docbook: fix vmalloc missing parameter notation
[linux-2.6/sactl.git] / kernel / fork.c
blob2bb675af4de30908b2dd1a22e745541e2bcbc3f5
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/key.h>
26 #include <linux/binfmts.h>
27 #include <linux/mman.h>
28 #include <linux/fs.h>
29 #include <linux/nsproxy.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/cgroup.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/memcontrol.h>
44 #include <linux/profile.h>
45 #include <linux/rmap.h>
46 #include <linux/acct.h>
47 #include <linux/tsacct_kern.h>
48 #include <linux/cn_proc.h>
49 #include <linux/freezer.h>
50 #include <linux/delayacct.h>
51 #include <linux/taskstats_kern.h>
52 #include <linux/random.h>
53 #include <linux/tty.h>
54 #include <linux/proc_fs.h>
55 #include <linux/blkdev.h>
57 #include <asm/pgtable.h>
58 #include <asm/pgalloc.h>
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/cacheflush.h>
62 #include <asm/tlbflush.h>
65 * Protected counters by write_lock_irq(&tasklist_lock)
67 unsigned long total_forks; /* Handle normal Linux uptimes. */
68 int nr_threads; /* The idle threads do not count.. */
70 int max_threads; /* tunable limit on nr_threads */
72 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
74 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
76 int nr_processes(void)
78 int cpu;
79 int total = 0;
81 for_each_online_cpu(cpu)
82 total += per_cpu(process_counts, cpu);
84 return total;
87 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
88 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
89 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
90 static struct kmem_cache *task_struct_cachep;
91 #endif
93 /* SLAB cache for signal_struct structures (tsk->signal) */
94 static struct kmem_cache *signal_cachep;
96 /* SLAB cache for sighand_struct structures (tsk->sighand) */
97 struct kmem_cache *sighand_cachep;
99 /* SLAB cache for files_struct structures (tsk->files) */
100 struct kmem_cache *files_cachep;
102 /* SLAB cache for fs_struct structures (tsk->fs) */
103 struct kmem_cache *fs_cachep;
105 /* SLAB cache for vm_area_struct structures */
106 struct kmem_cache *vm_area_cachep;
108 /* SLAB cache for mm_struct structures (tsk->mm) */
109 static struct kmem_cache *mm_cachep;
111 void free_task(struct task_struct *tsk)
113 prop_local_destroy_single(&tsk->dirties);
114 free_thread_info(tsk->stack);
115 rt_mutex_debug_task_free(tsk);
116 free_task_struct(tsk);
118 EXPORT_SYMBOL(free_task);
120 void __put_task_struct(struct task_struct *tsk)
122 WARN_ON(!tsk->exit_state);
123 WARN_ON(atomic_read(&tsk->usage));
124 WARN_ON(tsk == current);
126 security_task_free(tsk);
127 free_uid(tsk->user);
128 put_group_info(tsk->group_info);
129 delayacct_tsk_free(tsk);
131 if (!profile_handoff_task(tsk))
132 free_task(tsk);
136 * macro override instead of weak attribute alias, to workaround
137 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
139 #ifndef arch_task_cache_init
140 #define arch_task_cache_init()
141 #endif
143 void __init fork_init(unsigned long mempages)
145 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
146 #ifndef ARCH_MIN_TASKALIGN
147 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
148 #endif
149 /* create a slab on which task_structs can be allocated */
150 task_struct_cachep =
151 kmem_cache_create("task_struct", sizeof(struct task_struct),
152 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
153 #endif
155 /* do the arch specific task caches init */
156 arch_task_cache_init();
159 * The default maximum number of threads is set to a safe
160 * value: the thread structures can take up at most half
161 * of memory.
163 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
166 * we need to allow at least 20 threads to boot a system
168 if(max_threads < 20)
169 max_threads = 20;
171 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
172 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
173 init_task.signal->rlim[RLIMIT_SIGPENDING] =
174 init_task.signal->rlim[RLIMIT_NPROC];
177 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
178 struct task_struct *src)
180 *dst = *src;
181 return 0;
184 static struct task_struct *dup_task_struct(struct task_struct *orig)
186 struct task_struct *tsk;
187 struct thread_info *ti;
188 int err;
190 prepare_to_copy(orig);
192 tsk = alloc_task_struct();
193 if (!tsk)
194 return NULL;
196 ti = alloc_thread_info(tsk);
197 if (!ti) {
198 free_task_struct(tsk);
199 return NULL;
202 err = arch_dup_task_struct(tsk, orig);
203 if (err)
204 goto out;
206 tsk->stack = ti;
208 err = prop_local_init_single(&tsk->dirties);
209 if (err)
210 goto out;
212 setup_thread_stack(tsk, orig);
214 #ifdef CONFIG_CC_STACKPROTECTOR
215 tsk->stack_canary = get_random_int();
216 #endif
218 /* One for us, one for whoever does the "release_task()" (usually parent) */
219 atomic_set(&tsk->usage,2);
220 atomic_set(&tsk->fs_excl, 0);
221 #ifdef CONFIG_BLK_DEV_IO_TRACE
222 tsk->btrace_seq = 0;
223 #endif
224 tsk->splice_pipe = NULL;
225 return tsk;
227 out:
228 free_thread_info(ti);
229 free_task_struct(tsk);
230 return NULL;
233 #ifdef CONFIG_MMU
234 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
236 struct vm_area_struct *mpnt, *tmp, **pprev;
237 struct rb_node **rb_link, *rb_parent;
238 int retval;
239 unsigned long charge;
240 struct mempolicy *pol;
242 down_write(&oldmm->mmap_sem);
243 flush_cache_dup_mm(oldmm);
245 * Not linked in yet - no deadlock potential:
247 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
249 mm->locked_vm = 0;
250 mm->mmap = NULL;
251 mm->mmap_cache = NULL;
252 mm->free_area_cache = oldmm->mmap_base;
253 mm->cached_hole_size = ~0UL;
254 mm->map_count = 0;
255 cpus_clear(mm->cpu_vm_mask);
256 mm->mm_rb = RB_ROOT;
257 rb_link = &mm->mm_rb.rb_node;
258 rb_parent = NULL;
259 pprev = &mm->mmap;
261 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
262 struct file *file;
264 if (mpnt->vm_flags & VM_DONTCOPY) {
265 long pages = vma_pages(mpnt);
266 mm->total_vm -= pages;
267 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
268 -pages);
269 continue;
271 charge = 0;
272 if (mpnt->vm_flags & VM_ACCOUNT) {
273 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
274 if (security_vm_enough_memory(len))
275 goto fail_nomem;
276 charge = len;
278 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
279 if (!tmp)
280 goto fail_nomem;
281 *tmp = *mpnt;
282 pol = mpol_dup(vma_policy(mpnt));
283 retval = PTR_ERR(pol);
284 if (IS_ERR(pol))
285 goto fail_nomem_policy;
286 vma_set_policy(tmp, pol);
287 tmp->vm_flags &= ~VM_LOCKED;
288 tmp->vm_mm = mm;
289 tmp->vm_next = NULL;
290 anon_vma_link(tmp);
291 file = tmp->vm_file;
292 if (file) {
293 struct inode *inode = file->f_path.dentry->d_inode;
294 get_file(file);
295 if (tmp->vm_flags & VM_DENYWRITE)
296 atomic_dec(&inode->i_writecount);
298 /* insert tmp into the share list, just after mpnt */
299 spin_lock(&file->f_mapping->i_mmap_lock);
300 tmp->vm_truncate_count = mpnt->vm_truncate_count;
301 flush_dcache_mmap_lock(file->f_mapping);
302 vma_prio_tree_add(tmp, mpnt);
303 flush_dcache_mmap_unlock(file->f_mapping);
304 spin_unlock(&file->f_mapping->i_mmap_lock);
308 * Link in the new vma and copy the page table entries.
310 *pprev = tmp;
311 pprev = &tmp->vm_next;
313 __vma_link_rb(mm, tmp, rb_link, rb_parent);
314 rb_link = &tmp->vm_rb.rb_right;
315 rb_parent = &tmp->vm_rb;
317 mm->map_count++;
318 retval = copy_page_range(mm, oldmm, mpnt);
320 if (tmp->vm_ops && tmp->vm_ops->open)
321 tmp->vm_ops->open(tmp);
323 if (retval)
324 goto out;
326 /* a new mm has just been created */
327 arch_dup_mmap(oldmm, mm);
328 retval = 0;
329 out:
330 up_write(&mm->mmap_sem);
331 flush_tlb_mm(oldmm);
332 up_write(&oldmm->mmap_sem);
333 return retval;
334 fail_nomem_policy:
335 kmem_cache_free(vm_area_cachep, tmp);
336 fail_nomem:
337 retval = -ENOMEM;
338 vm_unacct_memory(charge);
339 goto out;
342 static inline int mm_alloc_pgd(struct mm_struct * mm)
344 mm->pgd = pgd_alloc(mm);
345 if (unlikely(!mm->pgd))
346 return -ENOMEM;
347 return 0;
350 static inline void mm_free_pgd(struct mm_struct * mm)
352 pgd_free(mm, mm->pgd);
354 #else
355 #define dup_mmap(mm, oldmm) (0)
356 #define mm_alloc_pgd(mm) (0)
357 #define mm_free_pgd(mm)
358 #endif /* CONFIG_MMU */
360 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
362 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
363 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
365 #include <linux/init_task.h>
367 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
369 atomic_set(&mm->mm_users, 1);
370 atomic_set(&mm->mm_count, 1);
371 init_rwsem(&mm->mmap_sem);
372 INIT_LIST_HEAD(&mm->mmlist);
373 mm->flags = (current->mm) ? current->mm->flags
374 : MMF_DUMP_FILTER_DEFAULT;
375 mm->core_waiters = 0;
376 mm->nr_ptes = 0;
377 set_mm_counter(mm, file_rss, 0);
378 set_mm_counter(mm, anon_rss, 0);
379 spin_lock_init(&mm->page_table_lock);
380 rwlock_init(&mm->ioctx_list_lock);
381 mm->ioctx_list = NULL;
382 mm->free_area_cache = TASK_UNMAPPED_BASE;
383 mm->cached_hole_size = ~0UL;
384 mm_init_owner(mm, p);
386 if (likely(!mm_alloc_pgd(mm))) {
387 mm->def_flags = 0;
388 return mm;
391 free_mm(mm);
392 return NULL;
396 * Allocate and initialize an mm_struct.
398 struct mm_struct * mm_alloc(void)
400 struct mm_struct * mm;
402 mm = allocate_mm();
403 if (mm) {
404 memset(mm, 0, sizeof(*mm));
405 mm = mm_init(mm, current);
407 return mm;
411 * Called when the last reference to the mm
412 * is dropped: either by a lazy thread or by
413 * mmput. Free the page directory and the mm.
415 void __mmdrop(struct mm_struct *mm)
417 BUG_ON(mm == &init_mm);
418 mm_free_pgd(mm);
419 destroy_context(mm);
420 free_mm(mm);
422 EXPORT_SYMBOL_GPL(__mmdrop);
425 * Decrement the use count and release all resources for an mm.
427 void mmput(struct mm_struct *mm)
429 might_sleep();
431 if (atomic_dec_and_test(&mm->mm_users)) {
432 exit_aio(mm);
433 exit_mmap(mm);
434 set_mm_exe_file(mm, NULL);
435 if (!list_empty(&mm->mmlist)) {
436 spin_lock(&mmlist_lock);
437 list_del(&mm->mmlist);
438 spin_unlock(&mmlist_lock);
440 put_swap_token(mm);
441 mmdrop(mm);
444 EXPORT_SYMBOL_GPL(mmput);
447 * get_task_mm - acquire a reference to the task's mm
449 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
450 * this kernel workthread has transiently adopted a user mm with use_mm,
451 * to do its AIO) is not set and if so returns a reference to it, after
452 * bumping up the use count. User must release the mm via mmput()
453 * after use. Typically used by /proc and ptrace.
455 struct mm_struct *get_task_mm(struct task_struct *task)
457 struct mm_struct *mm;
459 task_lock(task);
460 mm = task->mm;
461 if (mm) {
462 if (task->flags & PF_BORROWED_MM)
463 mm = NULL;
464 else
465 atomic_inc(&mm->mm_users);
467 task_unlock(task);
468 return mm;
470 EXPORT_SYMBOL_GPL(get_task_mm);
472 /* Please note the differences between mmput and mm_release.
473 * mmput is called whenever we stop holding onto a mm_struct,
474 * error success whatever.
476 * mm_release is called after a mm_struct has been removed
477 * from the current process.
479 * This difference is important for error handling, when we
480 * only half set up a mm_struct for a new process and need to restore
481 * the old one. Because we mmput the new mm_struct before
482 * restoring the old one. . .
483 * Eric Biederman 10 January 1998
485 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
487 struct completion *vfork_done = tsk->vfork_done;
489 /* Get rid of any cached register state */
490 deactivate_mm(tsk, mm);
492 /* notify parent sleeping on vfork() */
493 if (vfork_done) {
494 tsk->vfork_done = NULL;
495 complete(vfork_done);
499 * If we're exiting normally, clear a user-space tid field if
500 * requested. We leave this alone when dying by signal, to leave
501 * the value intact in a core dump, and to save the unnecessary
502 * trouble otherwise. Userland only wants this done for a sys_exit.
504 if (tsk->clear_child_tid
505 && !(tsk->flags & PF_SIGNALED)
506 && atomic_read(&mm->mm_users) > 1) {
507 u32 __user * tidptr = tsk->clear_child_tid;
508 tsk->clear_child_tid = NULL;
511 * We don't check the error code - if userspace has
512 * not set up a proper pointer then tough luck.
514 put_user(0, tidptr);
515 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
520 * Allocate a new mm structure and copy contents from the
521 * mm structure of the passed in task structure.
523 struct mm_struct *dup_mm(struct task_struct *tsk)
525 struct mm_struct *mm, *oldmm = current->mm;
526 int err;
528 if (!oldmm)
529 return NULL;
531 mm = allocate_mm();
532 if (!mm)
533 goto fail_nomem;
535 memcpy(mm, oldmm, sizeof(*mm));
537 /* Initializing for Swap token stuff */
538 mm->token_priority = 0;
539 mm->last_interval = 0;
541 if (!mm_init(mm, tsk))
542 goto fail_nomem;
544 if (init_new_context(tsk, mm))
545 goto fail_nocontext;
547 dup_mm_exe_file(oldmm, mm);
549 err = dup_mmap(mm, oldmm);
550 if (err)
551 goto free_pt;
553 mm->hiwater_rss = get_mm_rss(mm);
554 mm->hiwater_vm = mm->total_vm;
556 return mm;
558 free_pt:
559 mmput(mm);
561 fail_nomem:
562 return NULL;
564 fail_nocontext:
566 * If init_new_context() failed, we cannot use mmput() to free the mm
567 * because it calls destroy_context()
569 mm_free_pgd(mm);
570 free_mm(mm);
571 return NULL;
574 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
576 struct mm_struct * mm, *oldmm;
577 int retval;
579 tsk->min_flt = tsk->maj_flt = 0;
580 tsk->nvcsw = tsk->nivcsw = 0;
582 tsk->mm = NULL;
583 tsk->active_mm = NULL;
586 * Are we cloning a kernel thread?
588 * We need to steal a active VM for that..
590 oldmm = current->mm;
591 if (!oldmm)
592 return 0;
594 if (clone_flags & CLONE_VM) {
595 atomic_inc(&oldmm->mm_users);
596 mm = oldmm;
597 goto good_mm;
600 retval = -ENOMEM;
601 mm = dup_mm(tsk);
602 if (!mm)
603 goto fail_nomem;
605 good_mm:
606 /* Initializing for Swap token stuff */
607 mm->token_priority = 0;
608 mm->last_interval = 0;
610 tsk->mm = mm;
611 tsk->active_mm = mm;
612 return 0;
614 fail_nomem:
615 return retval;
618 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
620 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
621 /* We don't need to lock fs - think why ;-) */
622 if (fs) {
623 atomic_set(&fs->count, 1);
624 rwlock_init(&fs->lock);
625 fs->umask = old->umask;
626 read_lock(&old->lock);
627 fs->root = old->root;
628 path_get(&old->root);
629 fs->pwd = old->pwd;
630 path_get(&old->pwd);
631 if (old->altroot.dentry) {
632 fs->altroot = old->altroot;
633 path_get(&old->altroot);
634 } else {
635 fs->altroot.mnt = NULL;
636 fs->altroot.dentry = NULL;
638 read_unlock(&old->lock);
640 return fs;
643 struct fs_struct *copy_fs_struct(struct fs_struct *old)
645 return __copy_fs_struct(old);
648 EXPORT_SYMBOL_GPL(copy_fs_struct);
650 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
652 if (clone_flags & CLONE_FS) {
653 atomic_inc(&current->fs->count);
654 return 0;
656 tsk->fs = __copy_fs_struct(current->fs);
657 if (!tsk->fs)
658 return -ENOMEM;
659 return 0;
662 static int count_open_files(struct fdtable *fdt)
664 int size = fdt->max_fds;
665 int i;
667 /* Find the last open fd */
668 for (i = size/(8*sizeof(long)); i > 0; ) {
669 if (fdt->open_fds->fds_bits[--i])
670 break;
672 i = (i+1) * 8 * sizeof(long);
673 return i;
676 static struct files_struct *alloc_files(void)
678 struct files_struct *newf;
679 struct fdtable *fdt;
681 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
682 if (!newf)
683 goto out;
685 atomic_set(&newf->count, 1);
687 spin_lock_init(&newf->file_lock);
688 newf->next_fd = 0;
689 fdt = &newf->fdtab;
690 fdt->max_fds = NR_OPEN_DEFAULT;
691 fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
692 fdt->open_fds = (fd_set *)&newf->open_fds_init;
693 fdt->fd = &newf->fd_array[0];
694 INIT_RCU_HEAD(&fdt->rcu);
695 fdt->next = NULL;
696 rcu_assign_pointer(newf->fdt, fdt);
697 out:
698 return newf;
702 * Allocate a new files structure and copy contents from the
703 * passed in files structure.
704 * errorp will be valid only when the returned files_struct is NULL.
706 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
708 struct files_struct *newf;
709 struct file **old_fds, **new_fds;
710 int open_files, size, i;
711 struct fdtable *old_fdt, *new_fdt;
713 *errorp = -ENOMEM;
714 newf = alloc_files();
715 if (!newf)
716 goto out;
718 spin_lock(&oldf->file_lock);
719 old_fdt = files_fdtable(oldf);
720 new_fdt = files_fdtable(newf);
721 open_files = count_open_files(old_fdt);
724 * Check whether we need to allocate a larger fd array and fd set.
725 * Note: we're not a clone task, so the open count won't change.
727 if (open_files > new_fdt->max_fds) {
728 new_fdt->max_fds = 0;
729 spin_unlock(&oldf->file_lock);
730 spin_lock(&newf->file_lock);
731 *errorp = expand_files(newf, open_files-1);
732 spin_unlock(&newf->file_lock);
733 if (*errorp < 0)
734 goto out_release;
735 new_fdt = files_fdtable(newf);
737 * Reacquire the oldf lock and a pointer to its fd table
738 * who knows it may have a new bigger fd table. We need
739 * the latest pointer.
741 spin_lock(&oldf->file_lock);
742 old_fdt = files_fdtable(oldf);
745 old_fds = old_fdt->fd;
746 new_fds = new_fdt->fd;
748 memcpy(new_fdt->open_fds->fds_bits,
749 old_fdt->open_fds->fds_bits, open_files/8);
750 memcpy(new_fdt->close_on_exec->fds_bits,
751 old_fdt->close_on_exec->fds_bits, open_files/8);
753 for (i = open_files; i != 0; i--) {
754 struct file *f = *old_fds++;
755 if (f) {
756 get_file(f);
757 } else {
759 * The fd may be claimed in the fd bitmap but not yet
760 * instantiated in the files array if a sibling thread
761 * is partway through open(). So make sure that this
762 * fd is available to the new process.
764 FD_CLR(open_files - i, new_fdt->open_fds);
766 rcu_assign_pointer(*new_fds++, f);
768 spin_unlock(&oldf->file_lock);
770 /* compute the remainder to be cleared */
771 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
773 /* This is long word aligned thus could use a optimized version */
774 memset(new_fds, 0, size);
776 if (new_fdt->max_fds > open_files) {
777 int left = (new_fdt->max_fds-open_files)/8;
778 int start = open_files / (8 * sizeof(unsigned long));
780 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
781 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
784 return newf;
786 out_release:
787 kmem_cache_free(files_cachep, newf);
788 out:
789 return NULL;
792 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
794 struct files_struct *oldf, *newf;
795 int error = 0;
798 * A background process may not have any files ...
800 oldf = current->files;
801 if (!oldf)
802 goto out;
804 if (clone_flags & CLONE_FILES) {
805 atomic_inc(&oldf->count);
806 goto out;
809 newf = dup_fd(oldf, &error);
810 if (!newf)
811 goto out;
813 tsk->files = newf;
814 error = 0;
815 out:
816 return error;
819 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
821 #ifdef CONFIG_BLOCK
822 struct io_context *ioc = current->io_context;
824 if (!ioc)
825 return 0;
827 * Share io context with parent, if CLONE_IO is set
829 if (clone_flags & CLONE_IO) {
830 tsk->io_context = ioc_task_link(ioc);
831 if (unlikely(!tsk->io_context))
832 return -ENOMEM;
833 } else if (ioprio_valid(ioc->ioprio)) {
834 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
835 if (unlikely(!tsk->io_context))
836 return -ENOMEM;
838 tsk->io_context->ioprio = ioc->ioprio;
840 #endif
841 return 0;
844 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
846 struct sighand_struct *sig;
848 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
849 atomic_inc(&current->sighand->count);
850 return 0;
852 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
853 rcu_assign_pointer(tsk->sighand, sig);
854 if (!sig)
855 return -ENOMEM;
856 atomic_set(&sig->count, 1);
857 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
858 return 0;
861 void __cleanup_sighand(struct sighand_struct *sighand)
863 if (atomic_dec_and_test(&sighand->count))
864 kmem_cache_free(sighand_cachep, sighand);
867 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
869 struct signal_struct *sig;
870 int ret;
872 if (clone_flags & CLONE_THREAD) {
873 atomic_inc(&current->signal->count);
874 atomic_inc(&current->signal->live);
875 return 0;
877 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
878 tsk->signal = sig;
879 if (!sig)
880 return -ENOMEM;
882 ret = copy_thread_group_keys(tsk);
883 if (ret < 0) {
884 kmem_cache_free(signal_cachep, sig);
885 return ret;
888 atomic_set(&sig->count, 1);
889 atomic_set(&sig->live, 1);
890 init_waitqueue_head(&sig->wait_chldexit);
891 sig->flags = 0;
892 sig->group_exit_code = 0;
893 sig->group_exit_task = NULL;
894 sig->group_stop_count = 0;
895 sig->curr_target = tsk;
896 init_sigpending(&sig->shared_pending);
897 INIT_LIST_HEAD(&sig->posix_timers);
899 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
900 sig->it_real_incr.tv64 = 0;
901 sig->real_timer.function = it_real_fn;
903 sig->it_virt_expires = cputime_zero;
904 sig->it_virt_incr = cputime_zero;
905 sig->it_prof_expires = cputime_zero;
906 sig->it_prof_incr = cputime_zero;
908 sig->leader = 0; /* session leadership doesn't inherit */
909 sig->tty_old_pgrp = NULL;
911 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
912 sig->gtime = cputime_zero;
913 sig->cgtime = cputime_zero;
914 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
915 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
916 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
917 sig->sum_sched_runtime = 0;
918 INIT_LIST_HEAD(&sig->cpu_timers[0]);
919 INIT_LIST_HEAD(&sig->cpu_timers[1]);
920 INIT_LIST_HEAD(&sig->cpu_timers[2]);
921 taskstats_tgid_init(sig);
923 task_lock(current->group_leader);
924 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
925 task_unlock(current->group_leader);
927 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
929 * New sole thread in the process gets an expiry time
930 * of the whole CPU time limit.
932 tsk->it_prof_expires =
933 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
935 acct_init_pacct(&sig->pacct);
937 tty_audit_fork(sig);
939 return 0;
942 void __cleanup_signal(struct signal_struct *sig)
944 exit_thread_group_keys(sig);
945 kmem_cache_free(signal_cachep, sig);
948 static void cleanup_signal(struct task_struct *tsk)
950 struct signal_struct *sig = tsk->signal;
952 atomic_dec(&sig->live);
954 if (atomic_dec_and_test(&sig->count))
955 __cleanup_signal(sig);
958 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
960 unsigned long new_flags = p->flags;
962 new_flags &= ~PF_SUPERPRIV;
963 new_flags |= PF_FORKNOEXEC;
964 if (!(clone_flags & CLONE_PTRACE))
965 p->ptrace = 0;
966 p->flags = new_flags;
967 clear_freeze_flag(p);
970 asmlinkage long sys_set_tid_address(int __user *tidptr)
972 current->clear_child_tid = tidptr;
974 return task_pid_vnr(current);
977 static void rt_mutex_init_task(struct task_struct *p)
979 spin_lock_init(&p->pi_lock);
980 #ifdef CONFIG_RT_MUTEXES
981 plist_head_init(&p->pi_waiters, &p->pi_lock);
982 p->pi_blocked_on = NULL;
983 #endif
986 #ifdef CONFIG_MM_OWNER
987 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
989 mm->owner = p;
991 #endif /* CONFIG_MM_OWNER */
994 * This creates a new process as a copy of the old one,
995 * but does not actually start it yet.
997 * It copies the registers, and all the appropriate
998 * parts of the process environment (as per the clone
999 * flags). The actual kick-off is left to the caller.
1001 static struct task_struct *copy_process(unsigned long clone_flags,
1002 unsigned long stack_start,
1003 struct pt_regs *regs,
1004 unsigned long stack_size,
1005 int __user *child_tidptr,
1006 struct pid *pid)
1008 int retval;
1009 struct task_struct *p;
1010 int cgroup_callbacks_done = 0;
1012 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1013 return ERR_PTR(-EINVAL);
1016 * Thread groups must share signals as well, and detached threads
1017 * can only be started up within the thread group.
1019 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1020 return ERR_PTR(-EINVAL);
1023 * Shared signal handlers imply shared VM. By way of the above,
1024 * thread groups also imply shared VM. Blocking this case allows
1025 * for various simplifications in other code.
1027 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1028 return ERR_PTR(-EINVAL);
1030 retval = security_task_create(clone_flags);
1031 if (retval)
1032 goto fork_out;
1034 retval = -ENOMEM;
1035 p = dup_task_struct(current);
1036 if (!p)
1037 goto fork_out;
1039 rt_mutex_init_task(p);
1041 #ifdef CONFIG_TRACE_IRQFLAGS
1042 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1043 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1044 #endif
1045 retval = -EAGAIN;
1046 if (atomic_read(&p->user->processes) >=
1047 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1048 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1049 p->user != current->nsproxy->user_ns->root_user)
1050 goto bad_fork_free;
1053 atomic_inc(&p->user->__count);
1054 atomic_inc(&p->user->processes);
1055 get_group_info(p->group_info);
1058 * If multiple threads are within copy_process(), then this check
1059 * triggers too late. This doesn't hurt, the check is only there
1060 * to stop root fork bombs.
1062 if (nr_threads >= max_threads)
1063 goto bad_fork_cleanup_count;
1065 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1066 goto bad_fork_cleanup_count;
1068 if (p->binfmt && !try_module_get(p->binfmt->module))
1069 goto bad_fork_cleanup_put_domain;
1071 p->did_exec = 0;
1072 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1073 copy_flags(clone_flags, p);
1074 INIT_LIST_HEAD(&p->children);
1075 INIT_LIST_HEAD(&p->sibling);
1076 #ifdef CONFIG_PREEMPT_RCU
1077 p->rcu_read_lock_nesting = 0;
1078 p->rcu_flipctr_idx = 0;
1079 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1080 p->vfork_done = NULL;
1081 spin_lock_init(&p->alloc_lock);
1083 clear_tsk_thread_flag(p, TIF_SIGPENDING);
1084 init_sigpending(&p->pending);
1086 p->utime = cputime_zero;
1087 p->stime = cputime_zero;
1088 p->gtime = cputime_zero;
1089 p->utimescaled = cputime_zero;
1090 p->stimescaled = cputime_zero;
1091 p->prev_utime = cputime_zero;
1092 p->prev_stime = cputime_zero;
1094 #ifdef CONFIG_DETECT_SOFTLOCKUP
1095 p->last_switch_count = 0;
1096 p->last_switch_timestamp = 0;
1097 #endif
1099 #ifdef CONFIG_TASK_XACCT
1100 p->rchar = 0; /* I/O counter: bytes read */
1101 p->wchar = 0; /* I/O counter: bytes written */
1102 p->syscr = 0; /* I/O counter: read syscalls */
1103 p->syscw = 0; /* I/O counter: write syscalls */
1104 #endif
1105 task_io_accounting_init(p);
1106 acct_clear_integrals(p);
1108 p->it_virt_expires = cputime_zero;
1109 p->it_prof_expires = cputime_zero;
1110 p->it_sched_expires = 0;
1111 INIT_LIST_HEAD(&p->cpu_timers[0]);
1112 INIT_LIST_HEAD(&p->cpu_timers[1]);
1113 INIT_LIST_HEAD(&p->cpu_timers[2]);
1115 p->lock_depth = -1; /* -1 = no lock */
1116 do_posix_clock_monotonic_gettime(&p->start_time);
1117 p->real_start_time = p->start_time;
1118 monotonic_to_bootbased(&p->real_start_time);
1119 #ifdef CONFIG_SECURITY
1120 p->security = NULL;
1121 #endif
1122 p->cap_bset = current->cap_bset;
1123 p->io_context = NULL;
1124 p->audit_context = NULL;
1125 cgroup_fork(p);
1126 #ifdef CONFIG_NUMA
1127 p->mempolicy = mpol_dup(p->mempolicy);
1128 if (IS_ERR(p->mempolicy)) {
1129 retval = PTR_ERR(p->mempolicy);
1130 p->mempolicy = NULL;
1131 goto bad_fork_cleanup_cgroup;
1133 mpol_fix_fork_child_flag(p);
1134 #endif
1135 #ifdef CONFIG_TRACE_IRQFLAGS
1136 p->irq_events = 0;
1137 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1138 p->hardirqs_enabled = 1;
1139 #else
1140 p->hardirqs_enabled = 0;
1141 #endif
1142 p->hardirq_enable_ip = 0;
1143 p->hardirq_enable_event = 0;
1144 p->hardirq_disable_ip = _THIS_IP_;
1145 p->hardirq_disable_event = 0;
1146 p->softirqs_enabled = 1;
1147 p->softirq_enable_ip = _THIS_IP_;
1148 p->softirq_enable_event = 0;
1149 p->softirq_disable_ip = 0;
1150 p->softirq_disable_event = 0;
1151 p->hardirq_context = 0;
1152 p->softirq_context = 0;
1153 #endif
1154 #ifdef CONFIG_LOCKDEP
1155 p->lockdep_depth = 0; /* no locks held yet */
1156 p->curr_chain_key = 0;
1157 p->lockdep_recursion = 0;
1158 #endif
1160 #ifdef CONFIG_DEBUG_MUTEXES
1161 p->blocked_on = NULL; /* not blocked yet */
1162 #endif
1164 /* Perform scheduler related setup. Assign this task to a CPU. */
1165 sched_fork(p, clone_flags);
1167 if ((retval = security_task_alloc(p)))
1168 goto bad_fork_cleanup_policy;
1169 if ((retval = audit_alloc(p)))
1170 goto bad_fork_cleanup_security;
1171 /* copy all the process information */
1172 if ((retval = copy_semundo(clone_flags, p)))
1173 goto bad_fork_cleanup_audit;
1174 if ((retval = copy_files(clone_flags, p)))
1175 goto bad_fork_cleanup_semundo;
1176 if ((retval = copy_fs(clone_flags, p)))
1177 goto bad_fork_cleanup_files;
1178 if ((retval = copy_sighand(clone_flags, p)))
1179 goto bad_fork_cleanup_fs;
1180 if ((retval = copy_signal(clone_flags, p)))
1181 goto bad_fork_cleanup_sighand;
1182 if ((retval = copy_mm(clone_flags, p)))
1183 goto bad_fork_cleanup_signal;
1184 if ((retval = copy_keys(clone_flags, p)))
1185 goto bad_fork_cleanup_mm;
1186 if ((retval = copy_namespaces(clone_flags, p)))
1187 goto bad_fork_cleanup_keys;
1188 if ((retval = copy_io(clone_flags, p)))
1189 goto bad_fork_cleanup_namespaces;
1190 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1191 if (retval)
1192 goto bad_fork_cleanup_io;
1194 if (pid != &init_struct_pid) {
1195 retval = -ENOMEM;
1196 pid = alloc_pid(task_active_pid_ns(p));
1197 if (!pid)
1198 goto bad_fork_cleanup_io;
1200 if (clone_flags & CLONE_NEWPID) {
1201 retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1202 if (retval < 0)
1203 goto bad_fork_free_pid;
1207 p->pid = pid_nr(pid);
1208 p->tgid = p->pid;
1209 if (clone_flags & CLONE_THREAD)
1210 p->tgid = current->tgid;
1212 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1214 * Clear TID on mm_release()?
1216 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1217 #ifdef CONFIG_FUTEX
1218 p->robust_list = NULL;
1219 #ifdef CONFIG_COMPAT
1220 p->compat_robust_list = NULL;
1221 #endif
1222 INIT_LIST_HEAD(&p->pi_state_list);
1223 p->pi_state_cache = NULL;
1224 #endif
1226 * sigaltstack should be cleared when sharing the same VM
1228 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1229 p->sas_ss_sp = p->sas_ss_size = 0;
1232 * Syscall tracing should be turned off in the child regardless
1233 * of CLONE_PTRACE.
1235 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1236 #ifdef TIF_SYSCALL_EMU
1237 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1238 #endif
1239 clear_all_latency_tracing(p);
1241 /* Our parent execution domain becomes current domain
1242 These must match for thread signalling to apply */
1243 p->parent_exec_id = p->self_exec_id;
1245 /* ok, now we should be set up.. */
1246 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1247 p->pdeath_signal = 0;
1248 p->exit_state = 0;
1251 * Ok, make it visible to the rest of the system.
1252 * We dont wake it up yet.
1254 p->group_leader = p;
1255 INIT_LIST_HEAD(&p->thread_group);
1256 INIT_LIST_HEAD(&p->ptrace_children);
1257 INIT_LIST_HEAD(&p->ptrace_list);
1259 /* Now that the task is set up, run cgroup callbacks if
1260 * necessary. We need to run them before the task is visible
1261 * on the tasklist. */
1262 cgroup_fork_callbacks(p);
1263 cgroup_callbacks_done = 1;
1265 /* Need tasklist lock for parent etc handling! */
1266 write_lock_irq(&tasklist_lock);
1269 * The task hasn't been attached yet, so its cpus_allowed mask will
1270 * not be changed, nor will its assigned CPU.
1272 * The cpus_allowed mask of the parent may have changed after it was
1273 * copied first time - so re-copy it here, then check the child's CPU
1274 * to ensure it is on a valid CPU (and if not, just force it back to
1275 * parent's CPU). This avoids alot of nasty races.
1277 p->cpus_allowed = current->cpus_allowed;
1278 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1279 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1280 !cpu_online(task_cpu(p))))
1281 set_task_cpu(p, smp_processor_id());
1283 /* CLONE_PARENT re-uses the old parent */
1284 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1285 p->real_parent = current->real_parent;
1286 else
1287 p->real_parent = current;
1288 p->parent = p->real_parent;
1290 spin_lock(&current->sighand->siglock);
1293 * Process group and session signals need to be delivered to just the
1294 * parent before the fork or both the parent and the child after the
1295 * fork. Restart if a signal comes in before we add the new process to
1296 * it's process group.
1297 * A fatal signal pending means that current will exit, so the new
1298 * thread can't slip out of an OOM kill (or normal SIGKILL).
1300 recalc_sigpending();
1301 if (signal_pending(current)) {
1302 spin_unlock(&current->sighand->siglock);
1303 write_unlock_irq(&tasklist_lock);
1304 retval = -ERESTARTNOINTR;
1305 goto bad_fork_free_pid;
1308 if (clone_flags & CLONE_THREAD) {
1309 p->group_leader = current->group_leader;
1310 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1312 if (!cputime_eq(current->signal->it_virt_expires,
1313 cputime_zero) ||
1314 !cputime_eq(current->signal->it_prof_expires,
1315 cputime_zero) ||
1316 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1317 !list_empty(&current->signal->cpu_timers[0]) ||
1318 !list_empty(&current->signal->cpu_timers[1]) ||
1319 !list_empty(&current->signal->cpu_timers[2])) {
1321 * Have child wake up on its first tick to check
1322 * for process CPU timers.
1324 p->it_prof_expires = jiffies_to_cputime(1);
1328 if (likely(p->pid)) {
1329 add_parent(p);
1330 if (unlikely(p->ptrace & PT_PTRACED))
1331 __ptrace_link(p, current->parent);
1333 if (thread_group_leader(p)) {
1334 if (clone_flags & CLONE_NEWPID)
1335 p->nsproxy->pid_ns->child_reaper = p;
1337 p->signal->leader_pid = pid;
1338 p->signal->tty = current->signal->tty;
1339 set_task_pgrp(p, task_pgrp_nr(current));
1340 set_task_session(p, task_session_nr(current));
1341 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1342 attach_pid(p, PIDTYPE_SID, task_session(current));
1343 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1344 __get_cpu_var(process_counts)++;
1346 attach_pid(p, PIDTYPE_PID, pid);
1347 nr_threads++;
1350 total_forks++;
1351 spin_unlock(&current->sighand->siglock);
1352 write_unlock_irq(&tasklist_lock);
1353 proc_fork_connector(p);
1354 cgroup_post_fork(p);
1355 return p;
1357 bad_fork_free_pid:
1358 if (pid != &init_struct_pid)
1359 free_pid(pid);
1360 bad_fork_cleanup_io:
1361 put_io_context(p->io_context);
1362 bad_fork_cleanup_namespaces:
1363 exit_task_namespaces(p);
1364 bad_fork_cleanup_keys:
1365 exit_keys(p);
1366 bad_fork_cleanup_mm:
1367 if (p->mm)
1368 mmput(p->mm);
1369 bad_fork_cleanup_signal:
1370 cleanup_signal(p);
1371 bad_fork_cleanup_sighand:
1372 __cleanup_sighand(p->sighand);
1373 bad_fork_cleanup_fs:
1374 exit_fs(p); /* blocking */
1375 bad_fork_cleanup_files:
1376 exit_files(p); /* blocking */
1377 bad_fork_cleanup_semundo:
1378 exit_sem(p);
1379 bad_fork_cleanup_audit:
1380 audit_free(p);
1381 bad_fork_cleanup_security:
1382 security_task_free(p);
1383 bad_fork_cleanup_policy:
1384 #ifdef CONFIG_NUMA
1385 mpol_put(p->mempolicy);
1386 bad_fork_cleanup_cgroup:
1387 #endif
1388 cgroup_exit(p, cgroup_callbacks_done);
1389 delayacct_tsk_free(p);
1390 if (p->binfmt)
1391 module_put(p->binfmt->module);
1392 bad_fork_cleanup_put_domain:
1393 module_put(task_thread_info(p)->exec_domain->module);
1394 bad_fork_cleanup_count:
1395 put_group_info(p->group_info);
1396 atomic_dec(&p->user->processes);
1397 free_uid(p->user);
1398 bad_fork_free:
1399 free_task(p);
1400 fork_out:
1401 return ERR_PTR(retval);
1404 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1406 memset(regs, 0, sizeof(struct pt_regs));
1407 return regs;
1410 struct task_struct * __cpuinit fork_idle(int cpu)
1412 struct task_struct *task;
1413 struct pt_regs regs;
1415 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1416 &init_struct_pid);
1417 if (!IS_ERR(task))
1418 init_idle(task, cpu);
1420 return task;
1423 static int fork_traceflag(unsigned clone_flags)
1425 if (clone_flags & CLONE_UNTRACED)
1426 return 0;
1427 else if (clone_flags & CLONE_VFORK) {
1428 if (current->ptrace & PT_TRACE_VFORK)
1429 return PTRACE_EVENT_VFORK;
1430 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1431 if (current->ptrace & PT_TRACE_CLONE)
1432 return PTRACE_EVENT_CLONE;
1433 } else if (current->ptrace & PT_TRACE_FORK)
1434 return PTRACE_EVENT_FORK;
1436 return 0;
1440 * Ok, this is the main fork-routine.
1442 * It copies the process, and if successful kick-starts
1443 * it and waits for it to finish using the VM if required.
1445 long do_fork(unsigned long clone_flags,
1446 unsigned long stack_start,
1447 struct pt_regs *regs,
1448 unsigned long stack_size,
1449 int __user *parent_tidptr,
1450 int __user *child_tidptr)
1452 struct task_struct *p;
1453 int trace = 0;
1454 long nr;
1457 * We hope to recycle these flags after 2.6.26
1459 if (unlikely(clone_flags & CLONE_STOPPED)) {
1460 static int __read_mostly count = 100;
1462 if (count > 0 && printk_ratelimit()) {
1463 char comm[TASK_COMM_LEN];
1465 count--;
1466 printk(KERN_INFO "fork(): process `%s' used deprecated "
1467 "clone flags 0x%lx\n",
1468 get_task_comm(comm, current),
1469 clone_flags & CLONE_STOPPED);
1473 if (unlikely(current->ptrace)) {
1474 trace = fork_traceflag (clone_flags);
1475 if (trace)
1476 clone_flags |= CLONE_PTRACE;
1479 p = copy_process(clone_flags, stack_start, regs, stack_size,
1480 child_tidptr, NULL);
1482 * Do this prior waking up the new thread - the thread pointer
1483 * might get invalid after that point, if the thread exits quickly.
1485 if (!IS_ERR(p)) {
1486 struct completion vfork;
1488 nr = task_pid_vnr(p);
1490 if (clone_flags & CLONE_PARENT_SETTID)
1491 put_user(nr, parent_tidptr);
1493 if (clone_flags & CLONE_VFORK) {
1494 p->vfork_done = &vfork;
1495 init_completion(&vfork);
1498 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1500 * We'll start up with an immediate SIGSTOP.
1502 sigaddset(&p->pending.signal, SIGSTOP);
1503 set_tsk_thread_flag(p, TIF_SIGPENDING);
1506 if (!(clone_flags & CLONE_STOPPED))
1507 wake_up_new_task(p, clone_flags);
1508 else
1509 __set_task_state(p, TASK_STOPPED);
1511 if (unlikely (trace)) {
1512 current->ptrace_message = nr;
1513 ptrace_notify ((trace << 8) | SIGTRAP);
1516 if (clone_flags & CLONE_VFORK) {
1517 freezer_do_not_count();
1518 wait_for_completion(&vfork);
1519 freezer_count();
1520 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1521 current->ptrace_message = nr;
1522 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1525 } else {
1526 nr = PTR_ERR(p);
1528 return nr;
1531 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1532 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1533 #endif
1535 static void sighand_ctor(struct kmem_cache *cachep, void *data)
1537 struct sighand_struct *sighand = data;
1539 spin_lock_init(&sighand->siglock);
1540 init_waitqueue_head(&sighand->signalfd_wqh);
1543 void __init proc_caches_init(void)
1545 sighand_cachep = kmem_cache_create("sighand_cache",
1546 sizeof(struct sighand_struct), 0,
1547 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1548 sighand_ctor);
1549 signal_cachep = kmem_cache_create("signal_cache",
1550 sizeof(struct signal_struct), 0,
1551 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1552 files_cachep = kmem_cache_create("files_cache",
1553 sizeof(struct files_struct), 0,
1554 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1555 fs_cachep = kmem_cache_create("fs_cache",
1556 sizeof(struct fs_struct), 0,
1557 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1558 vm_area_cachep = kmem_cache_create("vm_area_struct",
1559 sizeof(struct vm_area_struct), 0,
1560 SLAB_PANIC, NULL);
1561 mm_cachep = kmem_cache_create("mm_struct",
1562 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1563 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1567 * Check constraints on flags passed to the unshare system call and
1568 * force unsharing of additional process context as appropriate.
1570 static void check_unshare_flags(unsigned long *flags_ptr)
1573 * If unsharing a thread from a thread group, must also
1574 * unshare vm.
1576 if (*flags_ptr & CLONE_THREAD)
1577 *flags_ptr |= CLONE_VM;
1580 * If unsharing vm, must also unshare signal handlers.
1582 if (*flags_ptr & CLONE_VM)
1583 *flags_ptr |= CLONE_SIGHAND;
1586 * If unsharing signal handlers and the task was created
1587 * using CLONE_THREAD, then must unshare the thread
1589 if ((*flags_ptr & CLONE_SIGHAND) &&
1590 (atomic_read(&current->signal->count) > 1))
1591 *flags_ptr |= CLONE_THREAD;
1594 * If unsharing namespace, must also unshare filesystem information.
1596 if (*flags_ptr & CLONE_NEWNS)
1597 *flags_ptr |= CLONE_FS;
1601 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1603 static int unshare_thread(unsigned long unshare_flags)
1605 if (unshare_flags & CLONE_THREAD)
1606 return -EINVAL;
1608 return 0;
1612 * Unshare the filesystem structure if it is being shared
1614 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1616 struct fs_struct *fs = current->fs;
1618 if ((unshare_flags & CLONE_FS) &&
1619 (fs && atomic_read(&fs->count) > 1)) {
1620 *new_fsp = __copy_fs_struct(current->fs);
1621 if (!*new_fsp)
1622 return -ENOMEM;
1625 return 0;
1629 * Unsharing of sighand is not supported yet
1631 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1633 struct sighand_struct *sigh = current->sighand;
1635 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1636 return -EINVAL;
1637 else
1638 return 0;
1642 * Unshare vm if it is being shared
1644 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1646 struct mm_struct *mm = current->mm;
1648 if ((unshare_flags & CLONE_VM) &&
1649 (mm && atomic_read(&mm->mm_users) > 1)) {
1650 return -EINVAL;
1653 return 0;
1657 * Unshare file descriptor table if it is being shared
1659 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1661 struct files_struct *fd = current->files;
1662 int error = 0;
1664 if ((unshare_flags & CLONE_FILES) &&
1665 (fd && atomic_read(&fd->count) > 1)) {
1666 *new_fdp = dup_fd(fd, &error);
1667 if (!*new_fdp)
1668 return error;
1671 return 0;
1675 * unshare allows a process to 'unshare' part of the process
1676 * context which was originally shared using clone. copy_*
1677 * functions used by do_fork() cannot be used here directly
1678 * because they modify an inactive task_struct that is being
1679 * constructed. Here we are modifying the current, active,
1680 * task_struct.
1682 asmlinkage long sys_unshare(unsigned long unshare_flags)
1684 int err = 0;
1685 struct fs_struct *fs, *new_fs = NULL;
1686 struct sighand_struct *new_sigh = NULL;
1687 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1688 struct files_struct *fd, *new_fd = NULL;
1689 struct nsproxy *new_nsproxy = NULL;
1690 int do_sysvsem = 0;
1692 check_unshare_flags(&unshare_flags);
1694 /* Return -EINVAL for all unsupported flags */
1695 err = -EINVAL;
1696 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1697 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1698 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1699 CLONE_NEWNET))
1700 goto bad_unshare_out;
1703 * CLONE_NEWIPC must also detach from the undolist: after switching
1704 * to a new ipc namespace, the semaphore arrays from the old
1705 * namespace are unreachable.
1707 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1708 do_sysvsem = 1;
1709 if ((err = unshare_thread(unshare_flags)))
1710 goto bad_unshare_out;
1711 if ((err = unshare_fs(unshare_flags, &new_fs)))
1712 goto bad_unshare_cleanup_thread;
1713 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1714 goto bad_unshare_cleanup_fs;
1715 if ((err = unshare_vm(unshare_flags, &new_mm)))
1716 goto bad_unshare_cleanup_sigh;
1717 if ((err = unshare_fd(unshare_flags, &new_fd)))
1718 goto bad_unshare_cleanup_vm;
1719 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1720 new_fs)))
1721 goto bad_unshare_cleanup_fd;
1723 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1724 if (do_sysvsem) {
1726 * CLONE_SYSVSEM is equivalent to sys_exit().
1728 exit_sem(current);
1731 if (new_nsproxy) {
1732 switch_task_namespaces(current, new_nsproxy);
1733 new_nsproxy = NULL;
1736 task_lock(current);
1738 if (new_fs) {
1739 fs = current->fs;
1740 current->fs = new_fs;
1741 new_fs = fs;
1744 if (new_mm) {
1745 mm = current->mm;
1746 active_mm = current->active_mm;
1747 current->mm = new_mm;
1748 current->active_mm = new_mm;
1749 activate_mm(active_mm, new_mm);
1750 new_mm = mm;
1753 if (new_fd) {
1754 fd = current->files;
1755 current->files = new_fd;
1756 new_fd = fd;
1759 task_unlock(current);
1762 if (new_nsproxy)
1763 put_nsproxy(new_nsproxy);
1765 bad_unshare_cleanup_fd:
1766 if (new_fd)
1767 put_files_struct(new_fd);
1769 bad_unshare_cleanup_vm:
1770 if (new_mm)
1771 mmput(new_mm);
1773 bad_unshare_cleanup_sigh:
1774 if (new_sigh)
1775 if (atomic_dec_and_test(&new_sigh->count))
1776 kmem_cache_free(sighand_cachep, new_sigh);
1778 bad_unshare_cleanup_fs:
1779 if (new_fs)
1780 put_fs_struct(new_fs);
1782 bad_unshare_cleanup_thread:
1783 bad_unshare_out:
1784 return err;
1788 * Helper to unshare the files of the current task.
1789 * We don't want to expose copy_files internals to
1790 * the exec layer of the kernel.
1793 int unshare_files(struct files_struct **displaced)
1795 struct task_struct *task = current;
1796 struct files_struct *copy = NULL;
1797 int error;
1799 error = unshare_fd(CLONE_FILES, &copy);
1800 if (error || !copy) {
1801 *displaced = NULL;
1802 return error;
1804 *displaced = task->files;
1805 task_lock(task);
1806 task->files = copy;
1807 task_unlock(task);
1808 return 0;