[PATCH] tty locking on resize
[linux-2.6/sactl.git] / drivers / char / tty_io.c
blob2a1e95b0f2827e1184d64890aaf942540b4b0593
1 /*
2 * linux/drivers/char/tty_io.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
52 * Rewrote init_dev and release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc() -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched.h>
74 #include <linux/interrupt.h>
75 #include <linux/tty.h>
76 #include <linux/tty_driver.h>
77 #include <linux/tty_flip.h>
78 #include <linux/devpts_fs.h>
79 #include <linux/file.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/smp_lock.h>
92 #include <linux/device.h>
93 #include <linux/idr.h>
94 #include <linux/wait.h>
95 #include <linux/bitops.h>
96 #include <linux/delay.h>
98 #include <asm/uaccess.h>
99 #include <asm/system.h>
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
105 #include <linux/kmod.h>
107 #undef TTY_DEBUG_HANGUP
109 #define TTY_PARANOIA_CHECK 1
110 #define CHECK_TTY_COUNT 1
112 struct termios tty_std_termios = { /* for the benefit of tty drivers */
113 .c_iflag = ICRNL | IXON,
114 .c_oflag = OPOST | ONLCR,
115 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
116 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
117 ECHOCTL | ECHOKE | IEXTEN,
118 .c_cc = INIT_C_CC
121 EXPORT_SYMBOL(tty_std_termios);
123 /* This list gets poked at by procfs and various bits of boot up code. This
124 could do with some rationalisation such as pulling the tty proc function
125 into this file */
127 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
129 /* Semaphore to protect creating and releasing a tty. This is shared with
130 vt.c for deeply disgusting hack reasons */
131 DEFINE_MUTEX(tty_mutex);
133 #ifdef CONFIG_UNIX98_PTYS
134 extern struct tty_driver *ptm_driver; /* Unix98 pty masters; for /dev/ptmx */
135 extern int pty_limit; /* Config limit on Unix98 ptys */
136 static DEFINE_IDR(allocated_ptys);
137 static DECLARE_MUTEX(allocated_ptys_lock);
138 static int ptmx_open(struct inode *, struct file *);
139 #endif
141 extern void disable_early_printk(void);
143 static void initialize_tty_struct(struct tty_struct *tty);
145 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
146 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
147 ssize_t redirected_tty_write(struct file *, const char __user *, size_t, loff_t *);
148 static unsigned int tty_poll(struct file *, poll_table *);
149 static int tty_open(struct inode *, struct file *);
150 static int tty_release(struct inode *, struct file *);
151 int tty_ioctl(struct inode * inode, struct file * file,
152 unsigned int cmd, unsigned long arg);
153 static int tty_fasync(int fd, struct file * filp, int on);
154 static void release_mem(struct tty_struct *tty, int idx);
157 * alloc_tty_struct - allocate a tty object
159 * Return a new empty tty structure. The data fields have not
160 * been initialized in any way but has been zeroed
162 * Locking: none
163 * FIXME: use kzalloc
166 static struct tty_struct *alloc_tty_struct(void)
168 struct tty_struct *tty;
170 tty = kmalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 if (tty)
172 memset(tty, 0, sizeof(struct tty_struct));
173 return tty;
176 static void tty_buffer_free_all(struct tty_struct *);
179 * free_tty_struct - free a disused tty
180 * @tty: tty struct to free
182 * Free the write buffers, tty queue and tty memory itself.
184 * Locking: none. Must be called after tty is definitely unused
187 static inline void free_tty_struct(struct tty_struct *tty)
189 kfree(tty->write_buf);
190 tty_buffer_free_all(tty);
191 kfree(tty);
194 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
197 * tty_name - return tty naming
198 * @tty: tty structure
199 * @buf: buffer for output
201 * Convert a tty structure into a name. The name reflects the kernel
202 * naming policy and if udev is in use may not reflect user space
204 * Locking: none
207 char *tty_name(struct tty_struct *tty, char *buf)
209 if (!tty) /* Hmm. NULL pointer. That's fun. */
210 strcpy(buf, "NULL tty");
211 else
212 strcpy(buf, tty->name);
213 return buf;
216 EXPORT_SYMBOL(tty_name);
218 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
219 const char *routine)
221 #ifdef TTY_PARANOIA_CHECK
222 if (!tty) {
223 printk(KERN_WARNING
224 "null TTY for (%d:%d) in %s\n",
225 imajor(inode), iminor(inode), routine);
226 return 1;
228 if (tty->magic != TTY_MAGIC) {
229 printk(KERN_WARNING
230 "bad magic number for tty struct (%d:%d) in %s\n",
231 imajor(inode), iminor(inode), routine);
232 return 1;
234 #endif
235 return 0;
238 static int check_tty_count(struct tty_struct *tty, const char *routine)
240 #ifdef CHECK_TTY_COUNT
241 struct list_head *p;
242 int count = 0;
244 file_list_lock();
245 list_for_each(p, &tty->tty_files) {
246 count++;
248 file_list_unlock();
249 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
250 tty->driver->subtype == PTY_TYPE_SLAVE &&
251 tty->link && tty->link->count)
252 count++;
253 if (tty->count != count) {
254 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
255 "!= #fd's(%d) in %s\n",
256 tty->name, tty->count, count, routine);
257 return count;
259 #endif
260 return 0;
264 * Tty buffer allocation management
269 * tty_buffer_free_all - free buffers used by a tty
270 * @tty: tty to free from
272 * Remove all the buffers pending on a tty whether queued with data
273 * or in the free ring. Must be called when the tty is no longer in use
275 * Locking: none
280 * tty_buffer_free_all - free buffers used by a tty
281 * @tty: tty to free from
283 * Remove all the buffers pending on a tty whether queued with data
284 * or in the free ring. Must be called when the tty is no longer in use
286 * Locking: none
289 static void tty_buffer_free_all(struct tty_struct *tty)
291 struct tty_buffer *thead;
292 while((thead = tty->buf.head) != NULL) {
293 tty->buf.head = thead->next;
294 kfree(thead);
296 while((thead = tty->buf.free) != NULL) {
297 tty->buf.free = thead->next;
298 kfree(thead);
300 tty->buf.tail = NULL;
301 tty->buf.memory_used = 0;
305 * tty_buffer_init - prepare a tty buffer structure
306 * @tty: tty to initialise
308 * Set up the initial state of the buffer management for a tty device.
309 * Must be called before the other tty buffer functions are used.
311 * Locking: none
314 static void tty_buffer_init(struct tty_struct *tty)
316 spin_lock_init(&tty->buf.lock);
317 tty->buf.head = NULL;
318 tty->buf.tail = NULL;
319 tty->buf.free = NULL;
320 tty->buf.memory_used = 0;
324 * tty_buffer_alloc - allocate a tty buffer
325 * @tty: tty device
326 * @size: desired size (characters)
328 * Allocate a new tty buffer to hold the desired number of characters.
329 * Return NULL if out of memory or the allocation would exceed the
330 * per device queue
332 * Locking: Caller must hold tty->buf.lock
335 static struct tty_buffer *tty_buffer_alloc(struct tty_struct *tty, size_t size)
337 struct tty_buffer *p;
339 if (tty->buf.memory_used + size > 65536)
340 return NULL;
341 p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
342 if(p == NULL)
343 return NULL;
344 p->used = 0;
345 p->size = size;
346 p->next = NULL;
347 p->commit = 0;
348 p->read = 0;
349 p->char_buf_ptr = (char *)(p->data);
350 p->flag_buf_ptr = (unsigned char *)p->char_buf_ptr + size;
351 tty->buf.memory_used += size;
352 return p;
356 * tty_buffer_free - free a tty buffer
357 * @tty: tty owning the buffer
358 * @b: the buffer to free
360 * Free a tty buffer, or add it to the free list according to our
361 * internal strategy
363 * Locking: Caller must hold tty->buf.lock
366 static void tty_buffer_free(struct tty_struct *tty, struct tty_buffer *b)
368 /* Dumb strategy for now - should keep some stats */
369 tty->buf.memory_used -= b->size;
370 WARN_ON(tty->buf.memory_used < 0);
372 if(b->size >= 512)
373 kfree(b);
374 else {
375 b->next = tty->buf.free;
376 tty->buf.free = b;
381 * tty_buffer_find - find a free tty buffer
382 * @tty: tty owning the buffer
383 * @size: characters wanted
385 * Locate an existing suitable tty buffer or if we are lacking one then
386 * allocate a new one. We round our buffers off in 256 character chunks
387 * to get better allocation behaviour.
389 * Locking: Caller must hold tty->buf.lock
392 static struct tty_buffer *tty_buffer_find(struct tty_struct *tty, size_t size)
394 struct tty_buffer **tbh = &tty->buf.free;
395 while((*tbh) != NULL) {
396 struct tty_buffer *t = *tbh;
397 if(t->size >= size) {
398 *tbh = t->next;
399 t->next = NULL;
400 t->used = 0;
401 t->commit = 0;
402 t->read = 0;
403 tty->buf.memory_used += t->size;
404 return t;
406 tbh = &((*tbh)->next);
408 /* Round the buffer size out */
409 size = (size + 0xFF) & ~ 0xFF;
410 return tty_buffer_alloc(tty, size);
411 /* Should possibly check if this fails for the largest buffer we
412 have queued and recycle that ? */
416 * tty_buffer_request_room - grow tty buffer if needed
417 * @tty: tty structure
418 * @size: size desired
420 * Make at least size bytes of linear space available for the tty
421 * buffer. If we fail return the size we managed to find.
423 * Locking: Takes tty->buf.lock
425 int tty_buffer_request_room(struct tty_struct *tty, size_t size)
427 struct tty_buffer *b, *n;
428 int left;
429 unsigned long flags;
431 spin_lock_irqsave(&tty->buf.lock, flags);
433 /* OPTIMISATION: We could keep a per tty "zero" sized buffer to
434 remove this conditional if its worth it. This would be invisible
435 to the callers */
436 if ((b = tty->buf.tail) != NULL)
437 left = b->size - b->used;
438 else
439 left = 0;
441 if (left < size) {
442 /* This is the slow path - looking for new buffers to use */
443 if ((n = tty_buffer_find(tty, size)) != NULL) {
444 if (b != NULL) {
445 b->next = n;
446 b->commit = b->used;
447 } else
448 tty->buf.head = n;
449 tty->buf.tail = n;
450 } else
451 size = left;
454 spin_unlock_irqrestore(&tty->buf.lock, flags);
455 return size;
457 EXPORT_SYMBOL_GPL(tty_buffer_request_room);
460 * tty_insert_flip_string - Add characters to the tty buffer
461 * @tty: tty structure
462 * @chars: characters
463 * @size: size
465 * Queue a series of bytes to the tty buffering. All the characters
466 * passed are marked as without error. Returns the number added.
468 * Locking: Called functions may take tty->buf.lock
471 int tty_insert_flip_string(struct tty_struct *tty, const unsigned char *chars,
472 size_t size)
474 int copied = 0;
475 do {
476 int space = tty_buffer_request_room(tty, size - copied);
477 struct tty_buffer *tb = tty->buf.tail;
478 /* If there is no space then tb may be NULL */
479 if(unlikely(space == 0))
480 break;
481 memcpy(tb->char_buf_ptr + tb->used, chars, space);
482 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
483 tb->used += space;
484 copied += space;
485 chars += space;
486 /* There is a small chance that we need to split the data over
487 several buffers. If this is the case we must loop */
488 } while (unlikely(size > copied));
489 return copied;
491 EXPORT_SYMBOL(tty_insert_flip_string);
494 * tty_insert_flip_string_flags - Add characters to the tty buffer
495 * @tty: tty structure
496 * @chars: characters
497 * @flags: flag bytes
498 * @size: size
500 * Queue a series of bytes to the tty buffering. For each character
501 * the flags array indicates the status of the character. Returns the
502 * number added.
504 * Locking: Called functions may take tty->buf.lock
507 int tty_insert_flip_string_flags(struct tty_struct *tty,
508 const unsigned char *chars, const char *flags, size_t size)
510 int copied = 0;
511 do {
512 int space = tty_buffer_request_room(tty, size - copied);
513 struct tty_buffer *tb = tty->buf.tail;
514 /* If there is no space then tb may be NULL */
515 if(unlikely(space == 0))
516 break;
517 memcpy(tb->char_buf_ptr + tb->used, chars, space);
518 memcpy(tb->flag_buf_ptr + tb->used, flags, space);
519 tb->used += space;
520 copied += space;
521 chars += space;
522 flags += space;
523 /* There is a small chance that we need to split the data over
524 several buffers. If this is the case we must loop */
525 } while (unlikely(size > copied));
526 return copied;
528 EXPORT_SYMBOL(tty_insert_flip_string_flags);
531 * tty_schedule_flip - push characters to ldisc
532 * @tty: tty to push from
534 * Takes any pending buffers and transfers their ownership to the
535 * ldisc side of the queue. It then schedules those characters for
536 * processing by the line discipline.
538 * Locking: Takes tty->buf.lock
541 void tty_schedule_flip(struct tty_struct *tty)
543 unsigned long flags;
544 spin_lock_irqsave(&tty->buf.lock, flags);
545 if (tty->buf.tail != NULL)
546 tty->buf.tail->commit = tty->buf.tail->used;
547 spin_unlock_irqrestore(&tty->buf.lock, flags);
548 schedule_delayed_work(&tty->buf.work, 1);
550 EXPORT_SYMBOL(tty_schedule_flip);
553 * tty_prepare_flip_string - make room for characters
554 * @tty: tty
555 * @chars: return pointer for character write area
556 * @size: desired size
558 * Prepare a block of space in the buffer for data. Returns the length
559 * available and buffer pointer to the space which is now allocated and
560 * accounted for as ready for normal characters. This is used for drivers
561 * that need their own block copy routines into the buffer. There is no
562 * guarantee the buffer is a DMA target!
564 * Locking: May call functions taking tty->buf.lock
567 int tty_prepare_flip_string(struct tty_struct *tty, unsigned char **chars, size_t size)
569 int space = tty_buffer_request_room(tty, size);
570 if (likely(space)) {
571 struct tty_buffer *tb = tty->buf.tail;
572 *chars = tb->char_buf_ptr + tb->used;
573 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
574 tb->used += space;
576 return space;
579 EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
582 * tty_prepare_flip_string_flags - make room for characters
583 * @tty: tty
584 * @chars: return pointer for character write area
585 * @flags: return pointer for status flag write area
586 * @size: desired size
588 * Prepare a block of space in the buffer for data. Returns the length
589 * available and buffer pointer to the space which is now allocated and
590 * accounted for as ready for characters. This is used for drivers
591 * that need their own block copy routines into the buffer. There is no
592 * guarantee the buffer is a DMA target!
594 * Locking: May call functions taking tty->buf.lock
597 int tty_prepare_flip_string_flags(struct tty_struct *tty, unsigned char **chars, char **flags, size_t size)
599 int space = tty_buffer_request_room(tty, size);
600 if (likely(space)) {
601 struct tty_buffer *tb = tty->buf.tail;
602 *chars = tb->char_buf_ptr + tb->used;
603 *flags = tb->flag_buf_ptr + tb->used;
604 tb->used += space;
606 return space;
609 EXPORT_SYMBOL_GPL(tty_prepare_flip_string_flags);
614 * tty_set_termios_ldisc - set ldisc field
615 * @tty: tty structure
616 * @num: line discipline number
618 * This is probably overkill for real world processors but
619 * they are not on hot paths so a little discipline won't do
620 * any harm.
622 * Locking: takes termios_sem
625 static void tty_set_termios_ldisc(struct tty_struct *tty, int num)
627 down(&tty->termios_sem);
628 tty->termios->c_line = num;
629 up(&tty->termios_sem);
633 * This guards the refcounted line discipline lists. The lock
634 * must be taken with irqs off because there are hangup path
635 * callers who will do ldisc lookups and cannot sleep.
638 static DEFINE_SPINLOCK(tty_ldisc_lock);
639 static DECLARE_WAIT_QUEUE_HEAD(tty_ldisc_wait);
640 static struct tty_ldisc tty_ldiscs[NR_LDISCS]; /* line disc dispatch table */
643 * tty_register_ldisc - install a line discipline
644 * @disc: ldisc number
645 * @new_ldisc: pointer to the ldisc object
647 * Installs a new line discipline into the kernel. The discipline
648 * is set up as unreferenced and then made available to the kernel
649 * from this point onwards.
651 * Locking:
652 * takes tty_ldisc_lock to guard against ldisc races
655 int tty_register_ldisc(int disc, struct tty_ldisc *new_ldisc)
657 unsigned long flags;
658 int ret = 0;
660 if (disc < N_TTY || disc >= NR_LDISCS)
661 return -EINVAL;
663 spin_lock_irqsave(&tty_ldisc_lock, flags);
664 tty_ldiscs[disc] = *new_ldisc;
665 tty_ldiscs[disc].num = disc;
666 tty_ldiscs[disc].flags |= LDISC_FLAG_DEFINED;
667 tty_ldiscs[disc].refcount = 0;
668 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
670 return ret;
672 EXPORT_SYMBOL(tty_register_ldisc);
675 * tty_unregister_ldisc - unload a line discipline
676 * @disc: ldisc number
677 * @new_ldisc: pointer to the ldisc object
679 * Remove a line discipline from the kernel providing it is not
680 * currently in use.
682 * Locking:
683 * takes tty_ldisc_lock to guard against ldisc races
686 int tty_unregister_ldisc(int disc)
688 unsigned long flags;
689 int ret = 0;
691 if (disc < N_TTY || disc >= NR_LDISCS)
692 return -EINVAL;
694 spin_lock_irqsave(&tty_ldisc_lock, flags);
695 if (tty_ldiscs[disc].refcount)
696 ret = -EBUSY;
697 else
698 tty_ldiscs[disc].flags &= ~LDISC_FLAG_DEFINED;
699 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
701 return ret;
703 EXPORT_SYMBOL(tty_unregister_ldisc);
706 * tty_ldisc_get - take a reference to an ldisc
707 * @disc: ldisc number
709 * Takes a reference to a line discipline. Deals with refcounts and
710 * module locking counts. Returns NULL if the discipline is not available.
711 * Returns a pointer to the discipline and bumps the ref count if it is
712 * available
714 * Locking:
715 * takes tty_ldisc_lock to guard against ldisc races
718 struct tty_ldisc *tty_ldisc_get(int disc)
720 unsigned long flags;
721 struct tty_ldisc *ld;
723 if (disc < N_TTY || disc >= NR_LDISCS)
724 return NULL;
726 spin_lock_irqsave(&tty_ldisc_lock, flags);
728 ld = &tty_ldiscs[disc];
729 /* Check the entry is defined */
730 if(ld->flags & LDISC_FLAG_DEFINED)
732 /* If the module is being unloaded we can't use it */
733 if (!try_module_get(ld->owner))
734 ld = NULL;
735 else /* lock it */
736 ld->refcount++;
738 else
739 ld = NULL;
740 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
741 return ld;
744 EXPORT_SYMBOL_GPL(tty_ldisc_get);
747 * tty_ldisc_put - drop ldisc reference
748 * @disc: ldisc number
750 * Drop a reference to a line discipline. Manage refcounts and
751 * module usage counts
753 * Locking:
754 * takes tty_ldisc_lock to guard against ldisc races
757 void tty_ldisc_put(int disc)
759 struct tty_ldisc *ld;
760 unsigned long flags;
762 BUG_ON(disc < N_TTY || disc >= NR_LDISCS);
764 spin_lock_irqsave(&tty_ldisc_lock, flags);
765 ld = &tty_ldiscs[disc];
766 BUG_ON(ld->refcount == 0);
767 ld->refcount--;
768 module_put(ld->owner);
769 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
772 EXPORT_SYMBOL_GPL(tty_ldisc_put);
775 * tty_ldisc_assign - set ldisc on a tty
776 * @tty: tty to assign
777 * @ld: line discipline
779 * Install an instance of a line discipline into a tty structure. The
780 * ldisc must have a reference count above zero to ensure it remains/
781 * The tty instance refcount starts at zero.
783 * Locking:
784 * Caller must hold references
787 static void tty_ldisc_assign(struct tty_struct *tty, struct tty_ldisc *ld)
789 tty->ldisc = *ld;
790 tty->ldisc.refcount = 0;
794 * tty_ldisc_try - internal helper
795 * @tty: the tty
797 * Make a single attempt to grab and bump the refcount on
798 * the tty ldisc. Return 0 on failure or 1 on success. This is
799 * used to implement both the waiting and non waiting versions
800 * of tty_ldisc_ref
802 * Locking: takes tty_ldisc_lock
805 static int tty_ldisc_try(struct tty_struct *tty)
807 unsigned long flags;
808 struct tty_ldisc *ld;
809 int ret = 0;
811 spin_lock_irqsave(&tty_ldisc_lock, flags);
812 ld = &tty->ldisc;
813 if(test_bit(TTY_LDISC, &tty->flags))
815 ld->refcount++;
816 ret = 1;
818 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
819 return ret;
823 * tty_ldisc_ref_wait - wait for the tty ldisc
824 * @tty: tty device
826 * Dereference the line discipline for the terminal and take a
827 * reference to it. If the line discipline is in flux then
828 * wait patiently until it changes.
830 * Note: Must not be called from an IRQ/timer context. The caller
831 * must also be careful not to hold other locks that will deadlock
832 * against a discipline change, such as an existing ldisc reference
833 * (which we check for)
835 * Locking: call functions take tty_ldisc_lock
838 struct tty_ldisc *tty_ldisc_ref_wait(struct tty_struct *tty)
840 /* wait_event is a macro */
841 wait_event(tty_ldisc_wait, tty_ldisc_try(tty));
842 if(tty->ldisc.refcount == 0)
843 printk(KERN_ERR "tty_ldisc_ref_wait\n");
844 return &tty->ldisc;
847 EXPORT_SYMBOL_GPL(tty_ldisc_ref_wait);
850 * tty_ldisc_ref - get the tty ldisc
851 * @tty: tty device
853 * Dereference the line discipline for the terminal and take a
854 * reference to it. If the line discipline is in flux then
855 * return NULL. Can be called from IRQ and timer functions.
857 * Locking: called functions take tty_ldisc_lock
860 struct tty_ldisc *tty_ldisc_ref(struct tty_struct *tty)
862 if(tty_ldisc_try(tty))
863 return &tty->ldisc;
864 return NULL;
867 EXPORT_SYMBOL_GPL(tty_ldisc_ref);
870 * tty_ldisc_deref - free a tty ldisc reference
871 * @ld: reference to free up
873 * Undoes the effect of tty_ldisc_ref or tty_ldisc_ref_wait. May
874 * be called in IRQ context.
876 * Locking: takes tty_ldisc_lock
879 void tty_ldisc_deref(struct tty_ldisc *ld)
881 unsigned long flags;
883 BUG_ON(ld == NULL);
885 spin_lock_irqsave(&tty_ldisc_lock, flags);
886 if(ld->refcount == 0)
887 printk(KERN_ERR "tty_ldisc_deref: no references.\n");
888 else
889 ld->refcount--;
890 if(ld->refcount == 0)
891 wake_up(&tty_ldisc_wait);
892 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
895 EXPORT_SYMBOL_GPL(tty_ldisc_deref);
898 * tty_ldisc_enable - allow ldisc use
899 * @tty: terminal to activate ldisc on
901 * Set the TTY_LDISC flag when the line discipline can be called
902 * again. Do neccessary wakeups for existing sleepers.
904 * Note: nobody should set this bit except via this function. Clearing
905 * directly is allowed.
908 static void tty_ldisc_enable(struct tty_struct *tty)
910 set_bit(TTY_LDISC, &tty->flags);
911 wake_up(&tty_ldisc_wait);
915 * tty_set_ldisc - set line discipline
916 * @tty: the terminal to set
917 * @ldisc: the line discipline
919 * Set the discipline of a tty line. Must be called from a process
920 * context.
922 * Locking: takes tty_ldisc_lock.
923 * called functions take termios_sem
926 static int tty_set_ldisc(struct tty_struct *tty, int ldisc)
928 int retval = 0;
929 struct tty_ldisc o_ldisc;
930 char buf[64];
931 int work;
932 unsigned long flags;
933 struct tty_ldisc *ld;
934 struct tty_struct *o_tty;
936 if ((ldisc < N_TTY) || (ldisc >= NR_LDISCS))
937 return -EINVAL;
939 restart:
941 ld = tty_ldisc_get(ldisc);
942 /* Eduardo Blanco <ejbs@cs.cs.com.uy> */
943 /* Cyrus Durgin <cider@speakeasy.org> */
944 if (ld == NULL) {
945 request_module("tty-ldisc-%d", ldisc);
946 ld = tty_ldisc_get(ldisc);
948 if (ld == NULL)
949 return -EINVAL;
952 * No more input please, we are switching. The new ldisc
953 * will update this value in the ldisc open function
956 tty->receive_room = 0;
959 * Problem: What do we do if this blocks ?
962 tty_wait_until_sent(tty, 0);
964 if (tty->ldisc.num == ldisc) {
965 tty_ldisc_put(ldisc);
966 return 0;
969 o_ldisc = tty->ldisc;
970 o_tty = tty->link;
973 * Make sure we don't change while someone holds a
974 * reference to the line discipline. The TTY_LDISC bit
975 * prevents anyone taking a reference once it is clear.
976 * We need the lock to avoid racing reference takers.
979 spin_lock_irqsave(&tty_ldisc_lock, flags);
980 if (tty->ldisc.refcount || (o_tty && o_tty->ldisc.refcount)) {
981 if(tty->ldisc.refcount) {
982 /* Free the new ldisc we grabbed. Must drop the lock
983 first. */
984 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
985 tty_ldisc_put(ldisc);
987 * There are several reasons we may be busy, including
988 * random momentary I/O traffic. We must therefore
989 * retry. We could distinguish between blocking ops
990 * and retries if we made tty_ldisc_wait() smarter. That
991 * is up for discussion.
993 if (wait_event_interruptible(tty_ldisc_wait, tty->ldisc.refcount == 0) < 0)
994 return -ERESTARTSYS;
995 goto restart;
997 if(o_tty && o_tty->ldisc.refcount) {
998 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
999 tty_ldisc_put(ldisc);
1000 if (wait_event_interruptible(tty_ldisc_wait, o_tty->ldisc.refcount == 0) < 0)
1001 return -ERESTARTSYS;
1002 goto restart;
1006 /* if the TTY_LDISC bit is set, then we are racing against another ldisc change */
1008 if (!test_bit(TTY_LDISC, &tty->flags)) {
1009 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1010 tty_ldisc_put(ldisc);
1011 ld = tty_ldisc_ref_wait(tty);
1012 tty_ldisc_deref(ld);
1013 goto restart;
1016 clear_bit(TTY_LDISC, &tty->flags);
1017 if (o_tty)
1018 clear_bit(TTY_LDISC, &o_tty->flags);
1019 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1022 * From this point on we know nobody has an ldisc
1023 * usage reference, nor can they obtain one until
1024 * we say so later on.
1027 work = cancel_delayed_work(&tty->buf.work);
1029 * Wait for ->hangup_work and ->buf.work handlers to terminate
1032 flush_scheduled_work();
1033 /* Shutdown the current discipline. */
1034 if (tty->ldisc.close)
1035 (tty->ldisc.close)(tty);
1037 /* Now set up the new line discipline. */
1038 tty_ldisc_assign(tty, ld);
1039 tty_set_termios_ldisc(tty, ldisc);
1040 if (tty->ldisc.open)
1041 retval = (tty->ldisc.open)(tty);
1042 if (retval < 0) {
1043 tty_ldisc_put(ldisc);
1044 /* There is an outstanding reference here so this is safe */
1045 tty_ldisc_assign(tty, tty_ldisc_get(o_ldisc.num));
1046 tty_set_termios_ldisc(tty, tty->ldisc.num);
1047 if (tty->ldisc.open && (tty->ldisc.open(tty) < 0)) {
1048 tty_ldisc_put(o_ldisc.num);
1049 /* This driver is always present */
1050 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
1051 tty_set_termios_ldisc(tty, N_TTY);
1052 if (tty->ldisc.open) {
1053 int r = tty->ldisc.open(tty);
1055 if (r < 0)
1056 panic("Couldn't open N_TTY ldisc for "
1057 "%s --- error %d.",
1058 tty_name(tty, buf), r);
1062 /* At this point we hold a reference to the new ldisc and a
1063 a reference to the old ldisc. If we ended up flipping back
1064 to the existing ldisc we have two references to it */
1066 if (tty->ldisc.num != o_ldisc.num && tty->driver->set_ldisc)
1067 tty->driver->set_ldisc(tty);
1069 tty_ldisc_put(o_ldisc.num);
1072 * Allow ldisc referencing to occur as soon as the driver
1073 * ldisc callback completes.
1076 tty_ldisc_enable(tty);
1077 if (o_tty)
1078 tty_ldisc_enable(o_tty);
1080 /* Restart it in case no characters kick it off. Safe if
1081 already running */
1082 if (work)
1083 schedule_delayed_work(&tty->buf.work, 1);
1084 return retval;
1088 * get_tty_driver - find device of a tty
1089 * @dev_t: device identifier
1090 * @index: returns the index of the tty
1092 * This routine returns a tty driver structure, given a device number
1093 * and also passes back the index number.
1095 * Locking: caller must hold tty_mutex
1098 static struct tty_driver *get_tty_driver(dev_t device, int *index)
1100 struct tty_driver *p;
1102 list_for_each_entry(p, &tty_drivers, tty_drivers) {
1103 dev_t base = MKDEV(p->major, p->minor_start);
1104 if (device < base || device >= base + p->num)
1105 continue;
1106 *index = device - base;
1107 return p;
1109 return NULL;
1113 * tty_check_change - check for POSIX terminal changes
1114 * @tty: tty to check
1116 * If we try to write to, or set the state of, a terminal and we're
1117 * not in the foreground, send a SIGTTOU. If the signal is blocked or
1118 * ignored, go ahead and perform the operation. (POSIX 7.2)
1120 * Locking: none
1123 int tty_check_change(struct tty_struct * tty)
1125 if (current->signal->tty != tty)
1126 return 0;
1127 if (tty->pgrp <= 0) {
1128 printk(KERN_WARNING "tty_check_change: tty->pgrp <= 0!\n");
1129 return 0;
1131 if (process_group(current) == tty->pgrp)
1132 return 0;
1133 if (is_ignored(SIGTTOU))
1134 return 0;
1135 if (is_orphaned_pgrp(process_group(current)))
1136 return -EIO;
1137 (void) kill_pg(process_group(current), SIGTTOU, 1);
1138 return -ERESTARTSYS;
1141 EXPORT_SYMBOL(tty_check_change);
1143 static ssize_t hung_up_tty_read(struct file * file, char __user * buf,
1144 size_t count, loff_t *ppos)
1146 return 0;
1149 static ssize_t hung_up_tty_write(struct file * file, const char __user * buf,
1150 size_t count, loff_t *ppos)
1152 return -EIO;
1155 /* No kernel lock held - none needed ;) */
1156 static unsigned int hung_up_tty_poll(struct file * filp, poll_table * wait)
1158 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
1161 static int hung_up_tty_ioctl(struct inode * inode, struct file * file,
1162 unsigned int cmd, unsigned long arg)
1164 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1167 static const struct file_operations tty_fops = {
1168 .llseek = no_llseek,
1169 .read = tty_read,
1170 .write = tty_write,
1171 .poll = tty_poll,
1172 .ioctl = tty_ioctl,
1173 .open = tty_open,
1174 .release = tty_release,
1175 .fasync = tty_fasync,
1178 #ifdef CONFIG_UNIX98_PTYS
1179 static const struct file_operations ptmx_fops = {
1180 .llseek = no_llseek,
1181 .read = tty_read,
1182 .write = tty_write,
1183 .poll = tty_poll,
1184 .ioctl = tty_ioctl,
1185 .open = ptmx_open,
1186 .release = tty_release,
1187 .fasync = tty_fasync,
1189 #endif
1191 static const struct file_operations console_fops = {
1192 .llseek = no_llseek,
1193 .read = tty_read,
1194 .write = redirected_tty_write,
1195 .poll = tty_poll,
1196 .ioctl = tty_ioctl,
1197 .open = tty_open,
1198 .release = tty_release,
1199 .fasync = tty_fasync,
1202 static const struct file_operations hung_up_tty_fops = {
1203 .llseek = no_llseek,
1204 .read = hung_up_tty_read,
1205 .write = hung_up_tty_write,
1206 .poll = hung_up_tty_poll,
1207 .ioctl = hung_up_tty_ioctl,
1208 .release = tty_release,
1211 static DEFINE_SPINLOCK(redirect_lock);
1212 static struct file *redirect;
1215 * tty_wakeup - request more data
1216 * @tty: terminal
1218 * Internal and external helper for wakeups of tty. This function
1219 * informs the line discipline if present that the driver is ready
1220 * to receive more output data.
1223 void tty_wakeup(struct tty_struct *tty)
1225 struct tty_ldisc *ld;
1227 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
1228 ld = tty_ldisc_ref(tty);
1229 if(ld) {
1230 if(ld->write_wakeup)
1231 ld->write_wakeup(tty);
1232 tty_ldisc_deref(ld);
1235 wake_up_interruptible(&tty->write_wait);
1238 EXPORT_SYMBOL_GPL(tty_wakeup);
1241 * tty_ldisc_flush - flush line discipline queue
1242 * @tty: tty
1244 * Flush the line discipline queue (if any) for this tty. If there
1245 * is no line discipline active this is a no-op.
1248 void tty_ldisc_flush(struct tty_struct *tty)
1250 struct tty_ldisc *ld = tty_ldisc_ref(tty);
1251 if(ld) {
1252 if(ld->flush_buffer)
1253 ld->flush_buffer(tty);
1254 tty_ldisc_deref(ld);
1258 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
1261 * do_tty_hangup - actual handler for hangup events
1262 * @data: tty device
1264 * This can be called by the "eventd" kernel thread. That is process
1265 * synchronous but doesn't hold any locks, so we need to make sure we
1266 * have the appropriate locks for what we're doing.
1268 * The hangup event clears any pending redirections onto the hung up
1269 * device. It ensures future writes will error and it does the needed
1270 * line discipline hangup and signal delivery. The tty object itself
1271 * remains intact.
1273 * Locking:
1274 * BKL
1275 * redirect lock for undoing redirection
1276 * file list lock for manipulating list of ttys
1277 * tty_ldisc_lock from called functions
1278 * termios_sem resetting termios data
1279 * tasklist_lock to walk task list for hangup event
1282 static void do_tty_hangup(void *data)
1284 struct tty_struct *tty = (struct tty_struct *) data;
1285 struct file * cons_filp = NULL;
1286 struct file *filp, *f = NULL;
1287 struct task_struct *p;
1288 struct tty_ldisc *ld;
1289 int closecount = 0, n;
1291 if (!tty)
1292 return;
1294 /* inuse_filps is protected by the single kernel lock */
1295 lock_kernel();
1297 spin_lock(&redirect_lock);
1298 if (redirect && redirect->private_data == tty) {
1299 f = redirect;
1300 redirect = NULL;
1302 spin_unlock(&redirect_lock);
1304 check_tty_count(tty, "do_tty_hangup");
1305 file_list_lock();
1306 /* This breaks for file handles being sent over AF_UNIX sockets ? */
1307 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
1308 if (filp->f_op->write == redirected_tty_write)
1309 cons_filp = filp;
1310 if (filp->f_op->write != tty_write)
1311 continue;
1312 closecount++;
1313 tty_fasync(-1, filp, 0); /* can't block */
1314 filp->f_op = &hung_up_tty_fops;
1316 file_list_unlock();
1318 /* FIXME! What are the locking issues here? This may me overdoing things..
1319 * this question is especially important now that we've removed the irqlock. */
1321 ld = tty_ldisc_ref(tty);
1322 if(ld != NULL) /* We may have no line discipline at this point */
1324 if (ld->flush_buffer)
1325 ld->flush_buffer(tty);
1326 if (tty->driver->flush_buffer)
1327 tty->driver->flush_buffer(tty);
1328 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
1329 ld->write_wakeup)
1330 ld->write_wakeup(tty);
1331 if (ld->hangup)
1332 ld->hangup(tty);
1335 /* FIXME: Once we trust the LDISC code better we can wait here for
1336 ldisc completion and fix the driver call race */
1338 wake_up_interruptible(&tty->write_wait);
1339 wake_up_interruptible(&tty->read_wait);
1342 * Shutdown the current line discipline, and reset it to
1343 * N_TTY.
1345 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1347 down(&tty->termios_sem);
1348 *tty->termios = tty->driver->init_termios;
1349 up(&tty->termios_sem);
1352 /* Defer ldisc switch */
1353 /* tty_deferred_ldisc_switch(N_TTY);
1355 This should get done automatically when the port closes and
1356 tty_release is called */
1358 read_lock(&tasklist_lock);
1359 if (tty->session > 0) {
1360 do_each_task_pid(tty->session, PIDTYPE_SID, p) {
1361 if (p->signal->tty == tty)
1362 p->signal->tty = NULL;
1363 if (!p->signal->leader)
1364 continue;
1365 group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
1366 group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
1367 if (tty->pgrp > 0)
1368 p->signal->tty_old_pgrp = tty->pgrp;
1369 } while_each_task_pid(tty->session, PIDTYPE_SID, p);
1371 read_unlock(&tasklist_lock);
1373 tty->flags = 0;
1374 tty->session = 0;
1375 tty->pgrp = -1;
1376 tty->ctrl_status = 0;
1378 * If one of the devices matches a console pointer, we
1379 * cannot just call hangup() because that will cause
1380 * tty->count and state->count to go out of sync.
1381 * So we just call close() the right number of times.
1383 if (cons_filp) {
1384 if (tty->driver->close)
1385 for (n = 0; n < closecount; n++)
1386 tty->driver->close(tty, cons_filp);
1387 } else if (tty->driver->hangup)
1388 (tty->driver->hangup)(tty);
1390 /* We don't want to have driver/ldisc interactions beyond
1391 the ones we did here. The driver layer expects no
1392 calls after ->hangup() from the ldisc side. However we
1393 can't yet guarantee all that */
1395 set_bit(TTY_HUPPED, &tty->flags);
1396 if (ld) {
1397 tty_ldisc_enable(tty);
1398 tty_ldisc_deref(ld);
1400 unlock_kernel();
1401 if (f)
1402 fput(f);
1406 * tty_hangup - trigger a hangup event
1407 * @tty: tty to hangup
1409 * A carrier loss (virtual or otherwise) has occurred on this like
1410 * schedule a hangup sequence to run after this event.
1413 void tty_hangup(struct tty_struct * tty)
1415 #ifdef TTY_DEBUG_HANGUP
1416 char buf[64];
1418 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
1419 #endif
1420 schedule_work(&tty->hangup_work);
1423 EXPORT_SYMBOL(tty_hangup);
1426 * tty_vhangup - process vhangup
1427 * @tty: tty to hangup
1429 * The user has asked via system call for the terminal to be hung up.
1430 * We do this synchronously so that when the syscall returns the process
1431 * is complete. That guarantee is neccessary for security reasons.
1434 void tty_vhangup(struct tty_struct * tty)
1436 #ifdef TTY_DEBUG_HANGUP
1437 char buf[64];
1439 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
1440 #endif
1441 do_tty_hangup((void *) tty);
1443 EXPORT_SYMBOL(tty_vhangup);
1446 * tty_hung_up_p - was tty hung up
1447 * @filp: file pointer of tty
1449 * Return true if the tty has been subject to a vhangup or a carrier
1450 * loss
1453 int tty_hung_up_p(struct file * filp)
1455 return (filp->f_op == &hung_up_tty_fops);
1458 EXPORT_SYMBOL(tty_hung_up_p);
1461 * disassociate_ctty - disconnect controlling tty
1462 * @on_exit: true if exiting so need to "hang up" the session
1464 * This function is typically called only by the session leader, when
1465 * it wants to disassociate itself from its controlling tty.
1467 * It performs the following functions:
1468 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
1469 * (2) Clears the tty from being controlling the session
1470 * (3) Clears the controlling tty for all processes in the
1471 * session group.
1473 * The argument on_exit is set to 1 if called when a process is
1474 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
1476 * Locking: tty_mutex is taken to protect current->signal->tty
1477 * BKL is taken for hysterical raisins
1478 * Tasklist lock is taken (under tty_mutex) to walk process
1479 * lists for the session.
1482 void disassociate_ctty(int on_exit)
1484 struct tty_struct *tty;
1485 struct task_struct *p;
1486 int tty_pgrp = -1;
1488 lock_kernel();
1490 mutex_lock(&tty_mutex);
1491 tty = current->signal->tty;
1492 if (tty) {
1493 tty_pgrp = tty->pgrp;
1494 mutex_unlock(&tty_mutex);
1495 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
1496 tty_vhangup(tty);
1497 } else {
1498 if (current->signal->tty_old_pgrp) {
1499 kill_pg(current->signal->tty_old_pgrp, SIGHUP, on_exit);
1500 kill_pg(current->signal->tty_old_pgrp, SIGCONT, on_exit);
1502 mutex_unlock(&tty_mutex);
1503 unlock_kernel();
1504 return;
1506 if (tty_pgrp > 0) {
1507 kill_pg(tty_pgrp, SIGHUP, on_exit);
1508 if (!on_exit)
1509 kill_pg(tty_pgrp, SIGCONT, on_exit);
1512 /* Must lock changes to tty_old_pgrp */
1513 mutex_lock(&tty_mutex);
1514 current->signal->tty_old_pgrp = 0;
1515 tty->session = 0;
1516 tty->pgrp = -1;
1518 /* Now clear signal->tty under the lock */
1519 read_lock(&tasklist_lock);
1520 do_each_task_pid(current->signal->session, PIDTYPE_SID, p) {
1521 p->signal->tty = NULL;
1522 } while_each_task_pid(current->signal->session, PIDTYPE_SID, p);
1523 read_unlock(&tasklist_lock);
1524 mutex_unlock(&tty_mutex);
1525 unlock_kernel();
1530 * stop_tty - propogate flow control
1531 * @tty: tty to stop
1533 * Perform flow control to the driver. For PTY/TTY pairs we
1534 * must also propogate the TIOCKPKT status. May be called
1535 * on an already stopped device and will not re-call the driver
1536 * method.
1538 * This functionality is used by both the line disciplines for
1539 * halting incoming flow and by the driver. It may therefore be
1540 * called from any context, may be under the tty atomic_write_lock
1541 * but not always.
1543 * Locking:
1544 * Broken. Relies on BKL which is unsafe here.
1547 void stop_tty(struct tty_struct *tty)
1549 if (tty->stopped)
1550 return;
1551 tty->stopped = 1;
1552 if (tty->link && tty->link->packet) {
1553 tty->ctrl_status &= ~TIOCPKT_START;
1554 tty->ctrl_status |= TIOCPKT_STOP;
1555 wake_up_interruptible(&tty->link->read_wait);
1557 if (tty->driver->stop)
1558 (tty->driver->stop)(tty);
1561 EXPORT_SYMBOL(stop_tty);
1564 * start_tty - propogate flow control
1565 * @tty: tty to start
1567 * Start a tty that has been stopped if at all possible. Perform
1568 * any neccessary wakeups and propogate the TIOCPKT status. If this
1569 * is the tty was previous stopped and is being started then the
1570 * driver start method is invoked and the line discipline woken.
1572 * Locking:
1573 * Broken. Relies on BKL which is unsafe here.
1576 void start_tty(struct tty_struct *tty)
1578 if (!tty->stopped || tty->flow_stopped)
1579 return;
1580 tty->stopped = 0;
1581 if (tty->link && tty->link->packet) {
1582 tty->ctrl_status &= ~TIOCPKT_STOP;
1583 tty->ctrl_status |= TIOCPKT_START;
1584 wake_up_interruptible(&tty->link->read_wait);
1586 if (tty->driver->start)
1587 (tty->driver->start)(tty);
1589 /* If we have a running line discipline it may need kicking */
1590 tty_wakeup(tty);
1591 wake_up_interruptible(&tty->write_wait);
1594 EXPORT_SYMBOL(start_tty);
1597 * tty_read - read method for tty device files
1598 * @file: pointer to tty file
1599 * @buf: user buffer
1600 * @count: size of user buffer
1601 * @ppos: unused
1603 * Perform the read system call function on this terminal device. Checks
1604 * for hung up devices before calling the line discipline method.
1606 * Locking:
1607 * Locks the line discipline internally while needed
1608 * For historical reasons the line discipline read method is
1609 * invoked under the BKL. This will go away in time so do not rely on it
1610 * in new code. Multiple read calls may be outstanding in parallel.
1613 static ssize_t tty_read(struct file * file, char __user * buf, size_t count,
1614 loff_t *ppos)
1616 int i;
1617 struct tty_struct * tty;
1618 struct inode *inode;
1619 struct tty_ldisc *ld;
1621 tty = (struct tty_struct *)file->private_data;
1622 inode = file->f_dentry->d_inode;
1623 if (tty_paranoia_check(tty, inode, "tty_read"))
1624 return -EIO;
1625 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1626 return -EIO;
1628 /* We want to wait for the line discipline to sort out in this
1629 situation */
1630 ld = tty_ldisc_ref_wait(tty);
1631 lock_kernel();
1632 if (ld->read)
1633 i = (ld->read)(tty,file,buf,count);
1634 else
1635 i = -EIO;
1636 tty_ldisc_deref(ld);
1637 unlock_kernel();
1638 if (i > 0)
1639 inode->i_atime = current_fs_time(inode->i_sb);
1640 return i;
1644 * Split writes up in sane blocksizes to avoid
1645 * denial-of-service type attacks
1647 static inline ssize_t do_tty_write(
1648 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1649 struct tty_struct *tty,
1650 struct file *file,
1651 const char __user *buf,
1652 size_t count)
1654 ssize_t ret = 0, written = 0;
1655 unsigned int chunk;
1657 /* FIXME: O_NDELAY ... */
1658 if (mutex_lock_interruptible(&tty->atomic_write_lock)) {
1659 return -ERESTARTSYS;
1663 * We chunk up writes into a temporary buffer. This
1664 * simplifies low-level drivers immensely, since they
1665 * don't have locking issues and user mode accesses.
1667 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1668 * big chunk-size..
1670 * The default chunk-size is 2kB, because the NTTY
1671 * layer has problems with bigger chunks. It will
1672 * claim to be able to handle more characters than
1673 * it actually does.
1675 * FIXME: This can probably go away now except that 64K chunks
1676 * are too likely to fail unless switched to vmalloc...
1678 chunk = 2048;
1679 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1680 chunk = 65536;
1681 if (count < chunk)
1682 chunk = count;
1684 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1685 if (tty->write_cnt < chunk) {
1686 unsigned char *buf;
1688 if (chunk < 1024)
1689 chunk = 1024;
1691 buf = kmalloc(chunk, GFP_KERNEL);
1692 if (!buf) {
1693 mutex_unlock(&tty->atomic_write_lock);
1694 return -ENOMEM;
1696 kfree(tty->write_buf);
1697 tty->write_cnt = chunk;
1698 tty->write_buf = buf;
1701 /* Do the write .. */
1702 for (;;) {
1703 size_t size = count;
1704 if (size > chunk)
1705 size = chunk;
1706 ret = -EFAULT;
1707 if (copy_from_user(tty->write_buf, buf, size))
1708 break;
1709 lock_kernel();
1710 ret = write(tty, file, tty->write_buf, size);
1711 unlock_kernel();
1712 if (ret <= 0)
1713 break;
1714 written += ret;
1715 buf += ret;
1716 count -= ret;
1717 if (!count)
1718 break;
1719 ret = -ERESTARTSYS;
1720 if (signal_pending(current))
1721 break;
1722 cond_resched();
1724 if (written) {
1725 struct inode *inode = file->f_dentry->d_inode;
1726 inode->i_mtime = current_fs_time(inode->i_sb);
1727 ret = written;
1729 mutex_unlock(&tty->atomic_write_lock);
1730 return ret;
1735 * tty_write - write method for tty device file
1736 * @file: tty file pointer
1737 * @buf: user data to write
1738 * @count: bytes to write
1739 * @ppos: unused
1741 * Write data to a tty device via the line discipline.
1743 * Locking:
1744 * Locks the line discipline as required
1745 * Writes to the tty driver are serialized by the atomic_write_lock
1746 * and are then processed in chunks to the device. The line discipline
1747 * write method will not be involked in parallel for each device
1748 * The line discipline write method is called under the big
1749 * kernel lock for historical reasons. New code should not rely on this.
1752 static ssize_t tty_write(struct file * file, const char __user * buf, size_t count,
1753 loff_t *ppos)
1755 struct tty_struct * tty;
1756 struct inode *inode = file->f_dentry->d_inode;
1757 ssize_t ret;
1758 struct tty_ldisc *ld;
1760 tty = (struct tty_struct *)file->private_data;
1761 if (tty_paranoia_check(tty, inode, "tty_write"))
1762 return -EIO;
1763 if (!tty || !tty->driver->write || (test_bit(TTY_IO_ERROR, &tty->flags)))
1764 return -EIO;
1766 ld = tty_ldisc_ref_wait(tty);
1767 if (!ld->write)
1768 ret = -EIO;
1769 else
1770 ret = do_tty_write(ld->write, tty, file, buf, count);
1771 tty_ldisc_deref(ld);
1772 return ret;
1775 ssize_t redirected_tty_write(struct file * file, const char __user * buf, size_t count,
1776 loff_t *ppos)
1778 struct file *p = NULL;
1780 spin_lock(&redirect_lock);
1781 if (redirect) {
1782 get_file(redirect);
1783 p = redirect;
1785 spin_unlock(&redirect_lock);
1787 if (p) {
1788 ssize_t res;
1789 res = vfs_write(p, buf, count, &p->f_pos);
1790 fput(p);
1791 return res;
1794 return tty_write(file, buf, count, ppos);
1797 static char ptychar[] = "pqrstuvwxyzabcde";
1800 * pty_line_name - generate name for a pty
1801 * @driver: the tty driver in use
1802 * @index: the minor number
1803 * @p: output buffer of at least 6 bytes
1805 * Generate a name from a driver reference and write it to the output
1806 * buffer.
1808 * Locking: None
1810 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1812 int i = index + driver->name_base;
1813 /* ->name is initialized to "ttyp", but "tty" is expected */
1814 sprintf(p, "%s%c%x",
1815 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1816 ptychar[i >> 4 & 0xf], i & 0xf);
1820 * pty_line_name - generate name for a tty
1821 * @driver: the tty driver in use
1822 * @index: the minor number
1823 * @p: output buffer of at least 7 bytes
1825 * Generate a name from a driver reference and write it to the output
1826 * buffer.
1828 * Locking: None
1830 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1832 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1836 * init_dev - initialise a tty device
1837 * @driver: tty driver we are opening a device on
1838 * @idx: device index
1839 * @tty: returned tty structure
1841 * Prepare a tty device. This may not be a "new" clean device but
1842 * could also be an active device. The pty drivers require special
1843 * handling because of this.
1845 * Locking:
1846 * The function is called under the tty_mutex, which
1847 * protects us from the tty struct or driver itself going away.
1849 * On exit the tty device has the line discipline attached and
1850 * a reference count of 1. If a pair was created for pty/tty use
1851 * and the other was a pty master then it too has a reference count of 1.
1853 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1854 * failed open. The new code protects the open with a mutex, so it's
1855 * really quite straightforward. The mutex locking can probably be
1856 * relaxed for the (most common) case of reopening a tty.
1859 static int init_dev(struct tty_driver *driver, int idx,
1860 struct tty_struct **ret_tty)
1862 struct tty_struct *tty, *o_tty;
1863 struct termios *tp, **tp_loc, *o_tp, **o_tp_loc;
1864 struct termios *ltp, **ltp_loc, *o_ltp, **o_ltp_loc;
1865 int retval = 0;
1867 /* check whether we're reopening an existing tty */
1868 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1869 tty = devpts_get_tty(idx);
1870 if (tty && driver->subtype == PTY_TYPE_MASTER)
1871 tty = tty->link;
1872 } else {
1873 tty = driver->ttys[idx];
1875 if (tty) goto fast_track;
1878 * First time open is complex, especially for PTY devices.
1879 * This code guarantees that either everything succeeds and the
1880 * TTY is ready for operation, or else the table slots are vacated
1881 * and the allocated memory released. (Except that the termios
1882 * and locked termios may be retained.)
1885 if (!try_module_get(driver->owner)) {
1886 retval = -ENODEV;
1887 goto end_init;
1890 o_tty = NULL;
1891 tp = o_tp = NULL;
1892 ltp = o_ltp = NULL;
1894 tty = alloc_tty_struct();
1895 if(!tty)
1896 goto fail_no_mem;
1897 initialize_tty_struct(tty);
1898 tty->driver = driver;
1899 tty->index = idx;
1900 tty_line_name(driver, idx, tty->name);
1902 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1903 tp_loc = &tty->termios;
1904 ltp_loc = &tty->termios_locked;
1905 } else {
1906 tp_loc = &driver->termios[idx];
1907 ltp_loc = &driver->termios_locked[idx];
1910 if (!*tp_loc) {
1911 tp = (struct termios *) kmalloc(sizeof(struct termios),
1912 GFP_KERNEL);
1913 if (!tp)
1914 goto free_mem_out;
1915 *tp = driver->init_termios;
1918 if (!*ltp_loc) {
1919 ltp = (struct termios *) kmalloc(sizeof(struct termios),
1920 GFP_KERNEL);
1921 if (!ltp)
1922 goto free_mem_out;
1923 memset(ltp, 0, sizeof(struct termios));
1926 if (driver->type == TTY_DRIVER_TYPE_PTY) {
1927 o_tty = alloc_tty_struct();
1928 if (!o_tty)
1929 goto free_mem_out;
1930 initialize_tty_struct(o_tty);
1931 o_tty->driver = driver->other;
1932 o_tty->index = idx;
1933 tty_line_name(driver->other, idx, o_tty->name);
1935 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1936 o_tp_loc = &o_tty->termios;
1937 o_ltp_loc = &o_tty->termios_locked;
1938 } else {
1939 o_tp_loc = &driver->other->termios[idx];
1940 o_ltp_loc = &driver->other->termios_locked[idx];
1943 if (!*o_tp_loc) {
1944 o_tp = (struct termios *)
1945 kmalloc(sizeof(struct termios), GFP_KERNEL);
1946 if (!o_tp)
1947 goto free_mem_out;
1948 *o_tp = driver->other->init_termios;
1951 if (!*o_ltp_loc) {
1952 o_ltp = (struct termios *)
1953 kmalloc(sizeof(struct termios), GFP_KERNEL);
1954 if (!o_ltp)
1955 goto free_mem_out;
1956 memset(o_ltp, 0, sizeof(struct termios));
1960 * Everything allocated ... set up the o_tty structure.
1962 if (!(driver->other->flags & TTY_DRIVER_DEVPTS_MEM)) {
1963 driver->other->ttys[idx] = o_tty;
1965 if (!*o_tp_loc)
1966 *o_tp_loc = o_tp;
1967 if (!*o_ltp_loc)
1968 *o_ltp_loc = o_ltp;
1969 o_tty->termios = *o_tp_loc;
1970 o_tty->termios_locked = *o_ltp_loc;
1971 driver->other->refcount++;
1972 if (driver->subtype == PTY_TYPE_MASTER)
1973 o_tty->count++;
1975 /* Establish the links in both directions */
1976 tty->link = o_tty;
1977 o_tty->link = tty;
1981 * All structures have been allocated, so now we install them.
1982 * Failures after this point use release_mem to clean up, so
1983 * there's no need to null out the local pointers.
1985 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1986 driver->ttys[idx] = tty;
1989 if (!*tp_loc)
1990 *tp_loc = tp;
1991 if (!*ltp_loc)
1992 *ltp_loc = ltp;
1993 tty->termios = *tp_loc;
1994 tty->termios_locked = *ltp_loc;
1995 driver->refcount++;
1996 tty->count++;
1999 * Structures all installed ... call the ldisc open routines.
2000 * If we fail here just call release_mem to clean up. No need
2001 * to decrement the use counts, as release_mem doesn't care.
2004 if (tty->ldisc.open) {
2005 retval = (tty->ldisc.open)(tty);
2006 if (retval)
2007 goto release_mem_out;
2009 if (o_tty && o_tty->ldisc.open) {
2010 retval = (o_tty->ldisc.open)(o_tty);
2011 if (retval) {
2012 if (tty->ldisc.close)
2013 (tty->ldisc.close)(tty);
2014 goto release_mem_out;
2016 tty_ldisc_enable(o_tty);
2018 tty_ldisc_enable(tty);
2019 goto success;
2022 * This fast open can be used if the tty is already open.
2023 * No memory is allocated, and the only failures are from
2024 * attempting to open a closing tty or attempting multiple
2025 * opens on a pty master.
2027 fast_track:
2028 if (test_bit(TTY_CLOSING, &tty->flags)) {
2029 retval = -EIO;
2030 goto end_init;
2032 if (driver->type == TTY_DRIVER_TYPE_PTY &&
2033 driver->subtype == PTY_TYPE_MASTER) {
2035 * special case for PTY masters: only one open permitted,
2036 * and the slave side open count is incremented as well.
2038 if (tty->count) {
2039 retval = -EIO;
2040 goto end_init;
2042 tty->link->count++;
2044 tty->count++;
2045 tty->driver = driver; /* N.B. why do this every time?? */
2047 /* FIXME */
2048 if(!test_bit(TTY_LDISC, &tty->flags))
2049 printk(KERN_ERR "init_dev but no ldisc\n");
2050 success:
2051 *ret_tty = tty;
2053 /* All paths come through here to release the mutex */
2054 end_init:
2055 return retval;
2057 /* Release locally allocated memory ... nothing placed in slots */
2058 free_mem_out:
2059 kfree(o_tp);
2060 if (o_tty)
2061 free_tty_struct(o_tty);
2062 kfree(ltp);
2063 kfree(tp);
2064 free_tty_struct(tty);
2066 fail_no_mem:
2067 module_put(driver->owner);
2068 retval = -ENOMEM;
2069 goto end_init;
2071 /* call the tty release_mem routine to clean out this slot */
2072 release_mem_out:
2073 printk(KERN_INFO "init_dev: ldisc open failed, "
2074 "clearing slot %d\n", idx);
2075 release_mem(tty, idx);
2076 goto end_init;
2080 * release_mem - release tty structure memory
2082 * Releases memory associated with a tty structure, and clears out the
2083 * driver table slots. This function is called when a device is no longer
2084 * in use. It also gets called when setup of a device fails.
2086 * Locking:
2087 * tty_mutex - sometimes only
2088 * takes the file list lock internally when working on the list
2089 * of ttys that the driver keeps.
2090 * FIXME: should we require tty_mutex is held here ??
2093 static void release_mem(struct tty_struct *tty, int idx)
2095 struct tty_struct *o_tty;
2096 struct termios *tp;
2097 int devpts = tty->driver->flags & TTY_DRIVER_DEVPTS_MEM;
2099 if ((o_tty = tty->link) != NULL) {
2100 if (!devpts)
2101 o_tty->driver->ttys[idx] = NULL;
2102 if (o_tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
2103 tp = o_tty->termios;
2104 if (!devpts)
2105 o_tty->driver->termios[idx] = NULL;
2106 kfree(tp);
2108 tp = o_tty->termios_locked;
2109 if (!devpts)
2110 o_tty->driver->termios_locked[idx] = NULL;
2111 kfree(tp);
2113 o_tty->magic = 0;
2114 o_tty->driver->refcount--;
2115 file_list_lock();
2116 list_del_init(&o_tty->tty_files);
2117 file_list_unlock();
2118 free_tty_struct(o_tty);
2121 if (!devpts)
2122 tty->driver->ttys[idx] = NULL;
2123 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
2124 tp = tty->termios;
2125 if (!devpts)
2126 tty->driver->termios[idx] = NULL;
2127 kfree(tp);
2129 tp = tty->termios_locked;
2130 if (!devpts)
2131 tty->driver->termios_locked[idx] = NULL;
2132 kfree(tp);
2135 tty->magic = 0;
2136 tty->driver->refcount--;
2137 file_list_lock();
2138 list_del_init(&tty->tty_files);
2139 file_list_unlock();
2140 module_put(tty->driver->owner);
2141 free_tty_struct(tty);
2145 * Even releasing the tty structures is a tricky business.. We have
2146 * to be very careful that the structures are all released at the
2147 * same time, as interrupts might otherwise get the wrong pointers.
2149 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
2150 * lead to double frees or releasing memory still in use.
2152 static void release_dev(struct file * filp)
2154 struct tty_struct *tty, *o_tty;
2155 int pty_master, tty_closing, o_tty_closing, do_sleep;
2156 int devpts;
2157 int idx;
2158 char buf[64];
2159 unsigned long flags;
2161 tty = (struct tty_struct *)filp->private_data;
2162 if (tty_paranoia_check(tty, filp->f_dentry->d_inode, "release_dev"))
2163 return;
2165 check_tty_count(tty, "release_dev");
2167 tty_fasync(-1, filp, 0);
2169 idx = tty->index;
2170 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2171 tty->driver->subtype == PTY_TYPE_MASTER);
2172 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
2173 o_tty = tty->link;
2175 #ifdef TTY_PARANOIA_CHECK
2176 if (idx < 0 || idx >= tty->driver->num) {
2177 printk(KERN_DEBUG "release_dev: bad idx when trying to "
2178 "free (%s)\n", tty->name);
2179 return;
2181 if (!(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2182 if (tty != tty->driver->ttys[idx]) {
2183 printk(KERN_DEBUG "release_dev: driver.table[%d] not tty "
2184 "for (%s)\n", idx, tty->name);
2185 return;
2187 if (tty->termios != tty->driver->termios[idx]) {
2188 printk(KERN_DEBUG "release_dev: driver.termios[%d] not termios "
2189 "for (%s)\n",
2190 idx, tty->name);
2191 return;
2193 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
2194 printk(KERN_DEBUG "release_dev: driver.termios_locked[%d] not "
2195 "termios_locked for (%s)\n",
2196 idx, tty->name);
2197 return;
2200 #endif
2202 #ifdef TTY_DEBUG_HANGUP
2203 printk(KERN_DEBUG "release_dev of %s (tty count=%d)...",
2204 tty_name(tty, buf), tty->count);
2205 #endif
2207 #ifdef TTY_PARANOIA_CHECK
2208 if (tty->driver->other &&
2209 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2210 if (o_tty != tty->driver->other->ttys[idx]) {
2211 printk(KERN_DEBUG "release_dev: other->table[%d] "
2212 "not o_tty for (%s)\n",
2213 idx, tty->name);
2214 return;
2216 if (o_tty->termios != tty->driver->other->termios[idx]) {
2217 printk(KERN_DEBUG "release_dev: other->termios[%d] "
2218 "not o_termios for (%s)\n",
2219 idx, tty->name);
2220 return;
2222 if (o_tty->termios_locked !=
2223 tty->driver->other->termios_locked[idx]) {
2224 printk(KERN_DEBUG "release_dev: other->termios_locked["
2225 "%d] not o_termios_locked for (%s)\n",
2226 idx, tty->name);
2227 return;
2229 if (o_tty->link != tty) {
2230 printk(KERN_DEBUG "release_dev: bad pty pointers\n");
2231 return;
2234 #endif
2235 if (tty->driver->close)
2236 tty->driver->close(tty, filp);
2239 * Sanity check: if tty->count is going to zero, there shouldn't be
2240 * any waiters on tty->read_wait or tty->write_wait. We test the
2241 * wait queues and kick everyone out _before_ actually starting to
2242 * close. This ensures that we won't block while releasing the tty
2243 * structure.
2245 * The test for the o_tty closing is necessary, since the master and
2246 * slave sides may close in any order. If the slave side closes out
2247 * first, its count will be one, since the master side holds an open.
2248 * Thus this test wouldn't be triggered at the time the slave closes,
2249 * so we do it now.
2251 * Note that it's possible for the tty to be opened again while we're
2252 * flushing out waiters. By recalculating the closing flags before
2253 * each iteration we avoid any problems.
2255 while (1) {
2256 /* Guard against races with tty->count changes elsewhere and
2257 opens on /dev/tty */
2259 mutex_lock(&tty_mutex);
2260 tty_closing = tty->count <= 1;
2261 o_tty_closing = o_tty &&
2262 (o_tty->count <= (pty_master ? 1 : 0));
2263 do_sleep = 0;
2265 if (tty_closing) {
2266 if (waitqueue_active(&tty->read_wait)) {
2267 wake_up(&tty->read_wait);
2268 do_sleep++;
2270 if (waitqueue_active(&tty->write_wait)) {
2271 wake_up(&tty->write_wait);
2272 do_sleep++;
2275 if (o_tty_closing) {
2276 if (waitqueue_active(&o_tty->read_wait)) {
2277 wake_up(&o_tty->read_wait);
2278 do_sleep++;
2280 if (waitqueue_active(&o_tty->write_wait)) {
2281 wake_up(&o_tty->write_wait);
2282 do_sleep++;
2285 if (!do_sleep)
2286 break;
2288 printk(KERN_WARNING "release_dev: %s: read/write wait queue "
2289 "active!\n", tty_name(tty, buf));
2290 mutex_unlock(&tty_mutex);
2291 schedule();
2295 * The closing flags are now consistent with the open counts on
2296 * both sides, and we've completed the last operation that could
2297 * block, so it's safe to proceed with closing.
2299 if (pty_master) {
2300 if (--o_tty->count < 0) {
2301 printk(KERN_WARNING "release_dev: bad pty slave count "
2302 "(%d) for %s\n",
2303 o_tty->count, tty_name(o_tty, buf));
2304 o_tty->count = 0;
2307 if (--tty->count < 0) {
2308 printk(KERN_WARNING "release_dev: bad tty->count (%d) for %s\n",
2309 tty->count, tty_name(tty, buf));
2310 tty->count = 0;
2314 * We've decremented tty->count, so we need to remove this file
2315 * descriptor off the tty->tty_files list; this serves two
2316 * purposes:
2317 * - check_tty_count sees the correct number of file descriptors
2318 * associated with this tty.
2319 * - do_tty_hangup no longer sees this file descriptor as
2320 * something that needs to be handled for hangups.
2322 file_kill(filp);
2323 filp->private_data = NULL;
2326 * Perform some housekeeping before deciding whether to return.
2328 * Set the TTY_CLOSING flag if this was the last open. In the
2329 * case of a pty we may have to wait around for the other side
2330 * to close, and TTY_CLOSING makes sure we can't be reopened.
2332 if(tty_closing)
2333 set_bit(TTY_CLOSING, &tty->flags);
2334 if(o_tty_closing)
2335 set_bit(TTY_CLOSING, &o_tty->flags);
2338 * If _either_ side is closing, make sure there aren't any
2339 * processes that still think tty or o_tty is their controlling
2340 * tty.
2342 if (tty_closing || o_tty_closing) {
2343 struct task_struct *p;
2345 read_lock(&tasklist_lock);
2346 do_each_task_pid(tty->session, PIDTYPE_SID, p) {
2347 p->signal->tty = NULL;
2348 } while_each_task_pid(tty->session, PIDTYPE_SID, p);
2349 if (o_tty)
2350 do_each_task_pid(o_tty->session, PIDTYPE_SID, p) {
2351 p->signal->tty = NULL;
2352 } while_each_task_pid(o_tty->session, PIDTYPE_SID, p);
2353 read_unlock(&tasklist_lock);
2356 mutex_unlock(&tty_mutex);
2358 /* check whether both sides are closing ... */
2359 if (!tty_closing || (o_tty && !o_tty_closing))
2360 return;
2362 #ifdef TTY_DEBUG_HANGUP
2363 printk(KERN_DEBUG "freeing tty structure...");
2364 #endif
2366 * Prevent flush_to_ldisc() from rescheduling the work for later. Then
2367 * kill any delayed work. As this is the final close it does not
2368 * race with the set_ldisc code path.
2370 clear_bit(TTY_LDISC, &tty->flags);
2371 cancel_delayed_work(&tty->buf.work);
2374 * Wait for ->hangup_work and ->buf.work handlers to terminate
2377 flush_scheduled_work();
2380 * Wait for any short term users (we know they are just driver
2381 * side waiters as the file is closing so user count on the file
2382 * side is zero.
2384 spin_lock_irqsave(&tty_ldisc_lock, flags);
2385 while(tty->ldisc.refcount)
2387 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2388 wait_event(tty_ldisc_wait, tty->ldisc.refcount == 0);
2389 spin_lock_irqsave(&tty_ldisc_lock, flags);
2391 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2393 * Shutdown the current line discipline, and reset it to N_TTY.
2394 * N.B. why reset ldisc when we're releasing the memory??
2396 * FIXME: this MUST get fixed for the new reflocking
2398 if (tty->ldisc.close)
2399 (tty->ldisc.close)(tty);
2400 tty_ldisc_put(tty->ldisc.num);
2403 * Switch the line discipline back
2405 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
2406 tty_set_termios_ldisc(tty,N_TTY);
2407 if (o_tty) {
2408 /* FIXME: could o_tty be in setldisc here ? */
2409 clear_bit(TTY_LDISC, &o_tty->flags);
2410 if (o_tty->ldisc.close)
2411 (o_tty->ldisc.close)(o_tty);
2412 tty_ldisc_put(o_tty->ldisc.num);
2413 tty_ldisc_assign(o_tty, tty_ldisc_get(N_TTY));
2414 tty_set_termios_ldisc(o_tty,N_TTY);
2417 * The release_mem function takes care of the details of clearing
2418 * the slots and preserving the termios structure.
2420 release_mem(tty, idx);
2422 #ifdef CONFIG_UNIX98_PTYS
2423 /* Make this pty number available for reallocation */
2424 if (devpts) {
2425 down(&allocated_ptys_lock);
2426 idr_remove(&allocated_ptys, idx);
2427 up(&allocated_ptys_lock);
2429 #endif
2434 * tty_open - open a tty device
2435 * @inode: inode of device file
2436 * @filp: file pointer to tty
2438 * tty_open and tty_release keep up the tty count that contains the
2439 * number of opens done on a tty. We cannot use the inode-count, as
2440 * different inodes might point to the same tty.
2442 * Open-counting is needed for pty masters, as well as for keeping
2443 * track of serial lines: DTR is dropped when the last close happens.
2444 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2446 * The termios state of a pty is reset on first open so that
2447 * settings don't persist across reuse.
2449 * Locking: tty_mutex protects current->signal->tty, get_tty_driver and
2450 * init_dev work. tty->count should protect the rest.
2451 * task_lock is held to update task details for sessions
2454 static int tty_open(struct inode * inode, struct file * filp)
2456 struct tty_struct *tty;
2457 int noctty, retval;
2458 struct tty_driver *driver;
2459 int index;
2460 dev_t device = inode->i_rdev;
2461 unsigned short saved_flags = filp->f_flags;
2463 nonseekable_open(inode, filp);
2465 retry_open:
2466 noctty = filp->f_flags & O_NOCTTY;
2467 index = -1;
2468 retval = 0;
2470 mutex_lock(&tty_mutex);
2472 if (device == MKDEV(TTYAUX_MAJOR,0)) {
2473 if (!current->signal->tty) {
2474 mutex_unlock(&tty_mutex);
2475 return -ENXIO;
2477 driver = current->signal->tty->driver;
2478 index = current->signal->tty->index;
2479 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
2480 /* noctty = 1; */
2481 goto got_driver;
2483 #ifdef CONFIG_VT
2484 if (device == MKDEV(TTY_MAJOR,0)) {
2485 extern struct tty_driver *console_driver;
2486 driver = console_driver;
2487 index = fg_console;
2488 noctty = 1;
2489 goto got_driver;
2491 #endif
2492 if (device == MKDEV(TTYAUX_MAJOR,1)) {
2493 driver = console_device(&index);
2494 if (driver) {
2495 /* Don't let /dev/console block */
2496 filp->f_flags |= O_NONBLOCK;
2497 noctty = 1;
2498 goto got_driver;
2500 mutex_unlock(&tty_mutex);
2501 return -ENODEV;
2504 driver = get_tty_driver(device, &index);
2505 if (!driver) {
2506 mutex_unlock(&tty_mutex);
2507 return -ENODEV;
2509 got_driver:
2510 retval = init_dev(driver, index, &tty);
2511 mutex_unlock(&tty_mutex);
2512 if (retval)
2513 return retval;
2515 filp->private_data = tty;
2516 file_move(filp, &tty->tty_files);
2517 check_tty_count(tty, "tty_open");
2518 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2519 tty->driver->subtype == PTY_TYPE_MASTER)
2520 noctty = 1;
2521 #ifdef TTY_DEBUG_HANGUP
2522 printk(KERN_DEBUG "opening %s...", tty->name);
2523 #endif
2524 if (!retval) {
2525 if (tty->driver->open)
2526 retval = tty->driver->open(tty, filp);
2527 else
2528 retval = -ENODEV;
2530 filp->f_flags = saved_flags;
2532 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
2533 retval = -EBUSY;
2535 if (retval) {
2536 #ifdef TTY_DEBUG_HANGUP
2537 printk(KERN_DEBUG "error %d in opening %s...", retval,
2538 tty->name);
2539 #endif
2540 release_dev(filp);
2541 if (retval != -ERESTARTSYS)
2542 return retval;
2543 if (signal_pending(current))
2544 return retval;
2545 schedule();
2547 * Need to reset f_op in case a hangup happened.
2549 if (filp->f_op == &hung_up_tty_fops)
2550 filp->f_op = &tty_fops;
2551 goto retry_open;
2553 if (!noctty &&
2554 current->signal->leader &&
2555 !current->signal->tty &&
2556 tty->session == 0) {
2557 task_lock(current);
2558 current->signal->tty = tty;
2559 task_unlock(current);
2560 current->signal->tty_old_pgrp = 0;
2561 tty->session = current->signal->session;
2562 tty->pgrp = process_group(current);
2564 return 0;
2567 #ifdef CONFIG_UNIX98_PTYS
2569 * ptmx_open - open a unix 98 pty master
2570 * @inode: inode of device file
2571 * @filp: file pointer to tty
2573 * Allocate a unix98 pty master device from the ptmx driver.
2575 * Locking: tty_mutex protects theinit_dev work. tty->count should
2576 protect the rest.
2577 * allocated_ptys_lock handles the list of free pty numbers
2580 static int ptmx_open(struct inode * inode, struct file * filp)
2582 struct tty_struct *tty;
2583 int retval;
2584 int index;
2585 int idr_ret;
2587 nonseekable_open(inode, filp);
2589 /* find a device that is not in use. */
2590 down(&allocated_ptys_lock);
2591 if (!idr_pre_get(&allocated_ptys, GFP_KERNEL)) {
2592 up(&allocated_ptys_lock);
2593 return -ENOMEM;
2595 idr_ret = idr_get_new(&allocated_ptys, NULL, &index);
2596 if (idr_ret < 0) {
2597 up(&allocated_ptys_lock);
2598 if (idr_ret == -EAGAIN)
2599 return -ENOMEM;
2600 return -EIO;
2602 if (index >= pty_limit) {
2603 idr_remove(&allocated_ptys, index);
2604 up(&allocated_ptys_lock);
2605 return -EIO;
2607 up(&allocated_ptys_lock);
2609 mutex_lock(&tty_mutex);
2610 retval = init_dev(ptm_driver, index, &tty);
2611 mutex_unlock(&tty_mutex);
2613 if (retval)
2614 goto out;
2616 set_bit(TTY_PTY_LOCK, &tty->flags); /* LOCK THE SLAVE */
2617 filp->private_data = tty;
2618 file_move(filp, &tty->tty_files);
2620 retval = -ENOMEM;
2621 if (devpts_pty_new(tty->link))
2622 goto out1;
2624 check_tty_count(tty, "tty_open");
2625 retval = ptm_driver->open(tty, filp);
2626 if (!retval)
2627 return 0;
2628 out1:
2629 release_dev(filp);
2630 return retval;
2631 out:
2632 down(&allocated_ptys_lock);
2633 idr_remove(&allocated_ptys, index);
2634 up(&allocated_ptys_lock);
2635 return retval;
2637 #endif
2640 * tty_release - vfs callback for close
2641 * @inode: inode of tty
2642 * @filp: file pointer for handle to tty
2644 * Called the last time each file handle is closed that references
2645 * this tty. There may however be several such references.
2647 * Locking:
2648 * Takes bkl. See release_dev
2651 static int tty_release(struct inode * inode, struct file * filp)
2653 lock_kernel();
2654 release_dev(filp);
2655 unlock_kernel();
2656 return 0;
2660 * tty_poll - check tty status
2661 * @filp: file being polled
2662 * @wait: poll wait structures to update
2664 * Call the line discipline polling method to obtain the poll
2665 * status of the device.
2667 * Locking: locks called line discipline but ldisc poll method
2668 * may be re-entered freely by other callers.
2671 static unsigned int tty_poll(struct file * filp, poll_table * wait)
2673 struct tty_struct * tty;
2674 struct tty_ldisc *ld;
2675 int ret = 0;
2677 tty = (struct tty_struct *)filp->private_data;
2678 if (tty_paranoia_check(tty, filp->f_dentry->d_inode, "tty_poll"))
2679 return 0;
2681 ld = tty_ldisc_ref_wait(tty);
2682 if (ld->poll)
2683 ret = (ld->poll)(tty, filp, wait);
2684 tty_ldisc_deref(ld);
2685 return ret;
2688 static int tty_fasync(int fd, struct file * filp, int on)
2690 struct tty_struct * tty;
2691 int retval;
2693 tty = (struct tty_struct *)filp->private_data;
2694 if (tty_paranoia_check(tty, filp->f_dentry->d_inode, "tty_fasync"))
2695 return 0;
2697 retval = fasync_helper(fd, filp, on, &tty->fasync);
2698 if (retval <= 0)
2699 return retval;
2701 if (on) {
2702 if (!waitqueue_active(&tty->read_wait))
2703 tty->minimum_to_wake = 1;
2704 retval = f_setown(filp, (-tty->pgrp) ? : current->pid, 0);
2705 if (retval)
2706 return retval;
2707 } else {
2708 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2709 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2711 return 0;
2715 * tiocsti - fake input character
2716 * @tty: tty to fake input into
2717 * @p: pointer to character
2719 * Fake input to a tty device. Does the neccessary locking and
2720 * input management.
2722 * FIXME: does not honour flow control ??
2724 * Locking:
2725 * Called functions take tty_ldisc_lock
2726 * current->signal->tty check is safe without locks
2729 static int tiocsti(struct tty_struct *tty, char __user *p)
2731 char ch, mbz = 0;
2732 struct tty_ldisc *ld;
2734 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2735 return -EPERM;
2736 if (get_user(ch, p))
2737 return -EFAULT;
2738 ld = tty_ldisc_ref_wait(tty);
2739 ld->receive_buf(tty, &ch, &mbz, 1);
2740 tty_ldisc_deref(ld);
2741 return 0;
2745 * tiocgwinsz - implement window query ioctl
2746 * @tty; tty
2747 * @arg: user buffer for result
2749 * Copies the kernel idea of the window size into the user buffer. No
2750 * locking is done.
2752 * FIXME: Returning random values racing a window size set is wrong
2753 * should lock here against that
2756 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user * arg)
2758 if (copy_to_user(arg, &tty->winsize, sizeof(*arg)))
2759 return -EFAULT;
2760 return 0;
2764 * tiocswinsz - implement window size set ioctl
2765 * @tty; tty
2766 * @arg: user buffer for result
2768 * Copies the user idea of the window size to the kernel. Traditionally
2769 * this is just advisory information but for the Linux console it
2770 * actually has driver level meaning and triggers a VC resize.
2772 * Locking:
2773 * Called function use the console_sem is used to ensure we do
2774 * not try and resize the console twice at once.
2775 * The tty->termios_sem is used to ensure we don't double
2776 * resize and get confused. Lock order - tty->termios.sem before
2777 * console sem
2780 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2781 struct winsize __user * arg)
2783 struct winsize tmp_ws;
2785 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2786 return -EFAULT;
2788 down(&tty->termios_sem);
2789 if (!memcmp(&tmp_ws, &tty->winsize, sizeof(*arg)))
2790 goto done;
2792 #ifdef CONFIG_VT
2793 if (tty->driver->type == TTY_DRIVER_TYPE_CONSOLE) {
2794 if (vc_lock_resize(tty->driver_data, tmp_ws.ws_col, tmp_ws.ws_row)) {
2795 up(&tty->termios_sem);
2796 return -ENXIO;
2799 #endif
2800 if (tty->pgrp > 0)
2801 kill_pg(tty->pgrp, SIGWINCH, 1);
2802 if ((real_tty->pgrp != tty->pgrp) && (real_tty->pgrp > 0))
2803 kill_pg(real_tty->pgrp, SIGWINCH, 1);
2804 tty->winsize = tmp_ws;
2805 real_tty->winsize = tmp_ws;
2806 done:
2807 up(&tty->termios_sem);
2808 return 0;
2812 * tioccons - allow admin to move logical console
2813 * @file: the file to become console
2815 * Allow the adminstrator to move the redirected console device
2817 * Locking: uses redirect_lock to guard the redirect information
2820 static int tioccons(struct file *file)
2822 if (!capable(CAP_SYS_ADMIN))
2823 return -EPERM;
2824 if (file->f_op->write == redirected_tty_write) {
2825 struct file *f;
2826 spin_lock(&redirect_lock);
2827 f = redirect;
2828 redirect = NULL;
2829 spin_unlock(&redirect_lock);
2830 if (f)
2831 fput(f);
2832 return 0;
2834 spin_lock(&redirect_lock);
2835 if (redirect) {
2836 spin_unlock(&redirect_lock);
2837 return -EBUSY;
2839 get_file(file);
2840 redirect = file;
2841 spin_unlock(&redirect_lock);
2842 return 0;
2846 * fionbio - non blocking ioctl
2847 * @file: file to set blocking value
2848 * @p: user parameter
2850 * Historical tty interfaces had a blocking control ioctl before
2851 * the generic functionality existed. This piece of history is preserved
2852 * in the expected tty API of posix OS's.
2854 * Locking: none, the open fle handle ensures it won't go away.
2857 static int fionbio(struct file *file, int __user *p)
2859 int nonblock;
2861 if (get_user(nonblock, p))
2862 return -EFAULT;
2864 if (nonblock)
2865 file->f_flags |= O_NONBLOCK;
2866 else
2867 file->f_flags &= ~O_NONBLOCK;
2868 return 0;
2872 * tiocsctty - set controlling tty
2873 * @tty: tty structure
2874 * @arg: user argument
2876 * This ioctl is used to manage job control. It permits a session
2877 * leader to set this tty as the controlling tty for the session.
2879 * Locking:
2880 * Takes tasklist lock internally to walk sessions
2881 * Takes task_lock() when updating signal->tty
2883 * FIXME: tty_mutex is needed to protect signal->tty references.
2884 * FIXME: why task_lock on the signal->tty reference ??
2888 static int tiocsctty(struct tty_struct *tty, int arg)
2890 struct task_struct *p;
2892 if (current->signal->leader &&
2893 (current->signal->session == tty->session))
2894 return 0;
2896 * The process must be a session leader and
2897 * not have a controlling tty already.
2899 if (!current->signal->leader || current->signal->tty)
2900 return -EPERM;
2901 if (tty->session > 0) {
2903 * This tty is already the controlling
2904 * tty for another session group!
2906 if ((arg == 1) && capable(CAP_SYS_ADMIN)) {
2908 * Steal it away
2911 read_lock(&tasklist_lock);
2912 do_each_task_pid(tty->session, PIDTYPE_SID, p) {
2913 p->signal->tty = NULL;
2914 } while_each_task_pid(tty->session, PIDTYPE_SID, p);
2915 read_unlock(&tasklist_lock);
2916 } else
2917 return -EPERM;
2919 task_lock(current);
2920 current->signal->tty = tty;
2921 task_unlock(current);
2922 current->signal->tty_old_pgrp = 0;
2923 tty->session = current->signal->session;
2924 tty->pgrp = process_group(current);
2925 return 0;
2929 * tiocgpgrp - get process group
2930 * @tty: tty passed by user
2931 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2932 * @p: returned pid
2934 * Obtain the process group of the tty. If there is no process group
2935 * return an error.
2937 * Locking: none. Reference to ->signal->tty is safe.
2940 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2943 * (tty == real_tty) is a cheap way of
2944 * testing if the tty is NOT a master pty.
2946 if (tty == real_tty && current->signal->tty != real_tty)
2947 return -ENOTTY;
2948 return put_user(real_tty->pgrp, p);
2952 * tiocspgrp - attempt to set process group
2953 * @tty: tty passed by user
2954 * @real_tty: tty side device matching tty passed by user
2955 * @p: pid pointer
2957 * Set the process group of the tty to the session passed. Only
2958 * permitted where the tty session is our session.
2960 * Locking: None
2962 * FIXME: current->signal->tty referencing is unsafe.
2965 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2967 pid_t pgrp;
2968 int retval = tty_check_change(real_tty);
2970 if (retval == -EIO)
2971 return -ENOTTY;
2972 if (retval)
2973 return retval;
2974 if (!current->signal->tty ||
2975 (current->signal->tty != real_tty) ||
2976 (real_tty->session != current->signal->session))
2977 return -ENOTTY;
2978 if (get_user(pgrp, p))
2979 return -EFAULT;
2980 if (pgrp < 0)
2981 return -EINVAL;
2982 if (session_of_pgrp(pgrp) != current->signal->session)
2983 return -EPERM;
2984 real_tty->pgrp = pgrp;
2985 return 0;
2989 * tiocgsid - get session id
2990 * @tty: tty passed by user
2991 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2992 * @p: pointer to returned session id
2994 * Obtain the session id of the tty. If there is no session
2995 * return an error.
2997 * Locking: none. Reference to ->signal->tty is safe.
3000 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3003 * (tty == real_tty) is a cheap way of
3004 * testing if the tty is NOT a master pty.
3006 if (tty == real_tty && current->signal->tty != real_tty)
3007 return -ENOTTY;
3008 if (real_tty->session <= 0)
3009 return -ENOTTY;
3010 return put_user(real_tty->session, p);
3014 * tiocsetd - set line discipline
3015 * @tty: tty device
3016 * @p: pointer to user data
3018 * Set the line discipline according to user request.
3020 * Locking: see tty_set_ldisc, this function is just a helper
3023 static int tiocsetd(struct tty_struct *tty, int __user *p)
3025 int ldisc;
3027 if (get_user(ldisc, p))
3028 return -EFAULT;
3029 return tty_set_ldisc(tty, ldisc);
3033 * send_break - performed time break
3034 * @tty: device to break on
3035 * @duration: timeout in mS
3037 * Perform a timed break on hardware that lacks its own driver level
3038 * timed break functionality.
3040 * Locking:
3041 * None
3043 * FIXME:
3044 * What if two overlap
3047 static int send_break(struct tty_struct *tty, unsigned int duration)
3049 tty->driver->break_ctl(tty, -1);
3050 if (!signal_pending(current)) {
3051 msleep_interruptible(duration);
3053 tty->driver->break_ctl(tty, 0);
3054 if (signal_pending(current))
3055 return -EINTR;
3056 return 0;
3060 * tiocmget - get modem status
3061 * @tty: tty device
3062 * @file: user file pointer
3063 * @p: pointer to result
3065 * Obtain the modem status bits from the tty driver if the feature
3066 * is supported. Return -EINVAL if it is not available.
3068 * Locking: none (up to the driver)
3071 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
3073 int retval = -EINVAL;
3075 if (tty->driver->tiocmget) {
3076 retval = tty->driver->tiocmget(tty, file);
3078 if (retval >= 0)
3079 retval = put_user(retval, p);
3081 return retval;
3085 * tiocmset - set modem status
3086 * @tty: tty device
3087 * @file: user file pointer
3088 * @cmd: command - clear bits, set bits or set all
3089 * @p: pointer to desired bits
3091 * Set the modem status bits from the tty driver if the feature
3092 * is supported. Return -EINVAL if it is not available.
3094 * Locking: none (up to the driver)
3097 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
3098 unsigned __user *p)
3100 int retval = -EINVAL;
3102 if (tty->driver->tiocmset) {
3103 unsigned int set, clear, val;
3105 retval = get_user(val, p);
3106 if (retval)
3107 return retval;
3109 set = clear = 0;
3110 switch (cmd) {
3111 case TIOCMBIS:
3112 set = val;
3113 break;
3114 case TIOCMBIC:
3115 clear = val;
3116 break;
3117 case TIOCMSET:
3118 set = val;
3119 clear = ~val;
3120 break;
3123 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3124 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3126 retval = tty->driver->tiocmset(tty, file, set, clear);
3128 return retval;
3132 * Split this up, as gcc can choke on it otherwise..
3134 int tty_ioctl(struct inode * inode, struct file * file,
3135 unsigned int cmd, unsigned long arg)
3137 struct tty_struct *tty, *real_tty;
3138 void __user *p = (void __user *)arg;
3139 int retval;
3140 struct tty_ldisc *ld;
3142 tty = (struct tty_struct *)file->private_data;
3143 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3144 return -EINVAL;
3146 real_tty = tty;
3147 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
3148 tty->driver->subtype == PTY_TYPE_MASTER)
3149 real_tty = tty->link;
3152 * Break handling by driver
3154 if (!tty->driver->break_ctl) {
3155 switch(cmd) {
3156 case TIOCSBRK:
3157 case TIOCCBRK:
3158 if (tty->driver->ioctl)
3159 return tty->driver->ioctl(tty, file, cmd, arg);
3160 return -EINVAL;
3162 /* These two ioctl's always return success; even if */
3163 /* the driver doesn't support them. */
3164 case TCSBRK:
3165 case TCSBRKP:
3166 if (!tty->driver->ioctl)
3167 return 0;
3168 retval = tty->driver->ioctl(tty, file, cmd, arg);
3169 if (retval == -ENOIOCTLCMD)
3170 retval = 0;
3171 return retval;
3176 * Factor out some common prep work
3178 switch (cmd) {
3179 case TIOCSETD:
3180 case TIOCSBRK:
3181 case TIOCCBRK:
3182 case TCSBRK:
3183 case TCSBRKP:
3184 retval = tty_check_change(tty);
3185 if (retval)
3186 return retval;
3187 if (cmd != TIOCCBRK) {
3188 tty_wait_until_sent(tty, 0);
3189 if (signal_pending(current))
3190 return -EINTR;
3192 break;
3195 switch (cmd) {
3196 case TIOCSTI:
3197 return tiocsti(tty, p);
3198 case TIOCGWINSZ:
3199 return tiocgwinsz(tty, p);
3200 case TIOCSWINSZ:
3201 return tiocswinsz(tty, real_tty, p);
3202 case TIOCCONS:
3203 return real_tty!=tty ? -EINVAL : tioccons(file);
3204 case FIONBIO:
3205 return fionbio(file, p);
3206 case TIOCEXCL:
3207 set_bit(TTY_EXCLUSIVE, &tty->flags);
3208 return 0;
3209 case TIOCNXCL:
3210 clear_bit(TTY_EXCLUSIVE, &tty->flags);
3211 return 0;
3212 case TIOCNOTTY:
3213 /* FIXME: taks lock or tty_mutex ? */
3214 if (current->signal->tty != tty)
3215 return -ENOTTY;
3216 if (current->signal->leader)
3217 disassociate_ctty(0);
3218 task_lock(current);
3219 current->signal->tty = NULL;
3220 task_unlock(current);
3221 return 0;
3222 case TIOCSCTTY:
3223 return tiocsctty(tty, arg);
3224 case TIOCGPGRP:
3225 return tiocgpgrp(tty, real_tty, p);
3226 case TIOCSPGRP:
3227 return tiocspgrp(tty, real_tty, p);
3228 case TIOCGSID:
3229 return tiocgsid(tty, real_tty, p);
3230 case TIOCGETD:
3231 /* FIXME: check this is ok */
3232 return put_user(tty->ldisc.num, (int __user *)p);
3233 case TIOCSETD:
3234 return tiocsetd(tty, p);
3235 #ifdef CONFIG_VT
3236 case TIOCLINUX:
3237 return tioclinux(tty, arg);
3238 #endif
3240 * Break handling
3242 case TIOCSBRK: /* Turn break on, unconditionally */
3243 tty->driver->break_ctl(tty, -1);
3244 return 0;
3246 case TIOCCBRK: /* Turn break off, unconditionally */
3247 tty->driver->break_ctl(tty, 0);
3248 return 0;
3249 case TCSBRK: /* SVID version: non-zero arg --> no break */
3250 /* non-zero arg means wait for all output data
3251 * to be sent (performed above) but don't send break.
3252 * This is used by the tcdrain() termios function.
3254 if (!arg)
3255 return send_break(tty, 250);
3256 return 0;
3257 case TCSBRKP: /* support for POSIX tcsendbreak() */
3258 return send_break(tty, arg ? arg*100 : 250);
3260 case TIOCMGET:
3261 return tty_tiocmget(tty, file, p);
3263 case TIOCMSET:
3264 case TIOCMBIC:
3265 case TIOCMBIS:
3266 return tty_tiocmset(tty, file, cmd, p);
3268 if (tty->driver->ioctl) {
3269 retval = (tty->driver->ioctl)(tty, file, cmd, arg);
3270 if (retval != -ENOIOCTLCMD)
3271 return retval;
3273 ld = tty_ldisc_ref_wait(tty);
3274 retval = -EINVAL;
3275 if (ld->ioctl) {
3276 retval = ld->ioctl(tty, file, cmd, arg);
3277 if (retval == -ENOIOCTLCMD)
3278 retval = -EINVAL;
3280 tty_ldisc_deref(ld);
3281 return retval;
3286 * This implements the "Secure Attention Key" --- the idea is to
3287 * prevent trojan horses by killing all processes associated with this
3288 * tty when the user hits the "Secure Attention Key". Required for
3289 * super-paranoid applications --- see the Orange Book for more details.
3291 * This code could be nicer; ideally it should send a HUP, wait a few
3292 * seconds, then send a INT, and then a KILL signal. But you then
3293 * have to coordinate with the init process, since all processes associated
3294 * with the current tty must be dead before the new getty is allowed
3295 * to spawn.
3297 * Now, if it would be correct ;-/ The current code has a nasty hole -
3298 * it doesn't catch files in flight. We may send the descriptor to ourselves
3299 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3301 * Nasty bug: do_SAK is being called in interrupt context. This can
3302 * deadlock. We punt it up to process context. AKPM - 16Mar2001
3304 static void __do_SAK(void *arg)
3306 #ifdef TTY_SOFT_SAK
3307 tty_hangup(tty);
3308 #else
3309 struct tty_struct *tty = arg;
3310 struct task_struct *g, *p;
3311 int session;
3312 int i;
3313 struct file *filp;
3314 struct tty_ldisc *disc;
3315 struct fdtable *fdt;
3317 if (!tty)
3318 return;
3319 session = tty->session;
3321 /* We don't want an ldisc switch during this */
3322 disc = tty_ldisc_ref(tty);
3323 if (disc && disc->flush_buffer)
3324 disc->flush_buffer(tty);
3325 tty_ldisc_deref(disc);
3327 if (tty->driver->flush_buffer)
3328 tty->driver->flush_buffer(tty);
3330 read_lock(&tasklist_lock);
3331 /* Kill the entire session */
3332 do_each_task_pid(session, PIDTYPE_SID, p) {
3333 printk(KERN_NOTICE "SAK: killed process %d"
3334 " (%s): p->signal->session==tty->session\n",
3335 p->pid, p->comm);
3336 send_sig(SIGKILL, p, 1);
3337 } while_each_task_pid(session, PIDTYPE_SID, p);
3338 /* Now kill any processes that happen to have the
3339 * tty open.
3341 do_each_thread(g, p) {
3342 if (p->signal->tty == tty) {
3343 printk(KERN_NOTICE "SAK: killed process %d"
3344 " (%s): p->signal->session==tty->session\n",
3345 p->pid, p->comm);
3346 send_sig(SIGKILL, p, 1);
3347 continue;
3349 task_lock(p);
3350 if (p->files) {
3352 * We don't take a ref to the file, so we must
3353 * hold ->file_lock instead.
3355 spin_lock(&p->files->file_lock);
3356 fdt = files_fdtable(p->files);
3357 for (i=0; i < fdt->max_fds; i++) {
3358 filp = fcheck_files(p->files, i);
3359 if (!filp)
3360 continue;
3361 if (filp->f_op->read == tty_read &&
3362 filp->private_data == tty) {
3363 printk(KERN_NOTICE "SAK: killed process %d"
3364 " (%s): fd#%d opened to the tty\n",
3365 p->pid, p->comm, i);
3366 force_sig(SIGKILL, p);
3367 break;
3370 spin_unlock(&p->files->file_lock);
3372 task_unlock(p);
3373 } while_each_thread(g, p);
3374 read_unlock(&tasklist_lock);
3375 #endif
3379 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3380 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3381 * the values which we write to it will be identical to the values which it
3382 * already has. --akpm
3384 void do_SAK(struct tty_struct *tty)
3386 if (!tty)
3387 return;
3388 PREPARE_WORK(&tty->SAK_work, __do_SAK, tty);
3389 schedule_work(&tty->SAK_work);
3392 EXPORT_SYMBOL(do_SAK);
3395 * flush_to_ldisc
3396 * @private_: tty structure passed from work queue.
3398 * This routine is called out of the software interrupt to flush data
3399 * from the buffer chain to the line discipline.
3401 * Locking: holds tty->buf.lock to guard buffer list. Drops the lock
3402 * while invoking the line discipline receive_buf method. The
3403 * receive_buf method is single threaded for each tty instance.
3406 static void flush_to_ldisc(void *private_)
3408 struct tty_struct *tty = (struct tty_struct *) private_;
3409 unsigned long flags;
3410 struct tty_ldisc *disc;
3411 struct tty_buffer *tbuf, *head;
3412 char *char_buf;
3413 unsigned char *flag_buf;
3415 disc = tty_ldisc_ref(tty);
3416 if (disc == NULL) /* !TTY_LDISC */
3417 return;
3419 spin_lock_irqsave(&tty->buf.lock, flags);
3420 head = tty->buf.head;
3421 if (head != NULL) {
3422 tty->buf.head = NULL;
3423 for (;;) {
3424 int count = head->commit - head->read;
3425 if (!count) {
3426 if (head->next == NULL)
3427 break;
3428 tbuf = head;
3429 head = head->next;
3430 tty_buffer_free(tty, tbuf);
3431 continue;
3433 if (!tty->receive_room) {
3434 schedule_delayed_work(&tty->buf.work, 1);
3435 break;
3437 if (count > tty->receive_room)
3438 count = tty->receive_room;
3439 char_buf = head->char_buf_ptr + head->read;
3440 flag_buf = head->flag_buf_ptr + head->read;
3441 head->read += count;
3442 spin_unlock_irqrestore(&tty->buf.lock, flags);
3443 disc->receive_buf(tty, char_buf, flag_buf, count);
3444 spin_lock_irqsave(&tty->buf.lock, flags);
3446 tty->buf.head = head;
3448 spin_unlock_irqrestore(&tty->buf.lock, flags);
3450 tty_ldisc_deref(disc);
3454 * Routine which returns the baud rate of the tty
3456 * Note that the baud_table needs to be kept in sync with the
3457 * include/asm/termbits.h file.
3459 static int baud_table[] = {
3460 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
3461 9600, 19200, 38400, 57600, 115200, 230400, 460800,
3462 #ifdef __sparc__
3463 76800, 153600, 307200, 614400, 921600
3464 #else
3465 500000, 576000, 921600, 1000000, 1152000, 1500000, 2000000,
3466 2500000, 3000000, 3500000, 4000000
3467 #endif
3470 static int n_baud_table = ARRAY_SIZE(baud_table);
3473 * tty_termios_baud_rate
3474 * @termios: termios structure
3476 * Convert termios baud rate data into a speed. This should be called
3477 * with the termios lock held if this termios is a terminal termios
3478 * structure. May change the termios data.
3480 * Locking: none
3483 int tty_termios_baud_rate(struct termios *termios)
3485 unsigned int cbaud;
3487 cbaud = termios->c_cflag & CBAUD;
3489 if (cbaud & CBAUDEX) {
3490 cbaud &= ~CBAUDEX;
3492 if (cbaud < 1 || cbaud + 15 > n_baud_table)
3493 termios->c_cflag &= ~CBAUDEX;
3494 else
3495 cbaud += 15;
3497 return baud_table[cbaud];
3500 EXPORT_SYMBOL(tty_termios_baud_rate);
3503 * tty_get_baud_rate - get tty bit rates
3504 * @tty: tty to query
3506 * Returns the baud rate as an integer for this terminal. The
3507 * termios lock must be held by the caller and the terminal bit
3508 * flags may be updated.
3510 * Locking: none
3513 int tty_get_baud_rate(struct tty_struct *tty)
3515 int baud = tty_termios_baud_rate(tty->termios);
3517 if (baud == 38400 && tty->alt_speed) {
3518 if (!tty->warned) {
3519 printk(KERN_WARNING "Use of setserial/setrocket to "
3520 "set SPD_* flags is deprecated\n");
3521 tty->warned = 1;
3523 baud = tty->alt_speed;
3526 return baud;
3529 EXPORT_SYMBOL(tty_get_baud_rate);
3532 * tty_flip_buffer_push - terminal
3533 * @tty: tty to push
3535 * Queue a push of the terminal flip buffers to the line discipline. This
3536 * function must not be called from IRQ context if tty->low_latency is set.
3538 * In the event of the queue being busy for flipping the work will be
3539 * held off and retried later.
3541 * Locking: tty buffer lock. Driver locks in low latency mode.
3544 void tty_flip_buffer_push(struct tty_struct *tty)
3546 unsigned long flags;
3547 spin_lock_irqsave(&tty->buf.lock, flags);
3548 if (tty->buf.tail != NULL)
3549 tty->buf.tail->commit = tty->buf.tail->used;
3550 spin_unlock_irqrestore(&tty->buf.lock, flags);
3552 if (tty->low_latency)
3553 flush_to_ldisc((void *) tty);
3554 else
3555 schedule_delayed_work(&tty->buf.work, 1);
3558 EXPORT_SYMBOL(tty_flip_buffer_push);
3562 * initialize_tty_struct
3563 * @tty: tty to initialize
3565 * This subroutine initializes a tty structure that has been newly
3566 * allocated.
3568 * Locking: none - tty in question must not be exposed at this point
3571 static void initialize_tty_struct(struct tty_struct *tty)
3573 memset(tty, 0, sizeof(struct tty_struct));
3574 tty->magic = TTY_MAGIC;
3575 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
3576 tty->pgrp = -1;
3577 tty->overrun_time = jiffies;
3578 tty->buf.head = tty->buf.tail = NULL;
3579 tty_buffer_init(tty);
3580 INIT_WORK(&tty->buf.work, flush_to_ldisc, tty);
3581 init_MUTEX(&tty->buf.pty_sem);
3582 init_MUTEX(&tty->termios_sem);
3583 init_waitqueue_head(&tty->write_wait);
3584 init_waitqueue_head(&tty->read_wait);
3585 INIT_WORK(&tty->hangup_work, do_tty_hangup, tty);
3586 mutex_init(&tty->atomic_read_lock);
3587 mutex_init(&tty->atomic_write_lock);
3588 spin_lock_init(&tty->read_lock);
3589 INIT_LIST_HEAD(&tty->tty_files);
3590 INIT_WORK(&tty->SAK_work, NULL, NULL);
3594 * The default put_char routine if the driver did not define one.
3597 static void tty_default_put_char(struct tty_struct *tty, unsigned char ch)
3599 tty->driver->write(tty, &ch, 1);
3602 static struct class *tty_class;
3605 * tty_register_device - register a tty device
3606 * @driver: the tty driver that describes the tty device
3607 * @index: the index in the tty driver for this tty device
3608 * @device: a struct device that is associated with this tty device.
3609 * This field is optional, if there is no known struct device
3610 * for this tty device it can be set to NULL safely.
3612 * Returns a pointer to the class device (or ERR_PTR(-EFOO) on error).
3614 * This call is required to be made to register an individual tty device
3615 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3616 * that bit is not set, this function should not be called by a tty
3617 * driver.
3619 * Locking: ??
3622 struct class_device *tty_register_device(struct tty_driver *driver,
3623 unsigned index, struct device *device)
3625 char name[64];
3626 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3628 if (index >= driver->num) {
3629 printk(KERN_ERR "Attempt to register invalid tty line number "
3630 " (%d).\n", index);
3631 return ERR_PTR(-EINVAL);
3634 if (driver->type == TTY_DRIVER_TYPE_PTY)
3635 pty_line_name(driver, index, name);
3636 else
3637 tty_line_name(driver, index, name);
3639 return class_device_create(tty_class, NULL, dev, device, "%s", name);
3643 * tty_unregister_device - unregister a tty device
3644 * @driver: the tty driver that describes the tty device
3645 * @index: the index in the tty driver for this tty device
3647 * If a tty device is registered with a call to tty_register_device() then
3648 * this function must be called when the tty device is gone.
3650 * Locking: ??
3653 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3655 class_device_destroy(tty_class, MKDEV(driver->major, driver->minor_start) + index);
3658 EXPORT_SYMBOL(tty_register_device);
3659 EXPORT_SYMBOL(tty_unregister_device);
3661 struct tty_driver *alloc_tty_driver(int lines)
3663 struct tty_driver *driver;
3665 driver = kmalloc(sizeof(struct tty_driver), GFP_KERNEL);
3666 if (driver) {
3667 memset(driver, 0, sizeof(struct tty_driver));
3668 driver->magic = TTY_DRIVER_MAGIC;
3669 driver->num = lines;
3670 /* later we'll move allocation of tables here */
3672 return driver;
3675 void put_tty_driver(struct tty_driver *driver)
3677 kfree(driver);
3680 void tty_set_operations(struct tty_driver *driver, struct tty_operations *op)
3682 driver->open = op->open;
3683 driver->close = op->close;
3684 driver->write = op->write;
3685 driver->put_char = op->put_char;
3686 driver->flush_chars = op->flush_chars;
3687 driver->write_room = op->write_room;
3688 driver->chars_in_buffer = op->chars_in_buffer;
3689 driver->ioctl = op->ioctl;
3690 driver->set_termios = op->set_termios;
3691 driver->throttle = op->throttle;
3692 driver->unthrottle = op->unthrottle;
3693 driver->stop = op->stop;
3694 driver->start = op->start;
3695 driver->hangup = op->hangup;
3696 driver->break_ctl = op->break_ctl;
3697 driver->flush_buffer = op->flush_buffer;
3698 driver->set_ldisc = op->set_ldisc;
3699 driver->wait_until_sent = op->wait_until_sent;
3700 driver->send_xchar = op->send_xchar;
3701 driver->read_proc = op->read_proc;
3702 driver->write_proc = op->write_proc;
3703 driver->tiocmget = op->tiocmget;
3704 driver->tiocmset = op->tiocmset;
3708 EXPORT_SYMBOL(alloc_tty_driver);
3709 EXPORT_SYMBOL(put_tty_driver);
3710 EXPORT_SYMBOL(tty_set_operations);
3713 * Called by a tty driver to register itself.
3715 int tty_register_driver(struct tty_driver *driver)
3717 int error;
3718 int i;
3719 dev_t dev;
3720 void **p = NULL;
3722 if (driver->flags & TTY_DRIVER_INSTALLED)
3723 return 0;
3725 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
3726 p = kmalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
3727 if (!p)
3728 return -ENOMEM;
3729 memset(p, 0, driver->num * 3 * sizeof(void *));
3732 if (!driver->major) {
3733 error = alloc_chrdev_region(&dev, driver->minor_start, driver->num,
3734 (char*)driver->name);
3735 if (!error) {
3736 driver->major = MAJOR(dev);
3737 driver->minor_start = MINOR(dev);
3739 } else {
3740 dev = MKDEV(driver->major, driver->minor_start);
3741 error = register_chrdev_region(dev, driver->num,
3742 (char*)driver->name);
3744 if (error < 0) {
3745 kfree(p);
3746 return error;
3749 if (p) {
3750 driver->ttys = (struct tty_struct **)p;
3751 driver->termios = (struct termios **)(p + driver->num);
3752 driver->termios_locked = (struct termios **)(p + driver->num * 2);
3753 } else {
3754 driver->ttys = NULL;
3755 driver->termios = NULL;
3756 driver->termios_locked = NULL;
3759 cdev_init(&driver->cdev, &tty_fops);
3760 driver->cdev.owner = driver->owner;
3761 error = cdev_add(&driver->cdev, dev, driver->num);
3762 if (error) {
3763 unregister_chrdev_region(dev, driver->num);
3764 driver->ttys = NULL;
3765 driver->termios = driver->termios_locked = NULL;
3766 kfree(p);
3767 return error;
3770 if (!driver->put_char)
3771 driver->put_char = tty_default_put_char;
3773 list_add(&driver->tty_drivers, &tty_drivers);
3775 if ( !(driver->flags & TTY_DRIVER_DYNAMIC_DEV) ) {
3776 for(i = 0; i < driver->num; i++)
3777 tty_register_device(driver, i, NULL);
3779 proc_tty_register_driver(driver);
3780 return 0;
3783 EXPORT_SYMBOL(tty_register_driver);
3786 * Called by a tty driver to unregister itself.
3788 int tty_unregister_driver(struct tty_driver *driver)
3790 int i;
3791 struct termios *tp;
3792 void *p;
3794 if (driver->refcount)
3795 return -EBUSY;
3797 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3798 driver->num);
3800 list_del(&driver->tty_drivers);
3803 * Free the termios and termios_locked structures because
3804 * we don't want to get memory leaks when modular tty
3805 * drivers are removed from the kernel.
3807 for (i = 0; i < driver->num; i++) {
3808 tp = driver->termios[i];
3809 if (tp) {
3810 driver->termios[i] = NULL;
3811 kfree(tp);
3813 tp = driver->termios_locked[i];
3814 if (tp) {
3815 driver->termios_locked[i] = NULL;
3816 kfree(tp);
3818 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3819 tty_unregister_device(driver, i);
3821 p = driver->ttys;
3822 proc_tty_unregister_driver(driver);
3823 driver->ttys = NULL;
3824 driver->termios = driver->termios_locked = NULL;
3825 kfree(p);
3826 cdev_del(&driver->cdev);
3827 return 0;
3830 EXPORT_SYMBOL(tty_unregister_driver);
3834 * Initialize the console device. This is called *early*, so
3835 * we can't necessarily depend on lots of kernel help here.
3836 * Just do some early initializations, and do the complex setup
3837 * later.
3839 void __init console_init(void)
3841 initcall_t *call;
3843 /* Setup the default TTY line discipline. */
3844 (void) tty_register_ldisc(N_TTY, &tty_ldisc_N_TTY);
3847 * set up the console device so that later boot sequences can
3848 * inform about problems etc..
3850 #ifdef CONFIG_EARLY_PRINTK
3851 disable_early_printk();
3852 #endif
3853 call = __con_initcall_start;
3854 while (call < __con_initcall_end) {
3855 (*call)();
3856 call++;
3860 #ifdef CONFIG_VT
3861 extern int vty_init(void);
3862 #endif
3864 static int __init tty_class_init(void)
3866 tty_class = class_create(THIS_MODULE, "tty");
3867 if (IS_ERR(tty_class))
3868 return PTR_ERR(tty_class);
3869 return 0;
3872 postcore_initcall(tty_class_init);
3874 /* 3/2004 jmc: why do these devices exist? */
3876 static struct cdev tty_cdev, console_cdev;
3877 #ifdef CONFIG_UNIX98_PTYS
3878 static struct cdev ptmx_cdev;
3879 #endif
3880 #ifdef CONFIG_VT
3881 static struct cdev vc0_cdev;
3882 #endif
3885 * Ok, now we can initialize the rest of the tty devices and can count
3886 * on memory allocations, interrupts etc..
3888 static int __init tty_init(void)
3890 cdev_init(&tty_cdev, &tty_fops);
3891 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3892 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3893 panic("Couldn't register /dev/tty driver\n");
3894 class_device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3896 cdev_init(&console_cdev, &console_fops);
3897 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3898 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3899 panic("Couldn't register /dev/console driver\n");
3900 class_device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL, "console");
3902 #ifdef CONFIG_UNIX98_PTYS
3903 cdev_init(&ptmx_cdev, &ptmx_fops);
3904 if (cdev_add(&ptmx_cdev, MKDEV(TTYAUX_MAJOR, 2), 1) ||
3905 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 2), 1, "/dev/ptmx") < 0)
3906 panic("Couldn't register /dev/ptmx driver\n");
3907 class_device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 2), NULL, "ptmx");
3908 #endif
3910 #ifdef CONFIG_VT
3911 cdev_init(&vc0_cdev, &console_fops);
3912 if (cdev_add(&vc0_cdev, MKDEV(TTY_MAJOR, 0), 1) ||
3913 register_chrdev_region(MKDEV(TTY_MAJOR, 0), 1, "/dev/vc/0") < 0)
3914 panic("Couldn't register /dev/tty0 driver\n");
3915 class_device_create(tty_class, NULL, MKDEV(TTY_MAJOR, 0), NULL, "tty0");
3917 vty_init();
3918 #endif
3919 return 0;
3921 module_init(tty_init);