rt2x00: Fix sparse warning on nested container_of()
[linux-2.6/sactl.git] / drivers / net / wireless / rt2x00 / rt2500usb.c
blobd0958008c0133d264084e76dbb53abdb27d8222a
1 /*
2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt2500usb
23 Abstract: rt2500usb device specific routines.
24 Supported chipsets: RT2570.
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/usb.h>
34 #include "rt2x00.h"
35 #include "rt2x00usb.h"
36 #include "rt2500usb.h"
39 * Register access.
40 * All access to the CSR registers will go through the methods
41 * rt2500usb_register_read and rt2500usb_register_write.
42 * BBP and RF register require indirect register access,
43 * and use the CSR registers BBPCSR and RFCSR to achieve this.
44 * These indirect registers work with busy bits,
45 * and we will try maximal REGISTER_BUSY_COUNT times to access
46 * the register while taking a REGISTER_BUSY_DELAY us delay
47 * between each attampt. When the busy bit is still set at that time,
48 * the access attempt is considered to have failed,
49 * and we will print an error.
50 * If the usb_cache_mutex is already held then the _lock variants must
51 * be used instead.
53 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
54 const unsigned int offset,
55 u16 *value)
57 __le16 reg;
58 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
59 USB_VENDOR_REQUEST_IN, offset,
60 &reg, sizeof(u16), REGISTER_TIMEOUT);
61 *value = le16_to_cpu(reg);
64 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
65 const unsigned int offset,
66 u16 *value)
68 __le16 reg;
69 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
70 USB_VENDOR_REQUEST_IN, offset,
71 &reg, sizeof(u16), REGISTER_TIMEOUT);
72 *value = le16_to_cpu(reg);
75 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
76 const unsigned int offset,
77 void *value, const u16 length)
79 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
80 USB_VENDOR_REQUEST_IN, offset,
81 value, length,
82 REGISTER_TIMEOUT16(length));
85 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
86 const unsigned int offset,
87 u16 value)
89 __le16 reg = cpu_to_le16(value);
90 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
91 USB_VENDOR_REQUEST_OUT, offset,
92 &reg, sizeof(u16), REGISTER_TIMEOUT);
95 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
96 const unsigned int offset,
97 u16 value)
99 __le16 reg = cpu_to_le16(value);
100 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
101 USB_VENDOR_REQUEST_OUT, offset,
102 &reg, sizeof(u16), REGISTER_TIMEOUT);
105 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
106 const unsigned int offset,
107 void *value, const u16 length)
109 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
110 USB_VENDOR_REQUEST_OUT, offset,
111 value, length,
112 REGISTER_TIMEOUT16(length));
115 static u16 rt2500usb_bbp_check(struct rt2x00_dev *rt2x00dev)
117 u16 reg;
118 unsigned int i;
120 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
121 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR8, &reg);
122 if (!rt2x00_get_field16(reg, PHY_CSR8_BUSY))
123 break;
124 udelay(REGISTER_BUSY_DELAY);
127 return reg;
130 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
131 const unsigned int word, const u8 value)
133 u16 reg;
135 mutex_lock(&rt2x00dev->usb_cache_mutex);
138 * Wait until the BBP becomes ready.
140 reg = rt2500usb_bbp_check(rt2x00dev);
141 if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
142 ERROR(rt2x00dev, "PHY_CSR8 register busy. Write failed.\n");
143 mutex_unlock(&rt2x00dev->usb_cache_mutex);
144 return;
148 * Write the data into the BBP.
150 reg = 0;
151 rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
152 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
153 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
155 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
157 mutex_unlock(&rt2x00dev->usb_cache_mutex);
160 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
161 const unsigned int word, u8 *value)
163 u16 reg;
165 mutex_lock(&rt2x00dev->usb_cache_mutex);
168 * Wait until the BBP becomes ready.
170 reg = rt2500usb_bbp_check(rt2x00dev);
171 if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
172 ERROR(rt2x00dev, "PHY_CSR8 register busy. Read failed.\n");
173 return;
177 * Write the request into the BBP.
179 reg = 0;
180 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
181 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
183 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
186 * Wait until the BBP becomes ready.
188 reg = rt2500usb_bbp_check(rt2x00dev);
189 if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
190 ERROR(rt2x00dev, "PHY_CSR8 register busy. Read failed.\n");
191 *value = 0xff;
192 mutex_unlock(&rt2x00dev->usb_cache_mutex);
193 return;
196 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
197 *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
199 mutex_unlock(&rt2x00dev->usb_cache_mutex);
202 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
203 const unsigned int word, const u32 value)
205 u16 reg;
206 unsigned int i;
208 if (!word)
209 return;
211 mutex_lock(&rt2x00dev->usb_cache_mutex);
213 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
214 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR10, &reg);
215 if (!rt2x00_get_field16(reg, PHY_CSR10_RF_BUSY))
216 goto rf_write;
217 udelay(REGISTER_BUSY_DELAY);
220 mutex_unlock(&rt2x00dev->usb_cache_mutex);
221 ERROR(rt2x00dev, "PHY_CSR10 register busy. Write failed.\n");
222 return;
224 rf_write:
225 reg = 0;
226 rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
227 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
229 reg = 0;
230 rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
231 rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
232 rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
233 rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
235 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
236 rt2x00_rf_write(rt2x00dev, word, value);
238 mutex_unlock(&rt2x00dev->usb_cache_mutex);
241 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
242 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u16)) )
244 static void rt2500usb_read_csr(struct rt2x00_dev *rt2x00dev,
245 const unsigned int word, u32 *data)
247 rt2500usb_register_read(rt2x00dev, CSR_OFFSET(word), (u16 *) data);
250 static void rt2500usb_write_csr(struct rt2x00_dev *rt2x00dev,
251 const unsigned int word, u32 data)
253 rt2500usb_register_write(rt2x00dev, CSR_OFFSET(word), data);
256 static const struct rt2x00debug rt2500usb_rt2x00debug = {
257 .owner = THIS_MODULE,
258 .csr = {
259 .read = rt2500usb_read_csr,
260 .write = rt2500usb_write_csr,
261 .word_size = sizeof(u16),
262 .word_count = CSR_REG_SIZE / sizeof(u16),
264 .eeprom = {
265 .read = rt2x00_eeprom_read,
266 .write = rt2x00_eeprom_write,
267 .word_size = sizeof(u16),
268 .word_count = EEPROM_SIZE / sizeof(u16),
270 .bbp = {
271 .read = rt2500usb_bbp_read,
272 .write = rt2500usb_bbp_write,
273 .word_size = sizeof(u8),
274 .word_count = BBP_SIZE / sizeof(u8),
276 .rf = {
277 .read = rt2x00_rf_read,
278 .write = rt2500usb_rf_write,
279 .word_size = sizeof(u32),
280 .word_count = RF_SIZE / sizeof(u32),
283 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
285 #ifdef CONFIG_RT2500USB_LEDS
286 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
287 enum led_brightness brightness)
289 struct rt2x00_led *led =
290 container_of(led_cdev, struct rt2x00_led, led_dev);
291 unsigned int enabled = brightness != LED_OFF;
292 u16 reg;
294 rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
296 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
297 rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
298 else if (led->type == LED_TYPE_ACTIVITY)
299 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
301 rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
304 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
305 unsigned long *delay_on,
306 unsigned long *delay_off)
308 struct rt2x00_led *led =
309 container_of(led_cdev, struct rt2x00_led, led_dev);
310 u16 reg;
312 rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
313 rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
314 rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
315 rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
317 return 0;
320 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
321 struct rt2x00_led *led,
322 enum led_type type)
324 led->rt2x00dev = rt2x00dev;
325 led->type = type;
326 led->led_dev.brightness_set = rt2500usb_brightness_set;
327 led->led_dev.blink_set = rt2500usb_blink_set;
328 led->flags = LED_INITIALIZED;
330 #endif /* CONFIG_RT2500USB_LEDS */
333 * Configuration handlers.
335 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
336 const unsigned int filter_flags)
338 u16 reg;
341 * Start configuration steps.
342 * Note that the version error will always be dropped
343 * and broadcast frames will always be accepted since
344 * there is no filter for it at this time.
346 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
347 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
348 !(filter_flags & FIF_FCSFAIL));
349 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
350 !(filter_flags & FIF_PLCPFAIL));
351 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
352 !(filter_flags & FIF_CONTROL));
353 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
354 !(filter_flags & FIF_PROMISC_IN_BSS));
355 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
356 !(filter_flags & FIF_PROMISC_IN_BSS) &&
357 !rt2x00dev->intf_ap_count);
358 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
359 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
360 !(filter_flags & FIF_ALLMULTI));
361 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
362 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
365 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
366 struct rt2x00_intf *intf,
367 struct rt2x00intf_conf *conf,
368 const unsigned int flags)
370 unsigned int bcn_preload;
371 u16 reg;
373 if (flags & CONFIG_UPDATE_TYPE) {
375 * Enable beacon config
377 bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
378 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
379 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
380 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
381 2 * (conf->type != IEEE80211_IF_TYPE_STA));
382 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
385 * Enable synchronisation.
387 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
388 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
389 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
391 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
392 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
393 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
394 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
395 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
398 if (flags & CONFIG_UPDATE_MAC)
399 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
400 (3 * sizeof(__le16)));
402 if (flags & CONFIG_UPDATE_BSSID)
403 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
404 (3 * sizeof(__le16)));
407 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
408 struct rt2x00lib_erp *erp)
410 u16 reg;
412 rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
413 rt2x00_set_field16(&reg, TXRX_CSR1_ACK_TIMEOUT, erp->ack_timeout);
414 rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
416 rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
417 rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
418 !!erp->short_preamble);
419 rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
422 static void rt2500usb_config_phymode(struct rt2x00_dev *rt2x00dev,
423 const int basic_rate_mask)
425 rt2500usb_register_write(rt2x00dev, TXRX_CSR11, basic_rate_mask);
428 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
429 struct rf_channel *rf, const int txpower)
432 * Set TXpower.
434 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
437 * For RT2525E we should first set the channel to half band higher.
439 if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
440 static const u32 vals[] = {
441 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
442 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
443 0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
444 0x00000902, 0x00000906
447 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
448 if (rf->rf4)
449 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
452 rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
453 rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
454 rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
455 if (rf->rf4)
456 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
459 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
460 const int txpower)
462 u32 rf3;
464 rt2x00_rf_read(rt2x00dev, 3, &rf3);
465 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
466 rt2500usb_rf_write(rt2x00dev, 3, rf3);
469 static void rt2500usb_config_antenna(struct rt2x00_dev *rt2x00dev,
470 struct antenna_setup *ant)
472 u8 r2;
473 u8 r14;
474 u16 csr5;
475 u16 csr6;
478 * We should never come here because rt2x00lib is supposed
479 * to catch this and send us the correct antenna explicitely.
481 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
482 ant->tx == ANTENNA_SW_DIVERSITY);
484 rt2500usb_bbp_read(rt2x00dev, 2, &r2);
485 rt2500usb_bbp_read(rt2x00dev, 14, &r14);
486 rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
487 rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
490 * Configure the TX antenna.
492 switch (ant->tx) {
493 case ANTENNA_HW_DIVERSITY:
494 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
495 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
496 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
497 break;
498 case ANTENNA_A:
499 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
500 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
501 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
502 break;
503 case ANTENNA_B:
504 default:
505 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
506 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
507 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
508 break;
512 * Configure the RX antenna.
514 switch (ant->rx) {
515 case ANTENNA_HW_DIVERSITY:
516 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
517 break;
518 case ANTENNA_A:
519 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
520 break;
521 case ANTENNA_B:
522 default:
523 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
524 break;
528 * RT2525E and RT5222 need to flip TX I/Q
530 if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
531 rt2x00_rf(&rt2x00dev->chip, RF5222)) {
532 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
533 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
534 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
537 * RT2525E does not need RX I/Q Flip.
539 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
540 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
541 } else {
542 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
543 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
546 rt2500usb_bbp_write(rt2x00dev, 2, r2);
547 rt2500usb_bbp_write(rt2x00dev, 14, r14);
548 rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
549 rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
552 static void rt2500usb_config_duration(struct rt2x00_dev *rt2x00dev,
553 struct rt2x00lib_conf *libconf)
555 u16 reg;
557 rt2500usb_register_write(rt2x00dev, MAC_CSR10, libconf->slot_time);
558 rt2500usb_register_write(rt2x00dev, MAC_CSR11, libconf->sifs);
559 rt2500usb_register_write(rt2x00dev, MAC_CSR12, libconf->eifs);
561 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
562 rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
563 libconf->conf->beacon_int * 4);
564 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
567 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
568 struct rt2x00lib_conf *libconf,
569 const unsigned int flags)
571 if (flags & CONFIG_UPDATE_PHYMODE)
572 rt2500usb_config_phymode(rt2x00dev, libconf->basic_rates);
573 if (flags & CONFIG_UPDATE_CHANNEL)
574 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
575 libconf->conf->power_level);
576 if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
577 rt2500usb_config_txpower(rt2x00dev,
578 libconf->conf->power_level);
579 if (flags & CONFIG_UPDATE_ANTENNA)
580 rt2500usb_config_antenna(rt2x00dev, &libconf->ant);
581 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
582 rt2500usb_config_duration(rt2x00dev, libconf);
586 * Link tuning
588 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
589 struct link_qual *qual)
591 u16 reg;
594 * Update FCS error count from register.
596 rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
597 qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
600 * Update False CCA count from register.
602 rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
603 qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
606 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev)
608 u16 eeprom;
609 u16 value;
611 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
612 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
613 rt2500usb_bbp_write(rt2x00dev, 24, value);
615 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
616 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
617 rt2500usb_bbp_write(rt2x00dev, 25, value);
619 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
620 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
621 rt2500usb_bbp_write(rt2x00dev, 61, value);
623 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
624 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
625 rt2500usb_bbp_write(rt2x00dev, 17, value);
627 rt2x00dev->link.vgc_level = value;
630 static void rt2500usb_link_tuner(struct rt2x00_dev *rt2x00dev)
632 int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
633 u16 bbp_thresh;
634 u16 vgc_bound;
635 u16 sens;
636 u16 r24;
637 u16 r25;
638 u16 r61;
639 u16 r17_sens;
640 u8 r17;
641 u8 up_bound;
642 u8 low_bound;
645 * Read current r17 value, as well as the sensitivity values
646 * for the r17 register.
648 rt2500usb_bbp_read(rt2x00dev, 17, &r17);
649 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &r17_sens);
651 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &vgc_bound);
652 up_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCUPPER);
653 low_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCLOWER);
656 * If we are not associated, we should go straight to the
657 * dynamic CCA tuning.
659 if (!rt2x00dev->intf_associated)
660 goto dynamic_cca_tune;
663 * Determine the BBP tuning threshold and correctly
664 * set BBP 24, 25 and 61.
666 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &bbp_thresh);
667 bbp_thresh = rt2x00_get_field16(bbp_thresh, EEPROM_BBPTUNE_THRESHOLD);
669 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &r24);
670 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &r25);
671 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &r61);
673 if ((rssi + bbp_thresh) > 0) {
674 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_HIGH);
675 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_HIGH);
676 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_HIGH);
677 } else {
678 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_LOW);
679 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_LOW);
680 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_LOW);
683 rt2500usb_bbp_write(rt2x00dev, 24, r24);
684 rt2500usb_bbp_write(rt2x00dev, 25, r25);
685 rt2500usb_bbp_write(rt2x00dev, 61, r61);
688 * A too low RSSI will cause too much false CCA which will
689 * then corrupt the R17 tuning. To remidy this the tuning should
690 * be stopped (While making sure the R17 value will not exceed limits)
692 if (rssi >= -40) {
693 if (r17 != 0x60)
694 rt2500usb_bbp_write(rt2x00dev, 17, 0x60);
695 return;
699 * Special big-R17 for short distance
701 if (rssi >= -58) {
702 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_LOW);
703 if (r17 != sens)
704 rt2500usb_bbp_write(rt2x00dev, 17, sens);
705 return;
709 * Special mid-R17 for middle distance
711 if (rssi >= -74) {
712 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_HIGH);
713 if (r17 != sens)
714 rt2500usb_bbp_write(rt2x00dev, 17, sens);
715 return;
719 * Leave short or middle distance condition, restore r17
720 * to the dynamic tuning range.
722 low_bound = 0x32;
723 if (rssi < -77)
724 up_bound -= (-77 - rssi);
726 if (up_bound < low_bound)
727 up_bound = low_bound;
729 if (r17 > up_bound) {
730 rt2500usb_bbp_write(rt2x00dev, 17, up_bound);
731 rt2x00dev->link.vgc_level = up_bound;
732 return;
735 dynamic_cca_tune:
738 * R17 is inside the dynamic tuning range,
739 * start tuning the link based on the false cca counter.
741 if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
742 rt2500usb_bbp_write(rt2x00dev, 17, ++r17);
743 rt2x00dev->link.vgc_level = r17;
744 } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
745 rt2500usb_bbp_write(rt2x00dev, 17, --r17);
746 rt2x00dev->link.vgc_level = r17;
751 * Initialization functions.
753 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
755 u16 reg;
757 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
758 USB_MODE_TEST, REGISTER_TIMEOUT);
759 rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
760 0x00f0, REGISTER_TIMEOUT);
762 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
763 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
764 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
766 rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
767 rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
769 rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
770 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
771 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
772 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
773 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
775 rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
776 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
777 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
778 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
779 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
781 rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
782 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
783 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
784 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
785 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
786 rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
788 rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
789 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
790 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
791 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
792 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
793 rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
795 rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
796 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
797 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
798 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
799 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
800 rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
802 rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
803 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
804 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
805 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
806 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
807 rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
809 rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
810 rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
812 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
813 return -EBUSY;
815 rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
816 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
817 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
818 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
819 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
821 if (rt2x00_rev(&rt2x00dev->chip) >= RT2570_VERSION_C) {
822 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
823 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
824 } else {
825 reg = 0;
826 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
827 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
829 rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
831 rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
832 rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
833 rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
834 rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
836 rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
837 rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
838 rt2x00dev->rx->data_size);
839 rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
841 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
842 rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
843 rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0xff);
844 rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
846 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
847 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
848 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
850 rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
851 rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
852 rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
854 rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
855 rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
856 rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
858 return 0;
861 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
863 unsigned int i;
864 u8 value;
866 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
867 rt2500usb_bbp_read(rt2x00dev, 0, &value);
868 if ((value != 0xff) && (value != 0x00))
869 return 0;
870 udelay(REGISTER_BUSY_DELAY);
873 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
874 return -EACCES;
877 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
879 unsigned int i;
880 u16 eeprom;
881 u8 value;
882 u8 reg_id;
884 if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
885 return -EACCES;
887 rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
888 rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
889 rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
890 rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
891 rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
892 rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
893 rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
894 rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
895 rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
896 rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
897 rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
898 rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
899 rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
900 rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
901 rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
902 rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
903 rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
904 rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
905 rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
906 rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
907 rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
908 rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
909 rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
910 rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
911 rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
912 rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
913 rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
914 rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
915 rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
916 rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
917 rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
919 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
920 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
922 if (eeprom != 0xffff && eeprom != 0x0000) {
923 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
924 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
925 rt2500usb_bbp_write(rt2x00dev, reg_id, value);
929 return 0;
933 * Device state switch handlers.
935 static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
936 enum dev_state state)
938 u16 reg;
940 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
941 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
942 (state == STATE_RADIO_RX_OFF) ||
943 (state == STATE_RADIO_RX_OFF_LINK));
944 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
947 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
950 * Initialize all registers.
952 if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
953 rt2500usb_init_bbp(rt2x00dev)))
954 return -EIO;
956 return 0;
959 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
961 rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
962 rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
965 * Disable synchronisation.
967 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
969 rt2x00usb_disable_radio(rt2x00dev);
972 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
973 enum dev_state state)
975 u16 reg;
976 u16 reg2;
977 unsigned int i;
978 char put_to_sleep;
979 char bbp_state;
980 char rf_state;
982 put_to_sleep = (state != STATE_AWAKE);
984 reg = 0;
985 rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
986 rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
987 rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
988 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
989 rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
990 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
993 * Device is not guaranteed to be in the requested state yet.
994 * We must wait until the register indicates that the
995 * device has entered the correct state.
997 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
998 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
999 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1000 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1001 if (bbp_state == state && rf_state == state)
1002 return 0;
1003 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1004 msleep(30);
1007 return -EBUSY;
1010 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1011 enum dev_state state)
1013 int retval = 0;
1015 switch (state) {
1016 case STATE_RADIO_ON:
1017 retval = rt2500usb_enable_radio(rt2x00dev);
1018 break;
1019 case STATE_RADIO_OFF:
1020 rt2500usb_disable_radio(rt2x00dev);
1021 break;
1022 case STATE_RADIO_RX_ON:
1023 case STATE_RADIO_RX_ON_LINK:
1024 case STATE_RADIO_RX_OFF:
1025 case STATE_RADIO_RX_OFF_LINK:
1026 rt2500usb_toggle_rx(rt2x00dev, state);
1027 break;
1028 case STATE_RADIO_IRQ_ON:
1029 case STATE_RADIO_IRQ_OFF:
1030 /* No support, but no error either */
1031 break;
1032 case STATE_DEEP_SLEEP:
1033 case STATE_SLEEP:
1034 case STATE_STANDBY:
1035 case STATE_AWAKE:
1036 retval = rt2500usb_set_state(rt2x00dev, state);
1037 break;
1038 default:
1039 retval = -ENOTSUPP;
1040 break;
1043 if (unlikely(retval))
1044 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1045 state, retval);
1047 return retval;
1051 * TX descriptor initialization
1053 static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1054 struct sk_buff *skb,
1055 struct txentry_desc *txdesc)
1057 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1058 __le32 *txd = skbdesc->desc;
1059 u32 word;
1062 * Start writing the descriptor words.
1064 rt2x00_desc_read(txd, 1, &word);
1065 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
1066 rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
1067 rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1068 rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1069 rt2x00_desc_write(txd, 1, word);
1071 rt2x00_desc_read(txd, 2, &word);
1072 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1073 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1074 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1075 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1076 rt2x00_desc_write(txd, 2, word);
1078 rt2x00_desc_read(txd, 0, &word);
1079 rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1080 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1081 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1082 rt2x00_set_field32(&word, TXD_W0_ACK,
1083 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1084 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1085 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1086 rt2x00_set_field32(&word, TXD_W0_OFDM,
1087 test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1088 rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1089 test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1090 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1091 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT,
1092 skb->len - skbdesc->desc_len);
1093 rt2x00_set_field32(&word, TXD_W0_CIPHER, CIPHER_NONE);
1094 rt2x00_desc_write(txd, 0, word);
1097 static int rt2500usb_get_tx_data_len(struct rt2x00_dev *rt2x00dev,
1098 struct sk_buff *skb)
1100 int length;
1103 * The length _must_ be a multiple of 2,
1104 * but it must _not_ be a multiple of the USB packet size.
1106 length = roundup(skb->len, 2);
1107 length += (2 * !(length % rt2x00dev->usb_maxpacket));
1109 return length;
1113 * TX data initialization
1115 static void rt2500usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1116 const enum data_queue_qid queue)
1118 u16 reg;
1120 if (queue != QID_BEACON) {
1121 rt2x00usb_kick_tx_queue(rt2x00dev, queue);
1122 return;
1125 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1126 if (!rt2x00_get_field16(reg, TXRX_CSR19_BEACON_GEN)) {
1127 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1128 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1129 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1131 * Beacon generation will fail initially.
1132 * To prevent this we need to register the TXRX_CSR19
1133 * register several times.
1135 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1136 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1137 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1138 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1139 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1144 * RX control handlers
1146 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1147 struct rxdone_entry_desc *rxdesc)
1149 struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1150 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1151 __le32 *rxd =
1152 (__le32 *)(entry->skb->data +
1153 (entry_priv->urb->actual_length -
1154 entry->queue->desc_size));
1155 u32 word0;
1156 u32 word1;
1159 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1160 * frame data in rt2x00usb.
1162 memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1163 rxd = (__le32 *)skbdesc->desc;
1166 * It is now safe to read the descriptor on all architectures.
1168 rt2x00_desc_read(rxd, 0, &word0);
1169 rt2x00_desc_read(rxd, 1, &word1);
1171 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1172 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1173 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1174 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1177 * Obtain the status about this packet.
1178 * When frame was received with an OFDM bitrate,
1179 * the signal is the PLCP value. If it was received with
1180 * a CCK bitrate the signal is the rate in 100kbit/s.
1182 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1183 rxdesc->rssi = rt2x00_get_field32(word1, RXD_W1_RSSI) -
1184 entry->queue->rt2x00dev->rssi_offset;
1185 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1187 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1188 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1189 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1190 rxdesc->dev_flags |= RXDONE_MY_BSS;
1193 * Adjust the skb memory window to the frame boundaries.
1195 skb_trim(entry->skb, rxdesc->size);
1199 * Interrupt functions.
1201 static void rt2500usb_beacondone(struct urb *urb)
1203 struct queue_entry *entry = (struct queue_entry *)urb->context;
1204 struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1206 if (!test_bit(DEVICE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1207 return;
1210 * Check if this was the guardian beacon,
1211 * if that was the case we need to send the real beacon now.
1212 * Otherwise we should free the sk_buffer, the device
1213 * should be doing the rest of the work now.
1215 if (bcn_priv->guardian_urb == urb) {
1216 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1217 } else if (bcn_priv->urb == urb) {
1218 dev_kfree_skb(entry->skb);
1219 entry->skb = NULL;
1224 * Device probe functions.
1226 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1228 u16 word;
1229 u8 *mac;
1230 u8 bbp;
1232 rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1235 * Start validation of the data that has been read.
1237 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1238 if (!is_valid_ether_addr(mac)) {
1239 DECLARE_MAC_BUF(macbuf);
1241 random_ether_addr(mac);
1242 EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
1245 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1246 if (word == 0xffff) {
1247 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1248 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1249 ANTENNA_SW_DIVERSITY);
1250 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1251 ANTENNA_SW_DIVERSITY);
1252 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1253 LED_MODE_DEFAULT);
1254 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1255 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1256 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1257 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1258 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1261 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1262 if (word == 0xffff) {
1263 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1264 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1265 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1266 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1267 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1270 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1271 if (word == 0xffff) {
1272 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1273 DEFAULT_RSSI_OFFSET);
1274 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1275 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1278 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1279 if (word == 0xffff) {
1280 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1281 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1282 EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
1286 * Switch lower vgc bound to current BBP R17 value,
1287 * lower the value a bit for better quality.
1289 rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1290 bbp -= 6;
1292 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1293 if (word == 0xffff) {
1294 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1295 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1296 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1297 EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1300 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1301 if (word == 0xffff) {
1302 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1303 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1304 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1305 EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1306 } else {
1307 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1308 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1311 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1312 if (word == 0xffff) {
1313 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1314 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1315 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1316 EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1319 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1320 if (word == 0xffff) {
1321 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1322 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1323 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1324 EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1327 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1328 if (word == 0xffff) {
1329 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1330 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1331 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1332 EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1335 return 0;
1338 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1340 u16 reg;
1341 u16 value;
1342 u16 eeprom;
1345 * Read EEPROM word for configuration.
1347 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1350 * Identify RF chipset.
1352 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1353 rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1354 rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1356 if (!rt2x00_check_rev(&rt2x00dev->chip, 0)) {
1357 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1358 return -ENODEV;
1361 if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1362 !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1363 !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1364 !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1365 !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1366 !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1367 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1368 return -ENODEV;
1372 * Identify default antenna configuration.
1374 rt2x00dev->default_ant.tx =
1375 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1376 rt2x00dev->default_ant.rx =
1377 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1380 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1381 * I am not 100% sure about this, but the legacy drivers do not
1382 * indicate antenna swapping in software is required when
1383 * diversity is enabled.
1385 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1386 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1387 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1388 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1391 * Store led mode, for correct led behaviour.
1393 #ifdef CONFIG_RT2500USB_LEDS
1394 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1396 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1397 if (value == LED_MODE_TXRX_ACTIVITY)
1398 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1399 LED_TYPE_ACTIVITY);
1400 #endif /* CONFIG_RT2500USB_LEDS */
1403 * Check if the BBP tuning should be disabled.
1405 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1406 if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1407 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1410 * Read the RSSI <-> dBm offset information.
1412 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1413 rt2x00dev->rssi_offset =
1414 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1416 return 0;
1420 * RF value list for RF2522
1421 * Supports: 2.4 GHz
1423 static const struct rf_channel rf_vals_bg_2522[] = {
1424 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1425 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1426 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1427 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1428 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1429 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1430 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1431 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1432 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1433 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1434 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1435 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1436 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1437 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1441 * RF value list for RF2523
1442 * Supports: 2.4 GHz
1444 static const struct rf_channel rf_vals_bg_2523[] = {
1445 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1446 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1447 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1448 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1449 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1450 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1451 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1452 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1453 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1454 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1455 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1456 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1457 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1458 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1462 * RF value list for RF2524
1463 * Supports: 2.4 GHz
1465 static const struct rf_channel rf_vals_bg_2524[] = {
1466 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1467 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1468 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1469 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1470 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1471 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1472 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1473 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1474 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1475 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1476 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1477 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1478 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1479 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1483 * RF value list for RF2525
1484 * Supports: 2.4 GHz
1486 static const struct rf_channel rf_vals_bg_2525[] = {
1487 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1488 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1489 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1490 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1491 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1492 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1493 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1494 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1495 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1496 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1497 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1498 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1499 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1500 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1504 * RF value list for RF2525e
1505 * Supports: 2.4 GHz
1507 static const struct rf_channel rf_vals_bg_2525e[] = {
1508 { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1509 { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1510 { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1511 { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1512 { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1513 { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1514 { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1515 { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1516 { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1517 { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1518 { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1519 { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1520 { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1521 { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1525 * RF value list for RF5222
1526 * Supports: 2.4 GHz & 5.2 GHz
1528 static const struct rf_channel rf_vals_5222[] = {
1529 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1530 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1531 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1532 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1533 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1534 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1535 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1536 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1537 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1538 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1539 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1540 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1541 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1542 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1544 /* 802.11 UNI / HyperLan 2 */
1545 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1546 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1547 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1548 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1549 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1550 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1551 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1552 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1554 /* 802.11 HyperLan 2 */
1555 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1556 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1557 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1558 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1559 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1560 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1561 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1562 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1563 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1564 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1566 /* 802.11 UNII */
1567 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1568 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1569 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1570 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1571 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1574 static void rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1576 struct hw_mode_spec *spec = &rt2x00dev->spec;
1577 u8 *txpower;
1578 unsigned int i;
1581 * Initialize all hw fields.
1583 rt2x00dev->hw->flags =
1584 IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE |
1585 IEEE80211_HW_RX_INCLUDES_FCS |
1586 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1587 IEEE80211_HW_SIGNAL_DBM;
1589 rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
1591 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1592 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1593 rt2x00_eeprom_addr(rt2x00dev,
1594 EEPROM_MAC_ADDR_0));
1597 * Convert tx_power array in eeprom.
1599 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1600 for (i = 0; i < 14; i++)
1601 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1604 * Initialize hw_mode information.
1606 spec->supported_bands = SUPPORT_BAND_2GHZ;
1607 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1608 spec->tx_power_a = NULL;
1609 spec->tx_power_bg = txpower;
1610 spec->tx_power_default = DEFAULT_TXPOWER;
1612 if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1613 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1614 spec->channels = rf_vals_bg_2522;
1615 } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1616 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1617 spec->channels = rf_vals_bg_2523;
1618 } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1619 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1620 spec->channels = rf_vals_bg_2524;
1621 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1622 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1623 spec->channels = rf_vals_bg_2525;
1624 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1625 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1626 spec->channels = rf_vals_bg_2525e;
1627 } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1628 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1629 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1630 spec->channels = rf_vals_5222;
1634 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1636 int retval;
1639 * Allocate eeprom data.
1641 retval = rt2500usb_validate_eeprom(rt2x00dev);
1642 if (retval)
1643 return retval;
1645 retval = rt2500usb_init_eeprom(rt2x00dev);
1646 if (retval)
1647 return retval;
1650 * Initialize hw specifications.
1652 rt2500usb_probe_hw_mode(rt2x00dev);
1655 * This device requires the atim queue
1657 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1658 __set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
1659 __set_bit(DRIVER_REQUIRE_SCHEDULED, &rt2x00dev->flags);
1662 * Set the rssi offset.
1664 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1666 return 0;
1670 * IEEE80211 stack callback functions.
1672 static int rt2500usb_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb)
1674 struct rt2x00_dev *rt2x00dev = hw->priv;
1675 struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1676 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1677 struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
1678 struct queue_entry_priv_usb_bcn *bcn_priv;
1679 struct skb_frame_desc *skbdesc;
1680 struct txentry_desc txdesc;
1681 int pipe = usb_sndbulkpipe(usb_dev, 1);
1682 int length;
1683 u16 reg;
1685 if (unlikely(!intf->beacon))
1686 return -ENOBUFS;
1688 bcn_priv = intf->beacon->priv_data;
1691 * Copy all TX descriptor information into txdesc,
1692 * after that we are free to use the skb->cb array
1693 * for our information.
1695 intf->beacon->skb = skb;
1696 rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
1699 * Add the descriptor in front of the skb.
1701 skb_push(skb, intf->beacon->queue->desc_size);
1702 memset(skb->data, 0, intf->beacon->queue->desc_size);
1705 * Fill in skb descriptor
1707 skbdesc = get_skb_frame_desc(skb);
1708 memset(skbdesc, 0, sizeof(*skbdesc));
1709 skbdesc->desc = skb->data;
1710 skbdesc->desc_len = intf->beacon->queue->desc_size;
1711 skbdesc->entry = intf->beacon;
1714 * Disable beaconing while we are reloading the beacon data,
1715 * otherwise we might be sending out invalid data.
1717 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1718 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
1719 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
1720 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1721 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1723 rt2x00queue_write_tx_descriptor(intf->beacon, &txdesc);
1726 * USB devices cannot blindly pass the skb->len as the
1727 * length of the data to usb_fill_bulk_urb. Pass the skb
1728 * to the driver to determine what the length should be.
1730 length = rt2500usb_get_tx_data_len(rt2x00dev, skb);
1732 usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1733 skb->data, length, rt2500usb_beacondone,
1734 intf->beacon);
1737 * Second we need to create the guardian byte.
1738 * We only need a single byte, so lets recycle
1739 * the 'flags' field we are not using for beacons.
1741 bcn_priv->guardian_data = 0;
1742 usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1743 &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1744 intf->beacon);
1747 * Send out the guardian byte.
1749 usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1752 * Enable beacon generation.
1754 rt2500usb_kick_tx_queue(rt2x00dev, QID_BEACON);
1756 return 0;
1759 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1760 .tx = rt2x00mac_tx,
1761 .start = rt2x00mac_start,
1762 .stop = rt2x00mac_stop,
1763 .add_interface = rt2x00mac_add_interface,
1764 .remove_interface = rt2x00mac_remove_interface,
1765 .config = rt2x00mac_config,
1766 .config_interface = rt2x00mac_config_interface,
1767 .configure_filter = rt2x00mac_configure_filter,
1768 .get_stats = rt2x00mac_get_stats,
1769 .bss_info_changed = rt2x00mac_bss_info_changed,
1770 .conf_tx = rt2x00mac_conf_tx,
1771 .get_tx_stats = rt2x00mac_get_tx_stats,
1772 .beacon_update = rt2500usb_beacon_update,
1775 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1776 .probe_hw = rt2500usb_probe_hw,
1777 .initialize = rt2x00usb_initialize,
1778 .uninitialize = rt2x00usb_uninitialize,
1779 .init_rxentry = rt2x00usb_init_rxentry,
1780 .init_txentry = rt2x00usb_init_txentry,
1781 .set_device_state = rt2500usb_set_device_state,
1782 .link_stats = rt2500usb_link_stats,
1783 .reset_tuner = rt2500usb_reset_tuner,
1784 .link_tuner = rt2500usb_link_tuner,
1785 .write_tx_desc = rt2500usb_write_tx_desc,
1786 .write_tx_data = rt2x00usb_write_tx_data,
1787 .get_tx_data_len = rt2500usb_get_tx_data_len,
1788 .kick_tx_queue = rt2500usb_kick_tx_queue,
1789 .fill_rxdone = rt2500usb_fill_rxdone,
1790 .config_filter = rt2500usb_config_filter,
1791 .config_intf = rt2500usb_config_intf,
1792 .config_erp = rt2500usb_config_erp,
1793 .config = rt2500usb_config,
1796 static const struct data_queue_desc rt2500usb_queue_rx = {
1797 .entry_num = RX_ENTRIES,
1798 .data_size = DATA_FRAME_SIZE,
1799 .desc_size = RXD_DESC_SIZE,
1800 .priv_size = sizeof(struct queue_entry_priv_usb),
1803 static const struct data_queue_desc rt2500usb_queue_tx = {
1804 .entry_num = TX_ENTRIES,
1805 .data_size = DATA_FRAME_SIZE,
1806 .desc_size = TXD_DESC_SIZE,
1807 .priv_size = sizeof(struct queue_entry_priv_usb),
1810 static const struct data_queue_desc rt2500usb_queue_bcn = {
1811 .entry_num = BEACON_ENTRIES,
1812 .data_size = MGMT_FRAME_SIZE,
1813 .desc_size = TXD_DESC_SIZE,
1814 .priv_size = sizeof(struct queue_entry_priv_usb_bcn),
1817 static const struct data_queue_desc rt2500usb_queue_atim = {
1818 .entry_num = ATIM_ENTRIES,
1819 .data_size = DATA_FRAME_SIZE,
1820 .desc_size = TXD_DESC_SIZE,
1821 .priv_size = sizeof(struct queue_entry_priv_usb),
1824 static const struct rt2x00_ops rt2500usb_ops = {
1825 .name = KBUILD_MODNAME,
1826 .max_sta_intf = 1,
1827 .max_ap_intf = 1,
1828 .eeprom_size = EEPROM_SIZE,
1829 .rf_size = RF_SIZE,
1830 .tx_queues = NUM_TX_QUEUES,
1831 .rx = &rt2500usb_queue_rx,
1832 .tx = &rt2500usb_queue_tx,
1833 .bcn = &rt2500usb_queue_bcn,
1834 .atim = &rt2500usb_queue_atim,
1835 .lib = &rt2500usb_rt2x00_ops,
1836 .hw = &rt2500usb_mac80211_ops,
1837 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1838 .debugfs = &rt2500usb_rt2x00debug,
1839 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1843 * rt2500usb module information.
1845 static struct usb_device_id rt2500usb_device_table[] = {
1846 /* ASUS */
1847 { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1848 { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
1849 /* Belkin */
1850 { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
1851 { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
1852 { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
1853 /* Cisco Systems */
1854 { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
1855 { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
1856 { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
1857 /* Conceptronic */
1858 { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
1859 /* D-LINK */
1860 { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
1861 /* Gigabyte */
1862 { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
1863 { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
1864 /* Hercules */
1865 { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
1866 /* Melco */
1867 { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
1868 { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
1869 { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
1870 { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
1871 { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
1872 /* MSI */
1873 { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
1874 { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
1875 { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
1876 /* Ralink */
1877 { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1878 { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
1879 { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
1880 { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1881 /* Siemens */
1882 { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
1883 /* SMC */
1884 { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
1885 /* Spairon */
1886 { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
1887 /* Trust */
1888 { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1889 /* Zinwell */
1890 { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
1891 { 0, }
1894 MODULE_AUTHOR(DRV_PROJECT);
1895 MODULE_VERSION(DRV_VERSION);
1896 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1897 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1898 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1899 MODULE_LICENSE("GPL");
1901 static struct usb_driver rt2500usb_driver = {
1902 .name = KBUILD_MODNAME,
1903 .id_table = rt2500usb_device_table,
1904 .probe = rt2x00usb_probe,
1905 .disconnect = rt2x00usb_disconnect,
1906 .suspend = rt2x00usb_suspend,
1907 .resume = rt2x00usb_resume,
1910 static int __init rt2500usb_init(void)
1912 return usb_register(&rt2500usb_driver);
1915 static void __exit rt2500usb_exit(void)
1917 usb_deregister(&rt2500usb_driver);
1920 module_init(rt2500usb_init);
1921 module_exit(rt2500usb_exit);