[PATCH] cpuset: minor spacing initializer fixes
[linux-2.6/sactl.git] / kernel / cpuset.c
blobf513dd937eeed7863547a913a8018bd081f58469
1 /*
2 * kernel/cpuset.c
4 * Processor and Memory placement constraints for sets of tasks.
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004 Silicon Graphics, Inc.
9 * Portions derived from Patrick Mochel's sysfs code.
10 * sysfs is Copyright (c) 2001-3 Patrick Mochel
11 * Portions Copyright (c) 2004 Silicon Graphics, Inc.
13 * 2003-10-10 Written by Simon Derr <simon.derr@bull.net>
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson <pj@sgi.com>
17 * This file is subject to the terms and conditions of the GNU General Public
18 * License. See the file COPYING in the main directory of the Linux
19 * distribution for more details.
22 #include <linux/config.h>
23 #include <linux/cpu.h>
24 #include <linux/cpumask.h>
25 #include <linux/cpuset.h>
26 #include <linux/err.h>
27 #include <linux/errno.h>
28 #include <linux/file.h>
29 #include <linux/fs.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/kernel.h>
33 #include <linux/kmod.h>
34 #include <linux/list.h>
35 #include <linux/mempolicy.h>
36 #include <linux/mm.h>
37 #include <linux/module.h>
38 #include <linux/mount.h>
39 #include <linux/namei.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/sched.h>
43 #include <linux/seq_file.h>
44 #include <linux/slab.h>
45 #include <linux/smp_lock.h>
46 #include <linux/spinlock.h>
47 #include <linux/stat.h>
48 #include <linux/string.h>
49 #include <linux/time.h>
50 #include <linux/backing-dev.h>
51 #include <linux/sort.h>
53 #include <asm/uaccess.h>
54 #include <asm/atomic.h>
55 #include <asm/semaphore.h>
57 #define CPUSET_SUPER_MAGIC 0x27e0eb
59 /* See "Frequency meter" comments, below. */
61 struct fmeter {
62 int cnt; /* unprocessed events count */
63 int val; /* most recent output value */
64 time_t time; /* clock (secs) when val computed */
65 spinlock_t lock; /* guards read or write of above */
68 struct cpuset {
69 unsigned long flags; /* "unsigned long" so bitops work */
70 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
71 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
74 * Count is atomic so can incr (fork) or decr (exit) without a lock.
76 atomic_t count; /* count tasks using this cpuset */
79 * We link our 'sibling' struct into our parents 'children'.
80 * Our children link their 'sibling' into our 'children'.
82 struct list_head sibling; /* my parents children */
83 struct list_head children; /* my children */
85 struct cpuset *parent; /* my parent */
86 struct dentry *dentry; /* cpuset fs entry */
89 * Copy of global cpuset_mems_generation as of the most
90 * recent time this cpuset changed its mems_allowed.
92 int mems_generation;
94 struct fmeter fmeter; /* memory_pressure filter */
97 /* bits in struct cpuset flags field */
98 typedef enum {
99 CS_CPU_EXCLUSIVE,
100 CS_MEM_EXCLUSIVE,
101 CS_MEMORY_MIGRATE,
102 CS_REMOVED,
103 CS_NOTIFY_ON_RELEASE
104 } cpuset_flagbits_t;
106 /* convenient tests for these bits */
107 static inline int is_cpu_exclusive(const struct cpuset *cs)
109 return !!test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
112 static inline int is_mem_exclusive(const struct cpuset *cs)
114 return !!test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
117 static inline int is_removed(const struct cpuset *cs)
119 return !!test_bit(CS_REMOVED, &cs->flags);
122 static inline int notify_on_release(const struct cpuset *cs)
124 return !!test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
127 static inline int is_memory_migrate(const struct cpuset *cs)
129 return !!test_bit(CS_MEMORY_MIGRATE, &cs->flags);
133 * Increment this atomic integer everytime any cpuset changes its
134 * mems_allowed value. Users of cpusets can track this generation
135 * number, and avoid having to lock and reload mems_allowed unless
136 * the cpuset they're using changes generation.
138 * A single, global generation is needed because attach_task() could
139 * reattach a task to a different cpuset, which must not have its
140 * generation numbers aliased with those of that tasks previous cpuset.
142 * Generations are needed for mems_allowed because one task cannot
143 * modify anothers memory placement. So we must enable every task,
144 * on every visit to __alloc_pages(), to efficiently check whether
145 * its current->cpuset->mems_allowed has changed, requiring an update
146 * of its current->mems_allowed.
148 static atomic_t cpuset_mems_generation = ATOMIC_INIT(1);
150 static struct cpuset top_cpuset = {
151 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
152 .cpus_allowed = CPU_MASK_ALL,
153 .mems_allowed = NODE_MASK_ALL,
154 .count = ATOMIC_INIT(0),
155 .sibling = LIST_HEAD_INIT(top_cpuset.sibling),
156 .children = LIST_HEAD_INIT(top_cpuset.children),
159 static struct vfsmount *cpuset_mount;
160 static struct super_block *cpuset_sb;
163 * We have two global cpuset semaphores below. They can nest.
164 * It is ok to first take manage_sem, then nest callback_sem. We also
165 * require taking task_lock() when dereferencing a tasks cpuset pointer.
166 * See "The task_lock() exception", at the end of this comment.
168 * A task must hold both semaphores to modify cpusets. If a task
169 * holds manage_sem, then it blocks others wanting that semaphore,
170 * ensuring that it is the only task able to also acquire callback_sem
171 * and be able to modify cpusets. It can perform various checks on
172 * the cpuset structure first, knowing nothing will change. It can
173 * also allocate memory while just holding manage_sem. While it is
174 * performing these checks, various callback routines can briefly
175 * acquire callback_sem to query cpusets. Once it is ready to make
176 * the changes, it takes callback_sem, blocking everyone else.
178 * Calls to the kernel memory allocator can not be made while holding
179 * callback_sem, as that would risk double tripping on callback_sem
180 * from one of the callbacks into the cpuset code from within
181 * __alloc_pages().
183 * If a task is only holding callback_sem, then it has read-only
184 * access to cpusets.
186 * The task_struct fields mems_allowed and mems_generation may only
187 * be accessed in the context of that task, so require no locks.
189 * Any task can increment and decrement the count field without lock.
190 * So in general, code holding manage_sem or callback_sem can't rely
191 * on the count field not changing. However, if the count goes to
192 * zero, then only attach_task(), which holds both semaphores, can
193 * increment it again. Because a count of zero means that no tasks
194 * are currently attached, therefore there is no way a task attached
195 * to that cpuset can fork (the other way to increment the count).
196 * So code holding manage_sem or callback_sem can safely assume that
197 * if the count is zero, it will stay zero. Similarly, if a task
198 * holds manage_sem or callback_sem on a cpuset with zero count, it
199 * knows that the cpuset won't be removed, as cpuset_rmdir() needs
200 * both of those semaphores.
202 * A possible optimization to improve parallelism would be to make
203 * callback_sem a R/W semaphore (rwsem), allowing the callback routines
204 * to proceed in parallel, with read access, until the holder of
205 * manage_sem needed to take this rwsem for exclusive write access
206 * and modify some cpusets.
208 * The cpuset_common_file_write handler for operations that modify
209 * the cpuset hierarchy holds manage_sem across the entire operation,
210 * single threading all such cpuset modifications across the system.
212 * The cpuset_common_file_read() handlers only hold callback_sem across
213 * small pieces of code, such as when reading out possibly multi-word
214 * cpumasks and nodemasks.
216 * The fork and exit callbacks cpuset_fork() and cpuset_exit(), don't
217 * (usually) take either semaphore. These are the two most performance
218 * critical pieces of code here. The exception occurs on cpuset_exit(),
219 * when a task in a notify_on_release cpuset exits. Then manage_sem
220 * is taken, and if the cpuset count is zero, a usermode call made
221 * to /sbin/cpuset_release_agent with the name of the cpuset (path
222 * relative to the root of cpuset file system) as the argument.
224 * A cpuset can only be deleted if both its 'count' of using tasks
225 * is zero, and its list of 'children' cpusets is empty. Since all
226 * tasks in the system use _some_ cpuset, and since there is always at
227 * least one task in the system (init, pid == 1), therefore, top_cpuset
228 * always has either children cpusets and/or using tasks. So we don't
229 * need a special hack to ensure that top_cpuset cannot be deleted.
231 * The above "Tale of Two Semaphores" would be complete, but for:
233 * The task_lock() exception
235 * The need for this exception arises from the action of attach_task(),
236 * which overwrites one tasks cpuset pointer with another. It does
237 * so using both semaphores, however there are several performance
238 * critical places that need to reference task->cpuset without the
239 * expense of grabbing a system global semaphore. Therefore except as
240 * noted below, when dereferencing or, as in attach_task(), modifying
241 * a tasks cpuset pointer we use task_lock(), which acts on a spinlock
242 * (task->alloc_lock) already in the task_struct routinely used for
243 * such matters.
246 static DECLARE_MUTEX(manage_sem);
247 static DECLARE_MUTEX(callback_sem);
250 * A couple of forward declarations required, due to cyclic reference loop:
251 * cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file
252 * -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir.
255 static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode);
256 static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry);
258 static struct backing_dev_info cpuset_backing_dev_info = {
259 .ra_pages = 0, /* No readahead */
260 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
263 static struct inode *cpuset_new_inode(mode_t mode)
265 struct inode *inode = new_inode(cpuset_sb);
267 if (inode) {
268 inode->i_mode = mode;
269 inode->i_uid = current->fsuid;
270 inode->i_gid = current->fsgid;
271 inode->i_blksize = PAGE_CACHE_SIZE;
272 inode->i_blocks = 0;
273 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
274 inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info;
276 return inode;
279 static void cpuset_diput(struct dentry *dentry, struct inode *inode)
281 /* is dentry a directory ? if so, kfree() associated cpuset */
282 if (S_ISDIR(inode->i_mode)) {
283 struct cpuset *cs = dentry->d_fsdata;
284 BUG_ON(!(is_removed(cs)));
285 kfree(cs);
287 iput(inode);
290 static struct dentry_operations cpuset_dops = {
291 .d_iput = cpuset_diput,
294 static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name)
296 struct dentry *d = lookup_one_len(name, parent, strlen(name));
297 if (!IS_ERR(d))
298 d->d_op = &cpuset_dops;
299 return d;
302 static void remove_dir(struct dentry *d)
304 struct dentry *parent = dget(d->d_parent);
306 d_delete(d);
307 simple_rmdir(parent->d_inode, d);
308 dput(parent);
312 * NOTE : the dentry must have been dget()'ed
314 static void cpuset_d_remove_dir(struct dentry *dentry)
316 struct list_head *node;
318 spin_lock(&dcache_lock);
319 node = dentry->d_subdirs.next;
320 while (node != &dentry->d_subdirs) {
321 struct dentry *d = list_entry(node, struct dentry, d_child);
322 list_del_init(node);
323 if (d->d_inode) {
324 d = dget_locked(d);
325 spin_unlock(&dcache_lock);
326 d_delete(d);
327 simple_unlink(dentry->d_inode, d);
328 dput(d);
329 spin_lock(&dcache_lock);
331 node = dentry->d_subdirs.next;
333 list_del_init(&dentry->d_child);
334 spin_unlock(&dcache_lock);
335 remove_dir(dentry);
338 static struct super_operations cpuset_ops = {
339 .statfs = simple_statfs,
340 .drop_inode = generic_delete_inode,
343 static int cpuset_fill_super(struct super_block *sb, void *unused_data,
344 int unused_silent)
346 struct inode *inode;
347 struct dentry *root;
349 sb->s_blocksize = PAGE_CACHE_SIZE;
350 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
351 sb->s_magic = CPUSET_SUPER_MAGIC;
352 sb->s_op = &cpuset_ops;
353 cpuset_sb = sb;
355 inode = cpuset_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR);
356 if (inode) {
357 inode->i_op = &simple_dir_inode_operations;
358 inode->i_fop = &simple_dir_operations;
359 /* directories start off with i_nlink == 2 (for "." entry) */
360 inode->i_nlink++;
361 } else {
362 return -ENOMEM;
365 root = d_alloc_root(inode);
366 if (!root) {
367 iput(inode);
368 return -ENOMEM;
370 sb->s_root = root;
371 return 0;
374 static struct super_block *cpuset_get_sb(struct file_system_type *fs_type,
375 int flags, const char *unused_dev_name,
376 void *data)
378 return get_sb_single(fs_type, flags, data, cpuset_fill_super);
381 static struct file_system_type cpuset_fs_type = {
382 .name = "cpuset",
383 .get_sb = cpuset_get_sb,
384 .kill_sb = kill_litter_super,
387 /* struct cftype:
389 * The files in the cpuset filesystem mostly have a very simple read/write
390 * handling, some common function will take care of it. Nevertheless some cases
391 * (read tasks) are special and therefore I define this structure for every
392 * kind of file.
395 * When reading/writing to a file:
396 * - the cpuset to use in file->f_dentry->d_parent->d_fsdata
397 * - the 'cftype' of the file is file->f_dentry->d_fsdata
400 struct cftype {
401 char *name;
402 int private;
403 int (*open) (struct inode *inode, struct file *file);
404 ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes,
405 loff_t *ppos);
406 int (*write) (struct file *file, const char __user *buf, size_t nbytes,
407 loff_t *ppos);
408 int (*release) (struct inode *inode, struct file *file);
411 static inline struct cpuset *__d_cs(struct dentry *dentry)
413 return dentry->d_fsdata;
416 static inline struct cftype *__d_cft(struct dentry *dentry)
418 return dentry->d_fsdata;
422 * Call with manage_sem held. Writes path of cpuset into buf.
423 * Returns 0 on success, -errno on error.
426 static int cpuset_path(const struct cpuset *cs, char *buf, int buflen)
428 char *start;
430 start = buf + buflen;
432 *--start = '\0';
433 for (;;) {
434 int len = cs->dentry->d_name.len;
435 if ((start -= len) < buf)
436 return -ENAMETOOLONG;
437 memcpy(start, cs->dentry->d_name.name, len);
438 cs = cs->parent;
439 if (!cs)
440 break;
441 if (!cs->parent)
442 continue;
443 if (--start < buf)
444 return -ENAMETOOLONG;
445 *start = '/';
447 memmove(buf, start, buf + buflen - start);
448 return 0;
452 * Notify userspace when a cpuset is released, by running
453 * /sbin/cpuset_release_agent with the name of the cpuset (path
454 * relative to the root of cpuset file system) as the argument.
456 * Most likely, this user command will try to rmdir this cpuset.
458 * This races with the possibility that some other task will be
459 * attached to this cpuset before it is removed, or that some other
460 * user task will 'mkdir' a child cpuset of this cpuset. That's ok.
461 * The presumed 'rmdir' will fail quietly if this cpuset is no longer
462 * unused, and this cpuset will be reprieved from its death sentence,
463 * to continue to serve a useful existence. Next time it's released,
464 * we will get notified again, if it still has 'notify_on_release' set.
466 * The final arg to call_usermodehelper() is 0, which means don't
467 * wait. The separate /sbin/cpuset_release_agent task is forked by
468 * call_usermodehelper(), then control in this thread returns here,
469 * without waiting for the release agent task. We don't bother to
470 * wait because the caller of this routine has no use for the exit
471 * status of the /sbin/cpuset_release_agent task, so no sense holding
472 * our caller up for that.
474 * When we had only one cpuset semaphore, we had to call this
475 * without holding it, to avoid deadlock when call_usermodehelper()
476 * allocated memory. With two locks, we could now call this while
477 * holding manage_sem, but we still don't, so as to minimize
478 * the time manage_sem is held.
481 static void cpuset_release_agent(const char *pathbuf)
483 char *argv[3], *envp[3];
484 int i;
486 if (!pathbuf)
487 return;
489 i = 0;
490 argv[i++] = "/sbin/cpuset_release_agent";
491 argv[i++] = (char *)pathbuf;
492 argv[i] = NULL;
494 i = 0;
495 /* minimal command environment */
496 envp[i++] = "HOME=/";
497 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
498 envp[i] = NULL;
500 call_usermodehelper(argv[0], argv, envp, 0);
501 kfree(pathbuf);
505 * Either cs->count of using tasks transitioned to zero, or the
506 * cs->children list of child cpusets just became empty. If this
507 * cs is notify_on_release() and now both the user count is zero and
508 * the list of children is empty, prepare cpuset path in a kmalloc'd
509 * buffer, to be returned via ppathbuf, so that the caller can invoke
510 * cpuset_release_agent() with it later on, once manage_sem is dropped.
511 * Call here with manage_sem held.
513 * This check_for_release() routine is responsible for kmalloc'ing
514 * pathbuf. The above cpuset_release_agent() is responsible for
515 * kfree'ing pathbuf. The caller of these routines is responsible
516 * for providing a pathbuf pointer, initialized to NULL, then
517 * calling check_for_release() with manage_sem held and the address
518 * of the pathbuf pointer, then dropping manage_sem, then calling
519 * cpuset_release_agent() with pathbuf, as set by check_for_release().
522 static void check_for_release(struct cpuset *cs, char **ppathbuf)
524 if (notify_on_release(cs) && atomic_read(&cs->count) == 0 &&
525 list_empty(&cs->children)) {
526 char *buf;
528 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
529 if (!buf)
530 return;
531 if (cpuset_path(cs, buf, PAGE_SIZE) < 0)
532 kfree(buf);
533 else
534 *ppathbuf = buf;
539 * Return in *pmask the portion of a cpusets's cpus_allowed that
540 * are online. If none are online, walk up the cpuset hierarchy
541 * until we find one that does have some online cpus. If we get
542 * all the way to the top and still haven't found any online cpus,
543 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
544 * task, return cpu_online_map.
546 * One way or another, we guarantee to return some non-empty subset
547 * of cpu_online_map.
549 * Call with callback_sem held.
552 static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
554 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
555 cs = cs->parent;
556 if (cs)
557 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
558 else
559 *pmask = cpu_online_map;
560 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
564 * Return in *pmask the portion of a cpusets's mems_allowed that
565 * are online. If none are online, walk up the cpuset hierarchy
566 * until we find one that does have some online mems. If we get
567 * all the way to the top and still haven't found any online mems,
568 * return node_online_map.
570 * One way or another, we guarantee to return some non-empty subset
571 * of node_online_map.
573 * Call with callback_sem held.
576 static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
578 while (cs && !nodes_intersects(cs->mems_allowed, node_online_map))
579 cs = cs->parent;
580 if (cs)
581 nodes_and(*pmask, cs->mems_allowed, node_online_map);
582 else
583 *pmask = node_online_map;
584 BUG_ON(!nodes_intersects(*pmask, node_online_map));
588 * Refresh current tasks mems_allowed and mems_generation from current
589 * tasks cpuset.
591 * Call without callback_sem or task_lock() held. May be called with
592 * or without manage_sem held. Will acquire task_lock() and might
593 * acquire callback_sem during call.
595 * The task_lock() is required to dereference current->cpuset safely.
596 * Without it, we could pick up the pointer value of current->cpuset
597 * in one instruction, and then attach_task could give us a different
598 * cpuset, and then the cpuset we had could be removed and freed,
599 * and then on our next instruction, we could dereference a no longer
600 * valid cpuset pointer to get its mems_generation field.
602 * This routine is needed to update the per-task mems_allowed data,
603 * within the tasks context, when it is trying to allocate memory
604 * (in various mm/mempolicy.c routines) and notices that some other
605 * task has been modifying its cpuset.
608 static void refresh_mems(void)
610 int my_cpusets_mem_gen;
612 task_lock(current);
613 my_cpusets_mem_gen = current->cpuset->mems_generation;
614 task_unlock(current);
616 if (current->cpuset_mems_generation != my_cpusets_mem_gen) {
617 struct cpuset *cs;
618 nodemask_t oldmem = current->mems_allowed;
619 int migrate;
621 down(&callback_sem);
622 task_lock(current);
623 cs = current->cpuset;
624 migrate = is_memory_migrate(cs);
625 guarantee_online_mems(cs, &current->mems_allowed);
626 current->cpuset_mems_generation = cs->mems_generation;
627 task_unlock(current);
628 up(&callback_sem);
629 if (!nodes_equal(oldmem, current->mems_allowed)) {
630 numa_policy_rebind(&oldmem, &current->mems_allowed);
631 if (migrate) {
632 do_migrate_pages(current->mm, &oldmem,
633 &current->mems_allowed,
634 MPOL_MF_MOVE_ALL);
641 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
643 * One cpuset is a subset of another if all its allowed CPUs and
644 * Memory Nodes are a subset of the other, and its exclusive flags
645 * are only set if the other's are set. Call holding manage_sem.
648 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
650 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
651 nodes_subset(p->mems_allowed, q->mems_allowed) &&
652 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
653 is_mem_exclusive(p) <= is_mem_exclusive(q);
657 * validate_change() - Used to validate that any proposed cpuset change
658 * follows the structural rules for cpusets.
660 * If we replaced the flag and mask values of the current cpuset
661 * (cur) with those values in the trial cpuset (trial), would
662 * our various subset and exclusive rules still be valid? Presumes
663 * manage_sem held.
665 * 'cur' is the address of an actual, in-use cpuset. Operations
666 * such as list traversal that depend on the actual address of the
667 * cpuset in the list must use cur below, not trial.
669 * 'trial' is the address of bulk structure copy of cur, with
670 * perhaps one or more of the fields cpus_allowed, mems_allowed,
671 * or flags changed to new, trial values.
673 * Return 0 if valid, -errno if not.
676 static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
678 struct cpuset *c, *par;
680 /* Each of our child cpusets must be a subset of us */
681 list_for_each_entry(c, &cur->children, sibling) {
682 if (!is_cpuset_subset(c, trial))
683 return -EBUSY;
686 /* Remaining checks don't apply to root cpuset */
687 if ((par = cur->parent) == NULL)
688 return 0;
690 /* We must be a subset of our parent cpuset */
691 if (!is_cpuset_subset(trial, par))
692 return -EACCES;
694 /* If either I or some sibling (!= me) is exclusive, we can't overlap */
695 list_for_each_entry(c, &par->children, sibling) {
696 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
697 c != cur &&
698 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
699 return -EINVAL;
700 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
701 c != cur &&
702 nodes_intersects(trial->mems_allowed, c->mems_allowed))
703 return -EINVAL;
706 return 0;
710 * For a given cpuset cur, partition the system as follows
711 * a. All cpus in the parent cpuset's cpus_allowed that are not part of any
712 * exclusive child cpusets
713 * b. All cpus in the current cpuset's cpus_allowed that are not part of any
714 * exclusive child cpusets
715 * Build these two partitions by calling partition_sched_domains
717 * Call with manage_sem held. May nest a call to the
718 * lock_cpu_hotplug()/unlock_cpu_hotplug() pair.
721 static void update_cpu_domains(struct cpuset *cur)
723 struct cpuset *c, *par = cur->parent;
724 cpumask_t pspan, cspan;
726 if (par == NULL || cpus_empty(cur->cpus_allowed))
727 return;
730 * Get all cpus from parent's cpus_allowed not part of exclusive
731 * children
733 pspan = par->cpus_allowed;
734 list_for_each_entry(c, &par->children, sibling) {
735 if (is_cpu_exclusive(c))
736 cpus_andnot(pspan, pspan, c->cpus_allowed);
738 if (is_removed(cur) || !is_cpu_exclusive(cur)) {
739 cpus_or(pspan, pspan, cur->cpus_allowed);
740 if (cpus_equal(pspan, cur->cpus_allowed))
741 return;
742 cspan = CPU_MASK_NONE;
743 } else {
744 if (cpus_empty(pspan))
745 return;
746 cspan = cur->cpus_allowed;
748 * Get all cpus from current cpuset's cpus_allowed not part
749 * of exclusive children
751 list_for_each_entry(c, &cur->children, sibling) {
752 if (is_cpu_exclusive(c))
753 cpus_andnot(cspan, cspan, c->cpus_allowed);
757 lock_cpu_hotplug();
758 partition_sched_domains(&pspan, &cspan);
759 unlock_cpu_hotplug();
763 * Call with manage_sem held. May take callback_sem during call.
766 static int update_cpumask(struct cpuset *cs, char *buf)
768 struct cpuset trialcs;
769 int retval, cpus_unchanged;
771 trialcs = *cs;
772 retval = cpulist_parse(buf, trialcs.cpus_allowed);
773 if (retval < 0)
774 return retval;
775 cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
776 if (cpus_empty(trialcs.cpus_allowed))
777 return -ENOSPC;
778 retval = validate_change(cs, &trialcs);
779 if (retval < 0)
780 return retval;
781 cpus_unchanged = cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed);
782 down(&callback_sem);
783 cs->cpus_allowed = trialcs.cpus_allowed;
784 up(&callback_sem);
785 if (is_cpu_exclusive(cs) && !cpus_unchanged)
786 update_cpu_domains(cs);
787 return 0;
791 * Call with manage_sem held. May take callback_sem during call.
794 static int update_nodemask(struct cpuset *cs, char *buf)
796 struct cpuset trialcs;
797 int retval;
799 trialcs = *cs;
800 retval = nodelist_parse(buf, trialcs.mems_allowed);
801 if (retval < 0)
802 return retval;
803 nodes_and(trialcs.mems_allowed, trialcs.mems_allowed, node_online_map);
804 if (nodes_empty(trialcs.mems_allowed))
805 return -ENOSPC;
806 retval = validate_change(cs, &trialcs);
807 if (retval == 0) {
808 down(&callback_sem);
809 cs->mems_allowed = trialcs.mems_allowed;
810 atomic_inc(&cpuset_mems_generation);
811 cs->mems_generation = atomic_read(&cpuset_mems_generation);
812 up(&callback_sem);
814 return retval;
818 * Call with manage_sem held.
821 static int update_memory_pressure_enabled(struct cpuset *cs, char *buf)
823 if (simple_strtoul(buf, NULL, 10) != 0)
824 cpuset_memory_pressure_enabled = 1;
825 else
826 cpuset_memory_pressure_enabled = 0;
827 return 0;
831 * update_flag - read a 0 or a 1 in a file and update associated flag
832 * bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
833 * CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE)
834 * cs: the cpuset to update
835 * buf: the buffer where we read the 0 or 1
837 * Call with manage_sem held.
840 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
842 int turning_on;
843 struct cpuset trialcs;
844 int err, cpu_exclusive_changed;
846 turning_on = (simple_strtoul(buf, NULL, 10) != 0);
848 trialcs = *cs;
849 if (turning_on)
850 set_bit(bit, &trialcs.flags);
851 else
852 clear_bit(bit, &trialcs.flags);
854 err = validate_change(cs, &trialcs);
855 if (err < 0)
856 return err;
857 cpu_exclusive_changed =
858 (is_cpu_exclusive(cs) != is_cpu_exclusive(&trialcs));
859 down(&callback_sem);
860 if (turning_on)
861 set_bit(bit, &cs->flags);
862 else
863 clear_bit(bit, &cs->flags);
864 up(&callback_sem);
866 if (cpu_exclusive_changed)
867 update_cpu_domains(cs);
868 return 0;
872 * Frequency meter - How fast is some event occuring?
874 * These routines manage a digitally filtered, constant time based,
875 * event frequency meter. There are four routines:
876 * fmeter_init() - initialize a frequency meter.
877 * fmeter_markevent() - called each time the event happens.
878 * fmeter_getrate() - returns the recent rate of such events.
879 * fmeter_update() - internal routine used to update fmeter.
881 * A common data structure is passed to each of these routines,
882 * which is used to keep track of the state required to manage the
883 * frequency meter and its digital filter.
885 * The filter works on the number of events marked per unit time.
886 * The filter is single-pole low-pass recursive (IIR). The time unit
887 * is 1 second. Arithmetic is done using 32-bit integers scaled to
888 * simulate 3 decimal digits of precision (multiplied by 1000).
890 * With an FM_COEF of 933, and a time base of 1 second, the filter
891 * has a half-life of 10 seconds, meaning that if the events quit
892 * happening, then the rate returned from the fmeter_getrate()
893 * will be cut in half each 10 seconds, until it converges to zero.
895 * It is not worth doing a real infinitely recursive filter. If more
896 * than FM_MAXTICKS ticks have elapsed since the last filter event,
897 * just compute FM_MAXTICKS ticks worth, by which point the level
898 * will be stable.
900 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
901 * arithmetic overflow in the fmeter_update() routine.
903 * Given the simple 32 bit integer arithmetic used, this meter works
904 * best for reporting rates between one per millisecond (msec) and
905 * one per 32 (approx) seconds. At constant rates faster than one
906 * per msec it maxes out at values just under 1,000,000. At constant
907 * rates between one per msec, and one per second it will stabilize
908 * to a value N*1000, where N is the rate of events per second.
909 * At constant rates between one per second and one per 32 seconds,
910 * it will be choppy, moving up on the seconds that have an event,
911 * and then decaying until the next event. At rates slower than
912 * about one in 32 seconds, it decays all the way back to zero between
913 * each event.
916 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
917 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
918 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
919 #define FM_SCALE 1000 /* faux fixed point scale */
921 /* Initialize a frequency meter */
922 static void fmeter_init(struct fmeter *fmp)
924 fmp->cnt = 0;
925 fmp->val = 0;
926 fmp->time = 0;
927 spin_lock_init(&fmp->lock);
930 /* Internal meter update - process cnt events and update value */
931 static void fmeter_update(struct fmeter *fmp)
933 time_t now = get_seconds();
934 time_t ticks = now - fmp->time;
936 if (ticks == 0)
937 return;
939 ticks = min(FM_MAXTICKS, ticks);
940 while (ticks-- > 0)
941 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
942 fmp->time = now;
944 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
945 fmp->cnt = 0;
948 /* Process any previous ticks, then bump cnt by one (times scale). */
949 static void fmeter_markevent(struct fmeter *fmp)
951 spin_lock(&fmp->lock);
952 fmeter_update(fmp);
953 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
954 spin_unlock(&fmp->lock);
957 /* Process any previous ticks, then return current value. */
958 static int fmeter_getrate(struct fmeter *fmp)
960 int val;
962 spin_lock(&fmp->lock);
963 fmeter_update(fmp);
964 val = fmp->val;
965 spin_unlock(&fmp->lock);
966 return val;
970 * Attack task specified by pid in 'pidbuf' to cpuset 'cs', possibly
971 * writing the path of the old cpuset in 'ppathbuf' if it needs to be
972 * notified on release.
974 * Call holding manage_sem. May take callback_sem and task_lock of
975 * the task 'pid' during call.
978 static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf)
980 pid_t pid;
981 struct task_struct *tsk;
982 struct cpuset *oldcs;
983 cpumask_t cpus;
984 nodemask_t from, to;
986 if (sscanf(pidbuf, "%d", &pid) != 1)
987 return -EIO;
988 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
989 return -ENOSPC;
991 if (pid) {
992 read_lock(&tasklist_lock);
994 tsk = find_task_by_pid(pid);
995 if (!tsk || tsk->flags & PF_EXITING) {
996 read_unlock(&tasklist_lock);
997 return -ESRCH;
1000 get_task_struct(tsk);
1001 read_unlock(&tasklist_lock);
1003 if ((current->euid) && (current->euid != tsk->uid)
1004 && (current->euid != tsk->suid)) {
1005 put_task_struct(tsk);
1006 return -EACCES;
1008 } else {
1009 tsk = current;
1010 get_task_struct(tsk);
1013 down(&callback_sem);
1015 task_lock(tsk);
1016 oldcs = tsk->cpuset;
1017 if (!oldcs) {
1018 task_unlock(tsk);
1019 up(&callback_sem);
1020 put_task_struct(tsk);
1021 return -ESRCH;
1023 atomic_inc(&cs->count);
1024 tsk->cpuset = cs;
1025 task_unlock(tsk);
1027 guarantee_online_cpus(cs, &cpus);
1028 set_cpus_allowed(tsk, cpus);
1030 from = oldcs->mems_allowed;
1031 to = cs->mems_allowed;
1033 up(&callback_sem);
1034 if (is_memory_migrate(cs))
1035 do_migrate_pages(tsk->mm, &from, &to, MPOL_MF_MOVE_ALL);
1036 put_task_struct(tsk);
1037 if (atomic_dec_and_test(&oldcs->count))
1038 check_for_release(oldcs, ppathbuf);
1039 return 0;
1042 /* The various types of files and directories in a cpuset file system */
1044 typedef enum {
1045 FILE_ROOT,
1046 FILE_DIR,
1047 FILE_MEMORY_MIGRATE,
1048 FILE_CPULIST,
1049 FILE_MEMLIST,
1050 FILE_CPU_EXCLUSIVE,
1051 FILE_MEM_EXCLUSIVE,
1052 FILE_NOTIFY_ON_RELEASE,
1053 FILE_MEMORY_PRESSURE_ENABLED,
1054 FILE_MEMORY_PRESSURE,
1055 FILE_TASKLIST,
1056 } cpuset_filetype_t;
1058 static ssize_t cpuset_common_file_write(struct file *file, const char __user *userbuf,
1059 size_t nbytes, loff_t *unused_ppos)
1061 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
1062 struct cftype *cft = __d_cft(file->f_dentry);
1063 cpuset_filetype_t type = cft->private;
1064 char *buffer;
1065 char *pathbuf = NULL;
1066 int retval = 0;
1068 /* Crude upper limit on largest legitimate cpulist user might write. */
1069 if (nbytes > 100 + 6 * NR_CPUS)
1070 return -E2BIG;
1072 /* +1 for nul-terminator */
1073 if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
1074 return -ENOMEM;
1076 if (copy_from_user(buffer, userbuf, nbytes)) {
1077 retval = -EFAULT;
1078 goto out1;
1080 buffer[nbytes] = 0; /* nul-terminate */
1082 down(&manage_sem);
1084 if (is_removed(cs)) {
1085 retval = -ENODEV;
1086 goto out2;
1089 switch (type) {
1090 case FILE_CPULIST:
1091 retval = update_cpumask(cs, buffer);
1092 break;
1093 case FILE_MEMLIST:
1094 retval = update_nodemask(cs, buffer);
1095 break;
1096 case FILE_CPU_EXCLUSIVE:
1097 retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
1098 break;
1099 case FILE_MEM_EXCLUSIVE:
1100 retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
1101 break;
1102 case FILE_NOTIFY_ON_RELEASE:
1103 retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer);
1104 break;
1105 case FILE_MEMORY_MIGRATE:
1106 retval = update_flag(CS_MEMORY_MIGRATE, cs, buffer);
1107 break;
1108 case FILE_MEMORY_PRESSURE_ENABLED:
1109 retval = update_memory_pressure_enabled(cs, buffer);
1110 break;
1111 case FILE_MEMORY_PRESSURE:
1112 retval = -EACCES;
1113 break;
1114 case FILE_TASKLIST:
1115 retval = attach_task(cs, buffer, &pathbuf);
1116 break;
1117 default:
1118 retval = -EINVAL;
1119 goto out2;
1122 if (retval == 0)
1123 retval = nbytes;
1124 out2:
1125 up(&manage_sem);
1126 cpuset_release_agent(pathbuf);
1127 out1:
1128 kfree(buffer);
1129 return retval;
1132 static ssize_t cpuset_file_write(struct file *file, const char __user *buf,
1133 size_t nbytes, loff_t *ppos)
1135 ssize_t retval = 0;
1136 struct cftype *cft = __d_cft(file->f_dentry);
1137 if (!cft)
1138 return -ENODEV;
1140 /* special function ? */
1141 if (cft->write)
1142 retval = cft->write(file, buf, nbytes, ppos);
1143 else
1144 retval = cpuset_common_file_write(file, buf, nbytes, ppos);
1146 return retval;
1150 * These ascii lists should be read in a single call, by using a user
1151 * buffer large enough to hold the entire map. If read in smaller
1152 * chunks, there is no guarantee of atomicity. Since the display format
1153 * used, list of ranges of sequential numbers, is variable length,
1154 * and since these maps can change value dynamically, one could read
1155 * gibberish by doing partial reads while a list was changing.
1156 * A single large read to a buffer that crosses a page boundary is
1157 * ok, because the result being copied to user land is not recomputed
1158 * across a page fault.
1161 static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1163 cpumask_t mask;
1165 down(&callback_sem);
1166 mask = cs->cpus_allowed;
1167 up(&callback_sem);
1169 return cpulist_scnprintf(page, PAGE_SIZE, mask);
1172 static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1174 nodemask_t mask;
1176 down(&callback_sem);
1177 mask = cs->mems_allowed;
1178 up(&callback_sem);
1180 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1183 static ssize_t cpuset_common_file_read(struct file *file, char __user *buf,
1184 size_t nbytes, loff_t *ppos)
1186 struct cftype *cft = __d_cft(file->f_dentry);
1187 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
1188 cpuset_filetype_t type = cft->private;
1189 char *page;
1190 ssize_t retval = 0;
1191 char *s;
1193 if (!(page = (char *)__get_free_page(GFP_KERNEL)))
1194 return -ENOMEM;
1196 s = page;
1198 switch (type) {
1199 case FILE_CPULIST:
1200 s += cpuset_sprintf_cpulist(s, cs);
1201 break;
1202 case FILE_MEMLIST:
1203 s += cpuset_sprintf_memlist(s, cs);
1204 break;
1205 case FILE_CPU_EXCLUSIVE:
1206 *s++ = is_cpu_exclusive(cs) ? '1' : '0';
1207 break;
1208 case FILE_MEM_EXCLUSIVE:
1209 *s++ = is_mem_exclusive(cs) ? '1' : '0';
1210 break;
1211 case FILE_NOTIFY_ON_RELEASE:
1212 *s++ = notify_on_release(cs) ? '1' : '0';
1213 break;
1214 case FILE_MEMORY_MIGRATE:
1215 *s++ = is_memory_migrate(cs) ? '1' : '0';
1216 break;
1217 case FILE_MEMORY_PRESSURE_ENABLED:
1218 *s++ = cpuset_memory_pressure_enabled ? '1' : '0';
1219 break;
1220 case FILE_MEMORY_PRESSURE:
1221 s += sprintf(s, "%d", fmeter_getrate(&cs->fmeter));
1222 break;
1223 default:
1224 retval = -EINVAL;
1225 goto out;
1227 *s++ = '\n';
1229 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1230 out:
1231 free_page((unsigned long)page);
1232 return retval;
1235 static ssize_t cpuset_file_read(struct file *file, char __user *buf, size_t nbytes,
1236 loff_t *ppos)
1238 ssize_t retval = 0;
1239 struct cftype *cft = __d_cft(file->f_dentry);
1240 if (!cft)
1241 return -ENODEV;
1243 /* special function ? */
1244 if (cft->read)
1245 retval = cft->read(file, buf, nbytes, ppos);
1246 else
1247 retval = cpuset_common_file_read(file, buf, nbytes, ppos);
1249 return retval;
1252 static int cpuset_file_open(struct inode *inode, struct file *file)
1254 int err;
1255 struct cftype *cft;
1257 err = generic_file_open(inode, file);
1258 if (err)
1259 return err;
1261 cft = __d_cft(file->f_dentry);
1262 if (!cft)
1263 return -ENODEV;
1264 if (cft->open)
1265 err = cft->open(inode, file);
1266 else
1267 err = 0;
1269 return err;
1272 static int cpuset_file_release(struct inode *inode, struct file *file)
1274 struct cftype *cft = __d_cft(file->f_dentry);
1275 if (cft->release)
1276 return cft->release(inode, file);
1277 return 0;
1281 * cpuset_rename - Only allow simple rename of directories in place.
1283 static int cpuset_rename(struct inode *old_dir, struct dentry *old_dentry,
1284 struct inode *new_dir, struct dentry *new_dentry)
1286 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1287 return -ENOTDIR;
1288 if (new_dentry->d_inode)
1289 return -EEXIST;
1290 if (old_dir != new_dir)
1291 return -EIO;
1292 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1295 static struct file_operations cpuset_file_operations = {
1296 .read = cpuset_file_read,
1297 .write = cpuset_file_write,
1298 .llseek = generic_file_llseek,
1299 .open = cpuset_file_open,
1300 .release = cpuset_file_release,
1303 static struct inode_operations cpuset_dir_inode_operations = {
1304 .lookup = simple_lookup,
1305 .mkdir = cpuset_mkdir,
1306 .rmdir = cpuset_rmdir,
1307 .rename = cpuset_rename,
1310 static int cpuset_create_file(struct dentry *dentry, int mode)
1312 struct inode *inode;
1314 if (!dentry)
1315 return -ENOENT;
1316 if (dentry->d_inode)
1317 return -EEXIST;
1319 inode = cpuset_new_inode(mode);
1320 if (!inode)
1321 return -ENOMEM;
1323 if (S_ISDIR(mode)) {
1324 inode->i_op = &cpuset_dir_inode_operations;
1325 inode->i_fop = &simple_dir_operations;
1327 /* start off with i_nlink == 2 (for "." entry) */
1328 inode->i_nlink++;
1329 } else if (S_ISREG(mode)) {
1330 inode->i_size = 0;
1331 inode->i_fop = &cpuset_file_operations;
1334 d_instantiate(dentry, inode);
1335 dget(dentry); /* Extra count - pin the dentry in core */
1336 return 0;
1340 * cpuset_create_dir - create a directory for an object.
1341 * cs: the cpuset we create the directory for.
1342 * It must have a valid ->parent field
1343 * And we are going to fill its ->dentry field.
1344 * name: The name to give to the cpuset directory. Will be copied.
1345 * mode: mode to set on new directory.
1348 static int cpuset_create_dir(struct cpuset *cs, const char *name, int mode)
1350 struct dentry *dentry = NULL;
1351 struct dentry *parent;
1352 int error = 0;
1354 parent = cs->parent->dentry;
1355 dentry = cpuset_get_dentry(parent, name);
1356 if (IS_ERR(dentry))
1357 return PTR_ERR(dentry);
1358 error = cpuset_create_file(dentry, S_IFDIR | mode);
1359 if (!error) {
1360 dentry->d_fsdata = cs;
1361 parent->d_inode->i_nlink++;
1362 cs->dentry = dentry;
1364 dput(dentry);
1366 return error;
1369 static int cpuset_add_file(struct dentry *dir, const struct cftype *cft)
1371 struct dentry *dentry;
1372 int error;
1374 down(&dir->d_inode->i_sem);
1375 dentry = cpuset_get_dentry(dir, cft->name);
1376 if (!IS_ERR(dentry)) {
1377 error = cpuset_create_file(dentry, 0644 | S_IFREG);
1378 if (!error)
1379 dentry->d_fsdata = (void *)cft;
1380 dput(dentry);
1381 } else
1382 error = PTR_ERR(dentry);
1383 up(&dir->d_inode->i_sem);
1384 return error;
1388 * Stuff for reading the 'tasks' file.
1390 * Reading this file can return large amounts of data if a cpuset has
1391 * *lots* of attached tasks. So it may need several calls to read(),
1392 * but we cannot guarantee that the information we produce is correct
1393 * unless we produce it entirely atomically.
1395 * Upon tasks file open(), a struct ctr_struct is allocated, that
1396 * will have a pointer to an array (also allocated here). The struct
1397 * ctr_struct * is stored in file->private_data. Its resources will
1398 * be freed by release() when the file is closed. The array is used
1399 * to sprintf the PIDs and then used by read().
1402 /* cpusets_tasks_read array */
1404 struct ctr_struct {
1405 char *buf;
1406 int bufsz;
1410 * Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'.
1411 * Return actual number of pids loaded. No need to task_lock(p)
1412 * when reading out p->cpuset, as we don't really care if it changes
1413 * on the next cycle, and we are not going to try to dereference it.
1415 static inline int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs)
1417 int n = 0;
1418 struct task_struct *g, *p;
1420 read_lock(&tasklist_lock);
1422 do_each_thread(g, p) {
1423 if (p->cpuset == cs) {
1424 pidarray[n++] = p->pid;
1425 if (unlikely(n == npids))
1426 goto array_full;
1428 } while_each_thread(g, p);
1430 array_full:
1431 read_unlock(&tasklist_lock);
1432 return n;
1435 static int cmppid(const void *a, const void *b)
1437 return *(pid_t *)a - *(pid_t *)b;
1441 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
1442 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
1443 * count 'cnt' of how many chars would be written if buf were large enough.
1445 static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
1447 int cnt = 0;
1448 int i;
1450 for (i = 0; i < npids; i++)
1451 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
1452 return cnt;
1456 * Handle an open on 'tasks' file. Prepare a buffer listing the
1457 * process id's of tasks currently attached to the cpuset being opened.
1459 * Does not require any specific cpuset semaphores, and does not take any.
1461 static int cpuset_tasks_open(struct inode *unused, struct file *file)
1463 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
1464 struct ctr_struct *ctr;
1465 pid_t *pidarray;
1466 int npids;
1467 char c;
1469 if (!(file->f_mode & FMODE_READ))
1470 return 0;
1472 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
1473 if (!ctr)
1474 goto err0;
1477 * If cpuset gets more users after we read count, we won't have
1478 * enough space - tough. This race is indistinguishable to the
1479 * caller from the case that the additional cpuset users didn't
1480 * show up until sometime later on.
1482 npids = atomic_read(&cs->count);
1483 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
1484 if (!pidarray)
1485 goto err1;
1487 npids = pid_array_load(pidarray, npids, cs);
1488 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
1490 /* Call pid_array_to_buf() twice, first just to get bufsz */
1491 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
1492 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
1493 if (!ctr->buf)
1494 goto err2;
1495 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
1497 kfree(pidarray);
1498 file->private_data = ctr;
1499 return 0;
1501 err2:
1502 kfree(pidarray);
1503 err1:
1504 kfree(ctr);
1505 err0:
1506 return -ENOMEM;
1509 static ssize_t cpuset_tasks_read(struct file *file, char __user *buf,
1510 size_t nbytes, loff_t *ppos)
1512 struct ctr_struct *ctr = file->private_data;
1514 if (*ppos + nbytes > ctr->bufsz)
1515 nbytes = ctr->bufsz - *ppos;
1516 if (copy_to_user(buf, ctr->buf + *ppos, nbytes))
1517 return -EFAULT;
1518 *ppos += nbytes;
1519 return nbytes;
1522 static int cpuset_tasks_release(struct inode *unused_inode, struct file *file)
1524 struct ctr_struct *ctr;
1526 if (file->f_mode & FMODE_READ) {
1527 ctr = file->private_data;
1528 kfree(ctr->buf);
1529 kfree(ctr);
1531 return 0;
1535 * for the common functions, 'private' gives the type of file
1538 static struct cftype cft_tasks = {
1539 .name = "tasks",
1540 .open = cpuset_tasks_open,
1541 .read = cpuset_tasks_read,
1542 .release = cpuset_tasks_release,
1543 .private = FILE_TASKLIST,
1546 static struct cftype cft_cpus = {
1547 .name = "cpus",
1548 .private = FILE_CPULIST,
1551 static struct cftype cft_mems = {
1552 .name = "mems",
1553 .private = FILE_MEMLIST,
1556 static struct cftype cft_cpu_exclusive = {
1557 .name = "cpu_exclusive",
1558 .private = FILE_CPU_EXCLUSIVE,
1561 static struct cftype cft_mem_exclusive = {
1562 .name = "mem_exclusive",
1563 .private = FILE_MEM_EXCLUSIVE,
1566 static struct cftype cft_notify_on_release = {
1567 .name = "notify_on_release",
1568 .private = FILE_NOTIFY_ON_RELEASE,
1571 static struct cftype cft_memory_migrate = {
1572 .name = "memory_migrate",
1573 .private = FILE_MEMORY_MIGRATE,
1576 static struct cftype cft_memory_pressure_enabled = {
1577 .name = "memory_pressure_enabled",
1578 .private = FILE_MEMORY_PRESSURE_ENABLED,
1581 static struct cftype cft_memory_pressure = {
1582 .name = "memory_pressure",
1583 .private = FILE_MEMORY_PRESSURE,
1586 static int cpuset_populate_dir(struct dentry *cs_dentry)
1588 int err;
1590 if ((err = cpuset_add_file(cs_dentry, &cft_cpus)) < 0)
1591 return err;
1592 if ((err = cpuset_add_file(cs_dentry, &cft_mems)) < 0)
1593 return err;
1594 if ((err = cpuset_add_file(cs_dentry, &cft_cpu_exclusive)) < 0)
1595 return err;
1596 if ((err = cpuset_add_file(cs_dentry, &cft_mem_exclusive)) < 0)
1597 return err;
1598 if ((err = cpuset_add_file(cs_dentry, &cft_notify_on_release)) < 0)
1599 return err;
1600 if ((err = cpuset_add_file(cs_dentry, &cft_memory_migrate)) < 0)
1601 return err;
1602 if ((err = cpuset_add_file(cs_dentry, &cft_memory_pressure)) < 0)
1603 return err;
1604 if ((err = cpuset_add_file(cs_dentry, &cft_tasks)) < 0)
1605 return err;
1606 return 0;
1610 * cpuset_create - create a cpuset
1611 * parent: cpuset that will be parent of the new cpuset.
1612 * name: name of the new cpuset. Will be strcpy'ed.
1613 * mode: mode to set on new inode
1615 * Must be called with the semaphore on the parent inode held
1618 static long cpuset_create(struct cpuset *parent, const char *name, int mode)
1620 struct cpuset *cs;
1621 int err;
1623 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1624 if (!cs)
1625 return -ENOMEM;
1627 down(&manage_sem);
1628 refresh_mems();
1629 cs->flags = 0;
1630 if (notify_on_release(parent))
1631 set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
1632 cs->cpus_allowed = CPU_MASK_NONE;
1633 cs->mems_allowed = NODE_MASK_NONE;
1634 atomic_set(&cs->count, 0);
1635 INIT_LIST_HEAD(&cs->sibling);
1636 INIT_LIST_HEAD(&cs->children);
1637 atomic_inc(&cpuset_mems_generation);
1638 cs->mems_generation = atomic_read(&cpuset_mems_generation);
1639 fmeter_init(&cs->fmeter);
1641 cs->parent = parent;
1643 down(&callback_sem);
1644 list_add(&cs->sibling, &cs->parent->children);
1645 up(&callback_sem);
1647 err = cpuset_create_dir(cs, name, mode);
1648 if (err < 0)
1649 goto err;
1652 * Release manage_sem before cpuset_populate_dir() because it
1653 * will down() this new directory's i_sem and if we race with
1654 * another mkdir, we might deadlock.
1656 up(&manage_sem);
1658 err = cpuset_populate_dir(cs->dentry);
1659 /* If err < 0, we have a half-filled directory - oh well ;) */
1660 return 0;
1661 err:
1662 list_del(&cs->sibling);
1663 up(&manage_sem);
1664 kfree(cs);
1665 return err;
1668 static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1670 struct cpuset *c_parent = dentry->d_parent->d_fsdata;
1672 /* the vfs holds inode->i_sem already */
1673 return cpuset_create(c_parent, dentry->d_name.name, mode | S_IFDIR);
1676 static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry)
1678 struct cpuset *cs = dentry->d_fsdata;
1679 struct dentry *d;
1680 struct cpuset *parent;
1681 char *pathbuf = NULL;
1683 /* the vfs holds both inode->i_sem already */
1685 down(&manage_sem);
1686 refresh_mems();
1687 if (atomic_read(&cs->count) > 0) {
1688 up(&manage_sem);
1689 return -EBUSY;
1691 if (!list_empty(&cs->children)) {
1692 up(&manage_sem);
1693 return -EBUSY;
1695 parent = cs->parent;
1696 down(&callback_sem);
1697 set_bit(CS_REMOVED, &cs->flags);
1698 if (is_cpu_exclusive(cs))
1699 update_cpu_domains(cs);
1700 list_del(&cs->sibling); /* delete my sibling from parent->children */
1701 spin_lock(&cs->dentry->d_lock);
1702 d = dget(cs->dentry);
1703 cs->dentry = NULL;
1704 spin_unlock(&d->d_lock);
1705 cpuset_d_remove_dir(d);
1706 dput(d);
1707 up(&callback_sem);
1708 if (list_empty(&parent->children))
1709 check_for_release(parent, &pathbuf);
1710 up(&manage_sem);
1711 cpuset_release_agent(pathbuf);
1712 return 0;
1716 * cpuset_init - initialize cpusets at system boot
1718 * Description: Initialize top_cpuset and the cpuset internal file system,
1721 int __init cpuset_init(void)
1723 struct dentry *root;
1724 int err;
1726 top_cpuset.cpus_allowed = CPU_MASK_ALL;
1727 top_cpuset.mems_allowed = NODE_MASK_ALL;
1729 fmeter_init(&top_cpuset.fmeter);
1730 atomic_inc(&cpuset_mems_generation);
1731 top_cpuset.mems_generation = atomic_read(&cpuset_mems_generation);
1733 init_task.cpuset = &top_cpuset;
1735 err = register_filesystem(&cpuset_fs_type);
1736 if (err < 0)
1737 goto out;
1738 cpuset_mount = kern_mount(&cpuset_fs_type);
1739 if (IS_ERR(cpuset_mount)) {
1740 printk(KERN_ERR "cpuset: could not mount!\n");
1741 err = PTR_ERR(cpuset_mount);
1742 cpuset_mount = NULL;
1743 goto out;
1745 root = cpuset_mount->mnt_sb->s_root;
1746 root->d_fsdata = &top_cpuset;
1747 root->d_inode->i_nlink++;
1748 top_cpuset.dentry = root;
1749 root->d_inode->i_op = &cpuset_dir_inode_operations;
1750 err = cpuset_populate_dir(root);
1751 /* memory_pressure_enabled is in root cpuset only */
1752 if (err == 0)
1753 err = cpuset_add_file(root, &cft_memory_pressure_enabled);
1754 out:
1755 return err;
1759 * cpuset_init_smp - initialize cpus_allowed
1761 * Description: Finish top cpuset after cpu, node maps are initialized
1764 void __init cpuset_init_smp(void)
1766 top_cpuset.cpus_allowed = cpu_online_map;
1767 top_cpuset.mems_allowed = node_online_map;
1771 * cpuset_fork - attach newly forked task to its parents cpuset.
1772 * @tsk: pointer to task_struct of forking parent process.
1774 * Description: A task inherits its parent's cpuset at fork().
1776 * A pointer to the shared cpuset was automatically copied in fork.c
1777 * by dup_task_struct(). However, we ignore that copy, since it was
1778 * not made under the protection of task_lock(), so might no longer be
1779 * a valid cpuset pointer. attach_task() might have already changed
1780 * current->cpuset, allowing the previously referenced cpuset to
1781 * be removed and freed. Instead, we task_lock(current) and copy
1782 * its present value of current->cpuset for our freshly forked child.
1784 * At the point that cpuset_fork() is called, 'current' is the parent
1785 * task, and the passed argument 'child' points to the child task.
1788 void cpuset_fork(struct task_struct *child)
1790 task_lock(current);
1791 child->cpuset = current->cpuset;
1792 atomic_inc(&child->cpuset->count);
1793 task_unlock(current);
1797 * cpuset_exit - detach cpuset from exiting task
1798 * @tsk: pointer to task_struct of exiting process
1800 * Description: Detach cpuset from @tsk and release it.
1802 * Note that cpusets marked notify_on_release force every task in
1803 * them to take the global manage_sem semaphore when exiting.
1804 * This could impact scaling on very large systems. Be reluctant to
1805 * use notify_on_release cpusets where very high task exit scaling
1806 * is required on large systems.
1808 * Don't even think about derefencing 'cs' after the cpuset use count
1809 * goes to zero, except inside a critical section guarded by manage_sem
1810 * or callback_sem. Otherwise a zero cpuset use count is a license to
1811 * any other task to nuke the cpuset immediately, via cpuset_rmdir().
1813 * This routine has to take manage_sem, not callback_sem, because
1814 * it is holding that semaphore while calling check_for_release(),
1815 * which calls kmalloc(), so can't be called holding callback__sem().
1817 * We don't need to task_lock() this reference to tsk->cpuset,
1818 * because tsk is already marked PF_EXITING, so attach_task() won't
1819 * mess with it.
1822 void cpuset_exit(struct task_struct *tsk)
1824 struct cpuset *cs;
1826 BUG_ON(!(tsk->flags & PF_EXITING));
1828 cs = tsk->cpuset;
1829 tsk->cpuset = NULL;
1831 if (notify_on_release(cs)) {
1832 char *pathbuf = NULL;
1834 down(&manage_sem);
1835 if (atomic_dec_and_test(&cs->count))
1836 check_for_release(cs, &pathbuf);
1837 up(&manage_sem);
1838 cpuset_release_agent(pathbuf);
1839 } else {
1840 atomic_dec(&cs->count);
1845 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
1846 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
1848 * Description: Returns the cpumask_t cpus_allowed of the cpuset
1849 * attached to the specified @tsk. Guaranteed to return some non-empty
1850 * subset of cpu_online_map, even if this means going outside the
1851 * tasks cpuset.
1854 cpumask_t cpuset_cpus_allowed(const struct task_struct *tsk)
1856 cpumask_t mask;
1858 down(&callback_sem);
1859 task_lock((struct task_struct *)tsk);
1860 guarantee_online_cpus(tsk->cpuset, &mask);
1861 task_unlock((struct task_struct *)tsk);
1862 up(&callback_sem);
1864 return mask;
1867 void cpuset_init_current_mems_allowed(void)
1869 current->mems_allowed = NODE_MASK_ALL;
1873 * cpuset_update_current_mems_allowed - update mems parameters to new values
1875 * If the current tasks cpusets mems_allowed changed behind our backs,
1876 * update current->mems_allowed and mems_generation to the new value.
1877 * Do not call this routine if in_interrupt().
1879 * Call without callback_sem or task_lock() held. May be called
1880 * with or without manage_sem held. Unless exiting, it will acquire
1881 * task_lock(). Also might acquire callback_sem during call to
1882 * refresh_mems().
1885 void cpuset_update_current_mems_allowed(void)
1887 struct cpuset *cs;
1888 int need_to_refresh = 0;
1890 task_lock(current);
1891 cs = current->cpuset;
1892 if (!cs)
1893 goto done;
1894 if (current->cpuset_mems_generation != cs->mems_generation)
1895 need_to_refresh = 1;
1896 done:
1897 task_unlock(current);
1898 if (need_to_refresh)
1899 refresh_mems();
1903 * cpuset_zonelist_valid_mems_allowed - check zonelist vs. curremt mems_allowed
1904 * @zl: the zonelist to be checked
1906 * Are any of the nodes on zonelist zl allowed in current->mems_allowed?
1908 int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl)
1910 int i;
1912 for (i = 0; zl->zones[i]; i++) {
1913 int nid = zl->zones[i]->zone_pgdat->node_id;
1915 if (node_isset(nid, current->mems_allowed))
1916 return 1;
1918 return 0;
1922 * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive
1923 * ancestor to the specified cpuset. Call holding callback_sem.
1924 * If no ancestor is mem_exclusive (an unusual configuration), then
1925 * returns the root cpuset.
1927 static const struct cpuset *nearest_exclusive_ancestor(const struct cpuset *cs)
1929 while (!is_mem_exclusive(cs) && cs->parent)
1930 cs = cs->parent;
1931 return cs;
1935 * cpuset_zone_allowed - Can we allocate memory on zone z's memory node?
1936 * @z: is this zone on an allowed node?
1937 * @gfp_mask: memory allocation flags (we use __GFP_HARDWALL)
1939 * If we're in interrupt, yes, we can always allocate. If zone
1940 * z's node is in our tasks mems_allowed, yes. If it's not a
1941 * __GFP_HARDWALL request and this zone's nodes is in the nearest
1942 * mem_exclusive cpuset ancestor to this tasks cpuset, yes.
1943 * Otherwise, no.
1945 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
1946 * and do not allow allocations outside the current tasks cpuset.
1947 * GFP_KERNEL allocations are not so marked, so can escape to the
1948 * nearest mem_exclusive ancestor cpuset.
1950 * Scanning up parent cpusets requires callback_sem. The __alloc_pages()
1951 * routine only calls here with __GFP_HARDWALL bit _not_ set if
1952 * it's a GFP_KERNEL allocation, and all nodes in the current tasks
1953 * mems_allowed came up empty on the first pass over the zonelist.
1954 * So only GFP_KERNEL allocations, if all nodes in the cpuset are
1955 * short of memory, might require taking the callback_sem semaphore.
1957 * The first loop over the zonelist in mm/page_alloc.c:__alloc_pages()
1958 * calls here with __GFP_HARDWALL always set in gfp_mask, enforcing
1959 * hardwall cpusets - no allocation on a node outside the cpuset is
1960 * allowed (unless in interrupt, of course).
1962 * The second loop doesn't even call here for GFP_ATOMIC requests
1963 * (if the __alloc_pages() local variable 'wait' is set). That check
1964 * and the checks below have the combined affect in the second loop of
1965 * the __alloc_pages() routine that:
1966 * in_interrupt - any node ok (current task context irrelevant)
1967 * GFP_ATOMIC - any node ok
1968 * GFP_KERNEL - any node in enclosing mem_exclusive cpuset ok
1969 * GFP_USER - only nodes in current tasks mems allowed ok.
1972 int cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
1974 int node; /* node that zone z is on */
1975 const struct cpuset *cs; /* current cpuset ancestors */
1976 int allowed = 1; /* is allocation in zone z allowed? */
1978 if (in_interrupt())
1979 return 1;
1980 node = z->zone_pgdat->node_id;
1981 if (node_isset(node, current->mems_allowed))
1982 return 1;
1983 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
1984 return 0;
1986 if (current->flags & PF_EXITING) /* Let dying task have memory */
1987 return 1;
1989 /* Not hardwall and node outside mems_allowed: scan up cpusets */
1990 down(&callback_sem);
1992 task_lock(current);
1993 cs = nearest_exclusive_ancestor(current->cpuset);
1994 task_unlock(current);
1996 allowed = node_isset(node, cs->mems_allowed);
1997 up(&callback_sem);
1998 return allowed;
2002 * cpuset_excl_nodes_overlap - Do we overlap @p's mem_exclusive ancestors?
2003 * @p: pointer to task_struct of some other task.
2005 * Description: Return true if the nearest mem_exclusive ancestor
2006 * cpusets of tasks @p and current overlap. Used by oom killer to
2007 * determine if task @p's memory usage might impact the memory
2008 * available to the current task.
2010 * Acquires callback_sem - not suitable for calling from a fast path.
2013 int cpuset_excl_nodes_overlap(const struct task_struct *p)
2015 const struct cpuset *cs1, *cs2; /* my and p's cpuset ancestors */
2016 int overlap = 0; /* do cpusets overlap? */
2018 down(&callback_sem);
2020 task_lock(current);
2021 if (current->flags & PF_EXITING) {
2022 task_unlock(current);
2023 goto done;
2025 cs1 = nearest_exclusive_ancestor(current->cpuset);
2026 task_unlock(current);
2028 task_lock((struct task_struct *)p);
2029 if (p->flags & PF_EXITING) {
2030 task_unlock((struct task_struct *)p);
2031 goto done;
2033 cs2 = nearest_exclusive_ancestor(p->cpuset);
2034 task_unlock((struct task_struct *)p);
2036 overlap = nodes_intersects(cs1->mems_allowed, cs2->mems_allowed);
2037 done:
2038 up(&callback_sem);
2040 return overlap;
2044 * Collection of memory_pressure is suppressed unless
2045 * this flag is enabled by writing "1" to the special
2046 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2049 int cpuset_memory_pressure_enabled __read_mostly;
2052 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2054 * Keep a running average of the rate of synchronous (direct)
2055 * page reclaim efforts initiated by tasks in each cpuset.
2057 * This represents the rate at which some task in the cpuset
2058 * ran low on memory on all nodes it was allowed to use, and
2059 * had to enter the kernels page reclaim code in an effort to
2060 * create more free memory by tossing clean pages or swapping
2061 * or writing dirty pages.
2063 * Display to user space in the per-cpuset read-only file
2064 * "memory_pressure". Value displayed is an integer
2065 * representing the recent rate of entry into the synchronous
2066 * (direct) page reclaim by any task attached to the cpuset.
2069 void __cpuset_memory_pressure_bump(void)
2071 struct cpuset *cs;
2073 task_lock(current);
2074 cs = current->cpuset;
2075 fmeter_markevent(&cs->fmeter);
2076 task_unlock(current);
2080 * proc_cpuset_show()
2081 * - Print tasks cpuset path into seq_file.
2082 * - Used for /proc/<pid>/cpuset.
2083 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2084 * doesn't really matter if tsk->cpuset changes after we read it,
2085 * and we take manage_sem, keeping attach_task() from changing it
2086 * anyway.
2089 static int proc_cpuset_show(struct seq_file *m, void *v)
2091 struct cpuset *cs;
2092 struct task_struct *tsk;
2093 char *buf;
2094 int retval = 0;
2096 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2097 if (!buf)
2098 return -ENOMEM;
2100 tsk = m->private;
2101 down(&manage_sem);
2102 cs = tsk->cpuset;
2103 if (!cs) {
2104 retval = -EINVAL;
2105 goto out;
2108 retval = cpuset_path(cs, buf, PAGE_SIZE);
2109 if (retval < 0)
2110 goto out;
2111 seq_puts(m, buf);
2112 seq_putc(m, '\n');
2113 out:
2114 up(&manage_sem);
2115 kfree(buf);
2116 return retval;
2119 static int cpuset_open(struct inode *inode, struct file *file)
2121 struct task_struct *tsk = PROC_I(inode)->task;
2122 return single_open(file, proc_cpuset_show, tsk);
2125 struct file_operations proc_cpuset_operations = {
2126 .open = cpuset_open,
2127 .read = seq_read,
2128 .llseek = seq_lseek,
2129 .release = single_release,
2132 /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
2133 char *cpuset_task_status_allowed(struct task_struct *task, char *buffer)
2135 buffer += sprintf(buffer, "Cpus_allowed:\t");
2136 buffer += cpumask_scnprintf(buffer, PAGE_SIZE, task->cpus_allowed);
2137 buffer += sprintf(buffer, "\n");
2138 buffer += sprintf(buffer, "Mems_allowed:\t");
2139 buffer += nodemask_scnprintf(buffer, PAGE_SIZE, task->mems_allowed);
2140 buffer += sprintf(buffer, "\n");
2141 return buffer;