2 * Ram backed block device driver.
4 * Copyright (C) 2007 Nick Piggin
5 * Copyright (C) 2007 Novell Inc.
7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
8 * of their respective owners.
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/major.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/highmem.h>
18 #include <linux/gfp.h>
19 #include <linux/radix-tree.h>
20 #include <linux/buffer_head.h> /* invalidate_bh_lrus() */
22 #include <asm/uaccess.h>
24 #define SECTOR_SHIFT 9
25 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
26 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
29 * Each block ramdisk device has a radix_tree brd_pages of pages that stores
30 * the pages containing the block device's contents. A brd page's ->index is
31 * its offset in PAGE_SIZE units. This is similar to, but in no way connected
32 * with, the kernel's pagecache or buffer cache (which sit above our block
40 unsigned brd_blocksize
;
42 struct request_queue
*brd_queue
;
43 struct gendisk
*brd_disk
;
44 struct list_head brd_list
;
47 * Backing store of pages and lock to protect it. This is the contents
48 * of the block device.
51 struct radix_tree_root brd_pages
;
55 * Look up and return a brd's page for a given sector.
57 static struct page
*brd_lookup_page(struct brd_device
*brd
, sector_t sector
)
63 * The page lifetime is protected by the fact that we have opened the
64 * device node -- brd pages will never be deleted under us, so we
65 * don't need any further locking or refcounting.
67 * This is strictly true for the radix-tree nodes as well (ie. we
68 * don't actually need the rcu_read_lock()), however that is not a
69 * documented feature of the radix-tree API so it is better to be
70 * safe here (we don't have total exclusion from radix tree updates
71 * here, only deletes).
74 idx
= sector
>> PAGE_SECTORS_SHIFT
; /* sector to page index */
75 page
= radix_tree_lookup(&brd
->brd_pages
, idx
);
78 BUG_ON(page
&& page
->index
!= idx
);
84 * Look up and return a brd's page for a given sector.
85 * If one does not exist, allocate an empty page, and insert that. Then
88 static struct page
*brd_insert_page(struct brd_device
*brd
, sector_t sector
)
94 page
= brd_lookup_page(brd
, sector
);
99 * Must use NOIO because we don't want to recurse back into the
100 * block or filesystem layers from page reclaim.
102 * Cannot support XIP and highmem, because our ->direct_access
103 * routine for XIP must return memory that is always addressable.
104 * If XIP was reworked to use pfns and kmap throughout, this
105 * restriction might be able to be lifted.
107 gfp_flags
= GFP_NOIO
| __GFP_ZERO
;
108 #ifndef CONFIG_BLK_DEV_XIP
109 gfp_flags
|= __GFP_HIGHMEM
;
111 page
= alloc_page(GFP_NOIO
| __GFP_HIGHMEM
| __GFP_ZERO
);
115 if (radix_tree_preload(GFP_NOIO
)) {
120 spin_lock(&brd
->brd_lock
);
121 idx
= sector
>> PAGE_SECTORS_SHIFT
;
122 if (radix_tree_insert(&brd
->brd_pages
, idx
, page
)) {
124 page
= radix_tree_lookup(&brd
->brd_pages
, idx
);
126 BUG_ON(page
->index
!= idx
);
129 spin_unlock(&brd
->brd_lock
);
131 radix_tree_preload_end();
137 * Free all backing store pages and radix tree. This must only be called when
138 * there are no other users of the device.
140 #define FREE_BATCH 16
141 static void brd_free_pages(struct brd_device
*brd
)
143 unsigned long pos
= 0;
144 struct page
*pages
[FREE_BATCH
];
150 nr_pages
= radix_tree_gang_lookup(&brd
->brd_pages
,
151 (void **)pages
, pos
, FREE_BATCH
);
153 for (i
= 0; i
< nr_pages
; i
++) {
156 BUG_ON(pages
[i
]->index
< pos
);
157 pos
= pages
[i
]->index
;
158 ret
= radix_tree_delete(&brd
->brd_pages
, pos
);
159 BUG_ON(!ret
|| ret
!= pages
[i
]);
160 __free_page(pages
[i
]);
166 * This assumes radix_tree_gang_lookup always returns as
167 * many pages as possible. If the radix-tree code changes,
168 * so will this have to.
170 } while (nr_pages
== FREE_BATCH
);
174 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
176 static int copy_to_brd_setup(struct brd_device
*brd
, sector_t sector
, size_t n
)
178 unsigned int offset
= (sector
& (PAGE_SECTORS
-1)) << SECTOR_SHIFT
;
181 copy
= min_t(size_t, n
, PAGE_SIZE
- offset
);
182 if (!brd_insert_page(brd
, sector
))
185 sector
+= copy
>> SECTOR_SHIFT
;
186 if (!brd_insert_page(brd
, sector
))
193 * Copy n bytes from src to the brd starting at sector. Does not sleep.
195 static void copy_to_brd(struct brd_device
*brd
, const void *src
,
196 sector_t sector
, size_t n
)
200 unsigned int offset
= (sector
& (PAGE_SECTORS
-1)) << SECTOR_SHIFT
;
203 copy
= min_t(size_t, n
, PAGE_SIZE
- offset
);
204 page
= brd_lookup_page(brd
, sector
);
207 dst
= kmap_atomic(page
, KM_USER1
);
208 memcpy(dst
+ offset
, src
, copy
);
209 kunmap_atomic(dst
, KM_USER1
);
213 sector
+= copy
>> SECTOR_SHIFT
;
215 page
= brd_lookup_page(brd
, sector
);
218 dst
= kmap_atomic(page
, KM_USER1
);
219 memcpy(dst
, src
, copy
);
220 kunmap_atomic(dst
, KM_USER1
);
225 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
227 static void copy_from_brd(void *dst
, struct brd_device
*brd
,
228 sector_t sector
, size_t n
)
232 unsigned int offset
= (sector
& (PAGE_SECTORS
-1)) << SECTOR_SHIFT
;
235 copy
= min_t(size_t, n
, PAGE_SIZE
- offset
);
236 page
= brd_lookup_page(brd
, sector
);
238 src
= kmap_atomic(page
, KM_USER1
);
239 memcpy(dst
, src
+ offset
, copy
);
240 kunmap_atomic(src
, KM_USER1
);
242 memset(dst
, 0, copy
);
246 sector
+= copy
>> SECTOR_SHIFT
;
248 page
= brd_lookup_page(brd
, sector
);
250 src
= kmap_atomic(page
, KM_USER1
);
251 memcpy(dst
, src
, copy
);
252 kunmap_atomic(src
, KM_USER1
);
254 memset(dst
, 0, copy
);
259 * Process a single bvec of a bio.
261 static int brd_do_bvec(struct brd_device
*brd
, struct page
*page
,
262 unsigned int len
, unsigned int off
, int rw
,
269 err
= copy_to_brd_setup(brd
, sector
, len
);
274 mem
= kmap_atomic(page
, KM_USER0
);
276 copy_from_brd(mem
+ off
, brd
, sector
, len
);
277 flush_dcache_page(page
);
279 copy_to_brd(brd
, mem
+ off
, sector
, len
);
280 kunmap_atomic(mem
, KM_USER0
);
286 static int brd_make_request(struct request_queue
*q
, struct bio
*bio
)
288 struct block_device
*bdev
= bio
->bi_bdev
;
289 struct brd_device
*brd
= bdev
->bd_disk
->private_data
;
291 struct bio_vec
*bvec
;
296 sector
= bio
->bi_sector
;
297 if (sector
+ (bio
->bi_size
>> SECTOR_SHIFT
) >
298 get_capacity(bdev
->bd_disk
))
305 bio_for_each_segment(bvec
, bio
, i
) {
306 unsigned int len
= bvec
->bv_len
;
307 err
= brd_do_bvec(brd
, bvec
->bv_page
, len
,
308 bvec
->bv_offset
, rw
, sector
);
311 sector
+= len
>> SECTOR_SHIFT
;
320 #ifdef CONFIG_BLK_DEV_XIP
321 static int brd_direct_access (struct block_device
*bdev
, sector_t sector
,
324 struct brd_device
*brd
= bdev
->bd_disk
->private_data
;
329 if (sector
& (PAGE_SECTORS
-1))
331 if (sector
+ PAGE_SECTORS
> get_capacity(bdev
->bd_disk
))
333 page
= brd_insert_page(brd
, sector
);
336 *data
= (unsigned long)page_address(page
);
342 static int brd_ioctl(struct inode
*inode
, struct file
*file
,
343 unsigned int cmd
, unsigned long arg
)
346 struct block_device
*bdev
= inode
->i_bdev
;
347 struct brd_device
*brd
= bdev
->bd_disk
->private_data
;
349 if (cmd
!= BLKFLSBUF
)
353 * ram device BLKFLSBUF has special semantics, we want to actually
354 * release and destroy the ramdisk data.
356 mutex_lock(&bdev
->bd_mutex
);
358 if (bdev
->bd_openers
<= 1) {
360 * Invalidate the cache first, so it isn't written
361 * back to the device.
363 * Another thread might instantiate more buffercache here,
364 * but there is not much we can do to close that race.
366 invalidate_bh_lrus();
367 truncate_inode_pages(bdev
->bd_inode
->i_mapping
, 0);
371 mutex_unlock(&bdev
->bd_mutex
);
376 static struct block_device_operations brd_fops
= {
377 .owner
= THIS_MODULE
,
379 #ifdef CONFIG_BLK_DEV_XIP
380 .direct_access
= brd_direct_access
,
385 * And now the modules code and kernel interface.
388 int rd_size
= CONFIG_BLK_DEV_RAM_SIZE
;
389 module_param(rd_nr
, int, 0);
390 MODULE_PARM_DESC(rd_nr
, "Maximum number of brd devices");
391 module_param(rd_size
, int, 0);
392 MODULE_PARM_DESC(rd_size
, "Size of each RAM disk in kbytes.");
393 MODULE_LICENSE("GPL");
394 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR
);
397 /* Legacy boot options - nonmodular */
398 static int __init
ramdisk_size(char *str
)
400 rd_size
= simple_strtol(str
, NULL
, 0);
403 static int __init
ramdisk_size2(char *str
)
405 return ramdisk_size(str
);
407 __setup("ramdisk=", ramdisk_size
);
408 __setup("ramdisk_size=", ramdisk_size2
);
412 * The device scheme is derived from loop.c. Keep them in synch where possible
413 * (should share code eventually).
415 static LIST_HEAD(brd_devices
);
416 static DEFINE_MUTEX(brd_devices_mutex
);
418 static struct brd_device
*brd_alloc(int i
)
420 struct brd_device
*brd
;
421 struct gendisk
*disk
;
423 brd
= kzalloc(sizeof(*brd
), GFP_KERNEL
);
427 spin_lock_init(&brd
->brd_lock
);
428 INIT_RADIX_TREE(&brd
->brd_pages
, GFP_ATOMIC
);
430 brd
->brd_queue
= blk_alloc_queue(GFP_KERNEL
);
433 blk_queue_make_request(brd
->brd_queue
, brd_make_request
);
434 blk_queue_max_sectors(brd
->brd_queue
, 1024);
435 blk_queue_bounce_limit(brd
->brd_queue
, BLK_BOUNCE_ANY
);
437 disk
= brd
->brd_disk
= alloc_disk(1);
440 disk
->major
= RAMDISK_MAJOR
;
441 disk
->first_minor
= i
;
442 disk
->fops
= &brd_fops
;
443 disk
->private_data
= brd
;
444 disk
->queue
= brd
->brd_queue
;
445 sprintf(disk
->disk_name
, "ram%d", i
);
446 set_capacity(disk
, rd_size
* 2);
451 blk_cleanup_queue(brd
->brd_queue
);
458 static void brd_free(struct brd_device
*brd
)
460 put_disk(brd
->brd_disk
);
461 blk_cleanup_queue(brd
->brd_queue
);
466 static struct brd_device
*brd_init_one(int i
)
468 struct brd_device
*brd
;
470 list_for_each_entry(brd
, &brd_devices
, brd_list
) {
471 if (brd
->brd_number
== i
)
477 add_disk(brd
->brd_disk
);
478 list_add_tail(&brd
->brd_list
, &brd_devices
);
484 static void brd_del_one(struct brd_device
*brd
)
486 list_del(&brd
->brd_list
);
487 del_gendisk(brd
->brd_disk
);
491 static struct kobject
*brd_probe(dev_t dev
, int *part
, void *data
)
493 struct brd_device
*brd
;
494 struct kobject
*kobj
;
496 mutex_lock(&brd_devices_mutex
);
497 brd
= brd_init_one(dev
& MINORMASK
);
498 kobj
= brd
? get_disk(brd
->brd_disk
) : ERR_PTR(-ENOMEM
);
499 mutex_unlock(&brd_devices_mutex
);
505 static int __init
brd_init(void)
509 struct brd_device
*brd
, *next
;
512 * brd module now has a feature to instantiate underlying device
513 * structure on-demand, provided that there is an access dev node.
514 * However, this will not work well with user space tool that doesn't
515 * know about such "feature". In order to not break any existing
516 * tool, we do the following:
518 * (1) if rd_nr is specified, create that many upfront, and this
519 * also becomes a hard limit.
520 * (2) if rd_nr is not specified, create 1 rd device on module
521 * load, user can further extend brd device by create dev node
522 * themselves and have kernel automatically instantiate actual
525 if (rd_nr
> 1UL << MINORBITS
)
532 nr
= CONFIG_BLK_DEV_RAM_COUNT
;
533 range
= 1UL << MINORBITS
;
536 if (register_blkdev(RAMDISK_MAJOR
, "ramdisk"))
539 for (i
= 0; i
< nr
; i
++) {
543 list_add_tail(&brd
->brd_list
, &brd_devices
);
546 /* point of no return */
548 list_for_each_entry(brd
, &brd_devices
, brd_list
)
549 add_disk(brd
->brd_disk
);
551 blk_register_region(MKDEV(RAMDISK_MAJOR
, 0), range
,
552 THIS_MODULE
, brd_probe
, NULL
, NULL
);
554 printk(KERN_INFO
"brd: module loaded\n");
558 list_for_each_entry_safe(brd
, next
, &brd_devices
, brd_list
) {
559 list_del(&brd
->brd_list
);
563 unregister_blkdev(RAMDISK_MAJOR
, "brd");
567 static void __exit
brd_exit(void)
570 struct brd_device
*brd
, *next
;
572 range
= rd_nr
? rd_nr
: 1UL << MINORBITS
;
574 list_for_each_entry_safe(brd
, next
, &brd_devices
, brd_list
)
577 blk_unregister_region(MKDEV(RAMDISK_MAJOR
, 0), range
);
578 unregister_blkdev(RAMDISK_MAJOR
, "ramdisk");
581 module_init(brd_init
);
582 module_exit(brd_exit
);