 * But if the memory allocation is being done by cpuset.c code, it
194 * usually already holds cpuset_sem. Double tripping on a kernel
195 * semaphore deadlocks the current task, and any other task that
196 * subsequently tries to obtain the lock.
198 * Run all up's and down's on cpuset_sem through the following
199 * wrappers, which will detect this nested locking, and avoid
200 * deadlocking.
203 static inline void cpuset_down(struct semaphore *psem)
205 if (cpuset_sem_owner != current) {
206 down(psem);
207 cpuset_sem_owner = current;
209 cpuset_sem_depth++;
212 static inline void cpuset_up(struct semaphore *psem)
214 if (--cpuset_sem_depth == 0) {
215 cpuset_sem_owner = NULL;
216 up(psem);
221 * A couple of forward declarations required, due to cyclic reference loop:
222 * cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file
223 * -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir.
226 static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode);
227 static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry);
229 static struct backing_dev_info cpuset_backing_dev_info = {
230 .ra_pages = 0, /* No readahead */
231 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
234 static struct inode *cpuset_new_inode(mode_t mode)
236 struct inode *inode = new_inode(cpuset_sb);
238 if (inode) {
239 inode->i_mode = mode;
240 inode->i_uid = current->fsuid;
241 inode->i_gid = current->fsgid;
242 inode->i_blksize = PAGE_CACHE_SIZE;
243 inode->i_blocks = 0;
244 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
245 inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info;
247 return inode;
250 static void cpuset_diput(struct dentry *dentry, struct inode *inode)
252 /* is dentry a directory ? if so, kfree() associated cpuset */
253 if (S_ISDIR(inode->i_mode)) {
254 struct cpuset *cs = dentry->d_fsdata;
255 BUG_ON(!(is_removed(cs)));
256 kfree(cs);
258 iput(inode);
261 static struct dentry_operations cpuset_dops = {
262 .d_iput = cpuset_diput,
265 static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name)
267 struct dentry *d = lookup_one_len(name, parent, strlen(name));
268 if (!IS_ERR(d))
269 d->d_op = &cpuset_dops;
270 return d;
273 static void remove_dir(struct dentry *d)
275 struct dentry *parent = dget(d->d_parent);
277 d_delete(d);
278 simple_rmdir(parent->d_inode, d);
279 dput(parent);
283 * NOTE : the dentry must have been dget()'ed
285 static void cpuset_d_remove_dir(struct dentry *dentry)
287 struct list_head *node;
289 spin_lock(&dcache_lock);
290 node = dentry->d_subdirs.next;
291 while (node != &dentry->d_subdirs) {
292 struct dentry *d = list_entry(node, struct dentry, d_child);
293 list_del_init(node);
294 if (d->d_inode) {
295 d = dget_locked(d);
296 spin_unlock(&dcache_lock);
297 d_delete(d);
298 simple_unlink(dentry->d_inode, d);
299 dput(d);
300 spin_lock(&dcache_lock);
302 node = dentry->d_subdirs.next;
304 list_del_init(&dentry->d_child);
305 spin_unlock(&dcache_lock);
306 remove_dir(dentry);
309 static struct super_operations cpuset_ops = {
310 .statfs = simple_statfs,
311 .drop_inode = generic_delete_inode,
314 static int cpuset_fill_super(struct super_block *sb, void *unused_data,
315 int unused_silent)
317 struct inode *inode;
318 struct dentry *root;
320 sb->s_blocksize = PAGE_CACHE_SIZE;
321 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
322 sb->s_magic = CPUSET_SUPER_MAGIC;
323 sb->s_op = &cpuset_ops;
324 cpuset_sb = sb;
326 inode = cpuset_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR);
327 if (inode) {
328 inode->i_op = &simple_dir_inode_operations;
329 inode->i_fop = &simple_dir_operations;
330 /* directories start off with i_nlink == 2 (for "." entry) */
331 inode->i_nlink++;
332 } else {
333 return -ENOMEM;
336 root = d_alloc_root(inode);
337 if (!root) {
338 iput(inode);
339 return -ENOMEM;
341 sb->s_root = root;
342 return 0;
345 static struct super_block *cpuset_get_sb(struct file_system_type *fs_type,
346 int flags, const char *unused_dev_name,
347 void *data)
349 return get_sb_single(fs_type, flags, data, cpuset_fill_super);
352 static struct file_system_type cpuset_fs_type = {
353 .name = "cpuset",
354 .get_sb = cpuset_get_sb,
355 .kill_sb = kill_litter_super,
358 /* struct cftype:
360 * The files in the cpuset filesystem mostly have a very simple read/write
361 * handling, some common function will take care of it. Nevertheless some cases
362 * (read tasks) are special and therefore I define this structure for every
363 * kind of file.
366 * When reading/writing to a file:
367 * - the cpuset to use in file->f_dentry->d_parent->d_fsdata
368 * - the 'cftype' of the file is file->f_dentry->d_fsdata
371 struct cftype {
372 char *name;
373 int private;
374 int (*open) (struct inode *inode, struct file *file);
375 ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes,
376 loff_t *ppos);
377 int (*write) (struct file *file, const char __user *buf, size_t nbytes,
378 loff_t *ppos);
379 int (*release) (struct inode *inode, struct file *file);
382 static inline struct cpuset *__d_cs(struct dentry *dentry)
384 return dentry->d_fsdata;
387 static inline struct cftype *__d_cft(struct dentry *dentry)
389 return dentry->d_fsdata;
393 * Call with cpuset_sem held. Writes path of cpuset into buf.
394 * Returns 0 on success, -errno on error.
397 static int cpuset_path(const struct cpuset *cs, char *buf, int buflen)
399 char *start;
401 start = buf + buflen;
403 *--start = '\0';
404 for (;;) {
405 int len = cs->dentry->d_name.len;
406 if ((start -= len) < buf)
407 return -ENAMETOOLONG;
408 memcpy(start, cs->dentry->d_name.name, len);
409 cs = cs->parent;
410 if (!cs)
411 break;
412 if (!cs->parent)
413 continue;
414 if (--start < buf)
415 return -ENAMETOOLONG;
416 *start = '/';
418 memmove(buf, start, buf + buflen - start);
419 return 0;
423 * Notify userspace when a cpuset is released, by running
424 * /sbin/cpuset_release_agent with the name of the cpuset (path
425 * relative to the root of cpuset file system) as the argument.
427 * Most likely, this user command will try to rmdir this cpuset.
429 * This races with the possibility that some other task will be
430 * attached to this cpuset before it is removed, or that some other
431 * user task will 'mkdir' a child cpuset of this cpuset. That's ok.
432 * The presumed 'rmdir' will fail quietly if this cpuset is no longer
433 * unused, and this cpuset will be reprieved from its death sentence,
434 * to continue to serve a useful existence. Next time it's released,
435 * we will get notified again, if it still has 'notify_on_release' set.
437 * The final arg to call_usermodehelper() is 0, which means don't
438 * wait. The separate /sbin/cpuset_release_agent task is forked by
439 * call_usermodehelper(), then control in this thread returns here,
440 * without waiting for the release agent task. We don't bother to
441 * wait because the caller of this routine has no use for the exit
442 * status of the /sbin/cpuset_release_agent task, so no sense holding
443 * our caller up for that.
445 * The simple act of forking that task might require more memory,
446 * which might need cpuset_sem. So this routine must be called while
447 * cpuset_sem is not held, to avoid a possible deadlock. See also
448 * comments for check_for_release(), below.
451 static void cpuset_release_agent(const char *pathbuf)
453 char *argv[3], *envp[3];
454 int i;
456 if (!pathbuf)
457 return;
459 i = 0;
460 argv[i++] = "/sbin/cpuset_release_agent";
461 argv[i++] = (char *)pathbuf;
462 argv[i] = NULL;
464 i = 0;
465 /* minimal command environment */
466 envp[i++] = "HOME=/";
467 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
468 envp[i] = NULL;
470 call_usermodehelper(argv[0], argv, envp, 0);
471 kfree(pathbuf);
475 * Either cs->count of using tasks transitioned to zero, or the
476 * cs->children list of child cpusets just became empty. If this
477 * cs is notify_on_release() and now both the user count is zero and
478 * the list of children is empty, prepare cpuset path in a kmalloc'd
479 * buffer, to be returned via ppathbuf, so that the caller can invoke
480 * cpuset_release_agent() with it later on, once cpuset_sem is dropped.
481 * Call here with cpuset_sem held.
483 * This check_for_release() routine is responsible for kmalloc'ing
484 * pathbuf. The above cpuset_release_agent() is responsible for
485 * kfree'ing pathbuf. The caller of these routines is responsible
486 * for providing a pathbuf pointer, initialized to NULL, then
487 * calling check_for_release() with cpuset_sem held and the address
488 * of the pathbuf pointer, then dropping cpuset_sem, then calling
489 * cpuset_release_agent() with pathbuf, as set by check_for_release().
492 static void check_for_release(struct cpuset *cs, char **ppathbuf)
494 if (notify_on_release(cs) && atomic_read(&cs->count) == 0 &&
495 list_empty(&cs->children)) {
496 char *buf;
498 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
499 if (!buf)
500 return;
501 if (cpuset_path(cs, buf, PAGE_SIZE) < 0)
502 kfree(buf);
503 else
504 *ppathbuf = buf;
509 * Return in *pmask the portion of a cpusets's cpus_allowed that
510 * are online. If none are online, walk up the cpuset hierarchy
511 * until we find one that does have some online cpus. If we get
512 * all the way to the top and still haven't found any online cpus,
513 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
514 * task, return cpu_online_map.
516 * One way or another, we guarantee to return some non-empty subset
517 * of cpu_online_map.
519 * Call with cpuset_sem held.
522 static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
524 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
525 cs = cs->parent;
526 if (cs)
527 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
528 else
529 *pmask = cpu_online_map;
530 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
534 * Return in *pmask the portion of a cpusets's mems_allowed that
535 * are online. If none are online, walk up the cpuset hierarchy
536 * until we find one that does have some online mems. If we get
537 * all the way to the top and still haven't found any online mems,
538 * return node_online_map.
540 * One way or another, we guarantee to return some non-empty subset
541 * of node_online_map.
543 * Call with cpuset_sem held.
546 static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
548 while (cs && !nodes_intersects(cs->mems_allowed, node_online_map))
549 cs = cs->parent;
550 if (cs)
551 nodes_and(*pmask, cs->mems_allowed, node_online_map);
552 else
553 *pmask = node_online_map;
554 BUG_ON(!nodes_intersects(*pmask, node_online_map));
558 * Refresh current tasks mems_allowed and mems_generation from
559 * current tasks cpuset. Call with cpuset_sem held.
561 * This routine is needed to update the per-task mems_allowed
562 * data, within the tasks context, when it is trying to allocate
563 * memory (in various mm/mempolicy.c routines) and notices
564 * that some other task has been modifying its cpuset.
567 static void refresh_mems(void)
569 struct cpuset *cs = current->cpuset;
571 if (current->cpuset_mems_generation != cs->mems_generation) {
572 guarantee_online_mems(cs, &current->mems_allowed);
573 current->cpuset_mems_generation = cs->mems_generation;
578 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
580 * One cpuset is a subset of another if all its allowed CPUs and
581 * Memory Nodes are a subset of the other, and its exclusive flags
582 * are only set if the other's are set.
585 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
587 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
588 nodes_subset(p->mems_allowed, q->mems_allowed) &&
589 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
590 is_mem_exclusive(p) <= is_mem_exclusive(q);
594 * validate_change() - Used to validate that any proposed cpuset change
595 * follows the structural rules for cpusets.
597 * If we replaced the flag and mask values of the current cpuset
598 * (cur) with those values in the trial cpuset (trial), would
599 * our various subset and exclusive rules still be valid? Presumes
600 * cpuset_sem held.
602 * 'cur' is the address of an actual, in-use cpuset. Operations
603 * such as list traversal that depend on the actual address of the
604 * cpuset in the list must use cur below, not trial.
606 * 'trial' is the address of bulk structure copy of cur, with
607 * perhaps one or more of the fields cpus_allowed, mems_allowed,
608 * or flags changed to new, trial values.
610 * Return 0 if valid, -errno if not.
613 static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
615 struct cpuset *c, *par;
617 /* Each of our child cpusets must be a subset of us */
618 list_for_each_entry(c, &cur->children, sibling) {
619 if (!is_cpuset_subset(c, trial))
620 return -EBUSY;
623 /* Remaining checks don't apply to root cpuset */
624 if ((par = cur->parent) == NULL)
625 return 0;
627 /* We must be a subset of our parent cpuset */
628 if (!is_cpuset_subset(trial, par))
629 return -EACCES;
631 /* If either I or some sibling (!= me) is exclusive, we can't overlap */
632 list_for_each_entry(c, &par->children, sibling) {
633 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
634 c != cur &&
635 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
636 return -EINVAL;
637 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
638 c != cur &&
639 nodes_intersects(trial->mems_allowed, c->mems_allowed))
640 return -EINVAL;
643 return 0;
647 * For a given cpuset cur, partition the system as follows
648 * a. All cpus in the parent cpuset's cpus_allowed that are not part of any
649 * exclusive child cpusets
650 * b. All cpus in the current cpuset's cpus_allowed that are not part of any
651 * exclusive child cpusets
652 * Build these two partitions by calling partition_sched_domains
654 * Call with cpuset_sem held. May nest a call to the
655 * lock_cpu_hotplug()/unlock_cpu_hotplug() pair.
658 static void update_cpu_domains(struct cpuset *cur)
660 struct cpuset *c, *par = cur->parent;
661 cpumask_t pspan, cspan;
663 if (par == NULL || cpus_empty(cur->cpus_allowed))
664 return;
667 * Get all cpus from parent's cpus_allowed not part of exclusive
668 * children
670 pspan = par->cpus_allowed;
671 list_for_each_entry(c, &par->children, sibling) {
672 if (is_cpu_exclusive(c))
673 cpus_andnot(pspan, pspan, c->cpus_allowed);
675 if (is_removed(cur) || !is_cpu_exclusive(cur)) {
676 cpus_or(pspan, pspan, cur->cpus_allowed);
677 if (cpus_equal(pspan, cur->cpus_allowed))
678 return;
679 cspan = CPU_MASK_NONE;
680 } else {
681 if (cpus_empty(pspan))
682 return;
683 cspan = cur->cpus_allowed;
685 * Get all cpus from current cpuset's cpus_allowed not part
686 * of exclusive children
688 list_for_each_entry(c, &cur->children, sibling) {
689 if (is_cpu_exclusive(c))
690 cpus_andnot(cspan, cspan, c->cpus_allowed);
694 lock_cpu_hotplug();
695 partition_sched_domains(&pspan, &cspan);
696 unlock_cpu_hotplug();
699 static int update_cpumask(struct cpuset *cs, char *buf)
701 struct cpuset trialcs;
702 int retval, cpus_unchanged;
704 trialcs = *cs;
705 retval = cpulist_parse(buf, trialcs.cpus_allowed);
706 if (retval < 0)
707 return retval;
708 cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
709 if (cpus_empty(trialcs.cpus_allowed))
710 return -ENOSPC;
711 retval = validate_change(cs, &trialcs);
712 if (retval < 0)
713 return retval;
714 cpus_unchanged = cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed);
715 cs->cpus_allowed = trialcs.cpus_allowed;
716 if (is_cpu_exclusive(cs) && !cpus_unchanged)
717 update_cpu_domains(cs);
718 return 0;
721 static int update_nodemask(struct cpuset *cs, char *buf)
723 struct cpuset trialcs;
724 int retval;
726 trialcs = *cs;
727 retval = nodelist_parse(buf, trialcs.mems_allowed);
728 if (retval < 0)
729 return retval;
730 nodes_and(trialcs.mems_allowed, trialcs.mems_allowed, node_online_map);
731 if (nodes_empty(trialcs.mems_allowed))
732 return -ENOSPC;
733 retval = validate_change(cs, &trialcs);
734 if (retval == 0) {
735 cs->mems_allowed = trialcs.mems_allowed;
736 atomic_inc(&cpuset_mems_generation);
737 cs->mems_generation = atomic_read(&cpuset_mems_generation);
739 return retval;
743 * update_flag - read a 0 or a 1 in a file and update associated flag
744 * bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
745 * CS_NOTIFY_ON_RELEASE)
746 * cs: the cpuset to update
747 * buf: the buffer where we read the 0 or 1
750 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
752 int turning_on;
753 struct cpuset trialcs;
754 int err, cpu_exclusive_changed;
756 turning_on = (simple_strtoul(buf, NULL, 10) != 0);
758 trialcs = *cs;
759 if (turning_on)
760 set_bit(bit, &trialcs.flags);
761 else
762 clear_bit(bit, &trialcs.flags);
764 err = validate_change(cs, &trialcs);
765 if (err < 0)
766 return err;
767 cpu_exclusive_changed =
768 (is_cpu_exclusive(cs) != is_cpu_exclusive(&trialcs));
769 if (turning_on)
770 set_bit(bit, &cs->flags);
771 else
772 clear_bit(bit, &cs->flags);
774 if (cpu_exclusive_changed)
775 update_cpu_domains(cs);
776 return 0;
779 static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf)
781 pid_t pid;
782 struct task_struct *tsk;
783 struct cpuset *oldcs;
784 cpumask_t cpus;
786 if (sscanf(pidbuf, "%d", &pid) != 1)
787 return -EIO;
788 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
789 return -ENOSPC;
791 if (pid) {
792 read_lock(&tasklist_lock);
794 tsk = find_task_by_pid(pid);
795 if (!tsk) {
796 read_unlock(&tasklist_lock);
797 return -ESRCH;
800 get_task_struct(tsk);
801 read_unlock(&tasklist_lock);
803 if ((current->euid) && (current->euid != tsk->uid)
804 && (current->euid != tsk->suid)) {
805 put_task_struct(tsk);
806 return -EACCES;
808 } else {
809 tsk = current;
810 get_task_struct(tsk);
813 task_lock(tsk);
814 oldcs = tsk->cpuset;
815 if (!oldcs) {
816 task_unlock(tsk);
817 put_task_struct(tsk);
818 return -ESRCH;
820 atomic_inc(&cs->count);
821 tsk->cpuset = cs;
822 task_unlock(tsk);
824 guarantee_online_cpus(cs, &cpus);
825 set_cpus_allowed(tsk, cpus);
827 put_task_struct(tsk);
828 if (atomic_dec_and_test(&oldcs->count))
829 check_for_release(oldcs, ppathbuf);
830 return 0;
833 /* The various types of files and directories in a cpuset file system */
835 typedef enum {
836 FILE_ROOT,
837 FILE_DIR,
838 FILE_CPULIST,
839 FILE_MEMLIST,
840 FILE_CPU_EXCLUSIVE,
841 FILE_MEM_EXCLUSIVE,
842 FILE_NOTIFY_ON_RELEASE,
843 FILE_TASKLIST,
844 } cpuset_filetype_t;
846 static ssize_t cpuset_common_file_write(struct file *file, const char __user *userbuf,
847 size_t nbytes, loff_t *unused_ppos)
849 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
850 struct cftype *cft = __d_cft(file->f_dentry);
851 cpuset_filetype_t type = cft->private;
852 char *buffer;
853 char *pathbuf = NULL;
854 int retval = 0;
856 /* Crude upper limit on largest legitimate cpulist user might write. */
857 if (nbytes > 100 + 6 * NR_CPUS)
858 return -E2BIG;
860 /* +1 for nul-terminator */
861 if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
862 return -ENOMEM;
864 if (copy_from_user(buffer, userbuf, nbytes)) {
865 retval = -EFAULT;
866 goto out1;
868 buffer[nbytes] = 0; /* nul-terminate */
870 cpuset_down(&cpuset_sem);
872 if (is_removed(cs)) {
873 retval = -ENODEV;
874 goto out2;
877 switch (type) {
878 case FILE_CPULIST:
879 retval = update_cpumask(cs, buffer);
880 break;
881 case FILE_MEMLIST:
882 retval = update_nodemask(cs, buffer);
883 break;
884 case FILE_CPU_EXCLUSIVE:
885 retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
886 break;
887 case FILE_MEM_EXCLUSIVE:
888 retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
889 break;
890 case FILE_NOTIFY_ON_RELEASE:
891 retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer);
892 break;
893 case FILE_TASKLIST:
894 retval = attach_task(cs, buffer, &pathbuf);
895 break;
896 default:
897 retval = -EINVAL;
898 goto out2;
901 if (retval == 0)
902 retval = nbytes;
903 out2:
904 cpuset_up(&cpuset_sem);
905 cpuset_release_agent(pathbuf);
906 out1:
907 kfree(buffer);
908 return retval;
911 static ssize_t cpuset_file_write(struct file *file, const char __user *buf,
912 size_t nbytes, loff_t *ppos)
914 ssize_t retval = 0;
915 struct cftype *cft = __d_cft(file->f_dentry);
916 if (!cft)
917 return -ENODEV;
919 /* special function ? */
920 if (cft->write)
921 retval = cft->write(file, buf, nbytes, ppos);
922 else
923 retval = cpuset_common_file_write(file, buf, nbytes, ppos);
925 return retval;
929 * These ascii lists should be read in a single call, by using a user
930 * buffer large enough to hold the entire map. If read in smaller
931 * chunks, there is no guarantee of atomicity. Since the display format
932 * used, list of ranges of sequential numbers, is variable length,
933 * and since these maps can change value dynamically, one could read
934 * gibberish by doing partial reads while a list was changing.
935 * A single large read to a buffer that crosses a page boundary is
936 * ok, because the result being copied to user land is not recomputed
937 * across a page fault.
940 static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
942 cpumask_t mask;
944 cpuset_down(&cpuset_sem);
945 mask = cs->cpus_allowed;
946 cpuset_up(&cpuset_sem);
948 return cpulist_scnprintf(page, PAGE_SIZE, mask);
951 static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
953 nodemask_t mask;
955 cpuset_down(&cpuset_sem);
956 mask = cs->mems_allowed;
957 cpuset_up(&cpuset_sem);
959 return nodelist_scnprintf(page, PAGE_SIZE, mask);
962 static ssize_t cpuset_common_file_read(struct file *file, char __user *buf,
963 size_t nbytes, loff_t *ppos)
965 struct cftype *cft = __d_cft(file->f_dentry);
966 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
967 cpuset_filetype_t type = cft->private;
968 char *page;
969 ssize_t retval = 0;
970 char *s;
971 char *start;
972 size_t n;
974 if (!(page = (char *)__get_free_page(GFP_KERNEL)))
975 return -ENOMEM;
977 s = page;
979 switch (type) {
980 case FILE_CPULIST:
981 s += cpuset_sprintf_cpulist(s, cs);
982 break;
983 case FILE_MEMLIST:
984 s += cpuset_sprintf_memlist(s, cs);
985 break;
986 case FILE_CPU_EXCLUSIVE:
987 *s++ = is_cpu_exclusive(cs) ? '1' : '0';
988 break;
989 case FILE_MEM_EXCLUSIVE:
990 *s++ = is_mem_exclusive(cs) ? '1' : '0';
991 break;
992 case FILE_NOTIFY_ON_RELEASE:
993 *s++ = notify_on_release(cs) ? '1' : '0';
994 break;
995 default:
996 retval = -EINVAL;
997 goto out;
999 *s++ = '\n';
1000 *s = '\0';
1002 /* Do nothing if *ppos is at the eof or beyond the eof. */
1003 if (s - page <= *ppos)
1004 return 0;
1006 start = page + *ppos;
1007 n = s - start;
1008 retval = n - copy_to_user(buf, start, min(n, nbytes));
1009 *ppos += retval;
1010 out:
1011 free_page((unsigned long)page);
1012 return retval;
1015 static ssize_t cpuset_file_read(struct file *file, char __user *buf, size_t nbytes,
1016 loff_t *ppos)
1018 ssize_t retval = 0;
1019 struct cftype *cft = __d_cft(file->f_dentry);
1020 if (!cft)
1021 return -ENODEV;
1023 /* special function ? */
1024 if (cft->read)
1025 retval = cft->read(file, buf, nbytes, ppos);
1026 else
1027 retval = cpuset_common_file_read(file, buf, nbytes, ppos);
1029 return retval;
1032 static int cpuset_file_open(struct inode *inode, struct file *file)
1034 int err;
1035 struct cftype *cft;
1037 err = generic_file_open(inode, file);
1038 if (err)
1039 return err;
1041 cft = __d_cft(file->f_dentry);
1042 if (!cft)
1043 return -ENODEV;
1044 if (cft->open)
1045 err = cft->open(inode, file);
1046 else
1047 err = 0;
1049 return err;
1052 static int cpuset_file_release(struct inode *inode, struct file *file)
1054 struct cftype *cft = __d_cft(file->f_dentry);
1055 if (cft->release)
1056 return cft->release(inode, file);
1057 return 0;
1060 static struct file_operations cpuset_file_operations = {
1061 .read = cpuset_file_read,
1062 .write = cpuset_file_write,
1063 .llseek = generic_file_llseek,
1064 .open = cpuset_file_open,
1065 .release = cpuset_file_release,
1068 static struct inode_operations cpuset_dir_inode_operations = {
1069 .lookup = simple_lookup,
1070 .mkdir = cpuset_mkdir,
1071 .rmdir = cpuset_rmdir,
1074 static int cpuset_create_file(struct dentry *dentry, int mode)
1076 struct inode *inode;
1078 if (!dentry)
1079 return -ENOENT;
1080 if (dentry->d_inode)
1081 return -EEXIST;
1083 inode = cpuset_new_inode(mode);
1084 if (!inode)
1085 return -ENOMEM;
1087 if (S_ISDIR(mode)) {
1088 inode->i_op = &cpuset_dir_inode_operations;
1089 inode->i_fop = &simple_dir_operations;
1091 /* start off with i_nlink == 2 (for "." entry) */
1092 inode->i_nlink++;
1093 } else if (S_ISREG(mode)) {
1094 inode->i_size = 0;
1095 inode->i_fop = &cpuset_file_operations;
1098 d_instantiate(dentry, inode);
1099 dget(dentry); /* Extra count - pin the dentry in core */
1100 return 0;
1104 * cpuset_create_dir - create a directory for an object.
1105 * cs: the cpuset we create the directory for.
1106 * It must have a valid ->parent field
1107 * And we are going to fill its ->dentry field.
1108 * name: The name to give to the cpuset directory. Will be copied.
1109 * mode: mode to set on new directory.
1112 static int cpuset_create_dir(struct cpuset *cs, const char *name, int mode)
1114 struct dentry *dentry = NULL;
1115 struct dentry *parent;
1116 int error = 0;
1118 parent = cs->parent->dentry;
1119 dentry = cpuset_get_dentry(parent, name);
1120 if (IS_ERR(dentry))
1121 return PTR_ERR(dentry);
1122 error = cpuset_create_file(dentry, S_IFDIR | mode);
1123 if (!error) {
1124 dentry->d_fsdata = cs;
1125 parent->d_inode->i_nlink++;
1126 cs->dentry = dentry;
1128 dput(dentry);
1130 return error;
1133 static int cpuset_add_file(struct dentry *dir, const struct cftype *cft)
1135 struct dentry *dentry;
1136 int error;
1138 down(&dir->d_inode->i_sem);
1139 dentry = cpuset_get_dentry(dir, cft->name);
1140 if (!IS_ERR(dentry)) {
1141 error = cpuset_create_file(dentry, 0644 | S_IFREG);
1142 if (!error)
1143 dentry->d_fsdata = (void *)cft;
1144 dput(dentry);
1145 } else
1146 error = PTR_ERR(dentry);
1147 up(&dir->d_inode->i_sem);
1148 return error;
1152 * Stuff for reading the 'tasks' file.
1154 * Reading this file can return large amounts of data if a cpuset has
1155 * *lots* of attached tasks. So it may need several calls to read(),
1156 * but we cannot guarantee that the information we produce is correct
1157 * unless we produce it entirely atomically.
1159 * Upon tasks file open(), a struct ctr_struct is allocated, that
1160 * will have a pointer to an array (also allocated here). The struct
1161 * ctr_struct * is stored in file->private_data. Its resources will
1162 * be freed by release() when the file is closed. The array is used
1163 * to sprintf the PIDs and then used by read().
1166 /* cpusets_tasks_read array */
1168 struct ctr_struct {
1169 char *buf;
1170 int bufsz;
1174 * Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'.
1175 * Return actual number of pids loaded.
1177 static inline int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs)
1179 int n = 0;
1180 struct task_struct *g, *p;
1182 read_lock(&tasklist_lock);
1184 do_each_thread(g, p) {
1185 if (p->cpuset == cs) {
1186 pidarray[n++] = p->pid;
1187 if (unlikely(n == npids))
1188 goto array_full;
1190 } while_each_thread(g, p);
1192 array_full:
1193 read_unlock(&tasklist_lock);
1194 return n;
1197 static int cmppid(const void *a, const void *b)
1199 return *(pid_t *)a - *(pid_t *)b;
1203 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
1204 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
1205 * count 'cnt' of how many chars would be written if buf were large enough.
1207 static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
1209 int cnt = 0;
1210 int i;
1212 for (i = 0; i < npids; i++)
1213 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
1214 return cnt;
1217 static int cpuset_tasks_open(struct inode *unused, struct file *file)
1219 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
1220 struct ctr_struct *ctr;
1221 pid_t *pidarray;
1222 int npids;
1223 char c;
1225 if (!(file->f_mode & FMODE_READ))
1226 return 0;
1228 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
1229 if (!ctr)
1230 goto err0;
1233 * If cpuset gets more users after we read count, we won't have
1234 * enough space - tough. This race is indistinguishable to the
1235 * caller from the case that the additional cpuset users didn't
1236 * show up until sometime later on.
1238 npids = atomic_read(&cs->count);
1239 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
1240 if (!pidarray)
1241 goto err1;
1243 npids = pid_array_load(pidarray, npids, cs);
1244 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
1246 /* Call pid_array_to_buf() twice, first just to get bufsz */
1247 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
1248 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
1249 if (!ctr->buf)
1250 goto err2;
1251 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
1253 kfree(pidarray);
1254 file->private_data = ctr;
1255 return 0;
1257 err2:
1258 kfree(pidarray);
1259 err1:
1260 kfree(ctr);
1261 err0:
1262 return -ENOMEM;
1265 static ssize_t cpuset_tasks_read(struct file *file, char __user *buf,
1266 size_t nbytes, loff_t *ppos)
1268 struct ctr_struct *ctr = file->private_data;
1270 if (*ppos + nbytes > ctr->bufsz)
1271 nbytes = ctr->bufsz - *ppos;
1272 if (copy_to_user(buf, ctr->buf + *ppos, nbytes))
1273 return -EFAULT;
1274 *ppos += nbytes;
1275 return nbytes;
1278 static int cpuset_tasks_release(struct inode *unused_inode, struct file *file)
1280 struct ctr_struct *ctr;
1282 if (file->f_mode & FMODE_READ) {
1283 ctr = file->private_data;
1284 kfree(ctr->buf);
1285 kfree(ctr);
1287 return 0;
1291 * for the common functions, 'private' gives the type of file
1294 static struct cftype cft_tasks = {
1295 .name = "tasks",
1296 .open = cpuset_tasks_open,
1297 .read = cpuset_tasks_read,
1298 .release = cpuset_tasks_release,
1299 .private = FILE_TASKLIST,
1302 static struct cftype cft_cpus = {
1303 .name = "cpus",
1304 .private = FILE_CPULIST,
1307 static struct cftype cft_mems = {
1308 .name = "mems",
1309 .private = FILE_MEMLIST,
1312 static struct cftype cft_cpu_exclusive = {
1313 .name = "cpu_exclusive",
1314 .private = FILE_CPU_EXCLUSIVE,
1317 static struct cftype cft_mem_exclusive = {
1318 .name = "mem_exclusive",
1319 .private = FILE_MEM_EXCLUSIVE,
1322 static struct cftype cft_notify_on_release = {
1323 .name = "notify_on_release",
1324 .private = FILE_NOTIFY_ON_RELEASE,
1327 static int cpuset_populate_dir(struct dentry *cs_dentry)
1329 int err;
1331 if ((err = cpuset_add_file(cs_dentry, &cft_cpus)) < 0)
1332 return err;
1333 if ((err = cpuset_add_file(cs_dentry, &cft_mems)) < 0)
1334 return err;
1335 if ((err = cpuset_add_file(cs_dentry, &cft_cpu_exclusive)) < 0)
1336 return err;
1337 if ((err = cpuset_add_file(cs_dentry, &cft_mem_exclusive)) < 0)
1338 return err;
1339 if ((err = cpuset_add_file(cs_dentry, &cft_notify_on_release)) < 0)
1340 return err;
1341 if ((err = cpuset_add_file(cs_dentry, &cft_tasks)) < 0)
1342 return err;
1343 return 0;
1347 * cpuset_create - create a cpuset
1348 * parent: cpuset that will be parent of the new cpuset.
1349 * name: name of the new cpuset. Will be strcpy'ed.
1350 * mode: mode to set on new inode
1352 * Must be called with the semaphore on the parent inode held
1355 static long cpuset_create(struct cpuset *parent, const char *name, int mode)
1357 struct cpuset *cs;
1358 int err;
1360 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1361 if (!cs)
1362 return -ENOMEM;
1364 cpuset_down(&cpuset_sem);
1365 cs->flags = 0;
1366 if (notify_on_release(parent))
1367 set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
1368 cs->cpus_allowed = CPU_MASK_NONE;
1369 cs->mems_allowed = NODE_MASK_NONE;
1370 atomic_set(&cs->count, 0);
1371 INIT_LIST_HEAD(&cs->sibling);
1372 INIT_LIST_HEAD(&cs->children);
1373 atomic_inc(&cpuset_mems_generation);
1374 cs->mems_generation = atomic_read(&cpuset_mems_generation);
1376 cs->parent = parent;
1378 list_add(&cs->sibling, &cs->parent->children);
1380 err = cpuset_create_dir(cs, name, mode);
1381 if (err < 0)
1382 goto err;
1385 * Release cpuset_sem before cpuset_populate_dir() because it
1386 * will down() this new directory's i_sem and if we race with
1387 * another mkdir, we might deadlock.
1389 cpuset_up(&cpuset_sem);
1391 err = cpuset_populate_dir(cs->dentry);
1392 /* If err < 0, we have a half-filled directory - oh well ;) */
1393 return 0;
1394 err:
1395 list_del(&cs->sibling);
1396 cpuset_up(&cpuset_sem);
1397 kfree(cs);
1398 return err;
1401 static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1403 struct cpuset *c_parent = dentry->d_parent->d_fsdata;
1405 /* the vfs holds inode->i_sem already */
1406 return cpuset_create(c_parent, dentry->d_name.name, mode | S_IFDIR);
1409 static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry)
1411 struct cpuset *cs = dentry->d_fsdata;
1412 struct dentry *d;
1413 struct cpuset *parent;
1414 char *pathbuf = NULL;
1416 /* the vfs holds both inode->i_sem already */
1418 cpuset_down(&cpuset_sem);
1419 if (atomic_read(&cs->count) > 0) {
1420 cpuset_up(&cpuset_sem);
1421 return -EBUSY;
1423 if (!list_empty(&cs->children)) {
1424 cpuset_up(&cpuset_sem);
1425 return -EBUSY;
1427 parent = cs->parent;
1428 set_bit(CS_REMOVED, &cs->flags);
1429 if (is_cpu_exclusive(cs))
1430 update_cpu_domains(cs);
1431 list_del(&cs->sibling); /* delete my sibling from parent->children */
1432 if (list_empty(&parent->children))
1433 check_for_release(parent, &pathbuf);
1434 spin_lock(&cs->dentry->d_lock);
1435 d = dget(cs->dentry);
1436 cs->dentry = NULL;
1437 spin_unlock(&d->d_lock);
1438 cpuset_d_remove_dir(d);
1439 dput(d);
1440 cpuset_up(&cpuset_sem);
1441 cpuset_release_agent(pathbuf);
1442 return 0;
1446 * cpuset_init - initialize cpusets at system boot
1448 * Description: Initialize top_cpuset and the cpuset internal file system,
1451 int __init cpuset_init(void)
1453 struct dentry *root;
1454 int err;
1456 top_cpuset.cpus_allowed = CPU_MASK_ALL;
1457 top_cpuset.mems_allowed = NODE_MASK_ALL;
1459 atomic_inc(&cpuset_mems_generation);
1460 top_cpuset.mems_generation = atomic_read(&cpuset_mems_generation);
1462 init_task.cpuset = &top_cpuset;
1464 err = register_filesystem(&cpuset_fs_type);
1465 if (err < 0)
1466 goto out;
1467 cpuset_mount = kern_mount(&cpuset_fs_type);
1468 if (IS_ERR(cpuset_mount)) {
1469 printk(KERN_ERR "cpuset: could not mount!\n");
1470 err = PTR_ERR(cpuset_mount);
1471 cpuset_mount = NULL;
1472 goto out;
1474 root = cpuset_mount->mnt_sb->s_root;
1475 root->d_fsdata = &top_cpuset;
1476 root->d_inode->i_nlink++;
1477 top_cpuset.dentry = root;
1478 root->d_inode->i_op = &cpuset_dir_inode_operations;
1479 err = cpuset_populate_dir(root);
1480 out:
1481 return err;
1485 * cpuset_init_smp - initialize cpus_allowed
1487 * Description: Finish top cpuset after cpu, node maps are initialized
1490 void __init cpuset_init_smp(void)
1492 top_cpuset.cpus_allowed = cpu_online_map;
1493 top_cpuset.mems_allowed = node_online_map;
1497 * cpuset_fork - attach newly forked task to its parents cpuset.
1498 * @tsk: pointer to task_struct of forking parent process.
1500 * Description: By default, on fork, a task inherits its
1501 * parent's cpuset. The pointer to the shared cpuset is
1502 * automatically copied in fork.c by dup_task_struct().
1503 * This cpuset_fork() routine need only increment the usage
1504 * counter in that cpuset.
1507 void cpuset_fork(struct task_struct *tsk)
1509 atomic_inc(&tsk->cpuset->count);
1513 * cpuset_exit - detach cpuset from exiting task
1514 * @tsk: pointer to task_struct of exiting process
1516 * Description: Detach cpuset from @tsk and release it.
1518 * Note that cpusets marked notify_on_release force every task
1519 * in them to take the global cpuset_sem semaphore when exiting.
1520 * This could impact scaling on very large systems. Be reluctant
1521 * to use notify_on_release cpusets where very high task exit
1522 * scaling is required on large systems.
1524 * Don't even think about derefencing 'cs' after the cpuset use
1525 * count goes to zero, except inside a critical section guarded
1526 * by the cpuset_sem semaphore. If you don't hold cpuset_sem,
1527 * then a zero cpuset use count is a license to any other task to
1528 * nuke the cpuset immediately.
1531 void cpuset_exit(struct task_struct *tsk)
1533 struct cpuset *cs;
1535 task_lock(tsk);
1536 cs = tsk->cpuset;
1537 tsk->cpuset = NULL;
1538 task_unlock(tsk);
1540 if (notify_on_release(cs)) {
1541 char *pathbuf = NULL;
1543 cpuset_down(&cpuset_sem);
1544 if (atomic_dec_and_test(&cs->count))
1545 check_for_release(cs, &pathbuf);
1546 cpuset_up(&cpuset_sem);
1547 cpuset_release_agent(pathbuf);
1548 } else {
1549 atomic_dec(&cs->count);
1554 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
1555 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
1557 * Description: Returns the cpumask_t cpus_allowed of the cpuset
1558 * attached to the specified @tsk. Guaranteed to return some non-empty
1559 * subset of cpu_online_map, even if this means going outside the
1560 * tasks cpuset.
1563 cpumask_t cpuset_cpus_allowed(const struct task_struct *tsk)
1565 cpumask_t mask;
1567 cpuset_down(&cpuset_sem);
1568 task_lock((struct task_struct *)tsk);
1569 guarantee_online_cpus(tsk->cpuset, &mask);
1570 task_unlock((struct task_struct *)tsk);
1571 cpuset_up(&cpuset_sem);
1573 return mask;
1576 void cpuset_init_current_mems_allowed(void)
1578 current->mems_allowed = NODE_MASK_ALL;
1582 * cpuset_update_current_mems_allowed - update mems parameters to new values
1584 * If the current tasks cpusets mems_allowed changed behind our backs,
1585 * update current->mems_allowed and mems_generation to the new value.
1586 * Do not call this routine if in_interrupt().
1589 void cpuset_update_current_mems_allowed(void)
1591 struct cpuset *cs = current->cpuset;
1593 if (!cs)
1594 return; /* task is exiting */
1595 if (current->cpuset_mems_generation != cs->mems_generation) {
1596 cpuset_down(&cpuset_sem);
1597 refresh_mems();
1598 cpuset_up(&cpuset_sem);
1603 * cpuset_restrict_to_mems_allowed - limit nodes to current mems_allowed
1604 * @nodes: pointer to a node bitmap that is and-ed with mems_allowed
1606 void cpuset_restrict_to_mems_allowed(unsigned long *nodes)
1608 bitmap_and(nodes, nodes, nodes_addr(current->mems_allowed),
1609 MAX_NUMNODES);
1613 * cpuset_zonelist_valid_mems_allowed - check zonelist vs. curremt mems_allowed
1614 * @zl: the zonelist to be checked
1616 * Are any of the nodes on zonelist zl allowed in current->mems_allowed?
1618 int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl)
1620 int i;
1622 for (i = 0; zl->zones[i]; i++) {
1623 int nid = zl->zones[i]->zone_pgdat->node_id;
1625 if (node_isset(nid, current->mems_allowed))
1626 return 1;
1628 return 0;
1632 * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive
1633 * ancestor to the specified cpuset. Call while holding cpuset_sem.
1634 * If no ancestor is mem_exclusive (an unusual configuration), then
1635 * returns the root cpuset.
1637 static const struct cpuset *nearest_exclusive_ancestor(const struct cpuset *cs)
1639 while (!is_mem_exclusive(cs) && cs->parent)
1640 cs = cs->parent;
1641 return cs;
1645 * cpuset_zone_allowed - Can we allocate memory on zone z's memory node?
1646 * @z: is this zone on an allowed node?
1647 * @gfp_mask: memory allocation flags (we use __GFP_HARDWALL)
1649 * If we're in interrupt, yes, we can always allocate. If zone
1650 * z's node is in our tasks mems_allowed, yes. If it's not a
1651 * __GFP_HARDWALL request and this zone's nodes is in the nearest
1652 * mem_exclusive cpuset ancestor to this tasks cpuset, yes.
1653 * Otherwise, no.
1655 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
1656 * and do not allow allocations outside the current tasks cpuset.
1657 * GFP_KERNEL allocations are not so marked, so can escape to the
1658 * nearest mem_exclusive ancestor cpuset.
1660 * Scanning up parent cpusets requires cpuset_sem. The __alloc_pages()
1661 * routine only calls here with __GFP_HARDWALL bit _not_ set if
1662 * it's a GFP_KERNEL allocation, and all nodes in the current tasks
1663 * mems_allowed came up empty on the first pass over the zonelist.
1664 * So only GFP_KERNEL allocations, if all nodes in the cpuset are
1665 * short of memory, might require taking the cpuset_sem semaphore.
1667 * The first loop over the zonelist in mm/page_alloc.c:__alloc_pages()
1668 * calls here with __GFP_HARDWALL always set in gfp_mask, enforcing
1669 * hardwall cpusets - no allocation on a node outside the cpuset is
1670 * allowed (unless in interrupt, of course).
1672 * The second loop doesn't even call here for GFP_ATOMIC requests
1673 * (if the __alloc_pages() local variable 'wait' is set). That check
1674 * and the checks below have the combined affect in the second loop of
1675 * the __alloc_pages() routine that:
1676 * in_interrupt - any node ok (current task context irrelevant)
1677 * GFP_ATOMIC - any node ok
1678 * GFP_KERNEL - any node in enclosing mem_exclusive cpuset ok
1679 * GFP_USER - only nodes in current tasks mems allowed ok.
1682 int cpuset_zone_allowed(struct zone *z, unsigned int __nocast gfp_mask)
1684 int node; /* node that zone z is on */
1685 const struct cpuset *cs; /* current cpuset ancestors */
1686 int allowed = 1; /* is allocation in zone z allowed? */
1688 if (in_interrupt())
1689 return 1;
1690 node = z->zone_pgdat->node_id;
1691 if (node_isset(node, current->mems_allowed))
1692 return 1;
1693 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
1694 return 0;
1696 /* Not hardwall and node outside mems_allowed: scan up cpusets */
1697 cpuset_down(&cpuset_sem);
1698 cs = current->cpuset;
1699 if (!cs)
1700 goto done; /* current task exiting */
1701 cs = nearest_exclusive_ancestor(cs);
1702 allowed = node_isset(node, cs->mems_allowed);
1703 done:
1704 cpuset_up(&cpuset_sem);
1705 return allowed;
1709 * cpuset_excl_nodes_overlap - Do we overlap @p's mem_exclusive ancestors?
1710 * @p: pointer to task_struct of some other task.
1712 * Description: Return true if the nearest mem_exclusive ancestor
1713 * cpusets of tasks @p and current overlap. Used by oom killer to
1714 * determine if task @p's memory usage might impact the memory
1715 * available to the current task.
1717 * Acquires cpuset_sem - not suitable for calling from a fast path.
1720 int cpuset_excl_nodes_overlap(const struct task_struct *p)
1722 const struct cpuset *cs1, *cs2; /* my and p's cpuset ancestors */
1723 int overlap = 0; /* do cpusets overlap? */
1725 cpuset_down(&cpuset_sem);
1726 cs1 = current->cpuset;
1727 if (!cs1)
1728 goto done; /* current task exiting */
1729 cs2 = p->cpuset;
1730 if (!cs2)
1731 goto done; /* task p is exiting */
1732 cs1 = nearest_exclusive_ancestor(cs1);
1733 cs2 = nearest_exclusive_ancestor(cs2);
1734 overlap = nodes_intersects(cs1->mems_allowed, cs2->mems_allowed);
1735 done:
1736 cpuset_up(&cpuset_sem);
1738 return overlap;
1742 * proc_cpuset_show()
1743 * - Print tasks cpuset path into seq_file.
1744 * - Used for /proc/<pid>/cpuset.
1747 static int proc_cpuset_show(struct seq_file *m, void *v)
1749 struct cpuset *cs;
1750 struct task_struct *tsk;
1751 char *buf;
1752 int retval = 0;
1754 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1755 if (!buf)
1756 return -ENOMEM;
1758 tsk = m->private;
1759 cpuset_down(&cpuset_sem);
1760 task_lock(tsk);
1761 cs = tsk->cpuset;
1762 task_unlock(tsk);
1763 if (!cs) {
1764 retval = -EINVAL;
1765 goto out;
1768 retval = cpuset_path(cs, buf, PAGE_SIZE);
1769 if (retval < 0)
1770 goto out;
1771 seq_puts(m, buf);
1772 seq_putc(m, '\n');
1773 out:
1774 cpuset_up(&cpuset_sem);
1775 kfree(buf);
1776 return retval;
1779 static int cpuset_open(struct inode *inode, struct file *file)
1781 struct task_struct *tsk = PROC_I(inode)->task;
1782 return single_open(file, proc_cpuset_show, tsk);
1785 struct file_operations proc_cpuset_operations = {
1786 .open = cpuset_open,
1787 .read = seq_read,
1788 .llseek = seq_lseek,
1789 .release = single_release,
1792 /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
1793 char *cpuset_task_status_allowed(struct task_struct *task, char *buffer)
1795 buffer += sprintf(buffer, "Cpus_allowed:\t");
1796 buffer += cpumask_scnprintf(buffer, PAGE_SIZE, task->cpus_allowed);
1797 buffer += sprintf(buffer, "\n");
1798 buffer += sprintf(buffer, "Mems_allowed:\t");
1799 buffer += nodemask_scnprintf(buffer, PAGE_SIZE, task->mems_allowed);
1800 buffer += sprintf(buffer, "\n");
1801 return buffer;