2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt2500usb device specific routines.
24 Supported chipsets: RT2570.
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/usb.h>
35 #include "rt2x00usb.h"
36 #include "rt2500usb.h"
40 * All access to the CSR registers will go through the methods
41 * rt2500usb_register_read and rt2500usb_register_write.
42 * BBP and RF register require indirect register access,
43 * and use the CSR registers BBPCSR and RFCSR to achieve this.
44 * These indirect registers work with busy bits,
45 * and we will try maximal REGISTER_BUSY_COUNT times to access
46 * the register while taking a REGISTER_BUSY_DELAY us delay
47 * between each attampt. When the busy bit is still set at that time,
48 * the access attempt is considered to have failed,
49 * and we will print an error.
50 * If the usb_cache_mutex is already held then the _lock variants must
53 static inline void rt2500usb_register_read(struct rt2x00_dev
*rt2x00dev
,
54 const unsigned int offset
,
58 rt2x00usb_vendor_request_buff(rt2x00dev
, USB_MULTI_READ
,
59 USB_VENDOR_REQUEST_IN
, offset
,
60 ®
, sizeof(u16
), REGISTER_TIMEOUT
);
61 *value
= le16_to_cpu(reg
);
64 static inline void rt2500usb_register_read_lock(struct rt2x00_dev
*rt2x00dev
,
65 const unsigned int offset
,
69 rt2x00usb_vendor_req_buff_lock(rt2x00dev
, USB_MULTI_READ
,
70 USB_VENDOR_REQUEST_IN
, offset
,
71 ®
, sizeof(u16
), REGISTER_TIMEOUT
);
72 *value
= le16_to_cpu(reg
);
75 static inline void rt2500usb_register_multiread(struct rt2x00_dev
*rt2x00dev
,
76 const unsigned int offset
,
77 void *value
, const u16 length
)
79 rt2x00usb_vendor_request_buff(rt2x00dev
, USB_MULTI_READ
,
80 USB_VENDOR_REQUEST_IN
, offset
,
82 REGISTER_TIMEOUT16(length
));
85 static inline void rt2500usb_register_write(struct rt2x00_dev
*rt2x00dev
,
86 const unsigned int offset
,
89 __le16 reg
= cpu_to_le16(value
);
90 rt2x00usb_vendor_request_buff(rt2x00dev
, USB_MULTI_WRITE
,
91 USB_VENDOR_REQUEST_OUT
, offset
,
92 ®
, sizeof(u16
), REGISTER_TIMEOUT
);
95 static inline void rt2500usb_register_write_lock(struct rt2x00_dev
*rt2x00dev
,
96 const unsigned int offset
,
99 __le16 reg
= cpu_to_le16(value
);
100 rt2x00usb_vendor_req_buff_lock(rt2x00dev
, USB_MULTI_WRITE
,
101 USB_VENDOR_REQUEST_OUT
, offset
,
102 ®
, sizeof(u16
), REGISTER_TIMEOUT
);
105 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev
*rt2x00dev
,
106 const unsigned int offset
,
107 void *value
, const u16 length
)
109 rt2x00usb_vendor_request_buff(rt2x00dev
, USB_MULTI_WRITE
,
110 USB_VENDOR_REQUEST_OUT
, offset
,
112 REGISTER_TIMEOUT16(length
));
115 static u16
rt2500usb_bbp_check(struct rt2x00_dev
*rt2x00dev
)
120 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
121 rt2500usb_register_read_lock(rt2x00dev
, PHY_CSR8
, ®
);
122 if (!rt2x00_get_field16(reg
, PHY_CSR8_BUSY
))
124 udelay(REGISTER_BUSY_DELAY
);
130 static void rt2500usb_bbp_write(struct rt2x00_dev
*rt2x00dev
,
131 const unsigned int word
, const u8 value
)
135 mutex_lock(&rt2x00dev
->usb_cache_mutex
);
138 * Wait until the BBP becomes ready.
140 reg
= rt2500usb_bbp_check(rt2x00dev
);
141 if (rt2x00_get_field16(reg
, PHY_CSR8_BUSY
)) {
142 ERROR(rt2x00dev
, "PHY_CSR8 register busy. Write failed.\n");
143 mutex_unlock(&rt2x00dev
->usb_cache_mutex
);
148 * Write the data into the BBP.
151 rt2x00_set_field16(®
, PHY_CSR7_DATA
, value
);
152 rt2x00_set_field16(®
, PHY_CSR7_REG_ID
, word
);
153 rt2x00_set_field16(®
, PHY_CSR7_READ_CONTROL
, 0);
155 rt2500usb_register_write_lock(rt2x00dev
, PHY_CSR7
, reg
);
157 mutex_unlock(&rt2x00dev
->usb_cache_mutex
);
160 static void rt2500usb_bbp_read(struct rt2x00_dev
*rt2x00dev
,
161 const unsigned int word
, u8
*value
)
165 mutex_lock(&rt2x00dev
->usb_cache_mutex
);
168 * Wait until the BBP becomes ready.
170 reg
= rt2500usb_bbp_check(rt2x00dev
);
171 if (rt2x00_get_field16(reg
, PHY_CSR8_BUSY
)) {
172 ERROR(rt2x00dev
, "PHY_CSR8 register busy. Read failed.\n");
177 * Write the request into the BBP.
180 rt2x00_set_field16(®
, PHY_CSR7_REG_ID
, word
);
181 rt2x00_set_field16(®
, PHY_CSR7_READ_CONTROL
, 1);
183 rt2500usb_register_write_lock(rt2x00dev
, PHY_CSR7
, reg
);
186 * Wait until the BBP becomes ready.
188 reg
= rt2500usb_bbp_check(rt2x00dev
);
189 if (rt2x00_get_field16(reg
, PHY_CSR8_BUSY
)) {
190 ERROR(rt2x00dev
, "PHY_CSR8 register busy. Read failed.\n");
192 mutex_unlock(&rt2x00dev
->usb_cache_mutex
);
196 rt2500usb_register_read_lock(rt2x00dev
, PHY_CSR7
, ®
);
197 *value
= rt2x00_get_field16(reg
, PHY_CSR7_DATA
);
199 mutex_unlock(&rt2x00dev
->usb_cache_mutex
);
202 static void rt2500usb_rf_write(struct rt2x00_dev
*rt2x00dev
,
203 const unsigned int word
, const u32 value
)
211 mutex_lock(&rt2x00dev
->usb_cache_mutex
);
213 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
214 rt2500usb_register_read_lock(rt2x00dev
, PHY_CSR10
, ®
);
215 if (!rt2x00_get_field16(reg
, PHY_CSR10_RF_BUSY
))
217 udelay(REGISTER_BUSY_DELAY
);
220 mutex_unlock(&rt2x00dev
->usb_cache_mutex
);
221 ERROR(rt2x00dev
, "PHY_CSR10 register busy. Write failed.\n");
226 rt2x00_set_field16(®
, PHY_CSR9_RF_VALUE
, value
);
227 rt2500usb_register_write_lock(rt2x00dev
, PHY_CSR9
, reg
);
230 rt2x00_set_field16(®
, PHY_CSR10_RF_VALUE
, value
>> 16);
231 rt2x00_set_field16(®
, PHY_CSR10_RF_NUMBER_OF_BITS
, 20);
232 rt2x00_set_field16(®
, PHY_CSR10_RF_IF_SELECT
, 0);
233 rt2x00_set_field16(®
, PHY_CSR10_RF_BUSY
, 1);
235 rt2500usb_register_write_lock(rt2x00dev
, PHY_CSR10
, reg
);
236 rt2x00_rf_write(rt2x00dev
, word
, value
);
238 mutex_unlock(&rt2x00dev
->usb_cache_mutex
);
241 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
242 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u16)) )
244 static void rt2500usb_read_csr(struct rt2x00_dev
*rt2x00dev
,
245 const unsigned int word
, u32
*data
)
247 rt2500usb_register_read(rt2x00dev
, CSR_OFFSET(word
), (u16
*) data
);
250 static void rt2500usb_write_csr(struct rt2x00_dev
*rt2x00dev
,
251 const unsigned int word
, u32 data
)
253 rt2500usb_register_write(rt2x00dev
, CSR_OFFSET(word
), data
);
256 static const struct rt2x00debug rt2500usb_rt2x00debug
= {
257 .owner
= THIS_MODULE
,
259 .read
= rt2500usb_read_csr
,
260 .write
= rt2500usb_write_csr
,
261 .word_size
= sizeof(u16
),
262 .word_count
= CSR_REG_SIZE
/ sizeof(u16
),
265 .read
= rt2x00_eeprom_read
,
266 .write
= rt2x00_eeprom_write
,
267 .word_size
= sizeof(u16
),
268 .word_count
= EEPROM_SIZE
/ sizeof(u16
),
271 .read
= rt2500usb_bbp_read
,
272 .write
= rt2500usb_bbp_write
,
273 .word_size
= sizeof(u8
),
274 .word_count
= BBP_SIZE
/ sizeof(u8
),
277 .read
= rt2x00_rf_read
,
278 .write
= rt2500usb_rf_write
,
279 .word_size
= sizeof(u32
),
280 .word_count
= RF_SIZE
/ sizeof(u32
),
283 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
285 #ifdef CONFIG_RT2500USB_LEDS
286 static void rt2500usb_brightness_set(struct led_classdev
*led_cdev
,
287 enum led_brightness brightness
)
289 struct rt2x00_led
*led
=
290 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
291 unsigned int enabled
= brightness
!= LED_OFF
;
294 rt2500usb_register_read(led
->rt2x00dev
, MAC_CSR20
, ®
);
296 if (led
->type
== LED_TYPE_RADIO
|| led
->type
== LED_TYPE_ASSOC
)
297 rt2x00_set_field16(®
, MAC_CSR20_LINK
, enabled
);
298 else if (led
->type
== LED_TYPE_ACTIVITY
)
299 rt2x00_set_field16(®
, MAC_CSR20_ACTIVITY
, enabled
);
301 rt2500usb_register_write(led
->rt2x00dev
, MAC_CSR20
, reg
);
304 static int rt2500usb_blink_set(struct led_classdev
*led_cdev
,
305 unsigned long *delay_on
,
306 unsigned long *delay_off
)
308 struct rt2x00_led
*led
=
309 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
312 rt2500usb_register_read(led
->rt2x00dev
, MAC_CSR21
, ®
);
313 rt2x00_set_field16(®
, MAC_CSR21_ON_PERIOD
, *delay_on
);
314 rt2x00_set_field16(®
, MAC_CSR21_OFF_PERIOD
, *delay_off
);
315 rt2500usb_register_write(led
->rt2x00dev
, MAC_CSR21
, reg
);
320 static void rt2500usb_init_led(struct rt2x00_dev
*rt2x00dev
,
321 struct rt2x00_led
*led
,
324 led
->rt2x00dev
= rt2x00dev
;
326 led
->led_dev
.brightness_set
= rt2500usb_brightness_set
;
327 led
->led_dev
.blink_set
= rt2500usb_blink_set
;
328 led
->flags
= LED_INITIALIZED
;
330 #endif /* CONFIG_RT2500USB_LEDS */
333 * Configuration handlers.
335 static void rt2500usb_config_filter(struct rt2x00_dev
*rt2x00dev
,
336 const unsigned int filter_flags
)
341 * Start configuration steps.
342 * Note that the version error will always be dropped
343 * and broadcast frames will always be accepted since
344 * there is no filter for it at this time.
346 rt2500usb_register_read(rt2x00dev
, TXRX_CSR2
, ®
);
347 rt2x00_set_field16(®
, TXRX_CSR2_DROP_CRC
,
348 !(filter_flags
& FIF_FCSFAIL
));
349 rt2x00_set_field16(®
, TXRX_CSR2_DROP_PHYSICAL
,
350 !(filter_flags
& FIF_PLCPFAIL
));
351 rt2x00_set_field16(®
, TXRX_CSR2_DROP_CONTROL
,
352 !(filter_flags
& FIF_CONTROL
));
353 rt2x00_set_field16(®
, TXRX_CSR2_DROP_NOT_TO_ME
,
354 !(filter_flags
& FIF_PROMISC_IN_BSS
));
355 rt2x00_set_field16(®
, TXRX_CSR2_DROP_TODS
,
356 !(filter_flags
& FIF_PROMISC_IN_BSS
) &&
357 !rt2x00dev
->intf_ap_count
);
358 rt2x00_set_field16(®
, TXRX_CSR2_DROP_VERSION_ERROR
, 1);
359 rt2x00_set_field16(®
, TXRX_CSR2_DROP_MULTICAST
,
360 !(filter_flags
& FIF_ALLMULTI
));
361 rt2x00_set_field16(®
, TXRX_CSR2_DROP_BROADCAST
, 0);
362 rt2500usb_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
365 static void rt2500usb_config_intf(struct rt2x00_dev
*rt2x00dev
,
366 struct rt2x00_intf
*intf
,
367 struct rt2x00intf_conf
*conf
,
368 const unsigned int flags
)
370 unsigned int bcn_preload
;
373 if (flags
& CONFIG_UPDATE_TYPE
) {
375 * Enable beacon config
377 bcn_preload
= PREAMBLE
+ get_duration(IEEE80211_HEADER
, 20);
378 rt2500usb_register_read(rt2x00dev
, TXRX_CSR20
, ®
);
379 rt2x00_set_field16(®
, TXRX_CSR20_OFFSET
, bcn_preload
>> 6);
380 rt2x00_set_field16(®
, TXRX_CSR20_BCN_EXPECT_WINDOW
,
381 2 * (conf
->type
!= IEEE80211_IF_TYPE_STA
));
382 rt2500usb_register_write(rt2x00dev
, TXRX_CSR20
, reg
);
385 * Enable synchronisation.
387 rt2500usb_register_read(rt2x00dev
, TXRX_CSR18
, ®
);
388 rt2x00_set_field16(®
, TXRX_CSR18_OFFSET
, 0);
389 rt2500usb_register_write(rt2x00dev
, TXRX_CSR18
, reg
);
391 rt2500usb_register_read(rt2x00dev
, TXRX_CSR19
, ®
);
392 rt2x00_set_field16(®
, TXRX_CSR19_TSF_COUNT
, 1);
393 rt2x00_set_field16(®
, TXRX_CSR19_TSF_SYNC
, conf
->sync
);
394 rt2x00_set_field16(®
, TXRX_CSR19_TBCN
, 1);
395 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
398 if (flags
& CONFIG_UPDATE_MAC
)
399 rt2500usb_register_multiwrite(rt2x00dev
, MAC_CSR2
, conf
->mac
,
400 (3 * sizeof(__le16
)));
402 if (flags
& CONFIG_UPDATE_BSSID
)
403 rt2500usb_register_multiwrite(rt2x00dev
, MAC_CSR5
, conf
->bssid
,
404 (3 * sizeof(__le16
)));
407 static void rt2500usb_config_erp(struct rt2x00_dev
*rt2x00dev
,
408 struct rt2x00lib_erp
*erp
)
412 rt2500usb_register_read(rt2x00dev
, TXRX_CSR1
, ®
);
413 rt2x00_set_field16(®
, TXRX_CSR1_ACK_TIMEOUT
, erp
->ack_timeout
);
414 rt2500usb_register_write(rt2x00dev
, TXRX_CSR1
, reg
);
416 rt2500usb_register_read(rt2x00dev
, TXRX_CSR10
, ®
);
417 rt2x00_set_field16(®
, TXRX_CSR10_AUTORESPOND_PREAMBLE
,
418 !!erp
->short_preamble
);
419 rt2500usb_register_write(rt2x00dev
, TXRX_CSR10
, reg
);
422 static void rt2500usb_config_phymode(struct rt2x00_dev
*rt2x00dev
,
423 const int basic_rate_mask
)
425 rt2500usb_register_write(rt2x00dev
, TXRX_CSR11
, basic_rate_mask
);
428 static void rt2500usb_config_channel(struct rt2x00_dev
*rt2x00dev
,
429 struct rf_channel
*rf
, const int txpower
)
434 rt2x00_set_field32(&rf
->rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
437 * For RT2525E we should first set the channel to half band higher.
439 if (rt2x00_rf(&rt2x00dev
->chip
, RF2525E
)) {
440 static const u32 vals
[] = {
441 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
442 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
443 0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
444 0x00000902, 0x00000906
447 rt2500usb_rf_write(rt2x00dev
, 2, vals
[rf
->channel
- 1]);
449 rt2500usb_rf_write(rt2x00dev
, 4, rf
->rf4
);
452 rt2500usb_rf_write(rt2x00dev
, 1, rf
->rf1
);
453 rt2500usb_rf_write(rt2x00dev
, 2, rf
->rf2
);
454 rt2500usb_rf_write(rt2x00dev
, 3, rf
->rf3
);
456 rt2500usb_rf_write(rt2x00dev
, 4, rf
->rf4
);
459 static void rt2500usb_config_txpower(struct rt2x00_dev
*rt2x00dev
,
464 rt2x00_rf_read(rt2x00dev
, 3, &rf3
);
465 rt2x00_set_field32(&rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
466 rt2500usb_rf_write(rt2x00dev
, 3, rf3
);
469 static void rt2500usb_config_antenna(struct rt2x00_dev
*rt2x00dev
,
470 struct antenna_setup
*ant
)
478 * We should never come here because rt2x00lib is supposed
479 * to catch this and send us the correct antenna explicitely.
481 BUG_ON(ant
->rx
== ANTENNA_SW_DIVERSITY
||
482 ant
->tx
== ANTENNA_SW_DIVERSITY
);
484 rt2500usb_bbp_read(rt2x00dev
, 2, &r2
);
485 rt2500usb_bbp_read(rt2x00dev
, 14, &r14
);
486 rt2500usb_register_read(rt2x00dev
, PHY_CSR5
, &csr5
);
487 rt2500usb_register_read(rt2x00dev
, PHY_CSR6
, &csr6
);
490 * Configure the TX antenna.
493 case ANTENNA_HW_DIVERSITY
:
494 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 1);
495 rt2x00_set_field16(&csr5
, PHY_CSR5_CCK
, 1);
496 rt2x00_set_field16(&csr6
, PHY_CSR6_OFDM
, 1);
499 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 0);
500 rt2x00_set_field16(&csr5
, PHY_CSR5_CCK
, 0);
501 rt2x00_set_field16(&csr6
, PHY_CSR6_OFDM
, 0);
505 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 2);
506 rt2x00_set_field16(&csr5
, PHY_CSR5_CCK
, 2);
507 rt2x00_set_field16(&csr6
, PHY_CSR6_OFDM
, 2);
512 * Configure the RX antenna.
515 case ANTENNA_HW_DIVERSITY
:
516 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 1);
519 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 0);
523 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 2);
528 * RT2525E and RT5222 need to flip TX I/Q
530 if (rt2x00_rf(&rt2x00dev
->chip
, RF2525E
) ||
531 rt2x00_rf(&rt2x00dev
->chip
, RF5222
)) {
532 rt2x00_set_field8(&r2
, BBP_R2_TX_IQ_FLIP
, 1);
533 rt2x00_set_field16(&csr5
, PHY_CSR5_CCK_FLIP
, 1);
534 rt2x00_set_field16(&csr6
, PHY_CSR6_OFDM_FLIP
, 1);
537 * RT2525E does not need RX I/Q Flip.
539 if (rt2x00_rf(&rt2x00dev
->chip
, RF2525E
))
540 rt2x00_set_field8(&r14
, BBP_R14_RX_IQ_FLIP
, 0);
542 rt2x00_set_field16(&csr5
, PHY_CSR5_CCK_FLIP
, 0);
543 rt2x00_set_field16(&csr6
, PHY_CSR6_OFDM_FLIP
, 0);
546 rt2500usb_bbp_write(rt2x00dev
, 2, r2
);
547 rt2500usb_bbp_write(rt2x00dev
, 14, r14
);
548 rt2500usb_register_write(rt2x00dev
, PHY_CSR5
, csr5
);
549 rt2500usb_register_write(rt2x00dev
, PHY_CSR6
, csr6
);
552 static void rt2500usb_config_duration(struct rt2x00_dev
*rt2x00dev
,
553 struct rt2x00lib_conf
*libconf
)
557 rt2500usb_register_write(rt2x00dev
, MAC_CSR10
, libconf
->slot_time
);
558 rt2500usb_register_write(rt2x00dev
, MAC_CSR11
, libconf
->sifs
);
559 rt2500usb_register_write(rt2x00dev
, MAC_CSR12
, libconf
->eifs
);
561 rt2500usb_register_read(rt2x00dev
, TXRX_CSR18
, ®
);
562 rt2x00_set_field16(®
, TXRX_CSR18_INTERVAL
,
563 libconf
->conf
->beacon_int
* 4);
564 rt2500usb_register_write(rt2x00dev
, TXRX_CSR18
, reg
);
567 static void rt2500usb_config(struct rt2x00_dev
*rt2x00dev
,
568 struct rt2x00lib_conf
*libconf
,
569 const unsigned int flags
)
571 if (flags
& CONFIG_UPDATE_PHYMODE
)
572 rt2500usb_config_phymode(rt2x00dev
, libconf
->basic_rates
);
573 if (flags
& CONFIG_UPDATE_CHANNEL
)
574 rt2500usb_config_channel(rt2x00dev
, &libconf
->rf
,
575 libconf
->conf
->power_level
);
576 if ((flags
& CONFIG_UPDATE_TXPOWER
) && !(flags
& CONFIG_UPDATE_CHANNEL
))
577 rt2500usb_config_txpower(rt2x00dev
,
578 libconf
->conf
->power_level
);
579 if (flags
& CONFIG_UPDATE_ANTENNA
)
580 rt2500usb_config_antenna(rt2x00dev
, &libconf
->ant
);
581 if (flags
& (CONFIG_UPDATE_SLOT_TIME
| CONFIG_UPDATE_BEACON_INT
))
582 rt2500usb_config_duration(rt2x00dev
, libconf
);
588 static void rt2500usb_link_stats(struct rt2x00_dev
*rt2x00dev
,
589 struct link_qual
*qual
)
594 * Update FCS error count from register.
596 rt2500usb_register_read(rt2x00dev
, STA_CSR0
, ®
);
597 qual
->rx_failed
= rt2x00_get_field16(reg
, STA_CSR0_FCS_ERROR
);
600 * Update False CCA count from register.
602 rt2500usb_register_read(rt2x00dev
, STA_CSR3
, ®
);
603 qual
->false_cca
= rt2x00_get_field16(reg
, STA_CSR3_FALSE_CCA_ERROR
);
606 static void rt2500usb_reset_tuner(struct rt2x00_dev
*rt2x00dev
)
611 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R24
, &eeprom
);
612 value
= rt2x00_get_field16(eeprom
, EEPROM_BBPTUNE_R24_LOW
);
613 rt2500usb_bbp_write(rt2x00dev
, 24, value
);
615 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R25
, &eeprom
);
616 value
= rt2x00_get_field16(eeprom
, EEPROM_BBPTUNE_R25_LOW
);
617 rt2500usb_bbp_write(rt2x00dev
, 25, value
);
619 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R61
, &eeprom
);
620 value
= rt2x00_get_field16(eeprom
, EEPROM_BBPTUNE_R61_LOW
);
621 rt2500usb_bbp_write(rt2x00dev
, 61, value
);
623 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_VGC
, &eeprom
);
624 value
= rt2x00_get_field16(eeprom
, EEPROM_BBPTUNE_VGCUPPER
);
625 rt2500usb_bbp_write(rt2x00dev
, 17, value
);
627 rt2x00dev
->link
.vgc_level
= value
;
630 static void rt2500usb_link_tuner(struct rt2x00_dev
*rt2x00dev
)
632 int rssi
= rt2x00_get_link_rssi(&rt2x00dev
->link
);
645 * Read current r17 value, as well as the sensitivity values
646 * for the r17 register.
648 rt2500usb_bbp_read(rt2x00dev
, 17, &r17
);
649 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R17
, &r17_sens
);
651 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_VGC
, &vgc_bound
);
652 up_bound
= rt2x00_get_field16(vgc_bound
, EEPROM_BBPTUNE_VGCUPPER
);
653 low_bound
= rt2x00_get_field16(vgc_bound
, EEPROM_BBPTUNE_VGCLOWER
);
656 * If we are not associated, we should go straight to the
657 * dynamic CCA tuning.
659 if (!rt2x00dev
->intf_associated
)
660 goto dynamic_cca_tune
;
663 * Determine the BBP tuning threshold and correctly
664 * set BBP 24, 25 and 61.
666 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE
, &bbp_thresh
);
667 bbp_thresh
= rt2x00_get_field16(bbp_thresh
, EEPROM_BBPTUNE_THRESHOLD
);
669 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R24
, &r24
);
670 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R25
, &r25
);
671 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R61
, &r61
);
673 if ((rssi
+ bbp_thresh
) > 0) {
674 r24
= rt2x00_get_field16(r24
, EEPROM_BBPTUNE_R24_HIGH
);
675 r25
= rt2x00_get_field16(r25
, EEPROM_BBPTUNE_R25_HIGH
);
676 r61
= rt2x00_get_field16(r61
, EEPROM_BBPTUNE_R61_HIGH
);
678 r24
= rt2x00_get_field16(r24
, EEPROM_BBPTUNE_R24_LOW
);
679 r25
= rt2x00_get_field16(r25
, EEPROM_BBPTUNE_R25_LOW
);
680 r61
= rt2x00_get_field16(r61
, EEPROM_BBPTUNE_R61_LOW
);
683 rt2500usb_bbp_write(rt2x00dev
, 24, r24
);
684 rt2500usb_bbp_write(rt2x00dev
, 25, r25
);
685 rt2500usb_bbp_write(rt2x00dev
, 61, r61
);
688 * A too low RSSI will cause too much false CCA which will
689 * then corrupt the R17 tuning. To remidy this the tuning should
690 * be stopped (While making sure the R17 value will not exceed limits)
694 rt2500usb_bbp_write(rt2x00dev
, 17, 0x60);
699 * Special big-R17 for short distance
702 sens
= rt2x00_get_field16(r17_sens
, EEPROM_BBPTUNE_R17_LOW
);
704 rt2500usb_bbp_write(rt2x00dev
, 17, sens
);
709 * Special mid-R17 for middle distance
712 sens
= rt2x00_get_field16(r17_sens
, EEPROM_BBPTUNE_R17_HIGH
);
714 rt2500usb_bbp_write(rt2x00dev
, 17, sens
);
719 * Leave short or middle distance condition, restore r17
720 * to the dynamic tuning range.
724 up_bound
-= (-77 - rssi
);
726 if (up_bound
< low_bound
)
727 up_bound
= low_bound
;
729 if (r17
> up_bound
) {
730 rt2500usb_bbp_write(rt2x00dev
, 17, up_bound
);
731 rt2x00dev
->link
.vgc_level
= up_bound
;
738 * R17 is inside the dynamic tuning range,
739 * start tuning the link based on the false cca counter.
741 if (rt2x00dev
->link
.qual
.false_cca
> 512 && r17
< up_bound
) {
742 rt2500usb_bbp_write(rt2x00dev
, 17, ++r17
);
743 rt2x00dev
->link
.vgc_level
= r17
;
744 } else if (rt2x00dev
->link
.qual
.false_cca
< 100 && r17
> low_bound
) {
745 rt2500usb_bbp_write(rt2x00dev
, 17, --r17
);
746 rt2x00dev
->link
.vgc_level
= r17
;
751 * Initialization functions.
753 static int rt2500usb_init_registers(struct rt2x00_dev
*rt2x00dev
)
757 rt2x00usb_vendor_request_sw(rt2x00dev
, USB_DEVICE_MODE
, 0x0001,
758 USB_MODE_TEST
, REGISTER_TIMEOUT
);
759 rt2x00usb_vendor_request_sw(rt2x00dev
, USB_SINGLE_WRITE
, 0x0308,
760 0x00f0, REGISTER_TIMEOUT
);
762 rt2500usb_register_read(rt2x00dev
, TXRX_CSR2
, ®
);
763 rt2x00_set_field16(®
, TXRX_CSR2_DISABLE_RX
, 1);
764 rt2500usb_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
766 rt2500usb_register_write(rt2x00dev
, MAC_CSR13
, 0x1111);
767 rt2500usb_register_write(rt2x00dev
, MAC_CSR14
, 0x1e11);
769 rt2500usb_register_read(rt2x00dev
, MAC_CSR1
, ®
);
770 rt2x00_set_field16(®
, MAC_CSR1_SOFT_RESET
, 1);
771 rt2x00_set_field16(®
, MAC_CSR1_BBP_RESET
, 1);
772 rt2x00_set_field16(®
, MAC_CSR1_HOST_READY
, 0);
773 rt2500usb_register_write(rt2x00dev
, MAC_CSR1
, reg
);
775 rt2500usb_register_read(rt2x00dev
, MAC_CSR1
, ®
);
776 rt2x00_set_field16(®
, MAC_CSR1_SOFT_RESET
, 0);
777 rt2x00_set_field16(®
, MAC_CSR1_BBP_RESET
, 0);
778 rt2x00_set_field16(®
, MAC_CSR1_HOST_READY
, 0);
779 rt2500usb_register_write(rt2x00dev
, MAC_CSR1
, reg
);
781 rt2500usb_register_read(rt2x00dev
, TXRX_CSR5
, ®
);
782 rt2x00_set_field16(®
, TXRX_CSR5_BBP_ID0
, 13);
783 rt2x00_set_field16(®
, TXRX_CSR5_BBP_ID0_VALID
, 1);
784 rt2x00_set_field16(®
, TXRX_CSR5_BBP_ID1
, 12);
785 rt2x00_set_field16(®
, TXRX_CSR5_BBP_ID1_VALID
, 1);
786 rt2500usb_register_write(rt2x00dev
, TXRX_CSR5
, reg
);
788 rt2500usb_register_read(rt2x00dev
, TXRX_CSR6
, ®
);
789 rt2x00_set_field16(®
, TXRX_CSR6_BBP_ID0
, 10);
790 rt2x00_set_field16(®
, TXRX_CSR6_BBP_ID0_VALID
, 1);
791 rt2x00_set_field16(®
, TXRX_CSR6_BBP_ID1
, 11);
792 rt2x00_set_field16(®
, TXRX_CSR6_BBP_ID1_VALID
, 1);
793 rt2500usb_register_write(rt2x00dev
, TXRX_CSR6
, reg
);
795 rt2500usb_register_read(rt2x00dev
, TXRX_CSR7
, ®
);
796 rt2x00_set_field16(®
, TXRX_CSR7_BBP_ID0
, 7);
797 rt2x00_set_field16(®
, TXRX_CSR7_BBP_ID0_VALID
, 1);
798 rt2x00_set_field16(®
, TXRX_CSR7_BBP_ID1
, 6);
799 rt2x00_set_field16(®
, TXRX_CSR7_BBP_ID1_VALID
, 1);
800 rt2500usb_register_write(rt2x00dev
, TXRX_CSR7
, reg
);
802 rt2500usb_register_read(rt2x00dev
, TXRX_CSR8
, ®
);
803 rt2x00_set_field16(®
, TXRX_CSR8_BBP_ID0
, 5);
804 rt2x00_set_field16(®
, TXRX_CSR8_BBP_ID0_VALID
, 1);
805 rt2x00_set_field16(®
, TXRX_CSR8_BBP_ID1
, 0);
806 rt2x00_set_field16(®
, TXRX_CSR8_BBP_ID1_VALID
, 0);
807 rt2500usb_register_write(rt2x00dev
, TXRX_CSR8
, reg
);
809 rt2500usb_register_write(rt2x00dev
, TXRX_CSR21
, 0xe78f);
810 rt2500usb_register_write(rt2x00dev
, MAC_CSR9
, 0xff1d);
812 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_AWAKE
))
815 rt2500usb_register_read(rt2x00dev
, MAC_CSR1
, ®
);
816 rt2x00_set_field16(®
, MAC_CSR1_SOFT_RESET
, 0);
817 rt2x00_set_field16(®
, MAC_CSR1_BBP_RESET
, 0);
818 rt2x00_set_field16(®
, MAC_CSR1_HOST_READY
, 1);
819 rt2500usb_register_write(rt2x00dev
, MAC_CSR1
, reg
);
821 if (rt2x00_rev(&rt2x00dev
->chip
) >= RT2570_VERSION_C
) {
822 rt2500usb_register_read(rt2x00dev
, PHY_CSR2
, ®
);
823 rt2x00_set_field16(®
, PHY_CSR2_LNA
, 0);
826 rt2x00_set_field16(®
, PHY_CSR2_LNA
, 1);
827 rt2x00_set_field16(®
, PHY_CSR2_LNA_MODE
, 3);
829 rt2500usb_register_write(rt2x00dev
, PHY_CSR2
, reg
);
831 rt2500usb_register_write(rt2x00dev
, MAC_CSR11
, 0x0002);
832 rt2500usb_register_write(rt2x00dev
, MAC_CSR22
, 0x0053);
833 rt2500usb_register_write(rt2x00dev
, MAC_CSR15
, 0x01ee);
834 rt2500usb_register_write(rt2x00dev
, MAC_CSR16
, 0x0000);
836 rt2500usb_register_read(rt2x00dev
, MAC_CSR8
, ®
);
837 rt2x00_set_field16(®
, MAC_CSR8_MAX_FRAME_UNIT
,
838 rt2x00dev
->rx
->data_size
);
839 rt2500usb_register_write(rt2x00dev
, MAC_CSR8
, reg
);
841 rt2500usb_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
842 rt2x00_set_field16(®
, TXRX_CSR0_IV_OFFSET
, IEEE80211_HEADER
);
843 rt2x00_set_field16(®
, TXRX_CSR0_KEY_ID
, 0xff);
844 rt2500usb_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
846 rt2500usb_register_read(rt2x00dev
, MAC_CSR18
, ®
);
847 rt2x00_set_field16(®
, MAC_CSR18_DELAY_AFTER_BEACON
, 90);
848 rt2500usb_register_write(rt2x00dev
, MAC_CSR18
, reg
);
850 rt2500usb_register_read(rt2x00dev
, PHY_CSR4
, ®
);
851 rt2x00_set_field16(®
, PHY_CSR4_LOW_RF_LE
, 1);
852 rt2500usb_register_write(rt2x00dev
, PHY_CSR4
, reg
);
854 rt2500usb_register_read(rt2x00dev
, TXRX_CSR1
, ®
);
855 rt2x00_set_field16(®
, TXRX_CSR1_AUTO_SEQUENCE
, 1);
856 rt2500usb_register_write(rt2x00dev
, TXRX_CSR1
, reg
);
861 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev
*rt2x00dev
)
866 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
867 rt2500usb_bbp_read(rt2x00dev
, 0, &value
);
868 if ((value
!= 0xff) && (value
!= 0x00))
870 udelay(REGISTER_BUSY_DELAY
);
873 ERROR(rt2x00dev
, "BBP register access failed, aborting.\n");
877 static int rt2500usb_init_bbp(struct rt2x00_dev
*rt2x00dev
)
884 if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev
)))
887 rt2500usb_bbp_write(rt2x00dev
, 3, 0x02);
888 rt2500usb_bbp_write(rt2x00dev
, 4, 0x19);
889 rt2500usb_bbp_write(rt2x00dev
, 14, 0x1c);
890 rt2500usb_bbp_write(rt2x00dev
, 15, 0x30);
891 rt2500usb_bbp_write(rt2x00dev
, 16, 0xac);
892 rt2500usb_bbp_write(rt2x00dev
, 18, 0x18);
893 rt2500usb_bbp_write(rt2x00dev
, 19, 0xff);
894 rt2500usb_bbp_write(rt2x00dev
, 20, 0x1e);
895 rt2500usb_bbp_write(rt2x00dev
, 21, 0x08);
896 rt2500usb_bbp_write(rt2x00dev
, 22, 0x08);
897 rt2500usb_bbp_write(rt2x00dev
, 23, 0x08);
898 rt2500usb_bbp_write(rt2x00dev
, 24, 0x80);
899 rt2500usb_bbp_write(rt2x00dev
, 25, 0x50);
900 rt2500usb_bbp_write(rt2x00dev
, 26, 0x08);
901 rt2500usb_bbp_write(rt2x00dev
, 27, 0x23);
902 rt2500usb_bbp_write(rt2x00dev
, 30, 0x10);
903 rt2500usb_bbp_write(rt2x00dev
, 31, 0x2b);
904 rt2500usb_bbp_write(rt2x00dev
, 32, 0xb9);
905 rt2500usb_bbp_write(rt2x00dev
, 34, 0x12);
906 rt2500usb_bbp_write(rt2x00dev
, 35, 0x50);
907 rt2500usb_bbp_write(rt2x00dev
, 39, 0xc4);
908 rt2500usb_bbp_write(rt2x00dev
, 40, 0x02);
909 rt2500usb_bbp_write(rt2x00dev
, 41, 0x60);
910 rt2500usb_bbp_write(rt2x00dev
, 53, 0x10);
911 rt2500usb_bbp_write(rt2x00dev
, 54, 0x18);
912 rt2500usb_bbp_write(rt2x00dev
, 56, 0x08);
913 rt2500usb_bbp_write(rt2x00dev
, 57, 0x10);
914 rt2500usb_bbp_write(rt2x00dev
, 58, 0x08);
915 rt2500usb_bbp_write(rt2x00dev
, 61, 0x60);
916 rt2500usb_bbp_write(rt2x00dev
, 62, 0x10);
917 rt2500usb_bbp_write(rt2x00dev
, 75, 0xff);
919 for (i
= 0; i
< EEPROM_BBP_SIZE
; i
++) {
920 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBP_START
+ i
, &eeprom
);
922 if (eeprom
!= 0xffff && eeprom
!= 0x0000) {
923 reg_id
= rt2x00_get_field16(eeprom
, EEPROM_BBP_REG_ID
);
924 value
= rt2x00_get_field16(eeprom
, EEPROM_BBP_VALUE
);
925 rt2500usb_bbp_write(rt2x00dev
, reg_id
, value
);
933 * Device state switch handlers.
935 static void rt2500usb_toggle_rx(struct rt2x00_dev
*rt2x00dev
,
936 enum dev_state state
)
940 rt2500usb_register_read(rt2x00dev
, TXRX_CSR2
, ®
);
941 rt2x00_set_field16(®
, TXRX_CSR2_DISABLE_RX
,
942 (state
== STATE_RADIO_RX_OFF
) ||
943 (state
== STATE_RADIO_RX_OFF_LINK
));
944 rt2500usb_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
947 static int rt2500usb_enable_radio(struct rt2x00_dev
*rt2x00dev
)
950 * Initialize all registers.
952 if (unlikely(rt2500usb_init_registers(rt2x00dev
) ||
953 rt2500usb_init_bbp(rt2x00dev
)))
959 static void rt2500usb_disable_radio(struct rt2x00_dev
*rt2x00dev
)
961 rt2500usb_register_write(rt2x00dev
, MAC_CSR13
, 0x2121);
962 rt2500usb_register_write(rt2x00dev
, MAC_CSR14
, 0x2121);
965 * Disable synchronisation.
967 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, 0);
969 rt2x00usb_disable_radio(rt2x00dev
);
972 static int rt2500usb_set_state(struct rt2x00_dev
*rt2x00dev
,
973 enum dev_state state
)
982 put_to_sleep
= (state
!= STATE_AWAKE
);
985 rt2x00_set_field16(®
, MAC_CSR17_BBP_DESIRE_STATE
, state
);
986 rt2x00_set_field16(®
, MAC_CSR17_RF_DESIRE_STATE
, state
);
987 rt2x00_set_field16(®
, MAC_CSR17_PUT_TO_SLEEP
, put_to_sleep
);
988 rt2500usb_register_write(rt2x00dev
, MAC_CSR17
, reg
);
989 rt2x00_set_field16(®
, MAC_CSR17_SET_STATE
, 1);
990 rt2500usb_register_write(rt2x00dev
, MAC_CSR17
, reg
);
993 * Device is not guaranteed to be in the requested state yet.
994 * We must wait until the register indicates that the
995 * device has entered the correct state.
997 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
998 rt2500usb_register_read(rt2x00dev
, MAC_CSR17
, ®2
);
999 bbp_state
= rt2x00_get_field16(reg2
, MAC_CSR17_BBP_CURR_STATE
);
1000 rf_state
= rt2x00_get_field16(reg2
, MAC_CSR17_RF_CURR_STATE
);
1001 if (bbp_state
== state
&& rf_state
== state
)
1003 rt2500usb_register_write(rt2x00dev
, MAC_CSR17
, reg
);
1010 static int rt2500usb_set_device_state(struct rt2x00_dev
*rt2x00dev
,
1011 enum dev_state state
)
1016 case STATE_RADIO_ON
:
1017 retval
= rt2500usb_enable_radio(rt2x00dev
);
1019 case STATE_RADIO_OFF
:
1020 rt2500usb_disable_radio(rt2x00dev
);
1022 case STATE_RADIO_RX_ON
:
1023 case STATE_RADIO_RX_ON_LINK
:
1024 case STATE_RADIO_RX_OFF
:
1025 case STATE_RADIO_RX_OFF_LINK
:
1026 rt2500usb_toggle_rx(rt2x00dev
, state
);
1028 case STATE_RADIO_IRQ_ON
:
1029 case STATE_RADIO_IRQ_OFF
:
1030 /* No support, but no error either */
1032 case STATE_DEEP_SLEEP
:
1036 retval
= rt2500usb_set_state(rt2x00dev
, state
);
1043 if (unlikely(retval
))
1044 ERROR(rt2x00dev
, "Device failed to enter state %d (%d).\n",
1051 * TX descriptor initialization
1053 static void rt2500usb_write_tx_desc(struct rt2x00_dev
*rt2x00dev
,
1054 struct sk_buff
*skb
,
1055 struct txentry_desc
*txdesc
)
1057 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(skb
);
1058 __le32
*txd
= skbdesc
->desc
;
1062 * Start writing the descriptor words.
1064 rt2x00_desc_read(txd
, 1, &word
);
1065 rt2x00_set_field32(&word
, TXD_W1_IV_OFFSET
, IEEE80211_HEADER
);
1066 rt2x00_set_field32(&word
, TXD_W1_AIFS
, txdesc
->aifs
);
1067 rt2x00_set_field32(&word
, TXD_W1_CWMIN
, txdesc
->cw_min
);
1068 rt2x00_set_field32(&word
, TXD_W1_CWMAX
, txdesc
->cw_max
);
1069 rt2x00_desc_write(txd
, 1, word
);
1071 rt2x00_desc_read(txd
, 2, &word
);
1072 rt2x00_set_field32(&word
, TXD_W2_PLCP_SIGNAL
, txdesc
->signal
);
1073 rt2x00_set_field32(&word
, TXD_W2_PLCP_SERVICE
, txdesc
->service
);
1074 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_LOW
, txdesc
->length_low
);
1075 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_HIGH
, txdesc
->length_high
);
1076 rt2x00_desc_write(txd
, 2, word
);
1078 rt2x00_desc_read(txd
, 0, &word
);
1079 rt2x00_set_field32(&word
, TXD_W0_RETRY_LIMIT
, txdesc
->retry_limit
);
1080 rt2x00_set_field32(&word
, TXD_W0_MORE_FRAG
,
1081 test_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
));
1082 rt2x00_set_field32(&word
, TXD_W0_ACK
,
1083 test_bit(ENTRY_TXD_ACK
, &txdesc
->flags
));
1084 rt2x00_set_field32(&word
, TXD_W0_TIMESTAMP
,
1085 test_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
));
1086 rt2x00_set_field32(&word
, TXD_W0_OFDM
,
1087 test_bit(ENTRY_TXD_OFDM_RATE
, &txdesc
->flags
));
1088 rt2x00_set_field32(&word
, TXD_W0_NEW_SEQ
,
1089 test_bit(ENTRY_TXD_FIRST_FRAGMENT
, &txdesc
->flags
));
1090 rt2x00_set_field32(&word
, TXD_W0_IFS
, txdesc
->ifs
);
1091 rt2x00_set_field32(&word
, TXD_W0_DATABYTE_COUNT
,
1092 skb
->len
- skbdesc
->desc_len
);
1093 rt2x00_set_field32(&word
, TXD_W0_CIPHER
, CIPHER_NONE
);
1094 rt2x00_desc_write(txd
, 0, word
);
1097 static int rt2500usb_get_tx_data_len(struct rt2x00_dev
*rt2x00dev
,
1098 struct sk_buff
*skb
)
1103 * The length _must_ be a multiple of 2,
1104 * but it must _not_ be a multiple of the USB packet size.
1106 length
= roundup(skb
->len
, 2);
1107 length
+= (2 * !(length
% rt2x00dev
->usb_maxpacket
));
1113 * TX data initialization
1115 static void rt2500usb_kick_tx_queue(struct rt2x00_dev
*rt2x00dev
,
1116 const enum data_queue_qid queue
)
1120 if (queue
!= QID_BEACON
) {
1121 rt2x00usb_kick_tx_queue(rt2x00dev
, queue
);
1125 rt2500usb_register_read(rt2x00dev
, TXRX_CSR19
, ®
);
1126 if (!rt2x00_get_field16(reg
, TXRX_CSR19_BEACON_GEN
)) {
1127 rt2x00_set_field16(®
, TXRX_CSR19_TSF_COUNT
, 1);
1128 rt2x00_set_field16(®
, TXRX_CSR19_TBCN
, 1);
1129 rt2x00_set_field16(®
, TXRX_CSR19_BEACON_GEN
, 1);
1131 * Beacon generation will fail initially.
1132 * To prevent this we need to register the TXRX_CSR19
1133 * register several times.
1135 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
1136 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, 0);
1137 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
1138 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, 0);
1139 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
1144 * RX control handlers
1146 static void rt2500usb_fill_rxdone(struct queue_entry
*entry
,
1147 struct rxdone_entry_desc
*rxdesc
)
1149 struct queue_entry_priv_usb
*entry_priv
= entry
->priv_data
;
1150 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1152 (__le32
*)(entry
->skb
->data
+
1153 (entry_priv
->urb
->actual_length
-
1154 entry
->queue
->desc_size
));
1159 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1160 * frame data in rt2x00usb.
1162 memcpy(skbdesc
->desc
, rxd
, skbdesc
->desc_len
);
1163 rxd
= (__le32
*)skbdesc
->desc
;
1166 * It is now safe to read the descriptor on all architectures.
1168 rt2x00_desc_read(rxd
, 0, &word0
);
1169 rt2x00_desc_read(rxd
, 1, &word1
);
1171 if (rt2x00_get_field32(word0
, RXD_W0_CRC_ERROR
))
1172 rxdesc
->flags
|= RX_FLAG_FAILED_FCS_CRC
;
1173 if (rt2x00_get_field32(word0
, RXD_W0_PHYSICAL_ERROR
))
1174 rxdesc
->flags
|= RX_FLAG_FAILED_PLCP_CRC
;
1177 * Obtain the status about this packet.
1178 * When frame was received with an OFDM bitrate,
1179 * the signal is the PLCP value. If it was received with
1180 * a CCK bitrate the signal is the rate in 100kbit/s.
1182 rxdesc
->signal
= rt2x00_get_field32(word1
, RXD_W1_SIGNAL
);
1183 rxdesc
->rssi
= rt2x00_get_field32(word1
, RXD_W1_RSSI
) -
1184 entry
->queue
->rt2x00dev
->rssi_offset
;
1185 rxdesc
->size
= rt2x00_get_field32(word0
, RXD_W0_DATABYTE_COUNT
);
1187 if (rt2x00_get_field32(word0
, RXD_W0_OFDM
))
1188 rxdesc
->dev_flags
|= RXDONE_SIGNAL_PLCP
;
1189 if (rt2x00_get_field32(word0
, RXD_W0_MY_BSS
))
1190 rxdesc
->dev_flags
|= RXDONE_MY_BSS
;
1193 * Adjust the skb memory window to the frame boundaries.
1195 skb_trim(entry
->skb
, rxdesc
->size
);
1199 * Interrupt functions.
1201 static void rt2500usb_beacondone(struct urb
*urb
)
1203 struct queue_entry
*entry
= (struct queue_entry
*)urb
->context
;
1204 struct queue_entry_priv_usb_bcn
*bcn_priv
= entry
->priv_data
;
1206 if (!test_bit(DEVICE_ENABLED_RADIO
, &entry
->queue
->rt2x00dev
->flags
))
1210 * Check if this was the guardian beacon,
1211 * if that was the case we need to send the real beacon now.
1212 * Otherwise we should free the sk_buffer, the device
1213 * should be doing the rest of the work now.
1215 if (bcn_priv
->guardian_urb
== urb
) {
1216 usb_submit_urb(bcn_priv
->urb
, GFP_ATOMIC
);
1217 } else if (bcn_priv
->urb
== urb
) {
1218 dev_kfree_skb(entry
->skb
);
1224 * Device probe functions.
1226 static int rt2500usb_validate_eeprom(struct rt2x00_dev
*rt2x00dev
)
1232 rt2x00usb_eeprom_read(rt2x00dev
, rt2x00dev
->eeprom
, EEPROM_SIZE
);
1235 * Start validation of the data that has been read.
1237 mac
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_MAC_ADDR_0
);
1238 if (!is_valid_ether_addr(mac
)) {
1239 DECLARE_MAC_BUF(macbuf
);
1241 random_ether_addr(mac
);
1242 EEPROM(rt2x00dev
, "MAC: %s\n", print_mac(macbuf
, mac
));
1245 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &word
);
1246 if (word
== 0xffff) {
1247 rt2x00_set_field16(&word
, EEPROM_ANTENNA_NUM
, 2);
1248 rt2x00_set_field16(&word
, EEPROM_ANTENNA_TX_DEFAULT
,
1249 ANTENNA_SW_DIVERSITY
);
1250 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RX_DEFAULT
,
1251 ANTENNA_SW_DIVERSITY
);
1252 rt2x00_set_field16(&word
, EEPROM_ANTENNA_LED_MODE
,
1254 rt2x00_set_field16(&word
, EEPROM_ANTENNA_DYN_TXAGC
, 0);
1255 rt2x00_set_field16(&word
, EEPROM_ANTENNA_HARDWARE_RADIO
, 0);
1256 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RF_TYPE
, RF2522
);
1257 rt2x00_eeprom_write(rt2x00dev
, EEPROM_ANTENNA
, word
);
1258 EEPROM(rt2x00dev
, "Antenna: 0x%04x\n", word
);
1261 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &word
);
1262 if (word
== 0xffff) {
1263 rt2x00_set_field16(&word
, EEPROM_NIC_CARDBUS_ACCEL
, 0);
1264 rt2x00_set_field16(&word
, EEPROM_NIC_DYN_BBP_TUNE
, 0);
1265 rt2x00_set_field16(&word
, EEPROM_NIC_CCK_TX_POWER
, 0);
1266 rt2x00_eeprom_write(rt2x00dev
, EEPROM_NIC
, word
);
1267 EEPROM(rt2x00dev
, "NIC: 0x%04x\n", word
);
1270 rt2x00_eeprom_read(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
, &word
);
1271 if (word
== 0xffff) {
1272 rt2x00_set_field16(&word
, EEPROM_CALIBRATE_OFFSET_RSSI
,
1273 DEFAULT_RSSI_OFFSET
);
1274 rt2x00_eeprom_write(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
, word
);
1275 EEPROM(rt2x00dev
, "Calibrate offset: 0x%04x\n", word
);
1278 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE
, &word
);
1279 if (word
== 0xffff) {
1280 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_THRESHOLD
, 45);
1281 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE
, word
);
1282 EEPROM(rt2x00dev
, "BBPtune: 0x%04x\n", word
);
1286 * Switch lower vgc bound to current BBP R17 value,
1287 * lower the value a bit for better quality.
1289 rt2500usb_bbp_read(rt2x00dev
, 17, &bbp
);
1292 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_VGC
, &word
);
1293 if (word
== 0xffff) {
1294 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_VGCUPPER
, 0x40);
1295 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_VGCLOWER
, bbp
);
1296 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_VGC
, word
);
1297 EEPROM(rt2x00dev
, "BBPtune vgc: 0x%04x\n", word
);
1300 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R17
, &word
);
1301 if (word
== 0xffff) {
1302 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R17_LOW
, 0x48);
1303 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R17_HIGH
, 0x41);
1304 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_R17
, word
);
1305 EEPROM(rt2x00dev
, "BBPtune r17: 0x%04x\n", word
);
1307 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_VGCLOWER
, bbp
);
1308 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_VGC
, word
);
1311 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R24
, &word
);
1312 if (word
== 0xffff) {
1313 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R24_LOW
, 0x40);
1314 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R24_HIGH
, 0x80);
1315 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_R24
, word
);
1316 EEPROM(rt2x00dev
, "BBPtune r24: 0x%04x\n", word
);
1319 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R25
, &word
);
1320 if (word
== 0xffff) {
1321 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R25_LOW
, 0x40);
1322 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R25_HIGH
, 0x50);
1323 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_R25
, word
);
1324 EEPROM(rt2x00dev
, "BBPtune r25: 0x%04x\n", word
);
1327 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R61
, &word
);
1328 if (word
== 0xffff) {
1329 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R61_LOW
, 0x60);
1330 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R61_HIGH
, 0x6d);
1331 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_R61
, word
);
1332 EEPROM(rt2x00dev
, "BBPtune r61: 0x%04x\n", word
);
1338 static int rt2500usb_init_eeprom(struct rt2x00_dev
*rt2x00dev
)
1345 * Read EEPROM word for configuration.
1347 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &eeprom
);
1350 * Identify RF chipset.
1352 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RF_TYPE
);
1353 rt2500usb_register_read(rt2x00dev
, MAC_CSR0
, ®
);
1354 rt2x00_set_chip(rt2x00dev
, RT2570
, value
, reg
);
1356 if (!rt2x00_check_rev(&rt2x00dev
->chip
, 0)) {
1357 ERROR(rt2x00dev
, "Invalid RT chipset detected.\n");
1361 if (!rt2x00_rf(&rt2x00dev
->chip
, RF2522
) &&
1362 !rt2x00_rf(&rt2x00dev
->chip
, RF2523
) &&
1363 !rt2x00_rf(&rt2x00dev
->chip
, RF2524
) &&
1364 !rt2x00_rf(&rt2x00dev
->chip
, RF2525
) &&
1365 !rt2x00_rf(&rt2x00dev
->chip
, RF2525E
) &&
1366 !rt2x00_rf(&rt2x00dev
->chip
, RF5222
)) {
1367 ERROR(rt2x00dev
, "Invalid RF chipset detected.\n");
1372 * Identify default antenna configuration.
1374 rt2x00dev
->default_ant
.tx
=
1375 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_TX_DEFAULT
);
1376 rt2x00dev
->default_ant
.rx
=
1377 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RX_DEFAULT
);
1380 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1381 * I am not 100% sure about this, but the legacy drivers do not
1382 * indicate antenna swapping in software is required when
1383 * diversity is enabled.
1385 if (rt2x00dev
->default_ant
.tx
== ANTENNA_SW_DIVERSITY
)
1386 rt2x00dev
->default_ant
.tx
= ANTENNA_HW_DIVERSITY
;
1387 if (rt2x00dev
->default_ant
.rx
== ANTENNA_SW_DIVERSITY
)
1388 rt2x00dev
->default_ant
.rx
= ANTENNA_HW_DIVERSITY
;
1391 * Store led mode, for correct led behaviour.
1393 #ifdef CONFIG_RT2500USB_LEDS
1394 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_LED_MODE
);
1396 rt2500usb_init_led(rt2x00dev
, &rt2x00dev
->led_radio
, LED_TYPE_RADIO
);
1397 if (value
== LED_MODE_TXRX_ACTIVITY
)
1398 rt2500usb_init_led(rt2x00dev
, &rt2x00dev
->led_qual
,
1400 #endif /* CONFIG_RT2500USB_LEDS */
1403 * Check if the BBP tuning should be disabled.
1405 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &eeprom
);
1406 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_DYN_BBP_TUNE
))
1407 __set_bit(CONFIG_DISABLE_LINK_TUNING
, &rt2x00dev
->flags
);
1410 * Read the RSSI <-> dBm offset information.
1412 rt2x00_eeprom_read(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
, &eeprom
);
1413 rt2x00dev
->rssi_offset
=
1414 rt2x00_get_field16(eeprom
, EEPROM_CALIBRATE_OFFSET_RSSI
);
1420 * RF value list for RF2522
1423 static const struct rf_channel rf_vals_bg_2522
[] = {
1424 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1425 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1426 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1427 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1428 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1429 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1430 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1431 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1432 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1433 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1434 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1435 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1436 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1437 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1441 * RF value list for RF2523
1444 static const struct rf_channel rf_vals_bg_2523
[] = {
1445 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1446 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1447 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1448 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1449 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1450 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1451 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1452 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1453 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1454 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1455 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1456 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1457 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1458 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1462 * RF value list for RF2524
1465 static const struct rf_channel rf_vals_bg_2524
[] = {
1466 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1467 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1468 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1469 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1470 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1471 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1472 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1473 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1474 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1475 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1476 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1477 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1478 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1479 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1483 * RF value list for RF2525
1486 static const struct rf_channel rf_vals_bg_2525
[] = {
1487 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1488 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1489 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1490 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1491 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1492 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1493 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1494 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1495 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1496 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1497 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1498 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1499 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1500 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1504 * RF value list for RF2525e
1507 static const struct rf_channel rf_vals_bg_2525e
[] = {
1508 { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1509 { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1510 { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1511 { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1512 { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1513 { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1514 { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1515 { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1516 { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1517 { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1518 { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1519 { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1520 { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1521 { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1525 * RF value list for RF5222
1526 * Supports: 2.4 GHz & 5.2 GHz
1528 static const struct rf_channel rf_vals_5222
[] = {
1529 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1530 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1531 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1532 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1533 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1534 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1535 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1536 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1537 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1538 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1539 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1540 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1541 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1542 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1544 /* 802.11 UNI / HyperLan 2 */
1545 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1546 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1547 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1548 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1549 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1550 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1551 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1552 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1554 /* 802.11 HyperLan 2 */
1555 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1556 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1557 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1558 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1559 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1560 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1561 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1562 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1563 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1564 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1567 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1568 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1569 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1570 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1571 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1574 static void rt2500usb_probe_hw_mode(struct rt2x00_dev
*rt2x00dev
)
1576 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
1581 * Initialize all hw fields.
1583 rt2x00dev
->hw
->flags
=
1584 IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE
|
1585 IEEE80211_HW_RX_INCLUDES_FCS
|
1586 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING
|
1587 IEEE80211_HW_SIGNAL_DBM
;
1589 rt2x00dev
->hw
->extra_tx_headroom
= TXD_DESC_SIZE
;
1591 SET_IEEE80211_DEV(rt2x00dev
->hw
, rt2x00dev
->dev
);
1592 SET_IEEE80211_PERM_ADDR(rt2x00dev
->hw
,
1593 rt2x00_eeprom_addr(rt2x00dev
,
1594 EEPROM_MAC_ADDR_0
));
1597 * Convert tx_power array in eeprom.
1599 txpower
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_START
);
1600 for (i
= 0; i
< 14; i
++)
1601 txpower
[i
] = TXPOWER_FROM_DEV(txpower
[i
]);
1604 * Initialize hw_mode information.
1606 spec
->supported_bands
= SUPPORT_BAND_2GHZ
;
1607 spec
->supported_rates
= SUPPORT_RATE_CCK
| SUPPORT_RATE_OFDM
;
1608 spec
->tx_power_a
= NULL
;
1609 spec
->tx_power_bg
= txpower
;
1610 spec
->tx_power_default
= DEFAULT_TXPOWER
;
1612 if (rt2x00_rf(&rt2x00dev
->chip
, RF2522
)) {
1613 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2522
);
1614 spec
->channels
= rf_vals_bg_2522
;
1615 } else if (rt2x00_rf(&rt2x00dev
->chip
, RF2523
)) {
1616 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2523
);
1617 spec
->channels
= rf_vals_bg_2523
;
1618 } else if (rt2x00_rf(&rt2x00dev
->chip
, RF2524
)) {
1619 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2524
);
1620 spec
->channels
= rf_vals_bg_2524
;
1621 } else if (rt2x00_rf(&rt2x00dev
->chip
, RF2525
)) {
1622 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2525
);
1623 spec
->channels
= rf_vals_bg_2525
;
1624 } else if (rt2x00_rf(&rt2x00dev
->chip
, RF2525E
)) {
1625 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2525e
);
1626 spec
->channels
= rf_vals_bg_2525e
;
1627 } else if (rt2x00_rf(&rt2x00dev
->chip
, RF5222
)) {
1628 spec
->supported_bands
|= SUPPORT_BAND_5GHZ
;
1629 spec
->num_channels
= ARRAY_SIZE(rf_vals_5222
);
1630 spec
->channels
= rf_vals_5222
;
1634 static int rt2500usb_probe_hw(struct rt2x00_dev
*rt2x00dev
)
1639 * Allocate eeprom data.
1641 retval
= rt2500usb_validate_eeprom(rt2x00dev
);
1645 retval
= rt2500usb_init_eeprom(rt2x00dev
);
1650 * Initialize hw specifications.
1652 rt2500usb_probe_hw_mode(rt2x00dev
);
1655 * This device requires the atim queue
1657 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE
, &rt2x00dev
->flags
);
1658 __set_bit(DRIVER_REQUIRE_BEACON_GUARD
, &rt2x00dev
->flags
);
1659 __set_bit(DRIVER_REQUIRE_SCHEDULED
, &rt2x00dev
->flags
);
1662 * Set the rssi offset.
1664 rt2x00dev
->rssi_offset
= DEFAULT_RSSI_OFFSET
;
1670 * IEEE80211 stack callback functions.
1672 static int rt2500usb_beacon_update(struct ieee80211_hw
*hw
, struct sk_buff
*skb
)
1674 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
1675 struct usb_device
*usb_dev
= to_usb_device_intf(rt2x00dev
->dev
);
1676 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
1677 struct rt2x00_intf
*intf
= vif_to_intf(tx_info
->control
.vif
);
1678 struct queue_entry_priv_usb_bcn
*bcn_priv
;
1679 struct skb_frame_desc
*skbdesc
;
1680 struct txentry_desc txdesc
;
1681 int pipe
= usb_sndbulkpipe(usb_dev
, 1);
1685 if (unlikely(!intf
->beacon
))
1688 bcn_priv
= intf
->beacon
->priv_data
;
1691 * Copy all TX descriptor information into txdesc,
1692 * after that we are free to use the skb->cb array
1693 * for our information.
1695 intf
->beacon
->skb
= skb
;
1696 rt2x00queue_create_tx_descriptor(intf
->beacon
, &txdesc
);
1699 * Add the descriptor in front of the skb.
1701 skb_push(skb
, intf
->beacon
->queue
->desc_size
);
1702 memset(skb
->data
, 0, intf
->beacon
->queue
->desc_size
);
1705 * Fill in skb descriptor
1707 skbdesc
= get_skb_frame_desc(skb
);
1708 memset(skbdesc
, 0, sizeof(*skbdesc
));
1709 skbdesc
->desc
= skb
->data
;
1710 skbdesc
->desc_len
= intf
->beacon
->queue
->desc_size
;
1711 skbdesc
->entry
= intf
->beacon
;
1714 * Disable beaconing while we are reloading the beacon data,
1715 * otherwise we might be sending out invalid data.
1717 rt2500usb_register_read(rt2x00dev
, TXRX_CSR19
, ®
);
1718 rt2x00_set_field16(®
, TXRX_CSR19_TSF_COUNT
, 0);
1719 rt2x00_set_field16(®
, TXRX_CSR19_TBCN
, 0);
1720 rt2x00_set_field16(®
, TXRX_CSR19_BEACON_GEN
, 0);
1721 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
1723 rt2x00queue_write_tx_descriptor(intf
->beacon
, &txdesc
);
1726 * USB devices cannot blindly pass the skb->len as the
1727 * length of the data to usb_fill_bulk_urb. Pass the skb
1728 * to the driver to determine what the length should be.
1730 length
= rt2500usb_get_tx_data_len(rt2x00dev
, skb
);
1732 usb_fill_bulk_urb(bcn_priv
->urb
, usb_dev
, pipe
,
1733 skb
->data
, length
, rt2500usb_beacondone
,
1737 * Second we need to create the guardian byte.
1738 * We only need a single byte, so lets recycle
1739 * the 'flags' field we are not using for beacons.
1741 bcn_priv
->guardian_data
= 0;
1742 usb_fill_bulk_urb(bcn_priv
->guardian_urb
, usb_dev
, pipe
,
1743 &bcn_priv
->guardian_data
, 1, rt2500usb_beacondone
,
1747 * Send out the guardian byte.
1749 usb_submit_urb(bcn_priv
->guardian_urb
, GFP_ATOMIC
);
1752 * Enable beacon generation.
1754 rt2500usb_kick_tx_queue(rt2x00dev
, QID_BEACON
);
1759 static const struct ieee80211_ops rt2500usb_mac80211_ops
= {
1761 .start
= rt2x00mac_start
,
1762 .stop
= rt2x00mac_stop
,
1763 .add_interface
= rt2x00mac_add_interface
,
1764 .remove_interface
= rt2x00mac_remove_interface
,
1765 .config
= rt2x00mac_config
,
1766 .config_interface
= rt2x00mac_config_interface
,
1767 .configure_filter
= rt2x00mac_configure_filter
,
1768 .get_stats
= rt2x00mac_get_stats
,
1769 .bss_info_changed
= rt2x00mac_bss_info_changed
,
1770 .conf_tx
= rt2x00mac_conf_tx
,
1771 .get_tx_stats
= rt2x00mac_get_tx_stats
,
1772 .beacon_update
= rt2500usb_beacon_update
,
1775 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops
= {
1776 .probe_hw
= rt2500usb_probe_hw
,
1777 .initialize
= rt2x00usb_initialize
,
1778 .uninitialize
= rt2x00usb_uninitialize
,
1779 .init_rxentry
= rt2x00usb_init_rxentry
,
1780 .init_txentry
= rt2x00usb_init_txentry
,
1781 .set_device_state
= rt2500usb_set_device_state
,
1782 .link_stats
= rt2500usb_link_stats
,
1783 .reset_tuner
= rt2500usb_reset_tuner
,
1784 .link_tuner
= rt2500usb_link_tuner
,
1785 .write_tx_desc
= rt2500usb_write_tx_desc
,
1786 .write_tx_data
= rt2x00usb_write_tx_data
,
1787 .get_tx_data_len
= rt2500usb_get_tx_data_len
,
1788 .kick_tx_queue
= rt2500usb_kick_tx_queue
,
1789 .fill_rxdone
= rt2500usb_fill_rxdone
,
1790 .config_filter
= rt2500usb_config_filter
,
1791 .config_intf
= rt2500usb_config_intf
,
1792 .config_erp
= rt2500usb_config_erp
,
1793 .config
= rt2500usb_config
,
1796 static const struct data_queue_desc rt2500usb_queue_rx
= {
1797 .entry_num
= RX_ENTRIES
,
1798 .data_size
= DATA_FRAME_SIZE
,
1799 .desc_size
= RXD_DESC_SIZE
,
1800 .priv_size
= sizeof(struct queue_entry_priv_usb
),
1803 static const struct data_queue_desc rt2500usb_queue_tx
= {
1804 .entry_num
= TX_ENTRIES
,
1805 .data_size
= DATA_FRAME_SIZE
,
1806 .desc_size
= TXD_DESC_SIZE
,
1807 .priv_size
= sizeof(struct queue_entry_priv_usb
),
1810 static const struct data_queue_desc rt2500usb_queue_bcn
= {
1811 .entry_num
= BEACON_ENTRIES
,
1812 .data_size
= MGMT_FRAME_SIZE
,
1813 .desc_size
= TXD_DESC_SIZE
,
1814 .priv_size
= sizeof(struct queue_entry_priv_usb_bcn
),
1817 static const struct data_queue_desc rt2500usb_queue_atim
= {
1818 .entry_num
= ATIM_ENTRIES
,
1819 .data_size
= DATA_FRAME_SIZE
,
1820 .desc_size
= TXD_DESC_SIZE
,
1821 .priv_size
= sizeof(struct queue_entry_priv_usb
),
1824 static const struct rt2x00_ops rt2500usb_ops
= {
1825 .name
= KBUILD_MODNAME
,
1828 .eeprom_size
= EEPROM_SIZE
,
1830 .tx_queues
= NUM_TX_QUEUES
,
1831 .rx
= &rt2500usb_queue_rx
,
1832 .tx
= &rt2500usb_queue_tx
,
1833 .bcn
= &rt2500usb_queue_bcn
,
1834 .atim
= &rt2500usb_queue_atim
,
1835 .lib
= &rt2500usb_rt2x00_ops
,
1836 .hw
= &rt2500usb_mac80211_ops
,
1837 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1838 .debugfs
= &rt2500usb_rt2x00debug
,
1839 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1843 * rt2500usb module information.
1845 static struct usb_device_id rt2500usb_device_table
[] = {
1847 { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops
) },
1848 { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops
) },
1850 { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops
) },
1851 { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops
) },
1852 { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops
) },
1854 { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops
) },
1855 { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops
) },
1856 { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops
) },
1858 { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops
) },
1860 { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops
) },
1862 { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops
) },
1863 { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops
) },
1865 { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops
) },
1867 { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops
) },
1868 { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops
) },
1869 { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops
) },
1870 { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops
) },
1871 { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops
) },
1873 { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops
) },
1874 { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops
) },
1875 { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops
) },
1877 { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops
) },
1878 { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops
) },
1879 { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops
) },
1880 { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops
) },
1882 { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops
) },
1884 { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops
) },
1886 { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops
) },
1888 { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops
) },
1890 { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops
) },
1894 MODULE_AUTHOR(DRV_PROJECT
);
1895 MODULE_VERSION(DRV_VERSION
);
1896 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1897 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1898 MODULE_DEVICE_TABLE(usb
, rt2500usb_device_table
);
1899 MODULE_LICENSE("GPL");
1901 static struct usb_driver rt2500usb_driver
= {
1902 .name
= KBUILD_MODNAME
,
1903 .id_table
= rt2500usb_device_table
,
1904 .probe
= rt2x00usb_probe
,
1905 .disconnect
= rt2x00usb_disconnect
,
1906 .suspend
= rt2x00usb_suspend
,
1907 .resume
= rt2x00usb_resume
,
1910 static int __init
rt2500usb_init(void)
1912 return usb_register(&rt2500usb_driver
);
1915 static void __exit
rt2500usb_exit(void)
1917 usb_deregister(&rt2500usb_driver
);
1920 module_init(rt2500usb_init
);
1921 module_exit(rt2500usb_exit
);