2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
10 * Maintainer: Kumar Gala
12 * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13 * Copyright (c) 2007 MontaVista Software, Inc.
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
20 * Gianfar: AKA Lambda Draconis, "Dragon"
28 * The driver is initialized through platform_device. Structures which
29 * define the configuration needed by the board are defined in a
30 * board structure in arch/ppc/platforms (though I do not
31 * discount the possibility that other architectures could one
34 * The Gianfar Ethernet Controller uses a ring of buffer
35 * descriptors. The beginning is indicated by a register
36 * pointing to the physical address of the start of the ring.
37 * The end is determined by a "wrap" bit being set in the
38 * last descriptor of the ring.
40 * When a packet is received, the RXF bit in the
41 * IEVENT register is set, triggering an interrupt when the
42 * corresponding bit in the IMASK register is also set (if
43 * interrupt coalescing is active, then the interrupt may not
44 * happen immediately, but will wait until either a set number
45 * of frames or amount of time have passed). In NAPI, the
46 * interrupt handler will signal there is work to be done, and
47 * exit. Without NAPI, the packet(s) will be handled
48 * immediately. Both methods will start at the last known empty
49 * descriptor, and process every subsequent descriptor until there
50 * are none left with data (NAPI will stop after a set number of
51 * packets to give time to other tasks, but will eventually
52 * process all the packets). The data arrives inside a
53 * pre-allocated skb, and so after the skb is passed up to the
54 * stack, a new skb must be allocated, and the address field in
55 * the buffer descriptor must be updated to indicate this new
58 * When the kernel requests that a packet be transmitted, the
59 * driver starts where it left off last time, and points the
60 * descriptor at the buffer which was passed in. The driver
61 * then informs the DMA engine that there are packets ready to
62 * be transmitted. Once the controller is finished transmitting
63 * the packet, an interrupt may be triggered (under the same
64 * conditions as for reception, but depending on the TXF bit).
65 * The driver then cleans up the buffer.
68 #include <linux/kernel.h>
69 #include <linux/string.h>
70 #include <linux/errno.h>
71 #include <linux/unistd.h>
72 #include <linux/slab.h>
73 #include <linux/interrupt.h>
74 #include <linux/init.h>
75 #include <linux/delay.h>
76 #include <linux/netdevice.h>
77 #include <linux/etherdevice.h>
78 #include <linux/skbuff.h>
79 #include <linux/if_vlan.h>
80 #include <linux/spinlock.h>
82 #include <linux/platform_device.h>
84 #include <linux/tcp.h>
85 #include <linux/udp.h>
90 #include <asm/uaccess.h>
91 #include <linux/module.h>
92 #include <linux/dma-mapping.h>
93 #include <linux/crc32.h>
94 #include <linux/mii.h>
95 #include <linux/phy.h>
98 #include "gianfar_mii.h"
100 #define TX_TIMEOUT (1*HZ)
101 #define SKB_ALLOC_TIMEOUT 1000000
102 #undef BRIEF_GFAR_ERRORS
103 #undef VERBOSE_GFAR_ERRORS
105 #ifdef CONFIG_GFAR_NAPI
106 #define RECEIVE(x) netif_receive_skb(x)
108 #define RECEIVE(x) netif_rx(x)
111 const char gfar_driver_name
[] = "Gianfar Ethernet";
112 const char gfar_driver_version
[] = "1.3";
114 static int gfar_enet_open(struct net_device
*dev
);
115 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
116 static void gfar_timeout(struct net_device
*dev
);
117 static int gfar_close(struct net_device
*dev
);
118 struct sk_buff
*gfar_new_skb(struct net_device
*dev
, struct rxbd8
*bdp
);
119 static int gfar_set_mac_address(struct net_device
*dev
);
120 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
);
121 static irqreturn_t
gfar_error(int irq
, void *dev_id
);
122 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
);
123 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
);
124 static void adjust_link(struct net_device
*dev
);
125 static void init_registers(struct net_device
*dev
);
126 static int init_phy(struct net_device
*dev
);
127 static int gfar_probe(struct platform_device
*pdev
);
128 static int gfar_remove(struct platform_device
*pdev
);
129 static void free_skb_resources(struct gfar_private
*priv
);
130 static void gfar_set_multi(struct net_device
*dev
);
131 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
);
132 static void gfar_configure_serdes(struct net_device
*dev
);
133 extern int gfar_local_mdio_write(struct gfar_mii __iomem
*regs
, int mii_id
, int regnum
, u16 value
);
134 extern int gfar_local_mdio_read(struct gfar_mii __iomem
*regs
, int mii_id
, int regnum
);
135 #ifdef CONFIG_GFAR_NAPI
136 static int gfar_poll(struct napi_struct
*napi
, int budget
);
138 #ifdef CONFIG_NET_POLL_CONTROLLER
139 static void gfar_netpoll(struct net_device
*dev
);
141 int gfar_clean_rx_ring(struct net_device
*dev
, int rx_work_limit
);
142 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
, int length
);
143 static void gfar_vlan_rx_register(struct net_device
*netdev
,
144 struct vlan_group
*grp
);
145 void gfar_halt(struct net_device
*dev
);
146 void gfar_start(struct net_device
*dev
);
147 static void gfar_clear_exact_match(struct net_device
*dev
);
148 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
, u8
*addr
);
150 extern const struct ethtool_ops gfar_ethtool_ops
;
152 MODULE_AUTHOR("Freescale Semiconductor, Inc");
153 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
154 MODULE_LICENSE("GPL");
156 /* Returns 1 if incoming frames use an FCB */
157 static inline int gfar_uses_fcb(struct gfar_private
*priv
)
159 return (priv
->vlan_enable
|| priv
->rx_csum_enable
);
162 /* Set up the ethernet device structure, private data,
163 * and anything else we need before we start */
164 static int gfar_probe(struct platform_device
*pdev
)
167 struct net_device
*dev
= NULL
;
168 struct gfar_private
*priv
= NULL
;
169 struct gianfar_platform_data
*einfo
;
172 DECLARE_MAC_BUF(mac
);
174 einfo
= (struct gianfar_platform_data
*) pdev
->dev
.platform_data
;
177 printk(KERN_ERR
"gfar %d: Missing additional data!\n",
183 /* Create an ethernet device instance */
184 dev
= alloc_etherdev(sizeof (*priv
));
189 priv
= netdev_priv(dev
);
192 /* Set the info in the priv to the current info */
195 /* fill out IRQ fields */
196 if (einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
197 priv
->interruptTransmit
= platform_get_irq_byname(pdev
, "tx");
198 priv
->interruptReceive
= platform_get_irq_byname(pdev
, "rx");
199 priv
->interruptError
= platform_get_irq_byname(pdev
, "error");
200 if (priv
->interruptTransmit
< 0 || priv
->interruptReceive
< 0 || priv
->interruptError
< 0)
203 priv
->interruptTransmit
= platform_get_irq(pdev
, 0);
204 if (priv
->interruptTransmit
< 0)
208 /* get a pointer to the register memory */
209 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
210 priv
->regs
= ioremap(r
->start
, sizeof (struct gfar
));
212 if (NULL
== priv
->regs
) {
217 spin_lock_init(&priv
->txlock
);
218 spin_lock_init(&priv
->rxlock
);
220 platform_set_drvdata(pdev
, dev
);
222 /* Stop the DMA engine now, in case it was running before */
223 /* (The firmware could have used it, and left it running). */
224 /* To do this, we write Graceful Receive Stop and Graceful */
225 /* Transmit Stop, and then wait until the corresponding bits */
226 /* in IEVENT indicate the stops have completed. */
227 tempval
= gfar_read(&priv
->regs
->dmactrl
);
228 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
229 gfar_write(&priv
->regs
->dmactrl
, tempval
);
231 tempval
= gfar_read(&priv
->regs
->dmactrl
);
232 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
233 gfar_write(&priv
->regs
->dmactrl
, tempval
);
235 while (!(gfar_read(&priv
->regs
->ievent
) & (IEVENT_GRSC
| IEVENT_GTSC
)))
238 /* Reset MAC layer */
239 gfar_write(&priv
->regs
->maccfg1
, MACCFG1_SOFT_RESET
);
241 tempval
= (MACCFG1_TX_FLOW
| MACCFG1_RX_FLOW
);
242 gfar_write(&priv
->regs
->maccfg1
, tempval
);
244 /* Initialize MACCFG2. */
245 gfar_write(&priv
->regs
->maccfg2
, MACCFG2_INIT_SETTINGS
);
247 /* Initialize ECNTRL */
248 gfar_write(&priv
->regs
->ecntrl
, ECNTRL_INIT_SETTINGS
);
250 /* Copy the station address into the dev structure, */
251 memcpy(dev
->dev_addr
, einfo
->mac_addr
, MAC_ADDR_LEN
);
253 /* Set the dev->base_addr to the gfar reg region */
254 dev
->base_addr
= (unsigned long) (priv
->regs
);
256 SET_NETDEV_DEV(dev
, &pdev
->dev
);
258 /* Fill in the dev structure */
259 dev
->open
= gfar_enet_open
;
260 dev
->hard_start_xmit
= gfar_start_xmit
;
261 dev
->tx_timeout
= gfar_timeout
;
262 dev
->watchdog_timeo
= TX_TIMEOUT
;
263 #ifdef CONFIG_GFAR_NAPI
264 netif_napi_add(dev
, &priv
->napi
, gfar_poll
, GFAR_DEV_WEIGHT
);
266 #ifdef CONFIG_NET_POLL_CONTROLLER
267 dev
->poll_controller
= gfar_netpoll
;
269 dev
->stop
= gfar_close
;
270 dev
->change_mtu
= gfar_change_mtu
;
272 dev
->set_multicast_list
= gfar_set_multi
;
274 dev
->ethtool_ops
= &gfar_ethtool_ops
;
276 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_CSUM
) {
277 priv
->rx_csum_enable
= 1;
278 dev
->features
|= NETIF_F_IP_CSUM
;
280 priv
->rx_csum_enable
= 0;
284 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_VLAN
) {
285 dev
->vlan_rx_register
= gfar_vlan_rx_register
;
287 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
289 priv
->vlan_enable
= 1;
292 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
) {
293 priv
->extended_hash
= 1;
294 priv
->hash_width
= 9;
296 priv
->hash_regs
[0] = &priv
->regs
->igaddr0
;
297 priv
->hash_regs
[1] = &priv
->regs
->igaddr1
;
298 priv
->hash_regs
[2] = &priv
->regs
->igaddr2
;
299 priv
->hash_regs
[3] = &priv
->regs
->igaddr3
;
300 priv
->hash_regs
[4] = &priv
->regs
->igaddr4
;
301 priv
->hash_regs
[5] = &priv
->regs
->igaddr5
;
302 priv
->hash_regs
[6] = &priv
->regs
->igaddr6
;
303 priv
->hash_regs
[7] = &priv
->regs
->igaddr7
;
304 priv
->hash_regs
[8] = &priv
->regs
->gaddr0
;
305 priv
->hash_regs
[9] = &priv
->regs
->gaddr1
;
306 priv
->hash_regs
[10] = &priv
->regs
->gaddr2
;
307 priv
->hash_regs
[11] = &priv
->regs
->gaddr3
;
308 priv
->hash_regs
[12] = &priv
->regs
->gaddr4
;
309 priv
->hash_regs
[13] = &priv
->regs
->gaddr5
;
310 priv
->hash_regs
[14] = &priv
->regs
->gaddr6
;
311 priv
->hash_regs
[15] = &priv
->regs
->gaddr7
;
314 priv
->extended_hash
= 0;
315 priv
->hash_width
= 8;
317 priv
->hash_regs
[0] = &priv
->regs
->gaddr0
;
318 priv
->hash_regs
[1] = &priv
->regs
->gaddr1
;
319 priv
->hash_regs
[2] = &priv
->regs
->gaddr2
;
320 priv
->hash_regs
[3] = &priv
->regs
->gaddr3
;
321 priv
->hash_regs
[4] = &priv
->regs
->gaddr4
;
322 priv
->hash_regs
[5] = &priv
->regs
->gaddr5
;
323 priv
->hash_regs
[6] = &priv
->regs
->gaddr6
;
324 priv
->hash_regs
[7] = &priv
->regs
->gaddr7
;
327 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_PADDING
)
328 priv
->padding
= DEFAULT_PADDING
;
332 if (dev
->features
& NETIF_F_IP_CSUM
)
333 dev
->hard_header_len
+= GMAC_FCB_LEN
;
335 priv
->rx_buffer_size
= DEFAULT_RX_BUFFER_SIZE
;
336 priv
->tx_ring_size
= DEFAULT_TX_RING_SIZE
;
337 priv
->rx_ring_size
= DEFAULT_RX_RING_SIZE
;
339 priv
->txcoalescing
= DEFAULT_TX_COALESCE
;
340 priv
->txcount
= DEFAULT_TXCOUNT
;
341 priv
->txtime
= DEFAULT_TXTIME
;
342 priv
->rxcoalescing
= DEFAULT_RX_COALESCE
;
343 priv
->rxcount
= DEFAULT_RXCOUNT
;
344 priv
->rxtime
= DEFAULT_RXTIME
;
346 /* Enable most messages by default */
347 priv
->msg_enable
= (NETIF_MSG_IFUP
<< 1 ) - 1;
349 err
= register_netdev(dev
);
352 printk(KERN_ERR
"%s: Cannot register net device, aborting.\n",
357 /* Create all the sysfs files */
358 gfar_init_sysfs(dev
);
360 /* Print out the device info */
361 printk(KERN_INFO DEVICE_NAME
"%s\n",
362 dev
->name
, print_mac(mac
, dev
->dev_addr
));
364 /* Even more device info helps when determining which kernel */
365 /* provided which set of benchmarks. */
366 #ifdef CONFIG_GFAR_NAPI
367 printk(KERN_INFO
"%s: Running with NAPI enabled\n", dev
->name
);
369 printk(KERN_INFO
"%s: Running with NAPI disabled\n", dev
->name
);
371 printk(KERN_INFO
"%s: %d/%d RX/TX BD ring size\n",
372 dev
->name
, priv
->rx_ring_size
, priv
->tx_ring_size
);
383 static int gfar_remove(struct platform_device
*pdev
)
385 struct net_device
*dev
= platform_get_drvdata(pdev
);
386 struct gfar_private
*priv
= netdev_priv(dev
);
388 platform_set_drvdata(pdev
, NULL
);
397 /* Reads the controller's registers to determine what interface
398 * connects it to the PHY.
400 static phy_interface_t
gfar_get_interface(struct net_device
*dev
)
402 struct gfar_private
*priv
= netdev_priv(dev
);
403 u32 ecntrl
= gfar_read(&priv
->regs
->ecntrl
);
405 if (ecntrl
& ECNTRL_SGMII_MODE
)
406 return PHY_INTERFACE_MODE_SGMII
;
408 if (ecntrl
& ECNTRL_TBI_MODE
) {
409 if (ecntrl
& ECNTRL_REDUCED_MODE
)
410 return PHY_INTERFACE_MODE_RTBI
;
412 return PHY_INTERFACE_MODE_TBI
;
415 if (ecntrl
& ECNTRL_REDUCED_MODE
) {
416 if (ecntrl
& ECNTRL_REDUCED_MII_MODE
)
417 return PHY_INTERFACE_MODE_RMII
;
419 phy_interface_t interface
= priv
->einfo
->interface
;
422 * This isn't autodetected right now, so it must
423 * be set by the device tree or platform code.
425 if (interface
== PHY_INTERFACE_MODE_RGMII_ID
)
426 return PHY_INTERFACE_MODE_RGMII_ID
;
428 return PHY_INTERFACE_MODE_RGMII
;
432 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
)
433 return PHY_INTERFACE_MODE_GMII
;
435 return PHY_INTERFACE_MODE_MII
;
439 /* Initializes driver's PHY state, and attaches to the PHY.
440 * Returns 0 on success.
442 static int init_phy(struct net_device
*dev
)
444 struct gfar_private
*priv
= netdev_priv(dev
);
445 uint gigabit_support
=
446 priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
?
447 SUPPORTED_1000baseT_Full
: 0;
448 struct phy_device
*phydev
;
449 char phy_id
[BUS_ID_SIZE
];
450 phy_interface_t interface
;
454 priv
->oldduplex
= -1;
456 snprintf(phy_id
, BUS_ID_SIZE
, PHY_ID_FMT
, priv
->einfo
->bus_id
, priv
->einfo
->phy_id
);
458 interface
= gfar_get_interface(dev
);
460 phydev
= phy_connect(dev
, phy_id
, &adjust_link
, 0, interface
);
462 if (interface
== PHY_INTERFACE_MODE_SGMII
)
463 gfar_configure_serdes(dev
);
465 if (IS_ERR(phydev
)) {
466 printk(KERN_ERR
"%s: Could not attach to PHY\n", dev
->name
);
467 return PTR_ERR(phydev
);
470 /* Remove any features not supported by the controller */
471 phydev
->supported
&= (GFAR_SUPPORTED
| gigabit_support
);
472 phydev
->advertising
= phydev
->supported
;
474 priv
->phydev
= phydev
;
479 static void gfar_configure_serdes(struct net_device
*dev
)
481 struct gfar_private
*priv
= netdev_priv(dev
);
482 struct gfar_mii __iomem
*regs
=
483 (void __iomem
*)&priv
->regs
->gfar_mii_regs
;
485 /* Initialise TBI i/f to communicate with serdes (lynx phy) */
487 /* Single clk mode, mii mode off(for aerdes communication) */
488 gfar_local_mdio_write(regs
, TBIPA_VALUE
, MII_TBICON
, TBICON_CLK_SELECT
);
490 /* Supported pause and full-duplex, no half-duplex */
491 gfar_local_mdio_write(regs
, TBIPA_VALUE
, MII_ADVERTISE
,
492 ADVERTISE_1000XFULL
| ADVERTISE_1000XPAUSE
|
493 ADVERTISE_1000XPSE_ASYM
);
495 /* ANEG enable, restart ANEG, full duplex mode, speed[1] set */
496 gfar_local_mdio_write(regs
, TBIPA_VALUE
, MII_BMCR
, BMCR_ANENABLE
|
497 BMCR_ANRESTART
| BMCR_FULLDPLX
| BMCR_SPEED1000
);
500 static void init_registers(struct net_device
*dev
)
502 struct gfar_private
*priv
= netdev_priv(dev
);
505 gfar_write(&priv
->regs
->ievent
, IEVENT_INIT_CLEAR
);
507 /* Initialize IMASK */
508 gfar_write(&priv
->regs
->imask
, IMASK_INIT_CLEAR
);
510 /* Init hash registers to zero */
511 gfar_write(&priv
->regs
->igaddr0
, 0);
512 gfar_write(&priv
->regs
->igaddr1
, 0);
513 gfar_write(&priv
->regs
->igaddr2
, 0);
514 gfar_write(&priv
->regs
->igaddr3
, 0);
515 gfar_write(&priv
->regs
->igaddr4
, 0);
516 gfar_write(&priv
->regs
->igaddr5
, 0);
517 gfar_write(&priv
->regs
->igaddr6
, 0);
518 gfar_write(&priv
->regs
->igaddr7
, 0);
520 gfar_write(&priv
->regs
->gaddr0
, 0);
521 gfar_write(&priv
->regs
->gaddr1
, 0);
522 gfar_write(&priv
->regs
->gaddr2
, 0);
523 gfar_write(&priv
->regs
->gaddr3
, 0);
524 gfar_write(&priv
->regs
->gaddr4
, 0);
525 gfar_write(&priv
->regs
->gaddr5
, 0);
526 gfar_write(&priv
->regs
->gaddr6
, 0);
527 gfar_write(&priv
->regs
->gaddr7
, 0);
529 /* Zero out the rmon mib registers if it has them */
530 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_RMON
) {
531 memset_io(&(priv
->regs
->rmon
), 0, sizeof (struct rmon_mib
));
533 /* Mask off the CAM interrupts */
534 gfar_write(&priv
->regs
->rmon
.cam1
, 0xffffffff);
535 gfar_write(&priv
->regs
->rmon
.cam2
, 0xffffffff);
538 /* Initialize the max receive buffer length */
539 gfar_write(&priv
->regs
->mrblr
, priv
->rx_buffer_size
);
541 /* Initialize the Minimum Frame Length Register */
542 gfar_write(&priv
->regs
->minflr
, MINFLR_INIT_SETTINGS
);
544 /* Assign the TBI an address which won't conflict with the PHYs */
545 gfar_write(&priv
->regs
->tbipa
, TBIPA_VALUE
);
549 /* Halt the receive and transmit queues */
550 void gfar_halt(struct net_device
*dev
)
552 struct gfar_private
*priv
= netdev_priv(dev
);
553 struct gfar __iomem
*regs
= priv
->regs
;
556 /* Mask all interrupts */
557 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
559 /* Clear all interrupts */
560 gfar_write(®s
->ievent
, IEVENT_INIT_CLEAR
);
562 /* Stop the DMA, and wait for it to stop */
563 tempval
= gfar_read(&priv
->regs
->dmactrl
);
564 if ((tempval
& (DMACTRL_GRS
| DMACTRL_GTS
))
565 != (DMACTRL_GRS
| DMACTRL_GTS
)) {
566 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
567 gfar_write(&priv
->regs
->dmactrl
, tempval
);
569 while (!(gfar_read(&priv
->regs
->ievent
) &
570 (IEVENT_GRSC
| IEVENT_GTSC
)))
574 /* Disable Rx and Tx */
575 tempval
= gfar_read(®s
->maccfg1
);
576 tempval
&= ~(MACCFG1_RX_EN
| MACCFG1_TX_EN
);
577 gfar_write(®s
->maccfg1
, tempval
);
580 void stop_gfar(struct net_device
*dev
)
582 struct gfar_private
*priv
= netdev_priv(dev
);
583 struct gfar __iomem
*regs
= priv
->regs
;
586 phy_stop(priv
->phydev
);
589 spin_lock_irqsave(&priv
->txlock
, flags
);
590 spin_lock(&priv
->rxlock
);
594 spin_unlock(&priv
->rxlock
);
595 spin_unlock_irqrestore(&priv
->txlock
, flags
);
598 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
599 free_irq(priv
->interruptError
, dev
);
600 free_irq(priv
->interruptTransmit
, dev
);
601 free_irq(priv
->interruptReceive
, dev
);
603 free_irq(priv
->interruptTransmit
, dev
);
606 free_skb_resources(priv
);
608 dma_free_coherent(&dev
->dev
,
609 sizeof(struct txbd8
)*priv
->tx_ring_size
610 + sizeof(struct rxbd8
)*priv
->rx_ring_size
,
612 gfar_read(®s
->tbase0
));
615 /* If there are any tx skbs or rx skbs still around, free them.
616 * Then free tx_skbuff and rx_skbuff */
617 static void free_skb_resources(struct gfar_private
*priv
)
623 /* Go through all the buffer descriptors and free their data buffers */
624 txbdp
= priv
->tx_bd_base
;
626 for (i
= 0; i
< priv
->tx_ring_size
; i
++) {
628 if (priv
->tx_skbuff
[i
]) {
629 dma_unmap_single(&priv
->dev
->dev
, txbdp
->bufPtr
,
632 dev_kfree_skb_any(priv
->tx_skbuff
[i
]);
633 priv
->tx_skbuff
[i
] = NULL
;
637 kfree(priv
->tx_skbuff
);
639 rxbdp
= priv
->rx_bd_base
;
641 /* rx_skbuff is not guaranteed to be allocated, so only
642 * free it and its contents if it is allocated */
643 if(priv
->rx_skbuff
!= NULL
) {
644 for (i
= 0; i
< priv
->rx_ring_size
; i
++) {
645 if (priv
->rx_skbuff
[i
]) {
646 dma_unmap_single(&priv
->dev
->dev
, rxbdp
->bufPtr
,
647 priv
->rx_buffer_size
,
650 dev_kfree_skb_any(priv
->rx_skbuff
[i
]);
651 priv
->rx_skbuff
[i
] = NULL
;
661 kfree(priv
->rx_skbuff
);
665 void gfar_start(struct net_device
*dev
)
667 struct gfar_private
*priv
= netdev_priv(dev
);
668 struct gfar __iomem
*regs
= priv
->regs
;
671 /* Enable Rx and Tx in MACCFG1 */
672 tempval
= gfar_read(®s
->maccfg1
);
673 tempval
|= (MACCFG1_RX_EN
| MACCFG1_TX_EN
);
674 gfar_write(®s
->maccfg1
, tempval
);
676 /* Initialize DMACTRL to have WWR and WOP */
677 tempval
= gfar_read(&priv
->regs
->dmactrl
);
678 tempval
|= DMACTRL_INIT_SETTINGS
;
679 gfar_write(&priv
->regs
->dmactrl
, tempval
);
681 /* Make sure we aren't stopped */
682 tempval
= gfar_read(&priv
->regs
->dmactrl
);
683 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
684 gfar_write(&priv
->regs
->dmactrl
, tempval
);
686 /* Clear THLT/RHLT, so that the DMA starts polling now */
687 gfar_write(®s
->tstat
, TSTAT_CLEAR_THALT
);
688 gfar_write(®s
->rstat
, RSTAT_CLEAR_RHALT
);
690 /* Unmask the interrupts we look for */
691 gfar_write(®s
->imask
, IMASK_DEFAULT
);
694 /* Bring the controller up and running */
695 int startup_gfar(struct net_device
*dev
)
702 struct gfar_private
*priv
= netdev_priv(dev
);
703 struct gfar __iomem
*regs
= priv
->regs
;
708 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
710 /* Allocate memory for the buffer descriptors */
711 vaddr
= (unsigned long) dma_alloc_coherent(&dev
->dev
,
712 sizeof (struct txbd8
) * priv
->tx_ring_size
+
713 sizeof (struct rxbd8
) * priv
->rx_ring_size
,
717 if (netif_msg_ifup(priv
))
718 printk(KERN_ERR
"%s: Could not allocate buffer descriptors!\n",
723 priv
->tx_bd_base
= (struct txbd8
*) vaddr
;
725 /* enet DMA only understands physical addresses */
726 gfar_write(®s
->tbase0
, addr
);
728 /* Start the rx descriptor ring where the tx ring leaves off */
729 addr
= addr
+ sizeof (struct txbd8
) * priv
->tx_ring_size
;
730 vaddr
= vaddr
+ sizeof (struct txbd8
) * priv
->tx_ring_size
;
731 priv
->rx_bd_base
= (struct rxbd8
*) vaddr
;
732 gfar_write(®s
->rbase0
, addr
);
734 /* Setup the skbuff rings */
736 (struct sk_buff
**) kmalloc(sizeof (struct sk_buff
*) *
737 priv
->tx_ring_size
, GFP_KERNEL
);
739 if (NULL
== priv
->tx_skbuff
) {
740 if (netif_msg_ifup(priv
))
741 printk(KERN_ERR
"%s: Could not allocate tx_skbuff\n",
747 for (i
= 0; i
< priv
->tx_ring_size
; i
++)
748 priv
->tx_skbuff
[i
] = NULL
;
751 (struct sk_buff
**) kmalloc(sizeof (struct sk_buff
*) *
752 priv
->rx_ring_size
, GFP_KERNEL
);
754 if (NULL
== priv
->rx_skbuff
) {
755 if (netif_msg_ifup(priv
))
756 printk(KERN_ERR
"%s: Could not allocate rx_skbuff\n",
762 for (i
= 0; i
< priv
->rx_ring_size
; i
++)
763 priv
->rx_skbuff
[i
] = NULL
;
765 /* Initialize some variables in our dev structure */
766 priv
->dirty_tx
= priv
->cur_tx
= priv
->tx_bd_base
;
767 priv
->cur_rx
= priv
->rx_bd_base
;
768 priv
->skb_curtx
= priv
->skb_dirtytx
= 0;
771 /* Initialize Transmit Descriptor Ring */
772 txbdp
= priv
->tx_bd_base
;
773 for (i
= 0; i
< priv
->tx_ring_size
; i
++) {
780 /* Set the last descriptor in the ring to indicate wrap */
782 txbdp
->status
|= TXBD_WRAP
;
784 rxbdp
= priv
->rx_bd_base
;
785 for (i
= 0; i
< priv
->rx_ring_size
; i
++) {
786 struct sk_buff
*skb
= NULL
;
790 skb
= gfar_new_skb(dev
, rxbdp
);
792 priv
->rx_skbuff
[i
] = skb
;
797 /* Set the last descriptor in the ring to wrap */
799 rxbdp
->status
|= RXBD_WRAP
;
801 /* If the device has multiple interrupts, register for
802 * them. Otherwise, only register for the one */
803 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
804 /* Install our interrupt handlers for Error,
805 * Transmit, and Receive */
806 if (request_irq(priv
->interruptError
, gfar_error
,
807 0, "enet_error", dev
) < 0) {
808 if (netif_msg_intr(priv
))
809 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
810 dev
->name
, priv
->interruptError
);
816 if (request_irq(priv
->interruptTransmit
, gfar_transmit
,
817 0, "enet_tx", dev
) < 0) {
818 if (netif_msg_intr(priv
))
819 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
820 dev
->name
, priv
->interruptTransmit
);
827 if (request_irq(priv
->interruptReceive
, gfar_receive
,
828 0, "enet_rx", dev
) < 0) {
829 if (netif_msg_intr(priv
))
830 printk(KERN_ERR
"%s: Can't get IRQ %d (receive0)\n",
831 dev
->name
, priv
->interruptReceive
);
837 if (request_irq(priv
->interruptTransmit
, gfar_interrupt
,
838 0, "gfar_interrupt", dev
) < 0) {
839 if (netif_msg_intr(priv
))
840 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
841 dev
->name
, priv
->interruptError
);
848 phy_start(priv
->phydev
);
850 /* Configure the coalescing support */
851 if (priv
->txcoalescing
)
852 gfar_write(®s
->txic
,
853 mk_ic_value(priv
->txcount
, priv
->txtime
));
855 gfar_write(®s
->txic
, 0);
857 if (priv
->rxcoalescing
)
858 gfar_write(®s
->rxic
,
859 mk_ic_value(priv
->rxcount
, priv
->rxtime
));
861 gfar_write(®s
->rxic
, 0);
863 if (priv
->rx_csum_enable
)
864 rctrl
|= RCTRL_CHECKSUMMING
;
866 if (priv
->extended_hash
) {
867 rctrl
|= RCTRL_EXTHASH
;
869 gfar_clear_exact_match(dev
);
873 if (priv
->vlan_enable
)
877 rctrl
&= ~RCTRL_PAL_MASK
;
878 rctrl
|= RCTRL_PADDING(priv
->padding
);
881 /* Init rctrl based on our settings */
882 gfar_write(&priv
->regs
->rctrl
, rctrl
);
884 if (dev
->features
& NETIF_F_IP_CSUM
)
885 gfar_write(&priv
->regs
->tctrl
, TCTRL_INIT_CSUM
);
887 /* Set the extraction length and index */
888 attrs
= ATTRELI_EL(priv
->rx_stash_size
) |
889 ATTRELI_EI(priv
->rx_stash_index
);
891 gfar_write(&priv
->regs
->attreli
, attrs
);
893 /* Start with defaults, and add stashing or locking
894 * depending on the approprate variables */
895 attrs
= ATTR_INIT_SETTINGS
;
897 if (priv
->bd_stash_en
)
898 attrs
|= ATTR_BDSTASH
;
900 if (priv
->rx_stash_size
!= 0)
901 attrs
|= ATTR_BUFSTASH
;
903 gfar_write(&priv
->regs
->attr
, attrs
);
905 gfar_write(&priv
->regs
->fifo_tx_thr
, priv
->fifo_threshold
);
906 gfar_write(&priv
->regs
->fifo_tx_starve
, priv
->fifo_starve
);
907 gfar_write(&priv
->regs
->fifo_tx_starve_shutoff
, priv
->fifo_starve_off
);
909 /* Start the controller */
915 free_irq(priv
->interruptTransmit
, dev
);
917 free_irq(priv
->interruptError
, dev
);
920 free_skb_resources(priv
);
922 dma_free_coherent(&dev
->dev
,
923 sizeof(struct txbd8
)*priv
->tx_ring_size
924 + sizeof(struct rxbd8
)*priv
->rx_ring_size
,
926 gfar_read(®s
->tbase0
));
931 /* Called when something needs to use the ethernet device */
932 /* Returns 0 for success. */
933 static int gfar_enet_open(struct net_device
*dev
)
935 #ifdef CONFIG_GFAR_NAPI
936 struct gfar_private
*priv
= netdev_priv(dev
);
940 #ifdef CONFIG_GFAR_NAPI
941 napi_enable(&priv
->napi
);
944 /* Initialize a bunch of registers */
947 gfar_set_mac_address(dev
);
952 #ifdef CONFIG_GFAR_NAPI
953 napi_disable(&priv
->napi
);
958 err
= startup_gfar(dev
);
960 #ifdef CONFIG_GFAR_NAPI
961 napi_disable(&priv
->napi
);
966 netif_start_queue(dev
);
971 static inline struct txfcb
*gfar_add_fcb(struct sk_buff
*skb
, struct txbd8
*bdp
)
973 struct txfcb
*fcb
= (struct txfcb
*)skb_push (skb
, GMAC_FCB_LEN
);
975 memset(fcb
, 0, GMAC_FCB_LEN
);
980 static inline void gfar_tx_checksum(struct sk_buff
*skb
, struct txfcb
*fcb
)
984 /* If we're here, it's a IP packet with a TCP or UDP
985 * payload. We set it to checksum, using a pseudo-header
988 flags
= TXFCB_DEFAULT
;
990 /* Tell the controller what the protocol is */
991 /* And provide the already calculated phcs */
992 if (ip_hdr(skb
)->protocol
== IPPROTO_UDP
) {
994 fcb
->phcs
= udp_hdr(skb
)->check
;
996 fcb
->phcs
= tcp_hdr(skb
)->check
;
998 /* l3os is the distance between the start of the
999 * frame (skb->data) and the start of the IP hdr.
1000 * l4os is the distance between the start of the
1001 * l3 hdr and the l4 hdr */
1002 fcb
->l3os
= (u16
)(skb_network_offset(skb
) - GMAC_FCB_LEN
);
1003 fcb
->l4os
= skb_network_header_len(skb
);
1008 void inline gfar_tx_vlan(struct sk_buff
*skb
, struct txfcb
*fcb
)
1010 fcb
->flags
|= TXFCB_VLN
;
1011 fcb
->vlctl
= vlan_tx_tag_get(skb
);
1014 /* This is called by the kernel when a frame is ready for transmission. */
1015 /* It is pointed to by the dev->hard_start_xmit function pointer */
1016 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1018 struct gfar_private
*priv
= netdev_priv(dev
);
1019 struct txfcb
*fcb
= NULL
;
1020 struct txbd8
*txbdp
;
1022 unsigned long flags
;
1024 /* Update transmit stats */
1025 dev
->stats
.tx_bytes
+= skb
->len
;
1028 spin_lock_irqsave(&priv
->txlock
, flags
);
1030 /* Point at the first free tx descriptor */
1031 txbdp
= priv
->cur_tx
;
1033 /* Clear all but the WRAP status flags */
1034 status
= txbdp
->status
& TXBD_WRAP
;
1036 /* Set up checksumming */
1037 if (likely((dev
->features
& NETIF_F_IP_CSUM
)
1038 && (CHECKSUM_PARTIAL
== skb
->ip_summed
))) {
1039 fcb
= gfar_add_fcb(skb
, txbdp
);
1041 gfar_tx_checksum(skb
, fcb
);
1044 if (priv
->vlan_enable
&&
1045 unlikely(priv
->vlgrp
&& vlan_tx_tag_present(skb
))) {
1046 if (unlikely(NULL
== fcb
)) {
1047 fcb
= gfar_add_fcb(skb
, txbdp
);
1051 gfar_tx_vlan(skb
, fcb
);
1054 /* Set buffer length and pointer */
1055 txbdp
->length
= skb
->len
;
1056 txbdp
->bufPtr
= dma_map_single(&dev
->dev
, skb
->data
,
1057 skb
->len
, DMA_TO_DEVICE
);
1059 /* Save the skb pointer so we can free it later */
1060 priv
->tx_skbuff
[priv
->skb_curtx
] = skb
;
1062 /* Update the current skb pointer (wrapping if this was the last) */
1064 (priv
->skb_curtx
+ 1) & TX_RING_MOD_MASK(priv
->tx_ring_size
);
1066 /* Flag the BD as interrupt-causing */
1067 status
|= TXBD_INTERRUPT
;
1069 /* Flag the BD as ready to go, last in frame, and */
1070 /* in need of CRC */
1071 status
|= (TXBD_READY
| TXBD_LAST
| TXBD_CRC
);
1073 dev
->trans_start
= jiffies
;
1075 /* The powerpc-specific eieio() is used, as wmb() has too strong
1076 * semantics (it requires synchronization between cacheable and
1077 * uncacheable mappings, which eieio doesn't provide and which we
1078 * don't need), thus requiring a more expensive sync instruction. At
1079 * some point, the set of architecture-independent barrier functions
1080 * should be expanded to include weaker barriers.
1084 txbdp
->status
= status
;
1086 /* If this was the last BD in the ring, the next one */
1087 /* is at the beginning of the ring */
1088 if (txbdp
->status
& TXBD_WRAP
)
1089 txbdp
= priv
->tx_bd_base
;
1093 /* If the next BD still needs to be cleaned up, then the bds
1094 are full. We need to tell the kernel to stop sending us stuff. */
1095 if (txbdp
== priv
->dirty_tx
) {
1096 netif_stop_queue(dev
);
1098 dev
->stats
.tx_fifo_errors
++;
1101 /* Update the current txbd to the next one */
1102 priv
->cur_tx
= txbdp
;
1104 /* Tell the DMA to go go go */
1105 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
1108 spin_unlock_irqrestore(&priv
->txlock
, flags
);
1113 /* Stops the kernel queue, and halts the controller */
1114 static int gfar_close(struct net_device
*dev
)
1116 struct gfar_private
*priv
= netdev_priv(dev
);
1118 #ifdef CONFIG_GFAR_NAPI
1119 napi_disable(&priv
->napi
);
1124 /* Disconnect from the PHY */
1125 phy_disconnect(priv
->phydev
);
1126 priv
->phydev
= NULL
;
1128 netif_stop_queue(dev
);
1133 /* Changes the mac address if the controller is not running. */
1134 int gfar_set_mac_address(struct net_device
*dev
)
1136 gfar_set_mac_for_addr(dev
, 0, dev
->dev_addr
);
1142 /* Enables and disables VLAN insertion/extraction */
1143 static void gfar_vlan_rx_register(struct net_device
*dev
,
1144 struct vlan_group
*grp
)
1146 struct gfar_private
*priv
= netdev_priv(dev
);
1147 unsigned long flags
;
1150 spin_lock_irqsave(&priv
->rxlock
, flags
);
1155 /* Enable VLAN tag insertion */
1156 tempval
= gfar_read(&priv
->regs
->tctrl
);
1157 tempval
|= TCTRL_VLINS
;
1159 gfar_write(&priv
->regs
->tctrl
, tempval
);
1161 /* Enable VLAN tag extraction */
1162 tempval
= gfar_read(&priv
->regs
->rctrl
);
1163 tempval
|= RCTRL_VLEX
;
1164 gfar_write(&priv
->regs
->rctrl
, tempval
);
1166 /* Disable VLAN tag insertion */
1167 tempval
= gfar_read(&priv
->regs
->tctrl
);
1168 tempval
&= ~TCTRL_VLINS
;
1169 gfar_write(&priv
->regs
->tctrl
, tempval
);
1171 /* Disable VLAN tag extraction */
1172 tempval
= gfar_read(&priv
->regs
->rctrl
);
1173 tempval
&= ~RCTRL_VLEX
;
1174 gfar_write(&priv
->regs
->rctrl
, tempval
);
1177 spin_unlock_irqrestore(&priv
->rxlock
, flags
);
1180 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
)
1182 int tempsize
, tempval
;
1183 struct gfar_private
*priv
= netdev_priv(dev
);
1184 int oldsize
= priv
->rx_buffer_size
;
1185 int frame_size
= new_mtu
+ ETH_HLEN
;
1187 if (priv
->vlan_enable
)
1188 frame_size
+= VLAN_ETH_HLEN
;
1190 if (gfar_uses_fcb(priv
))
1191 frame_size
+= GMAC_FCB_LEN
;
1193 frame_size
+= priv
->padding
;
1195 if ((frame_size
< 64) || (frame_size
> JUMBO_FRAME_SIZE
)) {
1196 if (netif_msg_drv(priv
))
1197 printk(KERN_ERR
"%s: Invalid MTU setting\n",
1203 (frame_size
& ~(INCREMENTAL_BUFFER_SIZE
- 1)) +
1204 INCREMENTAL_BUFFER_SIZE
;
1206 /* Only stop and start the controller if it isn't already
1207 * stopped, and we changed something */
1208 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
1211 priv
->rx_buffer_size
= tempsize
;
1215 gfar_write(&priv
->regs
->mrblr
, priv
->rx_buffer_size
);
1216 gfar_write(&priv
->regs
->maxfrm
, priv
->rx_buffer_size
);
1218 /* If the mtu is larger than the max size for standard
1219 * ethernet frames (ie, a jumbo frame), then set maccfg2
1220 * to allow huge frames, and to check the length */
1221 tempval
= gfar_read(&priv
->regs
->maccfg2
);
1223 if (priv
->rx_buffer_size
> DEFAULT_RX_BUFFER_SIZE
)
1224 tempval
|= (MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
1226 tempval
&= ~(MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
1228 gfar_write(&priv
->regs
->maccfg2
, tempval
);
1230 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
1236 /* gfar_timeout gets called when a packet has not been
1237 * transmitted after a set amount of time.
1238 * For now, assume that clearing out all the structures, and
1239 * starting over will fix the problem. */
1240 static void gfar_timeout(struct net_device
*dev
)
1242 dev
->stats
.tx_errors
++;
1244 if (dev
->flags
& IFF_UP
) {
1249 netif_schedule(dev
);
1252 /* Interrupt Handler for Transmit complete */
1253 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
)
1255 struct net_device
*dev
= (struct net_device
*) dev_id
;
1256 struct gfar_private
*priv
= netdev_priv(dev
);
1260 gfar_write(&priv
->regs
->ievent
, IEVENT_TX_MASK
);
1263 spin_lock(&priv
->txlock
);
1264 bdp
= priv
->dirty_tx
;
1265 while ((bdp
->status
& TXBD_READY
) == 0) {
1266 /* If dirty_tx and cur_tx are the same, then either the */
1267 /* ring is empty or full now (it could only be full in the beginning, */
1268 /* obviously). If it is empty, we are done. */
1269 if ((bdp
== priv
->cur_tx
) && (netif_queue_stopped(dev
) == 0))
1272 dev
->stats
.tx_packets
++;
1274 /* Deferred means some collisions occurred during transmit, */
1275 /* but we eventually sent the packet. */
1276 if (bdp
->status
& TXBD_DEF
)
1277 dev
->stats
.collisions
++;
1279 /* Free the sk buffer associated with this TxBD */
1280 dev_kfree_skb_irq(priv
->tx_skbuff
[priv
->skb_dirtytx
]);
1281 priv
->tx_skbuff
[priv
->skb_dirtytx
] = NULL
;
1283 (priv
->skb_dirtytx
+
1284 1) & TX_RING_MOD_MASK(priv
->tx_ring_size
);
1286 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1287 if (bdp
->status
& TXBD_WRAP
)
1288 bdp
= priv
->tx_bd_base
;
1292 /* Move dirty_tx to be the next bd */
1293 priv
->dirty_tx
= bdp
;
1295 /* We freed a buffer, so now we can restart transmission */
1296 if (netif_queue_stopped(dev
))
1297 netif_wake_queue(dev
);
1298 } /* while ((bdp->status & TXBD_READY) == 0) */
1300 /* If we are coalescing the interrupts, reset the timer */
1301 /* Otherwise, clear it */
1302 if (priv
->txcoalescing
)
1303 gfar_write(&priv
->regs
->txic
,
1304 mk_ic_value(priv
->txcount
, priv
->txtime
));
1306 gfar_write(&priv
->regs
->txic
, 0);
1308 spin_unlock(&priv
->txlock
);
1313 struct sk_buff
* gfar_new_skb(struct net_device
*dev
, struct rxbd8
*bdp
)
1315 unsigned int alignamount
;
1316 struct gfar_private
*priv
= netdev_priv(dev
);
1317 struct sk_buff
*skb
= NULL
;
1318 unsigned int timeout
= SKB_ALLOC_TIMEOUT
;
1320 /* We have to allocate the skb, so keep trying till we succeed */
1321 while ((!skb
) && timeout
--)
1322 skb
= dev_alloc_skb(priv
->rx_buffer_size
+ RXBUF_ALIGNMENT
);
1327 alignamount
= RXBUF_ALIGNMENT
-
1328 (((unsigned long) skb
->data
) & (RXBUF_ALIGNMENT
- 1));
1330 /* We need the data buffer to be aligned properly. We will reserve
1331 * as many bytes as needed to align the data properly
1333 skb_reserve(skb
, alignamount
);
1335 bdp
->bufPtr
= dma_map_single(&dev
->dev
, skb
->data
,
1336 priv
->rx_buffer_size
, DMA_FROM_DEVICE
);
1340 /* Mark the buffer empty */
1342 bdp
->status
|= (RXBD_EMPTY
| RXBD_INTERRUPT
);
1347 static inline void count_errors(unsigned short status
, struct net_device
*dev
)
1349 struct gfar_private
*priv
= netdev_priv(dev
);
1350 struct net_device_stats
*stats
= &dev
->stats
;
1351 struct gfar_extra_stats
*estats
= &priv
->extra_stats
;
1353 /* If the packet was truncated, none of the other errors
1355 if (status
& RXBD_TRUNCATED
) {
1356 stats
->rx_length_errors
++;
1362 /* Count the errors, if there were any */
1363 if (status
& (RXBD_LARGE
| RXBD_SHORT
)) {
1364 stats
->rx_length_errors
++;
1366 if (status
& RXBD_LARGE
)
1371 if (status
& RXBD_NONOCTET
) {
1372 stats
->rx_frame_errors
++;
1373 estats
->rx_nonoctet
++;
1375 if (status
& RXBD_CRCERR
) {
1376 estats
->rx_crcerr
++;
1377 stats
->rx_crc_errors
++;
1379 if (status
& RXBD_OVERRUN
) {
1380 estats
->rx_overrun
++;
1381 stats
->rx_crc_errors
++;
1385 irqreturn_t
gfar_receive(int irq
, void *dev_id
)
1387 struct net_device
*dev
= (struct net_device
*) dev_id
;
1388 struct gfar_private
*priv
= netdev_priv(dev
);
1389 #ifdef CONFIG_GFAR_NAPI
1392 unsigned long flags
;
1395 /* Clear IEVENT, so rx interrupt isn't called again
1396 * because of this interrupt */
1397 gfar_write(&priv
->regs
->ievent
, IEVENT_RX_MASK
);
1400 #ifdef CONFIG_GFAR_NAPI
1401 if (netif_rx_schedule_prep(dev
, &priv
->napi
)) {
1402 tempval
= gfar_read(&priv
->regs
->imask
);
1403 tempval
&= IMASK_RX_DISABLED
;
1404 gfar_write(&priv
->regs
->imask
, tempval
);
1406 __netif_rx_schedule(dev
, &priv
->napi
);
1408 if (netif_msg_rx_err(priv
))
1409 printk(KERN_DEBUG
"%s: receive called twice (%x)[%x]\n",
1410 dev
->name
, gfar_read(&priv
->regs
->ievent
),
1411 gfar_read(&priv
->regs
->imask
));
1415 spin_lock_irqsave(&priv
->rxlock
, flags
);
1416 gfar_clean_rx_ring(dev
, priv
->rx_ring_size
);
1418 /* If we are coalescing interrupts, update the timer */
1419 /* Otherwise, clear it */
1420 if (priv
->rxcoalescing
)
1421 gfar_write(&priv
->regs
->rxic
,
1422 mk_ic_value(priv
->rxcount
, priv
->rxtime
));
1424 gfar_write(&priv
->regs
->rxic
, 0);
1426 spin_unlock_irqrestore(&priv
->rxlock
, flags
);
1432 static inline int gfar_rx_vlan(struct sk_buff
*skb
,
1433 struct vlan_group
*vlgrp
, unsigned short vlctl
)
1435 #ifdef CONFIG_GFAR_NAPI
1436 return vlan_hwaccel_receive_skb(skb
, vlgrp
, vlctl
);
1438 return vlan_hwaccel_rx(skb
, vlgrp
, vlctl
);
1442 static inline void gfar_rx_checksum(struct sk_buff
*skb
, struct rxfcb
*fcb
)
1444 /* If valid headers were found, and valid sums
1445 * were verified, then we tell the kernel that no
1446 * checksumming is necessary. Otherwise, it is */
1447 if ((fcb
->flags
& RXFCB_CSUM_MASK
) == (RXFCB_CIP
| RXFCB_CTU
))
1448 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1450 skb
->ip_summed
= CHECKSUM_NONE
;
1454 static inline struct rxfcb
*gfar_get_fcb(struct sk_buff
*skb
)
1456 struct rxfcb
*fcb
= (struct rxfcb
*)skb
->data
;
1458 /* Remove the FCB from the skb */
1459 skb_pull(skb
, GMAC_FCB_LEN
);
1464 /* gfar_process_frame() -- handle one incoming packet if skb
1466 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
1469 struct gfar_private
*priv
= netdev_priv(dev
);
1470 struct rxfcb
*fcb
= NULL
;
1473 if (netif_msg_rx_err(priv
))
1474 printk(KERN_WARNING
"%s: Missing skb!!.\n", dev
->name
);
1475 dev
->stats
.rx_dropped
++;
1476 priv
->extra_stats
.rx_skbmissing
++;
1480 /* Prep the skb for the packet */
1481 skb_put(skb
, length
);
1483 /* Grab the FCB if there is one */
1484 if (gfar_uses_fcb(priv
))
1485 fcb
= gfar_get_fcb(skb
);
1487 /* Remove the padded bytes, if there are any */
1489 skb_pull(skb
, priv
->padding
);
1491 if (priv
->rx_csum_enable
)
1492 gfar_rx_checksum(skb
, fcb
);
1494 /* Tell the skb what kind of packet this is */
1495 skb
->protocol
= eth_type_trans(skb
, dev
);
1497 /* Send the packet up the stack */
1498 if (unlikely(priv
->vlgrp
&& (fcb
->flags
& RXFCB_VLN
)))
1499 ret
= gfar_rx_vlan(skb
, priv
->vlgrp
, fcb
->vlctl
);
1503 if (NET_RX_DROP
== ret
)
1504 priv
->extra_stats
.kernel_dropped
++;
1510 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1511 * until the budget/quota has been reached. Returns the number
1514 int gfar_clean_rx_ring(struct net_device
*dev
, int rx_work_limit
)
1517 struct sk_buff
*skb
;
1520 struct gfar_private
*priv
= netdev_priv(dev
);
1522 /* Get the first full descriptor */
1525 while (!((bdp
->status
& RXBD_EMPTY
) || (--rx_work_limit
< 0))) {
1527 skb
= priv
->rx_skbuff
[priv
->skb_currx
];
1530 (RXBD_LARGE
| RXBD_SHORT
| RXBD_NONOCTET
1531 | RXBD_CRCERR
| RXBD_OVERRUN
| RXBD_TRUNCATED
))) {
1532 /* Increment the number of packets */
1533 dev
->stats
.rx_packets
++;
1536 /* Remove the FCS from the packet length */
1537 pkt_len
= bdp
->length
- 4;
1539 gfar_process_frame(dev
, skb
, pkt_len
);
1541 dev
->stats
.rx_bytes
+= pkt_len
;
1543 count_errors(bdp
->status
, dev
);
1546 dev_kfree_skb_any(skb
);
1548 priv
->rx_skbuff
[priv
->skb_currx
] = NULL
;
1551 dev
->last_rx
= jiffies
;
1553 /* Clear the status flags for this buffer */
1554 bdp
->status
&= ~RXBD_STATS
;
1556 /* Add another skb for the future */
1557 skb
= gfar_new_skb(dev
, bdp
);
1558 priv
->rx_skbuff
[priv
->skb_currx
] = skb
;
1560 /* Update to the next pointer */
1561 if (bdp
->status
& RXBD_WRAP
)
1562 bdp
= priv
->rx_bd_base
;
1566 /* update to point at the next skb */
1569 1) & RX_RING_MOD_MASK(priv
->rx_ring_size
);
1573 /* Update the current rxbd pointer to be the next one */
1579 #ifdef CONFIG_GFAR_NAPI
1580 static int gfar_poll(struct napi_struct
*napi
, int budget
)
1582 struct gfar_private
*priv
= container_of(napi
, struct gfar_private
, napi
);
1583 struct net_device
*dev
= priv
->dev
;
1586 howmany
= gfar_clean_rx_ring(dev
, budget
);
1588 if (howmany
< budget
) {
1589 netif_rx_complete(dev
, napi
);
1591 /* Clear the halt bit in RSTAT */
1592 gfar_write(&priv
->regs
->rstat
, RSTAT_CLEAR_RHALT
);
1594 gfar_write(&priv
->regs
->imask
, IMASK_DEFAULT
);
1596 /* If we are coalescing interrupts, update the timer */
1597 /* Otherwise, clear it */
1598 if (priv
->rxcoalescing
)
1599 gfar_write(&priv
->regs
->rxic
,
1600 mk_ic_value(priv
->rxcount
, priv
->rxtime
));
1602 gfar_write(&priv
->regs
->rxic
, 0);
1609 #ifdef CONFIG_NET_POLL_CONTROLLER
1611 * Polling 'interrupt' - used by things like netconsole to send skbs
1612 * without having to re-enable interrupts. It's not called while
1613 * the interrupt routine is executing.
1615 static void gfar_netpoll(struct net_device
*dev
)
1617 struct gfar_private
*priv
= netdev_priv(dev
);
1619 /* If the device has multiple interrupts, run tx/rx */
1620 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1621 disable_irq(priv
->interruptTransmit
);
1622 disable_irq(priv
->interruptReceive
);
1623 disable_irq(priv
->interruptError
);
1624 gfar_interrupt(priv
->interruptTransmit
, dev
);
1625 enable_irq(priv
->interruptError
);
1626 enable_irq(priv
->interruptReceive
);
1627 enable_irq(priv
->interruptTransmit
);
1629 disable_irq(priv
->interruptTransmit
);
1630 gfar_interrupt(priv
->interruptTransmit
, dev
);
1631 enable_irq(priv
->interruptTransmit
);
1636 /* The interrupt handler for devices with one interrupt */
1637 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
)
1639 struct net_device
*dev
= dev_id
;
1640 struct gfar_private
*priv
= netdev_priv(dev
);
1642 /* Save ievent for future reference */
1643 u32 events
= gfar_read(&priv
->regs
->ievent
);
1645 /* Check for reception */
1646 if (events
& IEVENT_RX_MASK
)
1647 gfar_receive(irq
, dev_id
);
1649 /* Check for transmit completion */
1650 if (events
& IEVENT_TX_MASK
)
1651 gfar_transmit(irq
, dev_id
);
1653 /* Check for errors */
1654 if (events
& IEVENT_ERR_MASK
)
1655 gfar_error(irq
, dev_id
);
1660 /* Called every time the controller might need to be made
1661 * aware of new link state. The PHY code conveys this
1662 * information through variables in the phydev structure, and this
1663 * function converts those variables into the appropriate
1664 * register values, and can bring down the device if needed.
1666 static void adjust_link(struct net_device
*dev
)
1668 struct gfar_private
*priv
= netdev_priv(dev
);
1669 struct gfar __iomem
*regs
= priv
->regs
;
1670 unsigned long flags
;
1671 struct phy_device
*phydev
= priv
->phydev
;
1674 spin_lock_irqsave(&priv
->txlock
, flags
);
1676 u32 tempval
= gfar_read(®s
->maccfg2
);
1677 u32 ecntrl
= gfar_read(®s
->ecntrl
);
1679 /* Now we make sure that we can be in full duplex mode.
1680 * If not, we operate in half-duplex mode. */
1681 if (phydev
->duplex
!= priv
->oldduplex
) {
1683 if (!(phydev
->duplex
))
1684 tempval
&= ~(MACCFG2_FULL_DUPLEX
);
1686 tempval
|= MACCFG2_FULL_DUPLEX
;
1688 priv
->oldduplex
= phydev
->duplex
;
1691 if (phydev
->speed
!= priv
->oldspeed
) {
1693 switch (phydev
->speed
) {
1696 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_GMII
);
1701 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_MII
);
1703 /* Reduced mode distinguishes
1704 * between 10 and 100 */
1705 if (phydev
->speed
== SPEED_100
)
1706 ecntrl
|= ECNTRL_R100
;
1708 ecntrl
&= ~(ECNTRL_R100
);
1711 if (netif_msg_link(priv
))
1713 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
1714 dev
->name
, phydev
->speed
);
1718 priv
->oldspeed
= phydev
->speed
;
1721 gfar_write(®s
->maccfg2
, tempval
);
1722 gfar_write(®s
->ecntrl
, ecntrl
);
1724 if (!priv
->oldlink
) {
1727 netif_schedule(dev
);
1729 } else if (priv
->oldlink
) {
1733 priv
->oldduplex
= -1;
1736 if (new_state
&& netif_msg_link(priv
))
1737 phy_print_status(phydev
);
1739 spin_unlock_irqrestore(&priv
->txlock
, flags
);
1742 /* Update the hash table based on the current list of multicast
1743 * addresses we subscribe to. Also, change the promiscuity of
1744 * the device based on the flags (this function is called
1745 * whenever dev->flags is changed */
1746 static void gfar_set_multi(struct net_device
*dev
)
1748 struct dev_mc_list
*mc_ptr
;
1749 struct gfar_private
*priv
= netdev_priv(dev
);
1750 struct gfar __iomem
*regs
= priv
->regs
;
1753 if(dev
->flags
& IFF_PROMISC
) {
1754 /* Set RCTRL to PROM */
1755 tempval
= gfar_read(®s
->rctrl
);
1756 tempval
|= RCTRL_PROM
;
1757 gfar_write(®s
->rctrl
, tempval
);
1759 /* Set RCTRL to not PROM */
1760 tempval
= gfar_read(®s
->rctrl
);
1761 tempval
&= ~(RCTRL_PROM
);
1762 gfar_write(®s
->rctrl
, tempval
);
1765 if(dev
->flags
& IFF_ALLMULTI
) {
1766 /* Set the hash to rx all multicast frames */
1767 gfar_write(®s
->igaddr0
, 0xffffffff);
1768 gfar_write(®s
->igaddr1
, 0xffffffff);
1769 gfar_write(®s
->igaddr2
, 0xffffffff);
1770 gfar_write(®s
->igaddr3
, 0xffffffff);
1771 gfar_write(®s
->igaddr4
, 0xffffffff);
1772 gfar_write(®s
->igaddr5
, 0xffffffff);
1773 gfar_write(®s
->igaddr6
, 0xffffffff);
1774 gfar_write(®s
->igaddr7
, 0xffffffff);
1775 gfar_write(®s
->gaddr0
, 0xffffffff);
1776 gfar_write(®s
->gaddr1
, 0xffffffff);
1777 gfar_write(®s
->gaddr2
, 0xffffffff);
1778 gfar_write(®s
->gaddr3
, 0xffffffff);
1779 gfar_write(®s
->gaddr4
, 0xffffffff);
1780 gfar_write(®s
->gaddr5
, 0xffffffff);
1781 gfar_write(®s
->gaddr6
, 0xffffffff);
1782 gfar_write(®s
->gaddr7
, 0xffffffff);
1787 /* zero out the hash */
1788 gfar_write(®s
->igaddr0
, 0x0);
1789 gfar_write(®s
->igaddr1
, 0x0);
1790 gfar_write(®s
->igaddr2
, 0x0);
1791 gfar_write(®s
->igaddr3
, 0x0);
1792 gfar_write(®s
->igaddr4
, 0x0);
1793 gfar_write(®s
->igaddr5
, 0x0);
1794 gfar_write(®s
->igaddr6
, 0x0);
1795 gfar_write(®s
->igaddr7
, 0x0);
1796 gfar_write(®s
->gaddr0
, 0x0);
1797 gfar_write(®s
->gaddr1
, 0x0);
1798 gfar_write(®s
->gaddr2
, 0x0);
1799 gfar_write(®s
->gaddr3
, 0x0);
1800 gfar_write(®s
->gaddr4
, 0x0);
1801 gfar_write(®s
->gaddr5
, 0x0);
1802 gfar_write(®s
->gaddr6
, 0x0);
1803 gfar_write(®s
->gaddr7
, 0x0);
1805 /* If we have extended hash tables, we need to
1806 * clear the exact match registers to prepare for
1808 if (priv
->extended_hash
) {
1809 em_num
= GFAR_EM_NUM
+ 1;
1810 gfar_clear_exact_match(dev
);
1817 if(dev
->mc_count
== 0)
1820 /* Parse the list, and set the appropriate bits */
1821 for(mc_ptr
= dev
->mc_list
; mc_ptr
; mc_ptr
= mc_ptr
->next
) {
1823 gfar_set_mac_for_addr(dev
, idx
,
1827 gfar_set_hash_for_addr(dev
, mc_ptr
->dmi_addr
);
1835 /* Clears each of the exact match registers to zero, so they
1836 * don't interfere with normal reception */
1837 static void gfar_clear_exact_match(struct net_device
*dev
)
1840 u8 zero_arr
[MAC_ADDR_LEN
] = {0,0,0,0,0,0};
1842 for(idx
= 1;idx
< GFAR_EM_NUM
+ 1;idx
++)
1843 gfar_set_mac_for_addr(dev
, idx
, (u8
*)zero_arr
);
1846 /* Set the appropriate hash bit for the given addr */
1847 /* The algorithm works like so:
1848 * 1) Take the Destination Address (ie the multicast address), and
1849 * do a CRC on it (little endian), and reverse the bits of the
1851 * 2) Use the 8 most significant bits as a hash into a 256-entry
1852 * table. The table is controlled through 8 32-bit registers:
1853 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1854 * gaddr7. This means that the 3 most significant bits in the
1855 * hash index which gaddr register to use, and the 5 other bits
1856 * indicate which bit (assuming an IBM numbering scheme, which
1857 * for PowerPC (tm) is usually the case) in the register holds
1859 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
)
1862 struct gfar_private
*priv
= netdev_priv(dev
);
1863 u32 result
= ether_crc(MAC_ADDR_LEN
, addr
);
1864 int width
= priv
->hash_width
;
1865 u8 whichbit
= (result
>> (32 - width
)) & 0x1f;
1866 u8 whichreg
= result
>> (32 - width
+ 5);
1867 u32 value
= (1 << (31-whichbit
));
1869 tempval
= gfar_read(priv
->hash_regs
[whichreg
]);
1871 gfar_write(priv
->hash_regs
[whichreg
], tempval
);
1877 /* There are multiple MAC Address register pairs on some controllers
1878 * This function sets the numth pair to a given address
1880 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
, u8
*addr
)
1882 struct gfar_private
*priv
= netdev_priv(dev
);
1884 char tmpbuf
[MAC_ADDR_LEN
];
1886 u32 __iomem
*macptr
= &priv
->regs
->macstnaddr1
;
1890 /* Now copy it into the mac registers backwards, cuz */
1891 /* little endian is silly */
1892 for (idx
= 0; idx
< MAC_ADDR_LEN
; idx
++)
1893 tmpbuf
[MAC_ADDR_LEN
- 1 - idx
] = addr
[idx
];
1895 gfar_write(macptr
, *((u32
*) (tmpbuf
)));
1897 tempval
= *((u32
*) (tmpbuf
+ 4));
1899 gfar_write(macptr
+1, tempval
);
1902 /* GFAR error interrupt handler */
1903 static irqreturn_t
gfar_error(int irq
, void *dev_id
)
1905 struct net_device
*dev
= dev_id
;
1906 struct gfar_private
*priv
= netdev_priv(dev
);
1908 /* Save ievent for future reference */
1909 u32 events
= gfar_read(&priv
->regs
->ievent
);
1912 gfar_write(&priv
->regs
->ievent
, IEVENT_ERR_MASK
);
1915 if (netif_msg_rx_err(priv
) || netif_msg_tx_err(priv
))
1916 printk(KERN_DEBUG
"%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
1917 dev
->name
, events
, gfar_read(&priv
->regs
->imask
));
1919 /* Update the error counters */
1920 if (events
& IEVENT_TXE
) {
1921 dev
->stats
.tx_errors
++;
1923 if (events
& IEVENT_LC
)
1924 dev
->stats
.tx_window_errors
++;
1925 if (events
& IEVENT_CRL
)
1926 dev
->stats
.tx_aborted_errors
++;
1927 if (events
& IEVENT_XFUN
) {
1928 if (netif_msg_tx_err(priv
))
1929 printk(KERN_DEBUG
"%s: TX FIFO underrun, "
1930 "packet dropped.\n", dev
->name
);
1931 dev
->stats
.tx_dropped
++;
1932 priv
->extra_stats
.tx_underrun
++;
1934 /* Reactivate the Tx Queues */
1935 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
1937 if (netif_msg_tx_err(priv
))
1938 printk(KERN_DEBUG
"%s: Transmit Error\n", dev
->name
);
1940 if (events
& IEVENT_BSY
) {
1941 dev
->stats
.rx_errors
++;
1942 priv
->extra_stats
.rx_bsy
++;
1944 gfar_receive(irq
, dev_id
);
1946 #ifndef CONFIG_GFAR_NAPI
1947 /* Clear the halt bit in RSTAT */
1948 gfar_write(&priv
->regs
->rstat
, RSTAT_CLEAR_RHALT
);
1951 if (netif_msg_rx_err(priv
))
1952 printk(KERN_DEBUG
"%s: busy error (rstat: %x)\n",
1953 dev
->name
, gfar_read(&priv
->regs
->rstat
));
1955 if (events
& IEVENT_BABR
) {
1956 dev
->stats
.rx_errors
++;
1957 priv
->extra_stats
.rx_babr
++;
1959 if (netif_msg_rx_err(priv
))
1960 printk(KERN_DEBUG
"%s: babbling RX error\n", dev
->name
);
1962 if (events
& IEVENT_EBERR
) {
1963 priv
->extra_stats
.eberr
++;
1964 if (netif_msg_rx_err(priv
))
1965 printk(KERN_DEBUG
"%s: bus error\n", dev
->name
);
1967 if ((events
& IEVENT_RXC
) && netif_msg_rx_status(priv
))
1968 printk(KERN_DEBUG
"%s: control frame\n", dev
->name
);
1970 if (events
& IEVENT_BABT
) {
1971 priv
->extra_stats
.tx_babt
++;
1972 if (netif_msg_tx_err(priv
))
1973 printk(KERN_DEBUG
"%s: babbling TX error\n", dev
->name
);
1978 /* Structure for a device driver */
1979 static struct platform_driver gfar_driver
= {
1980 .probe
= gfar_probe
,
1981 .remove
= gfar_remove
,
1983 .name
= "fsl-gianfar",
1987 static int __init
gfar_init(void)
1989 int err
= gfar_mdio_init();
1994 err
= platform_driver_register(&gfar_driver
);
2002 static void __exit
gfar_exit(void)
2004 platform_driver_unregister(&gfar_driver
);
2008 module_init(gfar_init
);
2009 module_exit(gfar_exit
);