1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Extent allocs and frees
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
32 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
33 #include <cluster/masklog.h>
40 #include "extent_map.h"
43 #include "localalloc.h"
50 #include "buffer_head_io.h"
54 * Operations for a specific extent tree type.
56 * To implement an on-disk btree (extent tree) type in ocfs2, add
57 * an ocfs2_extent_tree_operations structure and the matching
58 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it
59 * for the allocation portion of the extent tree.
61 struct ocfs2_extent_tree_operations
{
63 * last_eb_blk is the block number of the right most leaf extent
64 * block. Most on-disk structures containing an extent tree store
65 * this value for fast access. The ->eo_set_last_eb_blk() and
66 * ->eo_get_last_eb_blk() operations access this value. They are
69 void (*eo_set_last_eb_blk
)(struct ocfs2_extent_tree
*et
,
71 u64 (*eo_get_last_eb_blk
)(struct ocfs2_extent_tree
*et
);
74 * The on-disk structure usually keeps track of how many total
75 * clusters are stored in this extent tree. This function updates
76 * that value. new_clusters is the delta, and must be
77 * added to the total. Required.
79 void (*eo_update_clusters
)(struct inode
*inode
,
80 struct ocfs2_extent_tree
*et
,
84 * If ->eo_insert_check() exists, it is called before rec is
85 * inserted into the extent tree. It is optional.
87 int (*eo_insert_check
)(struct inode
*inode
,
88 struct ocfs2_extent_tree
*et
,
89 struct ocfs2_extent_rec
*rec
);
90 int (*eo_sanity_check
)(struct inode
*inode
, struct ocfs2_extent_tree
*et
);
93 * --------------------------------------------------------------
94 * The remaining are internal to ocfs2_extent_tree and don't have
99 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
102 void (*eo_fill_root_el
)(struct ocfs2_extent_tree
*et
);
105 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
106 * it exists. If it does not, et->et_max_leaf_clusters is set
107 * to 0 (unlimited). Optional.
109 void (*eo_fill_max_leaf_clusters
)(struct inode
*inode
,
110 struct ocfs2_extent_tree
*et
);
115 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
118 static u64
ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree
*et
);
119 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
121 static void ocfs2_dinode_update_clusters(struct inode
*inode
,
122 struct ocfs2_extent_tree
*et
,
124 static int ocfs2_dinode_insert_check(struct inode
*inode
,
125 struct ocfs2_extent_tree
*et
,
126 struct ocfs2_extent_rec
*rec
);
127 static int ocfs2_dinode_sanity_check(struct inode
*inode
,
128 struct ocfs2_extent_tree
*et
);
129 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree
*et
);
130 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops
= {
131 .eo_set_last_eb_blk
= ocfs2_dinode_set_last_eb_blk
,
132 .eo_get_last_eb_blk
= ocfs2_dinode_get_last_eb_blk
,
133 .eo_update_clusters
= ocfs2_dinode_update_clusters
,
134 .eo_insert_check
= ocfs2_dinode_insert_check
,
135 .eo_sanity_check
= ocfs2_dinode_sanity_check
,
136 .eo_fill_root_el
= ocfs2_dinode_fill_root_el
,
139 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
142 struct ocfs2_dinode
*di
= et
->et_object
;
144 BUG_ON(et
->et_ops
!= &ocfs2_dinode_et_ops
);
145 di
->i_last_eb_blk
= cpu_to_le64(blkno
);
148 static u64
ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
150 struct ocfs2_dinode
*di
= et
->et_object
;
152 BUG_ON(et
->et_ops
!= &ocfs2_dinode_et_ops
);
153 return le64_to_cpu(di
->i_last_eb_blk
);
156 static void ocfs2_dinode_update_clusters(struct inode
*inode
,
157 struct ocfs2_extent_tree
*et
,
160 struct ocfs2_dinode
*di
= et
->et_object
;
162 le32_add_cpu(&di
->i_clusters
, clusters
);
163 spin_lock(&OCFS2_I(inode
)->ip_lock
);
164 OCFS2_I(inode
)->ip_clusters
= le32_to_cpu(di
->i_clusters
);
165 spin_unlock(&OCFS2_I(inode
)->ip_lock
);
168 static int ocfs2_dinode_insert_check(struct inode
*inode
,
169 struct ocfs2_extent_tree
*et
,
170 struct ocfs2_extent_rec
*rec
)
172 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
174 BUG_ON(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
);
175 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb
) &&
176 (OCFS2_I(inode
)->ip_clusters
!= rec
->e_cpos
),
177 "Device %s, asking for sparse allocation: inode %llu, "
178 "cpos %u, clusters %u\n",
180 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
182 OCFS2_I(inode
)->ip_clusters
);
187 static int ocfs2_dinode_sanity_check(struct inode
*inode
,
188 struct ocfs2_extent_tree
*et
)
191 struct ocfs2_dinode
*di
;
193 BUG_ON(et
->et_ops
!= &ocfs2_dinode_et_ops
);
196 if (!OCFS2_IS_VALID_DINODE(di
)) {
198 ocfs2_error(inode
->i_sb
,
199 "Inode %llu has invalid path root",
200 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
206 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree
*et
)
208 struct ocfs2_dinode
*di
= et
->et_object
;
210 et
->et_root_el
= &di
->id2
.i_list
;
214 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree
*et
)
216 struct ocfs2_xattr_value_root
*xv
= et
->et_object
;
218 et
->et_root_el
= &xv
->xr_list
;
221 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
224 struct ocfs2_xattr_value_root
*xv
=
225 (struct ocfs2_xattr_value_root
*)et
->et_object
;
227 xv
->xr_last_eb_blk
= cpu_to_le64(blkno
);
230 static u64
ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
232 struct ocfs2_xattr_value_root
*xv
=
233 (struct ocfs2_xattr_value_root
*) et
->et_object
;
235 return le64_to_cpu(xv
->xr_last_eb_blk
);
238 static void ocfs2_xattr_value_update_clusters(struct inode
*inode
,
239 struct ocfs2_extent_tree
*et
,
242 struct ocfs2_xattr_value_root
*xv
=
243 (struct ocfs2_xattr_value_root
*)et
->et_object
;
245 le32_add_cpu(&xv
->xr_clusters
, clusters
);
248 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops
= {
249 .eo_set_last_eb_blk
= ocfs2_xattr_value_set_last_eb_blk
,
250 .eo_get_last_eb_blk
= ocfs2_xattr_value_get_last_eb_blk
,
251 .eo_update_clusters
= ocfs2_xattr_value_update_clusters
,
252 .eo_fill_root_el
= ocfs2_xattr_value_fill_root_el
,
255 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree
*et
)
257 struct ocfs2_xattr_block
*xb
= et
->et_object
;
259 et
->et_root_el
= &xb
->xb_attrs
.xb_root
.xt_list
;
262 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct inode
*inode
,
263 struct ocfs2_extent_tree
*et
)
265 et
->et_max_leaf_clusters
=
266 ocfs2_clusters_for_bytes(inode
->i_sb
,
267 OCFS2_MAX_XATTR_TREE_LEAF_SIZE
);
270 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
273 struct ocfs2_xattr_block
*xb
= et
->et_object
;
274 struct ocfs2_xattr_tree_root
*xt
= &xb
->xb_attrs
.xb_root
;
276 xt
->xt_last_eb_blk
= cpu_to_le64(blkno
);
279 static u64
ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
281 struct ocfs2_xattr_block
*xb
= et
->et_object
;
282 struct ocfs2_xattr_tree_root
*xt
= &xb
->xb_attrs
.xb_root
;
284 return le64_to_cpu(xt
->xt_last_eb_blk
);
287 static void ocfs2_xattr_tree_update_clusters(struct inode
*inode
,
288 struct ocfs2_extent_tree
*et
,
291 struct ocfs2_xattr_block
*xb
= et
->et_object
;
293 le32_add_cpu(&xb
->xb_attrs
.xb_root
.xt_clusters
, clusters
);
296 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops
= {
297 .eo_set_last_eb_blk
= ocfs2_xattr_tree_set_last_eb_blk
,
298 .eo_get_last_eb_blk
= ocfs2_xattr_tree_get_last_eb_blk
,
299 .eo_update_clusters
= ocfs2_xattr_tree_update_clusters
,
300 .eo_fill_root_el
= ocfs2_xattr_tree_fill_root_el
,
301 .eo_fill_max_leaf_clusters
= ocfs2_xattr_tree_fill_max_leaf_clusters
,
304 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree
*et
,
306 struct buffer_head
*bh
,
308 struct ocfs2_extent_tree_operations
*ops
)
313 obj
= (void *)bh
->b_data
;
316 et
->et_ops
->eo_fill_root_el(et
);
317 if (!et
->et_ops
->eo_fill_max_leaf_clusters
)
318 et
->et_max_leaf_clusters
= 0;
320 et
->et_ops
->eo_fill_max_leaf_clusters(inode
, et
);
323 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree
*et
,
325 struct buffer_head
*bh
)
327 __ocfs2_init_extent_tree(et
, inode
, bh
, NULL
, &ocfs2_dinode_et_ops
);
330 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree
*et
,
332 struct buffer_head
*bh
)
334 __ocfs2_init_extent_tree(et
, inode
, bh
, NULL
,
335 &ocfs2_xattr_tree_et_ops
);
338 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree
*et
,
340 struct buffer_head
*bh
,
341 struct ocfs2_xattr_value_root
*xv
)
343 __ocfs2_init_extent_tree(et
, inode
, bh
, xv
,
344 &ocfs2_xattr_value_et_ops
);
347 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
350 et
->et_ops
->eo_set_last_eb_blk(et
, new_last_eb_blk
);
353 static inline u64
ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
355 return et
->et_ops
->eo_get_last_eb_blk(et
);
358 static inline void ocfs2_et_update_clusters(struct inode
*inode
,
359 struct ocfs2_extent_tree
*et
,
362 et
->et_ops
->eo_update_clusters(inode
, et
, clusters
);
365 static inline int ocfs2_et_insert_check(struct inode
*inode
,
366 struct ocfs2_extent_tree
*et
,
367 struct ocfs2_extent_rec
*rec
)
371 if (et
->et_ops
->eo_insert_check
)
372 ret
= et
->et_ops
->eo_insert_check(inode
, et
, rec
);
376 static inline int ocfs2_et_sanity_check(struct inode
*inode
,
377 struct ocfs2_extent_tree
*et
)
381 if (et
->et_ops
->eo_sanity_check
)
382 ret
= et
->et_ops
->eo_sanity_check(inode
, et
);
386 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context
*tc
);
387 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
388 struct ocfs2_extent_block
*eb
);
391 * Structures which describe a path through a btree, and functions to
394 * The idea here is to be as generic as possible with the tree
397 struct ocfs2_path_item
{
398 struct buffer_head
*bh
;
399 struct ocfs2_extent_list
*el
;
402 #define OCFS2_MAX_PATH_DEPTH 5
406 struct ocfs2_path_item p_node
[OCFS2_MAX_PATH_DEPTH
];
409 #define path_root_bh(_path) ((_path)->p_node[0].bh)
410 #define path_root_el(_path) ((_path)->p_node[0].el)
411 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
412 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
413 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
416 * Reset the actual path elements so that we can re-use the structure
417 * to build another path. Generally, this involves freeing the buffer
420 static void ocfs2_reinit_path(struct ocfs2_path
*path
, int keep_root
)
422 int i
, start
= 0, depth
= 0;
423 struct ocfs2_path_item
*node
;
428 for(i
= start
; i
< path_num_items(path
); i
++) {
429 node
= &path
->p_node
[i
];
437 * Tree depth may change during truncate, or insert. If we're
438 * keeping the root extent list, then make sure that our path
439 * structure reflects the proper depth.
442 depth
= le16_to_cpu(path_root_el(path
)->l_tree_depth
);
444 path
->p_tree_depth
= depth
;
447 static void ocfs2_free_path(struct ocfs2_path
*path
)
450 ocfs2_reinit_path(path
, 0);
456 * All the elements of src into dest. After this call, src could be freed
457 * without affecting dest.
459 * Both paths should have the same root. Any non-root elements of dest
462 static void ocfs2_cp_path(struct ocfs2_path
*dest
, struct ocfs2_path
*src
)
466 BUG_ON(path_root_bh(dest
) != path_root_bh(src
));
467 BUG_ON(path_root_el(dest
) != path_root_el(src
));
469 ocfs2_reinit_path(dest
, 1);
471 for(i
= 1; i
< OCFS2_MAX_PATH_DEPTH
; i
++) {
472 dest
->p_node
[i
].bh
= src
->p_node
[i
].bh
;
473 dest
->p_node
[i
].el
= src
->p_node
[i
].el
;
475 if (dest
->p_node
[i
].bh
)
476 get_bh(dest
->p_node
[i
].bh
);
481 * Make the *dest path the same as src and re-initialize src path to
484 static void ocfs2_mv_path(struct ocfs2_path
*dest
, struct ocfs2_path
*src
)
488 BUG_ON(path_root_bh(dest
) != path_root_bh(src
));
490 for(i
= 1; i
< OCFS2_MAX_PATH_DEPTH
; i
++) {
491 brelse(dest
->p_node
[i
].bh
);
493 dest
->p_node
[i
].bh
= src
->p_node
[i
].bh
;
494 dest
->p_node
[i
].el
= src
->p_node
[i
].el
;
496 src
->p_node
[i
].bh
= NULL
;
497 src
->p_node
[i
].el
= NULL
;
502 * Insert an extent block at given index.
504 * This will not take an additional reference on eb_bh.
506 static inline void ocfs2_path_insert_eb(struct ocfs2_path
*path
, int index
,
507 struct buffer_head
*eb_bh
)
509 struct ocfs2_extent_block
*eb
= (struct ocfs2_extent_block
*)eb_bh
->b_data
;
512 * Right now, no root bh is an extent block, so this helps
513 * catch code errors with dinode trees. The assertion can be
514 * safely removed if we ever need to insert extent block
515 * structures at the root.
519 path
->p_node
[index
].bh
= eb_bh
;
520 path
->p_node
[index
].el
= &eb
->h_list
;
523 static struct ocfs2_path
*ocfs2_new_path(struct buffer_head
*root_bh
,
524 struct ocfs2_extent_list
*root_el
)
526 struct ocfs2_path
*path
;
528 BUG_ON(le16_to_cpu(root_el
->l_tree_depth
) >= OCFS2_MAX_PATH_DEPTH
);
530 path
= kzalloc(sizeof(*path
), GFP_NOFS
);
532 path
->p_tree_depth
= le16_to_cpu(root_el
->l_tree_depth
);
534 path_root_bh(path
) = root_bh
;
535 path_root_el(path
) = root_el
;
542 * Convenience function to journal all components in a path.
544 static int ocfs2_journal_access_path(struct inode
*inode
, handle_t
*handle
,
545 struct ocfs2_path
*path
)
552 for(i
= 0; i
< path_num_items(path
); i
++) {
553 ret
= ocfs2_journal_access(handle
, inode
, path
->p_node
[i
].bh
,
554 OCFS2_JOURNAL_ACCESS_WRITE
);
566 * Return the index of the extent record which contains cluster #v_cluster.
567 * -1 is returned if it was not found.
569 * Should work fine on interior and exterior nodes.
571 int ocfs2_search_extent_list(struct ocfs2_extent_list
*el
, u32 v_cluster
)
575 struct ocfs2_extent_rec
*rec
;
576 u32 rec_end
, rec_start
, clusters
;
578 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
); i
++) {
579 rec
= &el
->l_recs
[i
];
581 rec_start
= le32_to_cpu(rec
->e_cpos
);
582 clusters
= ocfs2_rec_clusters(el
, rec
);
584 rec_end
= rec_start
+ clusters
;
586 if (v_cluster
>= rec_start
&& v_cluster
< rec_end
) {
595 enum ocfs2_contig_type
{
604 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
605 * ocfs2_extent_contig only work properly against leaf nodes!
607 static int ocfs2_block_extent_contig(struct super_block
*sb
,
608 struct ocfs2_extent_rec
*ext
,
611 u64 blk_end
= le64_to_cpu(ext
->e_blkno
);
613 blk_end
+= ocfs2_clusters_to_blocks(sb
,
614 le16_to_cpu(ext
->e_leaf_clusters
));
616 return blkno
== blk_end
;
619 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec
*left
,
620 struct ocfs2_extent_rec
*right
)
624 left_range
= le32_to_cpu(left
->e_cpos
) +
625 le16_to_cpu(left
->e_leaf_clusters
);
627 return (left_range
== le32_to_cpu(right
->e_cpos
));
630 static enum ocfs2_contig_type
631 ocfs2_extent_contig(struct inode
*inode
,
632 struct ocfs2_extent_rec
*ext
,
633 struct ocfs2_extent_rec
*insert_rec
)
635 u64 blkno
= le64_to_cpu(insert_rec
->e_blkno
);
638 * Refuse to coalesce extent records with different flag
639 * fields - we don't want to mix unwritten extents with user
642 if (ext
->e_flags
!= insert_rec
->e_flags
)
645 if (ocfs2_extents_adjacent(ext
, insert_rec
) &&
646 ocfs2_block_extent_contig(inode
->i_sb
, ext
, blkno
))
649 blkno
= le64_to_cpu(ext
->e_blkno
);
650 if (ocfs2_extents_adjacent(insert_rec
, ext
) &&
651 ocfs2_block_extent_contig(inode
->i_sb
, insert_rec
, blkno
))
658 * NOTE: We can have pretty much any combination of contiguousness and
661 * The usefulness of APPEND_TAIL is more in that it lets us know that
662 * we'll have to update the path to that leaf.
664 enum ocfs2_append_type
{
669 enum ocfs2_split_type
{
675 struct ocfs2_insert_type
{
676 enum ocfs2_split_type ins_split
;
677 enum ocfs2_append_type ins_appending
;
678 enum ocfs2_contig_type ins_contig
;
679 int ins_contig_index
;
683 struct ocfs2_merge_ctxt
{
684 enum ocfs2_contig_type c_contig_type
;
685 int c_has_empty_extent
;
686 int c_split_covers_rec
;
690 * How many free extents have we got before we need more meta data?
692 int ocfs2_num_free_extents(struct ocfs2_super
*osb
,
694 struct ocfs2_extent_tree
*et
)
697 struct ocfs2_extent_list
*el
= NULL
;
698 struct ocfs2_extent_block
*eb
;
699 struct buffer_head
*eb_bh
= NULL
;
705 last_eb_blk
= ocfs2_et_get_last_eb_blk(et
);
708 retval
= ocfs2_read_block(inode
, last_eb_blk
,
714 eb
= (struct ocfs2_extent_block
*) eb_bh
->b_data
;
718 BUG_ON(el
->l_tree_depth
!= 0);
720 retval
= le16_to_cpu(el
->l_count
) - le16_to_cpu(el
->l_next_free_rec
);
728 /* expects array to already be allocated
730 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
733 static int ocfs2_create_new_meta_bhs(struct ocfs2_super
*osb
,
737 struct ocfs2_alloc_context
*meta_ac
,
738 struct buffer_head
*bhs
[])
740 int count
, status
, i
;
741 u16 suballoc_bit_start
;
744 struct ocfs2_extent_block
*eb
;
749 while (count
< wanted
) {
750 status
= ocfs2_claim_metadata(osb
,
762 for(i
= count
; i
< (num_got
+ count
); i
++) {
763 bhs
[i
] = sb_getblk(osb
->sb
, first_blkno
);
764 if (bhs
[i
] == NULL
) {
769 ocfs2_set_new_buffer_uptodate(inode
, bhs
[i
]);
771 status
= ocfs2_journal_access(handle
, inode
, bhs
[i
],
772 OCFS2_JOURNAL_ACCESS_CREATE
);
778 memset(bhs
[i
]->b_data
, 0, osb
->sb
->s_blocksize
);
779 eb
= (struct ocfs2_extent_block
*) bhs
[i
]->b_data
;
780 /* Ok, setup the minimal stuff here. */
781 strcpy(eb
->h_signature
, OCFS2_EXTENT_BLOCK_SIGNATURE
);
782 eb
->h_blkno
= cpu_to_le64(first_blkno
);
783 eb
->h_fs_generation
= cpu_to_le32(osb
->fs_generation
);
784 eb
->h_suballoc_slot
= cpu_to_le16(osb
->slot_num
);
785 eb
->h_suballoc_bit
= cpu_to_le16(suballoc_bit_start
);
787 cpu_to_le16(ocfs2_extent_recs_per_eb(osb
->sb
));
789 suballoc_bit_start
++;
792 /* We'll also be dirtied by the caller, so
793 * this isn't absolutely necessary. */
794 status
= ocfs2_journal_dirty(handle
, bhs
[i
]);
807 for(i
= 0; i
< wanted
; i
++) {
817 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
819 * Returns the sum of the rightmost extent rec logical offset and
822 * ocfs2_add_branch() uses this to determine what logical cluster
823 * value should be populated into the leftmost new branch records.
825 * ocfs2_shift_tree_depth() uses this to determine the # clusters
826 * value for the new topmost tree record.
828 static inline u32
ocfs2_sum_rightmost_rec(struct ocfs2_extent_list
*el
)
832 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
834 return le32_to_cpu(el
->l_recs
[i
].e_cpos
) +
835 ocfs2_rec_clusters(el
, &el
->l_recs
[i
]);
839 * Add an entire tree branch to our inode. eb_bh is the extent block
840 * to start at, if we don't want to start the branch at the dinode
843 * last_eb_bh is required as we have to update it's next_leaf pointer
844 * for the new last extent block.
846 * the new branch will be 'empty' in the sense that every block will
847 * contain a single record with cluster count == 0.
849 static int ocfs2_add_branch(struct ocfs2_super
*osb
,
852 struct ocfs2_extent_tree
*et
,
853 struct buffer_head
*eb_bh
,
854 struct buffer_head
**last_eb_bh
,
855 struct ocfs2_alloc_context
*meta_ac
)
857 int status
, new_blocks
, i
;
858 u64 next_blkno
, new_last_eb_blk
;
859 struct buffer_head
*bh
;
860 struct buffer_head
**new_eb_bhs
= NULL
;
861 struct ocfs2_extent_block
*eb
;
862 struct ocfs2_extent_list
*eb_el
;
863 struct ocfs2_extent_list
*el
;
868 BUG_ON(!last_eb_bh
|| !*last_eb_bh
);
871 eb
= (struct ocfs2_extent_block
*) eb_bh
->b_data
;
876 /* we never add a branch to a leaf. */
877 BUG_ON(!el
->l_tree_depth
);
879 new_blocks
= le16_to_cpu(el
->l_tree_depth
);
881 /* allocate the number of new eb blocks we need */
882 new_eb_bhs
= kcalloc(new_blocks
, sizeof(struct buffer_head
*),
890 status
= ocfs2_create_new_meta_bhs(osb
, handle
, inode
, new_blocks
,
891 meta_ac
, new_eb_bhs
);
897 eb
= (struct ocfs2_extent_block
*)(*last_eb_bh
)->b_data
;
898 new_cpos
= ocfs2_sum_rightmost_rec(&eb
->h_list
);
900 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
901 * linked with the rest of the tree.
902 * conversly, new_eb_bhs[0] is the new bottommost leaf.
904 * when we leave the loop, new_last_eb_blk will point to the
905 * newest leaf, and next_blkno will point to the topmost extent
907 next_blkno
= new_last_eb_blk
= 0;
908 for(i
= 0; i
< new_blocks
; i
++) {
910 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
911 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
912 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
, eb
);
918 status
= ocfs2_journal_access(handle
, inode
, bh
,
919 OCFS2_JOURNAL_ACCESS_CREATE
);
925 eb
->h_next_leaf_blk
= 0;
926 eb_el
->l_tree_depth
= cpu_to_le16(i
);
927 eb_el
->l_next_free_rec
= cpu_to_le16(1);
929 * This actually counts as an empty extent as
932 eb_el
->l_recs
[0].e_cpos
= cpu_to_le32(new_cpos
);
933 eb_el
->l_recs
[0].e_blkno
= cpu_to_le64(next_blkno
);
935 * eb_el isn't always an interior node, but even leaf
936 * nodes want a zero'd flags and reserved field so
937 * this gets the whole 32 bits regardless of use.
939 eb_el
->l_recs
[0].e_int_clusters
= cpu_to_le32(0);
940 if (!eb_el
->l_tree_depth
)
941 new_last_eb_blk
= le64_to_cpu(eb
->h_blkno
);
943 status
= ocfs2_journal_dirty(handle
, bh
);
949 next_blkno
= le64_to_cpu(eb
->h_blkno
);
952 /* This is a bit hairy. We want to update up to three blocks
953 * here without leaving any of them in an inconsistent state
954 * in case of error. We don't have to worry about
955 * journal_dirty erroring as it won't unless we've aborted the
956 * handle (in which case we would never be here) so reserving
957 * the write with journal_access is all we need to do. */
958 status
= ocfs2_journal_access(handle
, inode
, *last_eb_bh
,
959 OCFS2_JOURNAL_ACCESS_WRITE
);
964 status
= ocfs2_journal_access(handle
, inode
, et
->et_root_bh
,
965 OCFS2_JOURNAL_ACCESS_WRITE
);
971 status
= ocfs2_journal_access(handle
, inode
, eb_bh
,
972 OCFS2_JOURNAL_ACCESS_WRITE
);
979 /* Link the new branch into the rest of the tree (el will
980 * either be on the root_bh, or the extent block passed in. */
981 i
= le16_to_cpu(el
->l_next_free_rec
);
982 el
->l_recs
[i
].e_blkno
= cpu_to_le64(next_blkno
);
983 el
->l_recs
[i
].e_cpos
= cpu_to_le32(new_cpos
);
984 el
->l_recs
[i
].e_int_clusters
= 0;
985 le16_add_cpu(&el
->l_next_free_rec
, 1);
987 /* fe needs a new last extent block pointer, as does the
988 * next_leaf on the previously last-extent-block. */
989 ocfs2_et_set_last_eb_blk(et
, new_last_eb_blk
);
991 eb
= (struct ocfs2_extent_block
*) (*last_eb_bh
)->b_data
;
992 eb
->h_next_leaf_blk
= cpu_to_le64(new_last_eb_blk
);
994 status
= ocfs2_journal_dirty(handle
, *last_eb_bh
);
997 status
= ocfs2_journal_dirty(handle
, et
->et_root_bh
);
1001 status
= ocfs2_journal_dirty(handle
, eb_bh
);
1007 * Some callers want to track the rightmost leaf so pass it
1010 brelse(*last_eb_bh
);
1011 get_bh(new_eb_bhs
[0]);
1012 *last_eb_bh
= new_eb_bhs
[0];
1017 for (i
= 0; i
< new_blocks
; i
++)
1018 brelse(new_eb_bhs
[i
]);
1027 * adds another level to the allocation tree.
1028 * returns back the new extent block so you can add a branch to it
1031 static int ocfs2_shift_tree_depth(struct ocfs2_super
*osb
,
1033 struct inode
*inode
,
1034 struct ocfs2_extent_tree
*et
,
1035 struct ocfs2_alloc_context
*meta_ac
,
1036 struct buffer_head
**ret_new_eb_bh
)
1040 struct buffer_head
*new_eb_bh
= NULL
;
1041 struct ocfs2_extent_block
*eb
;
1042 struct ocfs2_extent_list
*root_el
;
1043 struct ocfs2_extent_list
*eb_el
;
1047 status
= ocfs2_create_new_meta_bhs(osb
, handle
, inode
, 1, meta_ac
,
1054 eb
= (struct ocfs2_extent_block
*) new_eb_bh
->b_data
;
1055 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
1056 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
, eb
);
1061 eb_el
= &eb
->h_list
;
1062 root_el
= et
->et_root_el
;
1064 status
= ocfs2_journal_access(handle
, inode
, new_eb_bh
,
1065 OCFS2_JOURNAL_ACCESS_CREATE
);
1071 /* copy the root extent list data into the new extent block */
1072 eb_el
->l_tree_depth
= root_el
->l_tree_depth
;
1073 eb_el
->l_next_free_rec
= root_el
->l_next_free_rec
;
1074 for (i
= 0; i
< le16_to_cpu(root_el
->l_next_free_rec
); i
++)
1075 eb_el
->l_recs
[i
] = root_el
->l_recs
[i
];
1077 status
= ocfs2_journal_dirty(handle
, new_eb_bh
);
1083 status
= ocfs2_journal_access(handle
, inode
, et
->et_root_bh
,
1084 OCFS2_JOURNAL_ACCESS_WRITE
);
1090 new_clusters
= ocfs2_sum_rightmost_rec(eb_el
);
1092 /* update root_bh now */
1093 le16_add_cpu(&root_el
->l_tree_depth
, 1);
1094 root_el
->l_recs
[0].e_cpos
= 0;
1095 root_el
->l_recs
[0].e_blkno
= eb
->h_blkno
;
1096 root_el
->l_recs
[0].e_int_clusters
= cpu_to_le32(new_clusters
);
1097 for (i
= 1; i
< le16_to_cpu(root_el
->l_next_free_rec
); i
++)
1098 memset(&root_el
->l_recs
[i
], 0, sizeof(struct ocfs2_extent_rec
));
1099 root_el
->l_next_free_rec
= cpu_to_le16(1);
1101 /* If this is our 1st tree depth shift, then last_eb_blk
1102 * becomes the allocated extent block */
1103 if (root_el
->l_tree_depth
== cpu_to_le16(1))
1104 ocfs2_et_set_last_eb_blk(et
, le64_to_cpu(eb
->h_blkno
));
1106 status
= ocfs2_journal_dirty(handle
, et
->et_root_bh
);
1112 *ret_new_eb_bh
= new_eb_bh
;
1123 * Should only be called when there is no space left in any of the
1124 * leaf nodes. What we want to do is find the lowest tree depth
1125 * non-leaf extent block with room for new records. There are three
1126 * valid results of this search:
1128 * 1) a lowest extent block is found, then we pass it back in
1129 * *lowest_eb_bh and return '0'
1131 * 2) the search fails to find anything, but the root_el has room. We
1132 * pass NULL back in *lowest_eb_bh, but still return '0'
1134 * 3) the search fails to find anything AND the root_el is full, in
1135 * which case we return > 0
1137 * return status < 0 indicates an error.
1139 static int ocfs2_find_branch_target(struct ocfs2_super
*osb
,
1140 struct inode
*inode
,
1141 struct ocfs2_extent_tree
*et
,
1142 struct buffer_head
**target_bh
)
1146 struct ocfs2_extent_block
*eb
;
1147 struct ocfs2_extent_list
*el
;
1148 struct buffer_head
*bh
= NULL
;
1149 struct buffer_head
*lowest_bh
= NULL
;
1155 el
= et
->et_root_el
;
1157 while(le16_to_cpu(el
->l_tree_depth
) > 1) {
1158 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
1159 ocfs2_error(inode
->i_sb
, "Dinode %llu has empty "
1160 "extent list (next_free_rec == 0)",
1161 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
1165 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
1166 blkno
= le64_to_cpu(el
->l_recs
[i
].e_blkno
);
1168 ocfs2_error(inode
->i_sb
, "Dinode %llu has extent "
1169 "list where extent # %d has no physical "
1171 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, i
);
1179 status
= ocfs2_read_block(inode
, blkno
, &bh
);
1185 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
1186 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
1187 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
, eb
);
1193 if (le16_to_cpu(el
->l_next_free_rec
) <
1194 le16_to_cpu(el
->l_count
)) {
1201 /* If we didn't find one and the fe doesn't have any room,
1202 * then return '1' */
1203 el
= et
->et_root_el
;
1204 if (!lowest_bh
&& (el
->l_next_free_rec
== el
->l_count
))
1207 *target_bh
= lowest_bh
;
1216 * Grow a b-tree so that it has more records.
1218 * We might shift the tree depth in which case existing paths should
1219 * be considered invalid.
1221 * Tree depth after the grow is returned via *final_depth.
1223 * *last_eb_bh will be updated by ocfs2_add_branch().
1225 static int ocfs2_grow_tree(struct inode
*inode
, handle_t
*handle
,
1226 struct ocfs2_extent_tree
*et
, int *final_depth
,
1227 struct buffer_head
**last_eb_bh
,
1228 struct ocfs2_alloc_context
*meta_ac
)
1231 struct ocfs2_extent_list
*el
= et
->et_root_el
;
1232 int depth
= le16_to_cpu(el
->l_tree_depth
);
1233 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1234 struct buffer_head
*bh
= NULL
;
1236 BUG_ON(meta_ac
== NULL
);
1238 shift
= ocfs2_find_branch_target(osb
, inode
, et
, &bh
);
1245 /* We traveled all the way to the bottom of the allocation tree
1246 * and didn't find room for any more extents - we need to add
1247 * another tree level */
1250 mlog(0, "need to shift tree depth (current = %d)\n", depth
);
1252 /* ocfs2_shift_tree_depth will return us a buffer with
1253 * the new extent block (so we can pass that to
1254 * ocfs2_add_branch). */
1255 ret
= ocfs2_shift_tree_depth(osb
, handle
, inode
, et
,
1264 * Special case: we have room now if we shifted from
1265 * tree_depth 0, so no more work needs to be done.
1267 * We won't be calling add_branch, so pass
1268 * back *last_eb_bh as the new leaf. At depth
1269 * zero, it should always be null so there's
1270 * no reason to brelse.
1272 BUG_ON(*last_eb_bh
);
1279 /* call ocfs2_add_branch to add the final part of the tree with
1281 mlog(0, "add branch. bh = %p\n", bh
);
1282 ret
= ocfs2_add_branch(osb
, handle
, inode
, et
, bh
, last_eb_bh
,
1291 *final_depth
= depth
;
1297 * This function will discard the rightmost extent record.
1299 static void ocfs2_shift_records_right(struct ocfs2_extent_list
*el
)
1301 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
1302 int count
= le16_to_cpu(el
->l_count
);
1303 unsigned int num_bytes
;
1306 /* This will cause us to go off the end of our extent list. */
1307 BUG_ON(next_free
>= count
);
1309 num_bytes
= sizeof(struct ocfs2_extent_rec
) * next_free
;
1311 memmove(&el
->l_recs
[1], &el
->l_recs
[0], num_bytes
);
1314 static void ocfs2_rotate_leaf(struct ocfs2_extent_list
*el
,
1315 struct ocfs2_extent_rec
*insert_rec
)
1317 int i
, insert_index
, next_free
, has_empty
, num_bytes
;
1318 u32 insert_cpos
= le32_to_cpu(insert_rec
->e_cpos
);
1319 struct ocfs2_extent_rec
*rec
;
1321 next_free
= le16_to_cpu(el
->l_next_free_rec
);
1322 has_empty
= ocfs2_is_empty_extent(&el
->l_recs
[0]);
1326 /* The tree code before us didn't allow enough room in the leaf. */
1327 BUG_ON(el
->l_next_free_rec
== el
->l_count
&& !has_empty
);
1330 * The easiest way to approach this is to just remove the
1331 * empty extent and temporarily decrement next_free.
1335 * If next_free was 1 (only an empty extent), this
1336 * loop won't execute, which is fine. We still want
1337 * the decrement above to happen.
1339 for(i
= 0; i
< (next_free
- 1); i
++)
1340 el
->l_recs
[i
] = el
->l_recs
[i
+1];
1346 * Figure out what the new record index should be.
1348 for(i
= 0; i
< next_free
; i
++) {
1349 rec
= &el
->l_recs
[i
];
1351 if (insert_cpos
< le32_to_cpu(rec
->e_cpos
))
1356 mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1357 insert_cpos
, insert_index
, has_empty
, next_free
, le16_to_cpu(el
->l_count
));
1359 BUG_ON(insert_index
< 0);
1360 BUG_ON(insert_index
>= le16_to_cpu(el
->l_count
));
1361 BUG_ON(insert_index
> next_free
);
1364 * No need to memmove if we're just adding to the tail.
1366 if (insert_index
!= next_free
) {
1367 BUG_ON(next_free
>= le16_to_cpu(el
->l_count
));
1369 num_bytes
= next_free
- insert_index
;
1370 num_bytes
*= sizeof(struct ocfs2_extent_rec
);
1371 memmove(&el
->l_recs
[insert_index
+ 1],
1372 &el
->l_recs
[insert_index
],
1377 * Either we had an empty extent, and need to re-increment or
1378 * there was no empty extent on a non full rightmost leaf node,
1379 * in which case we still need to increment.
1382 el
->l_next_free_rec
= cpu_to_le16(next_free
);
1384 * Make sure none of the math above just messed up our tree.
1386 BUG_ON(le16_to_cpu(el
->l_next_free_rec
) > le16_to_cpu(el
->l_count
));
1388 el
->l_recs
[insert_index
] = *insert_rec
;
1392 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list
*el
)
1394 int size
, num_recs
= le16_to_cpu(el
->l_next_free_rec
);
1396 BUG_ON(num_recs
== 0);
1398 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
1400 size
= num_recs
* sizeof(struct ocfs2_extent_rec
);
1401 memmove(&el
->l_recs
[0], &el
->l_recs
[1], size
);
1402 memset(&el
->l_recs
[num_recs
], 0,
1403 sizeof(struct ocfs2_extent_rec
));
1404 el
->l_next_free_rec
= cpu_to_le16(num_recs
);
1409 * Create an empty extent record .
1411 * l_next_free_rec may be updated.
1413 * If an empty extent already exists do nothing.
1415 static void ocfs2_create_empty_extent(struct ocfs2_extent_list
*el
)
1417 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
1419 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
1424 if (ocfs2_is_empty_extent(&el
->l_recs
[0]))
1427 mlog_bug_on_msg(el
->l_count
== el
->l_next_free_rec
,
1428 "Asked to create an empty extent in a full list:\n"
1429 "count = %u, tree depth = %u",
1430 le16_to_cpu(el
->l_count
),
1431 le16_to_cpu(el
->l_tree_depth
));
1433 ocfs2_shift_records_right(el
);
1436 le16_add_cpu(&el
->l_next_free_rec
, 1);
1437 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
1441 * For a rotation which involves two leaf nodes, the "root node" is
1442 * the lowest level tree node which contains a path to both leafs. This
1443 * resulting set of information can be used to form a complete "subtree"
1445 * This function is passed two full paths from the dinode down to a
1446 * pair of adjacent leaves. It's task is to figure out which path
1447 * index contains the subtree root - this can be the root index itself
1448 * in a worst-case rotation.
1450 * The array index of the subtree root is passed back.
1452 static int ocfs2_find_subtree_root(struct inode
*inode
,
1453 struct ocfs2_path
*left
,
1454 struct ocfs2_path
*right
)
1459 * Check that the caller passed in two paths from the same tree.
1461 BUG_ON(path_root_bh(left
) != path_root_bh(right
));
1467 * The caller didn't pass two adjacent paths.
1469 mlog_bug_on_msg(i
> left
->p_tree_depth
,
1470 "Inode %lu, left depth %u, right depth %u\n"
1471 "left leaf blk %llu, right leaf blk %llu\n",
1472 inode
->i_ino
, left
->p_tree_depth
,
1473 right
->p_tree_depth
,
1474 (unsigned long long)path_leaf_bh(left
)->b_blocknr
,
1475 (unsigned long long)path_leaf_bh(right
)->b_blocknr
);
1476 } while (left
->p_node
[i
].bh
->b_blocknr
==
1477 right
->p_node
[i
].bh
->b_blocknr
);
1482 typedef void (path_insert_t
)(void *, struct buffer_head
*);
1485 * Traverse a btree path in search of cpos, starting at root_el.
1487 * This code can be called with a cpos larger than the tree, in which
1488 * case it will return the rightmost path.
1490 static int __ocfs2_find_path(struct inode
*inode
,
1491 struct ocfs2_extent_list
*root_el
, u32 cpos
,
1492 path_insert_t
*func
, void *data
)
1497 struct buffer_head
*bh
= NULL
;
1498 struct ocfs2_extent_block
*eb
;
1499 struct ocfs2_extent_list
*el
;
1500 struct ocfs2_extent_rec
*rec
;
1501 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1504 while (el
->l_tree_depth
) {
1505 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
1506 ocfs2_error(inode
->i_sb
,
1507 "Inode %llu has empty extent list at "
1509 (unsigned long long)oi
->ip_blkno
,
1510 le16_to_cpu(el
->l_tree_depth
));
1516 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
) - 1; i
++) {
1517 rec
= &el
->l_recs
[i
];
1520 * In the case that cpos is off the allocation
1521 * tree, this should just wind up returning the
1524 range
= le32_to_cpu(rec
->e_cpos
) +
1525 ocfs2_rec_clusters(el
, rec
);
1526 if (cpos
>= le32_to_cpu(rec
->e_cpos
) && cpos
< range
)
1530 blkno
= le64_to_cpu(el
->l_recs
[i
].e_blkno
);
1532 ocfs2_error(inode
->i_sb
,
1533 "Inode %llu has bad blkno in extent list "
1534 "at depth %u (index %d)\n",
1535 (unsigned long long)oi
->ip_blkno
,
1536 le16_to_cpu(el
->l_tree_depth
), i
);
1543 ret
= ocfs2_read_block(inode
, blkno
, &bh
);
1549 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
1551 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
1552 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
, eb
);
1557 if (le16_to_cpu(el
->l_next_free_rec
) >
1558 le16_to_cpu(el
->l_count
)) {
1559 ocfs2_error(inode
->i_sb
,
1560 "Inode %llu has bad count in extent list "
1561 "at block %llu (next free=%u, count=%u)\n",
1562 (unsigned long long)oi
->ip_blkno
,
1563 (unsigned long long)bh
->b_blocknr
,
1564 le16_to_cpu(el
->l_next_free_rec
),
1565 le16_to_cpu(el
->l_count
));
1576 * Catch any trailing bh that the loop didn't handle.
1584 * Given an initialized path (that is, it has a valid root extent
1585 * list), this function will traverse the btree in search of the path
1586 * which would contain cpos.
1588 * The path traveled is recorded in the path structure.
1590 * Note that this will not do any comparisons on leaf node extent
1591 * records, so it will work fine in the case that we just added a tree
1594 struct find_path_data
{
1596 struct ocfs2_path
*path
;
1598 static void find_path_ins(void *data
, struct buffer_head
*bh
)
1600 struct find_path_data
*fp
= data
;
1603 ocfs2_path_insert_eb(fp
->path
, fp
->index
, bh
);
1606 static int ocfs2_find_path(struct inode
*inode
, struct ocfs2_path
*path
,
1609 struct find_path_data data
;
1613 return __ocfs2_find_path(inode
, path_root_el(path
), cpos
,
1614 find_path_ins
, &data
);
1617 static void find_leaf_ins(void *data
, struct buffer_head
*bh
)
1619 struct ocfs2_extent_block
*eb
=(struct ocfs2_extent_block
*)bh
->b_data
;
1620 struct ocfs2_extent_list
*el
= &eb
->h_list
;
1621 struct buffer_head
**ret
= data
;
1623 /* We want to retain only the leaf block. */
1624 if (le16_to_cpu(el
->l_tree_depth
) == 0) {
1630 * Find the leaf block in the tree which would contain cpos. No
1631 * checking of the actual leaf is done.
1633 * Some paths want to call this instead of allocating a path structure
1634 * and calling ocfs2_find_path().
1636 * This function doesn't handle non btree extent lists.
1638 int ocfs2_find_leaf(struct inode
*inode
, struct ocfs2_extent_list
*root_el
,
1639 u32 cpos
, struct buffer_head
**leaf_bh
)
1642 struct buffer_head
*bh
= NULL
;
1644 ret
= __ocfs2_find_path(inode
, root_el
, cpos
, find_leaf_ins
, &bh
);
1656 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1658 * Basically, we've moved stuff around at the bottom of the tree and
1659 * we need to fix up the extent records above the changes to reflect
1662 * left_rec: the record on the left.
1663 * left_child_el: is the child list pointed to by left_rec
1664 * right_rec: the record to the right of left_rec
1665 * right_child_el: is the child list pointed to by right_rec
1667 * By definition, this only works on interior nodes.
1669 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec
*left_rec
,
1670 struct ocfs2_extent_list
*left_child_el
,
1671 struct ocfs2_extent_rec
*right_rec
,
1672 struct ocfs2_extent_list
*right_child_el
)
1674 u32 left_clusters
, right_end
;
1677 * Interior nodes never have holes. Their cpos is the cpos of
1678 * the leftmost record in their child list. Their cluster
1679 * count covers the full theoretical range of their child list
1680 * - the range between their cpos and the cpos of the record
1681 * immediately to their right.
1683 left_clusters
= le32_to_cpu(right_child_el
->l_recs
[0].e_cpos
);
1684 if (ocfs2_is_empty_extent(&right_child_el
->l_recs
[0])) {
1685 BUG_ON(le16_to_cpu(right_child_el
->l_next_free_rec
) <= 1);
1686 left_clusters
= le32_to_cpu(right_child_el
->l_recs
[1].e_cpos
);
1688 left_clusters
-= le32_to_cpu(left_rec
->e_cpos
);
1689 left_rec
->e_int_clusters
= cpu_to_le32(left_clusters
);
1692 * Calculate the rightmost cluster count boundary before
1693 * moving cpos - we will need to adjust clusters after
1694 * updating e_cpos to keep the same highest cluster count.
1696 right_end
= le32_to_cpu(right_rec
->e_cpos
);
1697 right_end
+= le32_to_cpu(right_rec
->e_int_clusters
);
1699 right_rec
->e_cpos
= left_rec
->e_cpos
;
1700 le32_add_cpu(&right_rec
->e_cpos
, left_clusters
);
1702 right_end
-= le32_to_cpu(right_rec
->e_cpos
);
1703 right_rec
->e_int_clusters
= cpu_to_le32(right_end
);
1707 * Adjust the adjacent root node records involved in a
1708 * rotation. left_el_blkno is passed in as a key so that we can easily
1709 * find it's index in the root list.
1711 static void ocfs2_adjust_root_records(struct ocfs2_extent_list
*root_el
,
1712 struct ocfs2_extent_list
*left_el
,
1713 struct ocfs2_extent_list
*right_el
,
1718 BUG_ON(le16_to_cpu(root_el
->l_tree_depth
) <=
1719 le16_to_cpu(left_el
->l_tree_depth
));
1721 for(i
= 0; i
< le16_to_cpu(root_el
->l_next_free_rec
) - 1; i
++) {
1722 if (le64_to_cpu(root_el
->l_recs
[i
].e_blkno
) == left_el_blkno
)
1727 * The path walking code should have never returned a root and
1728 * two paths which are not adjacent.
1730 BUG_ON(i
>= (le16_to_cpu(root_el
->l_next_free_rec
) - 1));
1732 ocfs2_adjust_adjacent_records(&root_el
->l_recs
[i
], left_el
,
1733 &root_el
->l_recs
[i
+ 1], right_el
);
1737 * We've changed a leaf block (in right_path) and need to reflect that
1738 * change back up the subtree.
1740 * This happens in multiple places:
1741 * - When we've moved an extent record from the left path leaf to the right
1742 * path leaf to make room for an empty extent in the left path leaf.
1743 * - When our insert into the right path leaf is at the leftmost edge
1744 * and requires an update of the path immediately to it's left. This
1745 * can occur at the end of some types of rotation and appending inserts.
1746 * - When we've adjusted the last extent record in the left path leaf and the
1747 * 1st extent record in the right path leaf during cross extent block merge.
1749 static void ocfs2_complete_edge_insert(struct inode
*inode
, handle_t
*handle
,
1750 struct ocfs2_path
*left_path
,
1751 struct ocfs2_path
*right_path
,
1755 struct ocfs2_extent_list
*el
, *left_el
, *right_el
;
1756 struct ocfs2_extent_rec
*left_rec
, *right_rec
;
1757 struct buffer_head
*root_bh
= left_path
->p_node
[subtree_index
].bh
;
1760 * Update the counts and position values within all the
1761 * interior nodes to reflect the leaf rotation we just did.
1763 * The root node is handled below the loop.
1765 * We begin the loop with right_el and left_el pointing to the
1766 * leaf lists and work our way up.
1768 * NOTE: within this loop, left_el and right_el always refer
1769 * to the *child* lists.
1771 left_el
= path_leaf_el(left_path
);
1772 right_el
= path_leaf_el(right_path
);
1773 for(i
= left_path
->p_tree_depth
- 1; i
> subtree_index
; i
--) {
1774 mlog(0, "Adjust records at index %u\n", i
);
1777 * One nice property of knowing that all of these
1778 * nodes are below the root is that we only deal with
1779 * the leftmost right node record and the rightmost
1782 el
= left_path
->p_node
[i
].el
;
1783 idx
= le16_to_cpu(left_el
->l_next_free_rec
) - 1;
1784 left_rec
= &el
->l_recs
[idx
];
1786 el
= right_path
->p_node
[i
].el
;
1787 right_rec
= &el
->l_recs
[0];
1789 ocfs2_adjust_adjacent_records(left_rec
, left_el
, right_rec
,
1792 ret
= ocfs2_journal_dirty(handle
, left_path
->p_node
[i
].bh
);
1796 ret
= ocfs2_journal_dirty(handle
, right_path
->p_node
[i
].bh
);
1801 * Setup our list pointers now so that the current
1802 * parents become children in the next iteration.
1804 left_el
= left_path
->p_node
[i
].el
;
1805 right_el
= right_path
->p_node
[i
].el
;
1809 * At the root node, adjust the two adjacent records which
1810 * begin our path to the leaves.
1813 el
= left_path
->p_node
[subtree_index
].el
;
1814 left_el
= left_path
->p_node
[subtree_index
+ 1].el
;
1815 right_el
= right_path
->p_node
[subtree_index
+ 1].el
;
1817 ocfs2_adjust_root_records(el
, left_el
, right_el
,
1818 left_path
->p_node
[subtree_index
+ 1].bh
->b_blocknr
);
1820 root_bh
= left_path
->p_node
[subtree_index
].bh
;
1822 ret
= ocfs2_journal_dirty(handle
, root_bh
);
1827 static int ocfs2_rotate_subtree_right(struct inode
*inode
,
1829 struct ocfs2_path
*left_path
,
1830 struct ocfs2_path
*right_path
,
1834 struct buffer_head
*right_leaf_bh
;
1835 struct buffer_head
*left_leaf_bh
= NULL
;
1836 struct buffer_head
*root_bh
;
1837 struct ocfs2_extent_list
*right_el
, *left_el
;
1838 struct ocfs2_extent_rec move_rec
;
1840 left_leaf_bh
= path_leaf_bh(left_path
);
1841 left_el
= path_leaf_el(left_path
);
1843 if (left_el
->l_next_free_rec
!= left_el
->l_count
) {
1844 ocfs2_error(inode
->i_sb
,
1845 "Inode %llu has non-full interior leaf node %llu"
1847 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1848 (unsigned long long)left_leaf_bh
->b_blocknr
,
1849 le16_to_cpu(left_el
->l_next_free_rec
));
1854 * This extent block may already have an empty record, so we
1855 * return early if so.
1857 if (ocfs2_is_empty_extent(&left_el
->l_recs
[0]))
1860 root_bh
= left_path
->p_node
[subtree_index
].bh
;
1861 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
1863 ret
= ocfs2_journal_access(handle
, inode
, root_bh
,
1864 OCFS2_JOURNAL_ACCESS_WRITE
);
1870 for(i
= subtree_index
+ 1; i
< path_num_items(right_path
); i
++) {
1871 ret
= ocfs2_journal_access(handle
, inode
,
1872 right_path
->p_node
[i
].bh
,
1873 OCFS2_JOURNAL_ACCESS_WRITE
);
1879 ret
= ocfs2_journal_access(handle
, inode
,
1880 left_path
->p_node
[i
].bh
,
1881 OCFS2_JOURNAL_ACCESS_WRITE
);
1888 right_leaf_bh
= path_leaf_bh(right_path
);
1889 right_el
= path_leaf_el(right_path
);
1891 /* This is a code error, not a disk corruption. */
1892 mlog_bug_on_msg(!right_el
->l_next_free_rec
, "Inode %llu: Rotate fails "
1893 "because rightmost leaf block %llu is empty\n",
1894 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1895 (unsigned long long)right_leaf_bh
->b_blocknr
);
1897 ocfs2_create_empty_extent(right_el
);
1899 ret
= ocfs2_journal_dirty(handle
, right_leaf_bh
);
1905 /* Do the copy now. */
1906 i
= le16_to_cpu(left_el
->l_next_free_rec
) - 1;
1907 move_rec
= left_el
->l_recs
[i
];
1908 right_el
->l_recs
[0] = move_rec
;
1911 * Clear out the record we just copied and shift everything
1912 * over, leaving an empty extent in the left leaf.
1914 * We temporarily subtract from next_free_rec so that the
1915 * shift will lose the tail record (which is now defunct).
1917 le16_add_cpu(&left_el
->l_next_free_rec
, -1);
1918 ocfs2_shift_records_right(left_el
);
1919 memset(&left_el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
1920 le16_add_cpu(&left_el
->l_next_free_rec
, 1);
1922 ret
= ocfs2_journal_dirty(handle
, left_leaf_bh
);
1928 ocfs2_complete_edge_insert(inode
, handle
, left_path
, right_path
,
1936 * Given a full path, determine what cpos value would return us a path
1937 * containing the leaf immediately to the left of the current one.
1939 * Will return zero if the path passed in is already the leftmost path.
1941 static int ocfs2_find_cpos_for_left_leaf(struct super_block
*sb
,
1942 struct ocfs2_path
*path
, u32
*cpos
)
1946 struct ocfs2_extent_list
*el
;
1948 BUG_ON(path
->p_tree_depth
== 0);
1952 blkno
= path_leaf_bh(path
)->b_blocknr
;
1954 /* Start at the tree node just above the leaf and work our way up. */
1955 i
= path
->p_tree_depth
- 1;
1957 el
= path
->p_node
[i
].el
;
1960 * Find the extent record just before the one in our
1963 for(j
= 0; j
< le16_to_cpu(el
->l_next_free_rec
); j
++) {
1964 if (le64_to_cpu(el
->l_recs
[j
].e_blkno
) == blkno
) {
1968 * We've determined that the
1969 * path specified is already
1970 * the leftmost one - return a
1976 * The leftmost record points to our
1977 * leaf - we need to travel up the
1983 *cpos
= le32_to_cpu(el
->l_recs
[j
- 1].e_cpos
);
1984 *cpos
= *cpos
+ ocfs2_rec_clusters(el
,
1985 &el
->l_recs
[j
- 1]);
1992 * If we got here, we never found a valid node where
1993 * the tree indicated one should be.
1996 "Invalid extent tree at extent block %llu\n",
1997 (unsigned long long)blkno
);
2002 blkno
= path
->p_node
[i
].bh
->b_blocknr
;
2011 * Extend the transaction by enough credits to complete the rotation,
2012 * and still leave at least the original number of credits allocated
2013 * to this transaction.
2015 static int ocfs2_extend_rotate_transaction(handle_t
*handle
, int subtree_depth
,
2017 struct ocfs2_path
*path
)
2019 int credits
= (path
->p_tree_depth
- subtree_depth
) * 2 + 1 + op_credits
;
2021 if (handle
->h_buffer_credits
< credits
)
2022 return ocfs2_extend_trans(handle
, credits
);
2028 * Trap the case where we're inserting into the theoretical range past
2029 * the _actual_ left leaf range. Otherwise, we'll rotate a record
2030 * whose cpos is less than ours into the right leaf.
2032 * It's only necessary to look at the rightmost record of the left
2033 * leaf because the logic that calls us should ensure that the
2034 * theoretical ranges in the path components above the leaves are
2037 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path
*left_path
,
2040 struct ocfs2_extent_list
*left_el
;
2041 struct ocfs2_extent_rec
*rec
;
2044 left_el
= path_leaf_el(left_path
);
2045 next_free
= le16_to_cpu(left_el
->l_next_free_rec
);
2046 rec
= &left_el
->l_recs
[next_free
- 1];
2048 if (insert_cpos
> le32_to_cpu(rec
->e_cpos
))
2053 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list
*el
, u32 cpos
)
2055 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
2057 struct ocfs2_extent_rec
*rec
;
2062 rec
= &el
->l_recs
[0];
2063 if (ocfs2_is_empty_extent(rec
)) {
2067 rec
= &el
->l_recs
[1];
2070 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
2071 if (cpos
>= le32_to_cpu(rec
->e_cpos
) && cpos
< range
)
2077 * Rotate all the records in a btree right one record, starting at insert_cpos.
2079 * The path to the rightmost leaf should be passed in.
2081 * The array is assumed to be large enough to hold an entire path (tree depth).
2083 * Upon succesful return from this function:
2085 * - The 'right_path' array will contain a path to the leaf block
2086 * whose range contains e_cpos.
2087 * - That leaf block will have a single empty extent in list index 0.
2088 * - In the case that the rotation requires a post-insert update,
2089 * *ret_left_path will contain a valid path which can be passed to
2090 * ocfs2_insert_path().
2092 static int ocfs2_rotate_tree_right(struct inode
*inode
,
2094 enum ocfs2_split_type split
,
2096 struct ocfs2_path
*right_path
,
2097 struct ocfs2_path
**ret_left_path
)
2099 int ret
, start
, orig_credits
= handle
->h_buffer_credits
;
2101 struct ocfs2_path
*left_path
= NULL
;
2103 *ret_left_path
= NULL
;
2105 left_path
= ocfs2_new_path(path_root_bh(right_path
),
2106 path_root_el(right_path
));
2113 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
, right_path
, &cpos
);
2119 mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos
, cpos
);
2122 * What we want to do here is:
2124 * 1) Start with the rightmost path.
2126 * 2) Determine a path to the leaf block directly to the left
2129 * 3) Determine the 'subtree root' - the lowest level tree node
2130 * which contains a path to both leaves.
2132 * 4) Rotate the subtree.
2134 * 5) Find the next subtree by considering the left path to be
2135 * the new right path.
2137 * The check at the top of this while loop also accepts
2138 * insert_cpos == cpos because cpos is only a _theoretical_
2139 * value to get us the left path - insert_cpos might very well
2140 * be filling that hole.
2142 * Stop at a cpos of '0' because we either started at the
2143 * leftmost branch (i.e., a tree with one branch and a
2144 * rotation inside of it), or we've gone as far as we can in
2145 * rotating subtrees.
2147 while (cpos
&& insert_cpos
<= cpos
) {
2148 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2151 ret
= ocfs2_find_path(inode
, left_path
, cpos
);
2157 mlog_bug_on_msg(path_leaf_bh(left_path
) ==
2158 path_leaf_bh(right_path
),
2159 "Inode %lu: error during insert of %u "
2160 "(left path cpos %u) results in two identical "
2161 "paths ending at %llu\n",
2162 inode
->i_ino
, insert_cpos
, cpos
,
2163 (unsigned long long)
2164 path_leaf_bh(left_path
)->b_blocknr
);
2166 if (split
== SPLIT_NONE
&&
2167 ocfs2_rotate_requires_path_adjustment(left_path
,
2171 * We've rotated the tree as much as we
2172 * should. The rest is up to
2173 * ocfs2_insert_path() to complete, after the
2174 * record insertion. We indicate this
2175 * situation by returning the left path.
2177 * The reason we don't adjust the records here
2178 * before the record insert is that an error
2179 * later might break the rule where a parent
2180 * record e_cpos will reflect the actual
2181 * e_cpos of the 1st nonempty record of the
2184 *ret_left_path
= left_path
;
2188 start
= ocfs2_find_subtree_root(inode
, left_path
, right_path
);
2190 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2192 (unsigned long long) right_path
->p_node
[start
].bh
->b_blocknr
,
2193 right_path
->p_tree_depth
);
2195 ret
= ocfs2_extend_rotate_transaction(handle
, start
,
2196 orig_credits
, right_path
);
2202 ret
= ocfs2_rotate_subtree_right(inode
, handle
, left_path
,
2209 if (split
!= SPLIT_NONE
&&
2210 ocfs2_leftmost_rec_contains(path_leaf_el(right_path
),
2213 * A rotate moves the rightmost left leaf
2214 * record over to the leftmost right leaf
2215 * slot. If we're doing an extent split
2216 * instead of a real insert, then we have to
2217 * check that the extent to be split wasn't
2218 * just moved over. If it was, then we can
2219 * exit here, passing left_path back -
2220 * ocfs2_split_extent() is smart enough to
2221 * search both leaves.
2223 *ret_left_path
= left_path
;
2228 * There is no need to re-read the next right path
2229 * as we know that it'll be our current left
2230 * path. Optimize by copying values instead.
2232 ocfs2_mv_path(right_path
, left_path
);
2234 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
, right_path
,
2243 ocfs2_free_path(left_path
);
2249 static void ocfs2_update_edge_lengths(struct inode
*inode
, handle_t
*handle
,
2250 struct ocfs2_path
*path
)
2253 struct ocfs2_extent_rec
*rec
;
2254 struct ocfs2_extent_list
*el
;
2255 struct ocfs2_extent_block
*eb
;
2258 /* Path should always be rightmost. */
2259 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
2260 BUG_ON(eb
->h_next_leaf_blk
!= 0ULL);
2263 BUG_ON(le16_to_cpu(el
->l_next_free_rec
) == 0);
2264 idx
= le16_to_cpu(el
->l_next_free_rec
) - 1;
2265 rec
= &el
->l_recs
[idx
];
2266 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
2268 for (i
= 0; i
< path
->p_tree_depth
; i
++) {
2269 el
= path
->p_node
[i
].el
;
2270 idx
= le16_to_cpu(el
->l_next_free_rec
) - 1;
2271 rec
= &el
->l_recs
[idx
];
2273 rec
->e_int_clusters
= cpu_to_le32(range
);
2274 le32_add_cpu(&rec
->e_int_clusters
, -le32_to_cpu(rec
->e_cpos
));
2276 ocfs2_journal_dirty(handle
, path
->p_node
[i
].bh
);
2280 static void ocfs2_unlink_path(struct inode
*inode
, handle_t
*handle
,
2281 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2282 struct ocfs2_path
*path
, int unlink_start
)
2285 struct ocfs2_extent_block
*eb
;
2286 struct ocfs2_extent_list
*el
;
2287 struct buffer_head
*bh
;
2289 for(i
= unlink_start
; i
< path_num_items(path
); i
++) {
2290 bh
= path
->p_node
[i
].bh
;
2292 eb
= (struct ocfs2_extent_block
*)bh
->b_data
;
2294 * Not all nodes might have had their final count
2295 * decremented by the caller - handle this here.
2298 if (le16_to_cpu(el
->l_next_free_rec
) > 1) {
2300 "Inode %llu, attempted to remove extent block "
2301 "%llu with %u records\n",
2302 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
2303 (unsigned long long)le64_to_cpu(eb
->h_blkno
),
2304 le16_to_cpu(el
->l_next_free_rec
));
2306 ocfs2_journal_dirty(handle
, bh
);
2307 ocfs2_remove_from_cache(inode
, bh
);
2311 el
->l_next_free_rec
= 0;
2312 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
2314 ocfs2_journal_dirty(handle
, bh
);
2316 ret
= ocfs2_cache_extent_block_free(dealloc
, eb
);
2320 ocfs2_remove_from_cache(inode
, bh
);
2324 static void ocfs2_unlink_subtree(struct inode
*inode
, handle_t
*handle
,
2325 struct ocfs2_path
*left_path
,
2326 struct ocfs2_path
*right_path
,
2328 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
2331 struct buffer_head
*root_bh
= left_path
->p_node
[subtree_index
].bh
;
2332 struct ocfs2_extent_list
*root_el
= left_path
->p_node
[subtree_index
].el
;
2333 struct ocfs2_extent_list
*el
;
2334 struct ocfs2_extent_block
*eb
;
2336 el
= path_leaf_el(left_path
);
2338 eb
= (struct ocfs2_extent_block
*)right_path
->p_node
[subtree_index
+ 1].bh
->b_data
;
2340 for(i
= 1; i
< le16_to_cpu(root_el
->l_next_free_rec
); i
++)
2341 if (root_el
->l_recs
[i
].e_blkno
== eb
->h_blkno
)
2344 BUG_ON(i
>= le16_to_cpu(root_el
->l_next_free_rec
));
2346 memset(&root_el
->l_recs
[i
], 0, sizeof(struct ocfs2_extent_rec
));
2347 le16_add_cpu(&root_el
->l_next_free_rec
, -1);
2349 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
2350 eb
->h_next_leaf_blk
= 0;
2352 ocfs2_journal_dirty(handle
, root_bh
);
2353 ocfs2_journal_dirty(handle
, path_leaf_bh(left_path
));
2355 ocfs2_unlink_path(inode
, handle
, dealloc
, right_path
,
2359 static int ocfs2_rotate_subtree_left(struct inode
*inode
, handle_t
*handle
,
2360 struct ocfs2_path
*left_path
,
2361 struct ocfs2_path
*right_path
,
2363 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2365 struct ocfs2_extent_tree
*et
)
2367 int ret
, i
, del_right_subtree
= 0, right_has_empty
= 0;
2368 struct buffer_head
*root_bh
, *et_root_bh
= path_root_bh(right_path
);
2369 struct ocfs2_extent_list
*right_leaf_el
, *left_leaf_el
;
2370 struct ocfs2_extent_block
*eb
;
2374 right_leaf_el
= path_leaf_el(right_path
);
2375 left_leaf_el
= path_leaf_el(left_path
);
2376 root_bh
= left_path
->p_node
[subtree_index
].bh
;
2377 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
2379 if (!ocfs2_is_empty_extent(&left_leaf_el
->l_recs
[0]))
2382 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(right_path
)->b_data
;
2383 if (ocfs2_is_empty_extent(&right_leaf_el
->l_recs
[0])) {
2385 * It's legal for us to proceed if the right leaf is
2386 * the rightmost one and it has an empty extent. There
2387 * are two cases to handle - whether the leaf will be
2388 * empty after removal or not. If the leaf isn't empty
2389 * then just remove the empty extent up front. The
2390 * next block will handle empty leaves by flagging
2393 * Non rightmost leaves will throw -EAGAIN and the
2394 * caller can manually move the subtree and retry.
2397 if (eb
->h_next_leaf_blk
!= 0ULL)
2400 if (le16_to_cpu(right_leaf_el
->l_next_free_rec
) > 1) {
2401 ret
= ocfs2_journal_access(handle
, inode
,
2402 path_leaf_bh(right_path
),
2403 OCFS2_JOURNAL_ACCESS_WRITE
);
2409 ocfs2_remove_empty_extent(right_leaf_el
);
2411 right_has_empty
= 1;
2414 if (eb
->h_next_leaf_blk
== 0ULL &&
2415 le16_to_cpu(right_leaf_el
->l_next_free_rec
) == 1) {
2417 * We have to update i_last_eb_blk during the meta
2420 ret
= ocfs2_journal_access(handle
, inode
, et_root_bh
,
2421 OCFS2_JOURNAL_ACCESS_WRITE
);
2427 del_right_subtree
= 1;
2431 * Getting here with an empty extent in the right path implies
2432 * that it's the rightmost path and will be deleted.
2434 BUG_ON(right_has_empty
&& !del_right_subtree
);
2436 ret
= ocfs2_journal_access(handle
, inode
, root_bh
,
2437 OCFS2_JOURNAL_ACCESS_WRITE
);
2443 for(i
= subtree_index
+ 1; i
< path_num_items(right_path
); i
++) {
2444 ret
= ocfs2_journal_access(handle
, inode
,
2445 right_path
->p_node
[i
].bh
,
2446 OCFS2_JOURNAL_ACCESS_WRITE
);
2452 ret
= ocfs2_journal_access(handle
, inode
,
2453 left_path
->p_node
[i
].bh
,
2454 OCFS2_JOURNAL_ACCESS_WRITE
);
2461 if (!right_has_empty
) {
2463 * Only do this if we're moving a real
2464 * record. Otherwise, the action is delayed until
2465 * after removal of the right path in which case we
2466 * can do a simple shift to remove the empty extent.
2468 ocfs2_rotate_leaf(left_leaf_el
, &right_leaf_el
->l_recs
[0]);
2469 memset(&right_leaf_el
->l_recs
[0], 0,
2470 sizeof(struct ocfs2_extent_rec
));
2472 if (eb
->h_next_leaf_blk
== 0ULL) {
2474 * Move recs over to get rid of empty extent, decrease
2475 * next_free. This is allowed to remove the last
2476 * extent in our leaf (setting l_next_free_rec to
2477 * zero) - the delete code below won't care.
2479 ocfs2_remove_empty_extent(right_leaf_el
);
2482 ret
= ocfs2_journal_dirty(handle
, path_leaf_bh(left_path
));
2485 ret
= ocfs2_journal_dirty(handle
, path_leaf_bh(right_path
));
2489 if (del_right_subtree
) {
2490 ocfs2_unlink_subtree(inode
, handle
, left_path
, right_path
,
2491 subtree_index
, dealloc
);
2492 ocfs2_update_edge_lengths(inode
, handle
, left_path
);
2494 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
2495 ocfs2_et_set_last_eb_blk(et
, le64_to_cpu(eb
->h_blkno
));
2498 * Removal of the extent in the left leaf was skipped
2499 * above so we could delete the right path
2502 if (right_has_empty
)
2503 ocfs2_remove_empty_extent(left_leaf_el
);
2505 ret
= ocfs2_journal_dirty(handle
, et_root_bh
);
2511 ocfs2_complete_edge_insert(inode
, handle
, left_path
, right_path
,
2519 * Given a full path, determine what cpos value would return us a path
2520 * containing the leaf immediately to the right of the current one.
2522 * Will return zero if the path passed in is already the rightmost path.
2524 * This looks similar, but is subtly different to
2525 * ocfs2_find_cpos_for_left_leaf().
2527 static int ocfs2_find_cpos_for_right_leaf(struct super_block
*sb
,
2528 struct ocfs2_path
*path
, u32
*cpos
)
2532 struct ocfs2_extent_list
*el
;
2536 if (path
->p_tree_depth
== 0)
2539 blkno
= path_leaf_bh(path
)->b_blocknr
;
2541 /* Start at the tree node just above the leaf and work our way up. */
2542 i
= path
->p_tree_depth
- 1;
2546 el
= path
->p_node
[i
].el
;
2549 * Find the extent record just after the one in our
2552 next_free
= le16_to_cpu(el
->l_next_free_rec
);
2553 for(j
= 0; j
< le16_to_cpu(el
->l_next_free_rec
); j
++) {
2554 if (le64_to_cpu(el
->l_recs
[j
].e_blkno
) == blkno
) {
2555 if (j
== (next_free
- 1)) {
2558 * We've determined that the
2559 * path specified is already
2560 * the rightmost one - return a
2566 * The rightmost record points to our
2567 * leaf - we need to travel up the
2573 *cpos
= le32_to_cpu(el
->l_recs
[j
+ 1].e_cpos
);
2579 * If we got here, we never found a valid node where
2580 * the tree indicated one should be.
2583 "Invalid extent tree at extent block %llu\n",
2584 (unsigned long long)blkno
);
2589 blkno
= path
->p_node
[i
].bh
->b_blocknr
;
2597 static int ocfs2_rotate_rightmost_leaf_left(struct inode
*inode
,
2599 struct buffer_head
*bh
,
2600 struct ocfs2_extent_list
*el
)
2604 if (!ocfs2_is_empty_extent(&el
->l_recs
[0]))
2607 ret
= ocfs2_journal_access(handle
, inode
, bh
,
2608 OCFS2_JOURNAL_ACCESS_WRITE
);
2614 ocfs2_remove_empty_extent(el
);
2616 ret
= ocfs2_journal_dirty(handle
, bh
);
2624 static int __ocfs2_rotate_tree_left(struct inode
*inode
,
2625 handle_t
*handle
, int orig_credits
,
2626 struct ocfs2_path
*path
,
2627 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2628 struct ocfs2_path
**empty_extent_path
,
2629 struct ocfs2_extent_tree
*et
)
2631 int ret
, subtree_root
, deleted
;
2633 struct ocfs2_path
*left_path
= NULL
;
2634 struct ocfs2_path
*right_path
= NULL
;
2636 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path
)->l_recs
[0])));
2638 *empty_extent_path
= NULL
;
2640 ret
= ocfs2_find_cpos_for_right_leaf(inode
->i_sb
, path
,
2647 left_path
= ocfs2_new_path(path_root_bh(path
),
2648 path_root_el(path
));
2655 ocfs2_cp_path(left_path
, path
);
2657 right_path
= ocfs2_new_path(path_root_bh(path
),
2658 path_root_el(path
));
2665 while (right_cpos
) {
2666 ret
= ocfs2_find_path(inode
, right_path
, right_cpos
);
2672 subtree_root
= ocfs2_find_subtree_root(inode
, left_path
,
2675 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2677 (unsigned long long)
2678 right_path
->p_node
[subtree_root
].bh
->b_blocknr
,
2679 right_path
->p_tree_depth
);
2681 ret
= ocfs2_extend_rotate_transaction(handle
, subtree_root
,
2682 orig_credits
, left_path
);
2689 * Caller might still want to make changes to the
2690 * tree root, so re-add it to the journal here.
2692 ret
= ocfs2_journal_access(handle
, inode
,
2693 path_root_bh(left_path
),
2694 OCFS2_JOURNAL_ACCESS_WRITE
);
2700 ret
= ocfs2_rotate_subtree_left(inode
, handle
, left_path
,
2701 right_path
, subtree_root
,
2702 dealloc
, &deleted
, et
);
2703 if (ret
== -EAGAIN
) {
2705 * The rotation has to temporarily stop due to
2706 * the right subtree having an empty
2707 * extent. Pass it back to the caller for a
2710 *empty_extent_path
= right_path
;
2720 * The subtree rotate might have removed records on
2721 * the rightmost edge. If so, then rotation is
2727 ocfs2_mv_path(left_path
, right_path
);
2729 ret
= ocfs2_find_cpos_for_right_leaf(inode
->i_sb
, left_path
,
2738 ocfs2_free_path(right_path
);
2739 ocfs2_free_path(left_path
);
2744 static int ocfs2_remove_rightmost_path(struct inode
*inode
, handle_t
*handle
,
2745 struct ocfs2_path
*path
,
2746 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2747 struct ocfs2_extent_tree
*et
)
2749 int ret
, subtree_index
;
2751 struct ocfs2_path
*left_path
= NULL
;
2752 struct ocfs2_extent_block
*eb
;
2753 struct ocfs2_extent_list
*el
;
2756 ret
= ocfs2_et_sanity_check(inode
, et
);
2760 * There's two ways we handle this depending on
2761 * whether path is the only existing one.
2763 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
2764 handle
->h_buffer_credits
,
2771 ret
= ocfs2_journal_access_path(inode
, handle
, path
);
2777 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
, path
, &cpos
);
2785 * We have a path to the left of this one - it needs
2788 left_path
= ocfs2_new_path(path_root_bh(path
),
2789 path_root_el(path
));
2796 ret
= ocfs2_find_path(inode
, left_path
, cpos
);
2802 ret
= ocfs2_journal_access_path(inode
, handle
, left_path
);
2808 subtree_index
= ocfs2_find_subtree_root(inode
, left_path
, path
);
2810 ocfs2_unlink_subtree(inode
, handle
, left_path
, path
,
2811 subtree_index
, dealloc
);
2812 ocfs2_update_edge_lengths(inode
, handle
, left_path
);
2814 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
2815 ocfs2_et_set_last_eb_blk(et
, le64_to_cpu(eb
->h_blkno
));
2818 * 'path' is also the leftmost path which
2819 * means it must be the only one. This gets
2820 * handled differently because we want to
2821 * revert the inode back to having extents
2824 ocfs2_unlink_path(inode
, handle
, dealloc
, path
, 1);
2826 el
= et
->et_root_el
;
2827 el
->l_tree_depth
= 0;
2828 el
->l_next_free_rec
= 0;
2829 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
2831 ocfs2_et_set_last_eb_blk(et
, 0);
2834 ocfs2_journal_dirty(handle
, path_root_bh(path
));
2837 ocfs2_free_path(left_path
);
2842 * Left rotation of btree records.
2844 * In many ways, this is (unsurprisingly) the opposite of right
2845 * rotation. We start at some non-rightmost path containing an empty
2846 * extent in the leaf block. The code works its way to the rightmost
2847 * path by rotating records to the left in every subtree.
2849 * This is used by any code which reduces the number of extent records
2850 * in a leaf. After removal, an empty record should be placed in the
2851 * leftmost list position.
2853 * This won't handle a length update of the rightmost path records if
2854 * the rightmost tree leaf record is removed so the caller is
2855 * responsible for detecting and correcting that.
2857 static int ocfs2_rotate_tree_left(struct inode
*inode
, handle_t
*handle
,
2858 struct ocfs2_path
*path
,
2859 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2860 struct ocfs2_extent_tree
*et
)
2862 int ret
, orig_credits
= handle
->h_buffer_credits
;
2863 struct ocfs2_path
*tmp_path
= NULL
, *restart_path
= NULL
;
2864 struct ocfs2_extent_block
*eb
;
2865 struct ocfs2_extent_list
*el
;
2867 el
= path_leaf_el(path
);
2868 if (!ocfs2_is_empty_extent(&el
->l_recs
[0]))
2871 if (path
->p_tree_depth
== 0) {
2872 rightmost_no_delete
:
2874 * Inline extents. This is trivially handled, so do
2877 ret
= ocfs2_rotate_rightmost_leaf_left(inode
, handle
,
2879 path_leaf_el(path
));
2886 * Handle rightmost branch now. There's several cases:
2887 * 1) simple rotation leaving records in there. That's trivial.
2888 * 2) rotation requiring a branch delete - there's no more
2889 * records left. Two cases of this:
2890 * a) There are branches to the left.
2891 * b) This is also the leftmost (the only) branch.
2893 * 1) is handled via ocfs2_rotate_rightmost_leaf_left()
2894 * 2a) we need the left branch so that we can update it with the unlink
2895 * 2b) we need to bring the inode back to inline extents.
2898 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
2900 if (eb
->h_next_leaf_blk
== 0) {
2902 * This gets a bit tricky if we're going to delete the
2903 * rightmost path. Get the other cases out of the way
2906 if (le16_to_cpu(el
->l_next_free_rec
) > 1)
2907 goto rightmost_no_delete
;
2909 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
2911 ocfs2_error(inode
->i_sb
,
2912 "Inode %llu has empty extent block at %llu",
2913 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
2914 (unsigned long long)le64_to_cpu(eb
->h_blkno
));
2919 * XXX: The caller can not trust "path" any more after
2920 * this as it will have been deleted. What do we do?
2922 * In theory the rotate-for-merge code will never get
2923 * here because it'll always ask for a rotate in a
2927 ret
= ocfs2_remove_rightmost_path(inode
, handle
, path
,
2935 * Now we can loop, remembering the path we get from -EAGAIN
2936 * and restarting from there.
2939 ret
= __ocfs2_rotate_tree_left(inode
, handle
, orig_credits
, path
,
2940 dealloc
, &restart_path
, et
);
2941 if (ret
&& ret
!= -EAGAIN
) {
2946 while (ret
== -EAGAIN
) {
2947 tmp_path
= restart_path
;
2948 restart_path
= NULL
;
2950 ret
= __ocfs2_rotate_tree_left(inode
, handle
, orig_credits
,
2953 if (ret
&& ret
!= -EAGAIN
) {
2958 ocfs2_free_path(tmp_path
);
2966 ocfs2_free_path(tmp_path
);
2967 ocfs2_free_path(restart_path
);
2971 static void ocfs2_cleanup_merge(struct ocfs2_extent_list
*el
,
2974 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[index
];
2977 if (rec
->e_leaf_clusters
== 0) {
2979 * We consumed all of the merged-from record. An empty
2980 * extent cannot exist anywhere but the 1st array
2981 * position, so move things over if the merged-from
2982 * record doesn't occupy that position.
2984 * This creates a new empty extent so the caller
2985 * should be smart enough to have removed any existing
2989 BUG_ON(ocfs2_is_empty_extent(&el
->l_recs
[0]));
2990 size
= index
* sizeof(struct ocfs2_extent_rec
);
2991 memmove(&el
->l_recs
[1], &el
->l_recs
[0], size
);
2995 * Always memset - the caller doesn't check whether it
2996 * created an empty extent, so there could be junk in
2999 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
3003 static int ocfs2_get_right_path(struct inode
*inode
,
3004 struct ocfs2_path
*left_path
,
3005 struct ocfs2_path
**ret_right_path
)
3009 struct ocfs2_path
*right_path
= NULL
;
3010 struct ocfs2_extent_list
*left_el
;
3012 *ret_right_path
= NULL
;
3014 /* This function shouldn't be called for non-trees. */
3015 BUG_ON(left_path
->p_tree_depth
== 0);
3017 left_el
= path_leaf_el(left_path
);
3018 BUG_ON(left_el
->l_next_free_rec
!= left_el
->l_count
);
3020 ret
= ocfs2_find_cpos_for_right_leaf(inode
->i_sb
, left_path
,
3027 /* This function shouldn't be called for the rightmost leaf. */
3028 BUG_ON(right_cpos
== 0);
3030 right_path
= ocfs2_new_path(path_root_bh(left_path
),
3031 path_root_el(left_path
));
3038 ret
= ocfs2_find_path(inode
, right_path
, right_cpos
);
3044 *ret_right_path
= right_path
;
3047 ocfs2_free_path(right_path
);
3052 * Remove split_rec clusters from the record at index and merge them
3053 * onto the beginning of the record "next" to it.
3054 * For index < l_count - 1, the next means the extent rec at index + 1.
3055 * For index == l_count - 1, the "next" means the 1st extent rec of the
3056 * next extent block.
3058 static int ocfs2_merge_rec_right(struct inode
*inode
,
3059 struct ocfs2_path
*left_path
,
3061 struct ocfs2_extent_rec
*split_rec
,
3064 int ret
, next_free
, i
;
3065 unsigned int split_clusters
= le16_to_cpu(split_rec
->e_leaf_clusters
);
3066 struct ocfs2_extent_rec
*left_rec
;
3067 struct ocfs2_extent_rec
*right_rec
;
3068 struct ocfs2_extent_list
*right_el
;
3069 struct ocfs2_path
*right_path
= NULL
;
3070 int subtree_index
= 0;
3071 struct ocfs2_extent_list
*el
= path_leaf_el(left_path
);
3072 struct buffer_head
*bh
= path_leaf_bh(left_path
);
3073 struct buffer_head
*root_bh
= NULL
;
3075 BUG_ON(index
>= le16_to_cpu(el
->l_next_free_rec
));
3076 left_rec
= &el
->l_recs
[index
];
3078 if (index
== le16_to_cpu(el
->l_next_free_rec
) - 1 &&
3079 le16_to_cpu(el
->l_next_free_rec
) == le16_to_cpu(el
->l_count
)) {
3080 /* we meet with a cross extent block merge. */
3081 ret
= ocfs2_get_right_path(inode
, left_path
, &right_path
);
3087 right_el
= path_leaf_el(right_path
);
3088 next_free
= le16_to_cpu(right_el
->l_next_free_rec
);
3089 BUG_ON(next_free
<= 0);
3090 right_rec
= &right_el
->l_recs
[0];
3091 if (ocfs2_is_empty_extent(right_rec
)) {
3092 BUG_ON(next_free
<= 1);
3093 right_rec
= &right_el
->l_recs
[1];
3096 BUG_ON(le32_to_cpu(left_rec
->e_cpos
) +
3097 le16_to_cpu(left_rec
->e_leaf_clusters
) !=
3098 le32_to_cpu(right_rec
->e_cpos
));
3100 subtree_index
= ocfs2_find_subtree_root(inode
,
3101 left_path
, right_path
);
3103 ret
= ocfs2_extend_rotate_transaction(handle
, subtree_index
,
3104 handle
->h_buffer_credits
,
3111 root_bh
= left_path
->p_node
[subtree_index
].bh
;
3112 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
3114 ret
= ocfs2_journal_access(handle
, inode
, root_bh
,
3115 OCFS2_JOURNAL_ACCESS_WRITE
);
3121 for (i
= subtree_index
+ 1;
3122 i
< path_num_items(right_path
); i
++) {
3123 ret
= ocfs2_journal_access(handle
, inode
,
3124 right_path
->p_node
[i
].bh
,
3125 OCFS2_JOURNAL_ACCESS_WRITE
);
3131 ret
= ocfs2_journal_access(handle
, inode
,
3132 left_path
->p_node
[i
].bh
,
3133 OCFS2_JOURNAL_ACCESS_WRITE
);
3141 BUG_ON(index
== le16_to_cpu(el
->l_next_free_rec
) - 1);
3142 right_rec
= &el
->l_recs
[index
+ 1];
3145 ret
= ocfs2_journal_access(handle
, inode
, bh
,
3146 OCFS2_JOURNAL_ACCESS_WRITE
);
3152 le16_add_cpu(&left_rec
->e_leaf_clusters
, -split_clusters
);
3154 le32_add_cpu(&right_rec
->e_cpos
, -split_clusters
);
3155 le64_add_cpu(&right_rec
->e_blkno
,
3156 -ocfs2_clusters_to_blocks(inode
->i_sb
, split_clusters
));
3157 le16_add_cpu(&right_rec
->e_leaf_clusters
, split_clusters
);
3159 ocfs2_cleanup_merge(el
, index
);
3161 ret
= ocfs2_journal_dirty(handle
, bh
);
3166 ret
= ocfs2_journal_dirty(handle
, path_leaf_bh(right_path
));
3170 ocfs2_complete_edge_insert(inode
, handle
, left_path
,
3171 right_path
, subtree_index
);
3175 ocfs2_free_path(right_path
);
3179 static int ocfs2_get_left_path(struct inode
*inode
,
3180 struct ocfs2_path
*right_path
,
3181 struct ocfs2_path
**ret_left_path
)
3185 struct ocfs2_path
*left_path
= NULL
;
3187 *ret_left_path
= NULL
;
3189 /* This function shouldn't be called for non-trees. */
3190 BUG_ON(right_path
->p_tree_depth
== 0);
3192 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
,
3193 right_path
, &left_cpos
);
3199 /* This function shouldn't be called for the leftmost leaf. */
3200 BUG_ON(left_cpos
== 0);
3202 left_path
= ocfs2_new_path(path_root_bh(right_path
),
3203 path_root_el(right_path
));
3210 ret
= ocfs2_find_path(inode
, left_path
, left_cpos
);
3216 *ret_left_path
= left_path
;
3219 ocfs2_free_path(left_path
);
3224 * Remove split_rec clusters from the record at index and merge them
3225 * onto the tail of the record "before" it.
3226 * For index > 0, the "before" means the extent rec at index - 1.
3228 * For index == 0, the "before" means the last record of the previous
3229 * extent block. And there is also a situation that we may need to
3230 * remove the rightmost leaf extent block in the right_path and change
3231 * the right path to indicate the new rightmost path.
3233 static int ocfs2_merge_rec_left(struct inode
*inode
,
3234 struct ocfs2_path
*right_path
,
3236 struct ocfs2_extent_rec
*split_rec
,
3237 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
3238 struct ocfs2_extent_tree
*et
,
3241 int ret
, i
, subtree_index
= 0, has_empty_extent
= 0;
3242 unsigned int split_clusters
= le16_to_cpu(split_rec
->e_leaf_clusters
);
3243 struct ocfs2_extent_rec
*left_rec
;
3244 struct ocfs2_extent_rec
*right_rec
;
3245 struct ocfs2_extent_list
*el
= path_leaf_el(right_path
);
3246 struct buffer_head
*bh
= path_leaf_bh(right_path
);
3247 struct buffer_head
*root_bh
= NULL
;
3248 struct ocfs2_path
*left_path
= NULL
;
3249 struct ocfs2_extent_list
*left_el
;
3253 right_rec
= &el
->l_recs
[index
];
3255 /* we meet with a cross extent block merge. */
3256 ret
= ocfs2_get_left_path(inode
, right_path
, &left_path
);
3262 left_el
= path_leaf_el(left_path
);
3263 BUG_ON(le16_to_cpu(left_el
->l_next_free_rec
) !=
3264 le16_to_cpu(left_el
->l_count
));
3266 left_rec
= &left_el
->l_recs
[
3267 le16_to_cpu(left_el
->l_next_free_rec
) - 1];
3268 BUG_ON(le32_to_cpu(left_rec
->e_cpos
) +
3269 le16_to_cpu(left_rec
->e_leaf_clusters
) !=
3270 le32_to_cpu(split_rec
->e_cpos
));
3272 subtree_index
= ocfs2_find_subtree_root(inode
,
3273 left_path
, right_path
);
3275 ret
= ocfs2_extend_rotate_transaction(handle
, subtree_index
,
3276 handle
->h_buffer_credits
,
3283 root_bh
= left_path
->p_node
[subtree_index
].bh
;
3284 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
3286 ret
= ocfs2_journal_access(handle
, inode
, root_bh
,
3287 OCFS2_JOURNAL_ACCESS_WRITE
);
3293 for (i
= subtree_index
+ 1;
3294 i
< path_num_items(right_path
); i
++) {
3295 ret
= ocfs2_journal_access(handle
, inode
,
3296 right_path
->p_node
[i
].bh
,
3297 OCFS2_JOURNAL_ACCESS_WRITE
);
3303 ret
= ocfs2_journal_access(handle
, inode
,
3304 left_path
->p_node
[i
].bh
,
3305 OCFS2_JOURNAL_ACCESS_WRITE
);
3312 left_rec
= &el
->l_recs
[index
- 1];
3313 if (ocfs2_is_empty_extent(&el
->l_recs
[0]))
3314 has_empty_extent
= 1;
3317 ret
= ocfs2_journal_access(handle
, inode
, bh
,
3318 OCFS2_JOURNAL_ACCESS_WRITE
);
3324 if (has_empty_extent
&& index
== 1) {
3326 * The easy case - we can just plop the record right in.
3328 *left_rec
= *split_rec
;
3330 has_empty_extent
= 0;
3332 le16_add_cpu(&left_rec
->e_leaf_clusters
, split_clusters
);
3334 le32_add_cpu(&right_rec
->e_cpos
, split_clusters
);
3335 le64_add_cpu(&right_rec
->e_blkno
,
3336 ocfs2_clusters_to_blocks(inode
->i_sb
, split_clusters
));
3337 le16_add_cpu(&right_rec
->e_leaf_clusters
, -split_clusters
);
3339 ocfs2_cleanup_merge(el
, index
);
3341 ret
= ocfs2_journal_dirty(handle
, bh
);
3346 ret
= ocfs2_journal_dirty(handle
, path_leaf_bh(left_path
));
3351 * In the situation that the right_rec is empty and the extent
3352 * block is empty also, ocfs2_complete_edge_insert can't handle
3353 * it and we need to delete the right extent block.
3355 if (le16_to_cpu(right_rec
->e_leaf_clusters
) == 0 &&
3356 le16_to_cpu(el
->l_next_free_rec
) == 1) {
3358 ret
= ocfs2_remove_rightmost_path(inode
, handle
,
3366 /* Now the rightmost extent block has been deleted.
3367 * So we use the new rightmost path.
3369 ocfs2_mv_path(right_path
, left_path
);
3372 ocfs2_complete_edge_insert(inode
, handle
, left_path
,
3373 right_path
, subtree_index
);
3377 ocfs2_free_path(left_path
);
3381 static int ocfs2_try_to_merge_extent(struct inode
*inode
,
3383 struct ocfs2_path
*path
,
3385 struct ocfs2_extent_rec
*split_rec
,
3386 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
3387 struct ocfs2_merge_ctxt
*ctxt
,
3388 struct ocfs2_extent_tree
*et
)
3392 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
3393 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[split_index
];
3395 BUG_ON(ctxt
->c_contig_type
== CONTIG_NONE
);
3397 if (ctxt
->c_split_covers_rec
&& ctxt
->c_has_empty_extent
) {
3399 * The merge code will need to create an empty
3400 * extent to take the place of the newly
3401 * emptied slot. Remove any pre-existing empty
3402 * extents - having more than one in a leaf is
3405 ret
= ocfs2_rotate_tree_left(inode
, handle
, path
,
3412 rec
= &el
->l_recs
[split_index
];
3415 if (ctxt
->c_contig_type
== CONTIG_LEFTRIGHT
) {
3417 * Left-right contig implies this.
3419 BUG_ON(!ctxt
->c_split_covers_rec
);
3422 * Since the leftright insert always covers the entire
3423 * extent, this call will delete the insert record
3424 * entirely, resulting in an empty extent record added to
3427 * Since the adding of an empty extent shifts
3428 * everything back to the right, there's no need to
3429 * update split_index here.
3431 * When the split_index is zero, we need to merge it to the
3432 * prevoius extent block. It is more efficient and easier
3433 * if we do merge_right first and merge_left later.
3435 ret
= ocfs2_merge_rec_right(inode
, path
,
3444 * We can only get this from logic error above.
3446 BUG_ON(!ocfs2_is_empty_extent(&el
->l_recs
[0]));
3448 /* The merge left us with an empty extent, remove it. */
3449 ret
= ocfs2_rotate_tree_left(inode
, handle
, path
,
3456 rec
= &el
->l_recs
[split_index
];
3459 * Note that we don't pass split_rec here on purpose -
3460 * we've merged it into the rec already.
3462 ret
= ocfs2_merge_rec_left(inode
, path
,
3472 ret
= ocfs2_rotate_tree_left(inode
, handle
, path
,
3475 * Error from this last rotate is not critical, so
3476 * print but don't bubble it up.
3483 * Merge a record to the left or right.
3485 * 'contig_type' is relative to the existing record,
3486 * so for example, if we're "right contig", it's to
3487 * the record on the left (hence the left merge).
3489 if (ctxt
->c_contig_type
== CONTIG_RIGHT
) {
3490 ret
= ocfs2_merge_rec_left(inode
,
3500 ret
= ocfs2_merge_rec_right(inode
,
3510 if (ctxt
->c_split_covers_rec
) {
3512 * The merge may have left an empty extent in
3513 * our leaf. Try to rotate it away.
3515 ret
= ocfs2_rotate_tree_left(inode
, handle
, path
,
3527 static void ocfs2_subtract_from_rec(struct super_block
*sb
,
3528 enum ocfs2_split_type split
,
3529 struct ocfs2_extent_rec
*rec
,
3530 struct ocfs2_extent_rec
*split_rec
)
3534 len_blocks
= ocfs2_clusters_to_blocks(sb
,
3535 le16_to_cpu(split_rec
->e_leaf_clusters
));
3537 if (split
== SPLIT_LEFT
) {
3539 * Region is on the left edge of the existing
3542 le32_add_cpu(&rec
->e_cpos
,
3543 le16_to_cpu(split_rec
->e_leaf_clusters
));
3544 le64_add_cpu(&rec
->e_blkno
, len_blocks
);
3545 le16_add_cpu(&rec
->e_leaf_clusters
,
3546 -le16_to_cpu(split_rec
->e_leaf_clusters
));
3549 * Region is on the right edge of the existing
3552 le16_add_cpu(&rec
->e_leaf_clusters
,
3553 -le16_to_cpu(split_rec
->e_leaf_clusters
));
3558 * Do the final bits of extent record insertion at the target leaf
3559 * list. If this leaf is part of an allocation tree, it is assumed
3560 * that the tree above has been prepared.
3562 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec
*insert_rec
,
3563 struct ocfs2_extent_list
*el
,
3564 struct ocfs2_insert_type
*insert
,
3565 struct inode
*inode
)
3567 int i
= insert
->ins_contig_index
;
3569 struct ocfs2_extent_rec
*rec
;
3571 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
3573 if (insert
->ins_split
!= SPLIT_NONE
) {
3574 i
= ocfs2_search_extent_list(el
, le32_to_cpu(insert_rec
->e_cpos
));
3576 rec
= &el
->l_recs
[i
];
3577 ocfs2_subtract_from_rec(inode
->i_sb
, insert
->ins_split
, rec
,
3583 * Contiguous insert - either left or right.
3585 if (insert
->ins_contig
!= CONTIG_NONE
) {
3586 rec
= &el
->l_recs
[i
];
3587 if (insert
->ins_contig
== CONTIG_LEFT
) {
3588 rec
->e_blkno
= insert_rec
->e_blkno
;
3589 rec
->e_cpos
= insert_rec
->e_cpos
;
3591 le16_add_cpu(&rec
->e_leaf_clusters
,
3592 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3597 * Handle insert into an empty leaf.
3599 if (le16_to_cpu(el
->l_next_free_rec
) == 0 ||
3600 ((le16_to_cpu(el
->l_next_free_rec
) == 1) &&
3601 ocfs2_is_empty_extent(&el
->l_recs
[0]))) {
3602 el
->l_recs
[0] = *insert_rec
;
3603 el
->l_next_free_rec
= cpu_to_le16(1);
3610 if (insert
->ins_appending
== APPEND_TAIL
) {
3611 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
3612 rec
= &el
->l_recs
[i
];
3613 range
= le32_to_cpu(rec
->e_cpos
)
3614 + le16_to_cpu(rec
->e_leaf_clusters
);
3615 BUG_ON(le32_to_cpu(insert_rec
->e_cpos
) < range
);
3617 mlog_bug_on_msg(le16_to_cpu(el
->l_next_free_rec
) >=
3618 le16_to_cpu(el
->l_count
),
3619 "inode %lu, depth %u, count %u, next free %u, "
3620 "rec.cpos %u, rec.clusters %u, "
3621 "insert.cpos %u, insert.clusters %u\n",
3623 le16_to_cpu(el
->l_tree_depth
),
3624 le16_to_cpu(el
->l_count
),
3625 le16_to_cpu(el
->l_next_free_rec
),
3626 le32_to_cpu(el
->l_recs
[i
].e_cpos
),
3627 le16_to_cpu(el
->l_recs
[i
].e_leaf_clusters
),
3628 le32_to_cpu(insert_rec
->e_cpos
),
3629 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3631 el
->l_recs
[i
] = *insert_rec
;
3632 le16_add_cpu(&el
->l_next_free_rec
, 1);
3638 * Ok, we have to rotate.
3640 * At this point, it is safe to assume that inserting into an
3641 * empty leaf and appending to a leaf have both been handled
3644 * This leaf needs to have space, either by the empty 1st
3645 * extent record, or by virtue of an l_next_rec < l_count.
3647 ocfs2_rotate_leaf(el
, insert_rec
);
3650 static void ocfs2_adjust_rightmost_records(struct inode
*inode
,
3652 struct ocfs2_path
*path
,
3653 struct ocfs2_extent_rec
*insert_rec
)
3655 int ret
, i
, next_free
;
3656 struct buffer_head
*bh
;
3657 struct ocfs2_extent_list
*el
;
3658 struct ocfs2_extent_rec
*rec
;
3661 * Update everything except the leaf block.
3663 for (i
= 0; i
< path
->p_tree_depth
; i
++) {
3664 bh
= path
->p_node
[i
].bh
;
3665 el
= path
->p_node
[i
].el
;
3667 next_free
= le16_to_cpu(el
->l_next_free_rec
);
3668 if (next_free
== 0) {
3669 ocfs2_error(inode
->i_sb
,
3670 "Dinode %llu has a bad extent list",
3671 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
3676 rec
= &el
->l_recs
[next_free
- 1];
3678 rec
->e_int_clusters
= insert_rec
->e_cpos
;
3679 le32_add_cpu(&rec
->e_int_clusters
,
3680 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3681 le32_add_cpu(&rec
->e_int_clusters
,
3682 -le32_to_cpu(rec
->e_cpos
));
3684 ret
= ocfs2_journal_dirty(handle
, bh
);
3691 static int ocfs2_append_rec_to_path(struct inode
*inode
, handle_t
*handle
,
3692 struct ocfs2_extent_rec
*insert_rec
,
3693 struct ocfs2_path
*right_path
,
3694 struct ocfs2_path
**ret_left_path
)
3697 struct ocfs2_extent_list
*el
;
3698 struct ocfs2_path
*left_path
= NULL
;
3700 *ret_left_path
= NULL
;
3703 * This shouldn't happen for non-trees. The extent rec cluster
3704 * count manipulation below only works for interior nodes.
3706 BUG_ON(right_path
->p_tree_depth
== 0);
3709 * If our appending insert is at the leftmost edge of a leaf,
3710 * then we might need to update the rightmost records of the
3713 el
= path_leaf_el(right_path
);
3714 next_free
= le16_to_cpu(el
->l_next_free_rec
);
3715 if (next_free
== 0 ||
3716 (next_free
== 1 && ocfs2_is_empty_extent(&el
->l_recs
[0]))) {
3719 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
, right_path
,
3726 mlog(0, "Append may need a left path update. cpos: %u, "
3727 "left_cpos: %u\n", le32_to_cpu(insert_rec
->e_cpos
),
3731 * No need to worry if the append is already in the
3735 left_path
= ocfs2_new_path(path_root_bh(right_path
),
3736 path_root_el(right_path
));
3743 ret
= ocfs2_find_path(inode
, left_path
, left_cpos
);
3750 * ocfs2_insert_path() will pass the left_path to the
3756 ret
= ocfs2_journal_access_path(inode
, handle
, right_path
);
3762 ocfs2_adjust_rightmost_records(inode
, handle
, right_path
, insert_rec
);
3764 *ret_left_path
= left_path
;
3768 ocfs2_free_path(left_path
);
3773 static void ocfs2_split_record(struct inode
*inode
,
3774 struct ocfs2_path
*left_path
,
3775 struct ocfs2_path
*right_path
,
3776 struct ocfs2_extent_rec
*split_rec
,
3777 enum ocfs2_split_type split
)
3780 u32 cpos
= le32_to_cpu(split_rec
->e_cpos
);
3781 struct ocfs2_extent_list
*left_el
= NULL
, *right_el
, *insert_el
, *el
;
3782 struct ocfs2_extent_rec
*rec
, *tmprec
;
3784 right_el
= path_leaf_el(right_path
);;
3786 left_el
= path_leaf_el(left_path
);
3789 insert_el
= right_el
;
3790 index
= ocfs2_search_extent_list(el
, cpos
);
3792 if (index
== 0 && left_path
) {
3793 BUG_ON(ocfs2_is_empty_extent(&el
->l_recs
[0]));
3796 * This typically means that the record
3797 * started in the left path but moved to the
3798 * right as a result of rotation. We either
3799 * move the existing record to the left, or we
3800 * do the later insert there.
3802 * In this case, the left path should always
3803 * exist as the rotate code will have passed
3804 * it back for a post-insert update.
3807 if (split
== SPLIT_LEFT
) {
3809 * It's a left split. Since we know
3810 * that the rotate code gave us an
3811 * empty extent in the left path, we
3812 * can just do the insert there.
3814 insert_el
= left_el
;
3817 * Right split - we have to move the
3818 * existing record over to the left
3819 * leaf. The insert will be into the
3820 * newly created empty extent in the
3823 tmprec
= &right_el
->l_recs
[index
];
3824 ocfs2_rotate_leaf(left_el
, tmprec
);
3827 memset(tmprec
, 0, sizeof(*tmprec
));
3828 index
= ocfs2_search_extent_list(left_el
, cpos
);
3829 BUG_ON(index
== -1);
3834 BUG_ON(!ocfs2_is_empty_extent(&left_el
->l_recs
[0]));
3836 * Left path is easy - we can just allow the insert to
3840 insert_el
= left_el
;
3841 index
= ocfs2_search_extent_list(el
, cpos
);
3842 BUG_ON(index
== -1);
3845 rec
= &el
->l_recs
[index
];
3846 ocfs2_subtract_from_rec(inode
->i_sb
, split
, rec
, split_rec
);
3847 ocfs2_rotate_leaf(insert_el
, split_rec
);
3851 * This function only does inserts on an allocation b-tree. For tree
3852 * depth = 0, ocfs2_insert_at_leaf() is called directly.
3854 * right_path is the path we want to do the actual insert
3855 * in. left_path should only be passed in if we need to update that
3856 * portion of the tree after an edge insert.
3858 static int ocfs2_insert_path(struct inode
*inode
,
3860 struct ocfs2_path
*left_path
,
3861 struct ocfs2_path
*right_path
,
3862 struct ocfs2_extent_rec
*insert_rec
,
3863 struct ocfs2_insert_type
*insert
)
3865 int ret
, subtree_index
;
3866 struct buffer_head
*leaf_bh
= path_leaf_bh(right_path
);
3869 int credits
= handle
->h_buffer_credits
;
3872 * There's a chance that left_path got passed back to
3873 * us without being accounted for in the
3874 * journal. Extend our transaction here to be sure we
3875 * can change those blocks.
3877 credits
+= left_path
->p_tree_depth
;
3879 ret
= ocfs2_extend_trans(handle
, credits
);
3885 ret
= ocfs2_journal_access_path(inode
, handle
, left_path
);
3893 * Pass both paths to the journal. The majority of inserts
3894 * will be touching all components anyway.
3896 ret
= ocfs2_journal_access_path(inode
, handle
, right_path
);
3902 if (insert
->ins_split
!= SPLIT_NONE
) {
3904 * We could call ocfs2_insert_at_leaf() for some types
3905 * of splits, but it's easier to just let one separate
3906 * function sort it all out.
3908 ocfs2_split_record(inode
, left_path
, right_path
,
3909 insert_rec
, insert
->ins_split
);
3912 * Split might have modified either leaf and we don't
3913 * have a guarantee that the later edge insert will
3914 * dirty this for us.
3917 ret
= ocfs2_journal_dirty(handle
,
3918 path_leaf_bh(left_path
));
3922 ocfs2_insert_at_leaf(insert_rec
, path_leaf_el(right_path
),
3925 ret
= ocfs2_journal_dirty(handle
, leaf_bh
);
3931 * The rotate code has indicated that we need to fix
3932 * up portions of the tree after the insert.
3934 * XXX: Should we extend the transaction here?
3936 subtree_index
= ocfs2_find_subtree_root(inode
, left_path
,
3938 ocfs2_complete_edge_insert(inode
, handle
, left_path
,
3939 right_path
, subtree_index
);
3947 static int ocfs2_do_insert_extent(struct inode
*inode
,
3949 struct ocfs2_extent_tree
*et
,
3950 struct ocfs2_extent_rec
*insert_rec
,
3951 struct ocfs2_insert_type
*type
)
3953 int ret
, rotate
= 0;
3955 struct ocfs2_path
*right_path
= NULL
;
3956 struct ocfs2_path
*left_path
= NULL
;
3957 struct ocfs2_extent_list
*el
;
3959 el
= et
->et_root_el
;
3961 ret
= ocfs2_journal_access(handle
, inode
, et
->et_root_bh
,
3962 OCFS2_JOURNAL_ACCESS_WRITE
);
3968 if (le16_to_cpu(el
->l_tree_depth
) == 0) {
3969 ocfs2_insert_at_leaf(insert_rec
, el
, type
, inode
);
3970 goto out_update_clusters
;
3973 right_path
= ocfs2_new_path(et
->et_root_bh
, et
->et_root_el
);
3981 * Determine the path to start with. Rotations need the
3982 * rightmost path, everything else can go directly to the
3985 cpos
= le32_to_cpu(insert_rec
->e_cpos
);
3986 if (type
->ins_appending
== APPEND_NONE
&&
3987 type
->ins_contig
== CONTIG_NONE
) {
3992 ret
= ocfs2_find_path(inode
, right_path
, cpos
);
3999 * Rotations and appends need special treatment - they modify
4000 * parts of the tree's above them.
4002 * Both might pass back a path immediate to the left of the
4003 * one being inserted to. This will be cause
4004 * ocfs2_insert_path() to modify the rightmost records of
4005 * left_path to account for an edge insert.
4007 * XXX: When modifying this code, keep in mind that an insert
4008 * can wind up skipping both of these two special cases...
4011 ret
= ocfs2_rotate_tree_right(inode
, handle
, type
->ins_split
,
4012 le32_to_cpu(insert_rec
->e_cpos
),
4013 right_path
, &left_path
);
4020 * ocfs2_rotate_tree_right() might have extended the
4021 * transaction without re-journaling our tree root.
4023 ret
= ocfs2_journal_access(handle
, inode
, et
->et_root_bh
,
4024 OCFS2_JOURNAL_ACCESS_WRITE
);
4029 } else if (type
->ins_appending
== APPEND_TAIL
4030 && type
->ins_contig
!= CONTIG_LEFT
) {
4031 ret
= ocfs2_append_rec_to_path(inode
, handle
, insert_rec
,
4032 right_path
, &left_path
);
4039 ret
= ocfs2_insert_path(inode
, handle
, left_path
, right_path
,
4046 out_update_clusters
:
4047 if (type
->ins_split
== SPLIT_NONE
)
4048 ocfs2_et_update_clusters(inode
, et
,
4049 le16_to_cpu(insert_rec
->e_leaf_clusters
));
4051 ret
= ocfs2_journal_dirty(handle
, et
->et_root_bh
);
4056 ocfs2_free_path(left_path
);
4057 ocfs2_free_path(right_path
);
4062 static enum ocfs2_contig_type
4063 ocfs2_figure_merge_contig_type(struct inode
*inode
, struct ocfs2_path
*path
,
4064 struct ocfs2_extent_list
*el
, int index
,
4065 struct ocfs2_extent_rec
*split_rec
)
4068 enum ocfs2_contig_type ret
= CONTIG_NONE
;
4069 u32 left_cpos
, right_cpos
;
4070 struct ocfs2_extent_rec
*rec
= NULL
;
4071 struct ocfs2_extent_list
*new_el
;
4072 struct ocfs2_path
*left_path
= NULL
, *right_path
= NULL
;
4073 struct buffer_head
*bh
;
4074 struct ocfs2_extent_block
*eb
;
4077 rec
= &el
->l_recs
[index
- 1];
4078 } else if (path
->p_tree_depth
> 0) {
4079 status
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
,
4084 if (left_cpos
!= 0) {
4085 left_path
= ocfs2_new_path(path_root_bh(path
),
4086 path_root_el(path
));
4090 status
= ocfs2_find_path(inode
, left_path
, left_cpos
);
4094 new_el
= path_leaf_el(left_path
);
4096 if (le16_to_cpu(new_el
->l_next_free_rec
) !=
4097 le16_to_cpu(new_el
->l_count
)) {
4098 bh
= path_leaf_bh(left_path
);
4099 eb
= (struct ocfs2_extent_block
*)bh
->b_data
;
4100 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
,
4104 rec
= &new_el
->l_recs
[
4105 le16_to_cpu(new_el
->l_next_free_rec
) - 1];
4110 * We're careful to check for an empty extent record here -
4111 * the merge code will know what to do if it sees one.
4114 if (index
== 1 && ocfs2_is_empty_extent(rec
)) {
4115 if (split_rec
->e_cpos
== el
->l_recs
[index
].e_cpos
)
4118 ret
= ocfs2_extent_contig(inode
, rec
, split_rec
);
4123 if (index
< (le16_to_cpu(el
->l_next_free_rec
) - 1))
4124 rec
= &el
->l_recs
[index
+ 1];
4125 else if (le16_to_cpu(el
->l_next_free_rec
) == le16_to_cpu(el
->l_count
) &&
4126 path
->p_tree_depth
> 0) {
4127 status
= ocfs2_find_cpos_for_right_leaf(inode
->i_sb
,
4132 if (right_cpos
== 0)
4135 right_path
= ocfs2_new_path(path_root_bh(path
),
4136 path_root_el(path
));
4140 status
= ocfs2_find_path(inode
, right_path
, right_cpos
);
4144 new_el
= path_leaf_el(right_path
);
4145 rec
= &new_el
->l_recs
[0];
4146 if (ocfs2_is_empty_extent(rec
)) {
4147 if (le16_to_cpu(new_el
->l_next_free_rec
) <= 1) {
4148 bh
= path_leaf_bh(right_path
);
4149 eb
= (struct ocfs2_extent_block
*)bh
->b_data
;
4150 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
,
4154 rec
= &new_el
->l_recs
[1];
4159 enum ocfs2_contig_type contig_type
;
4161 contig_type
= ocfs2_extent_contig(inode
, rec
, split_rec
);
4163 if (contig_type
== CONTIG_LEFT
&& ret
== CONTIG_RIGHT
)
4164 ret
= CONTIG_LEFTRIGHT
;
4165 else if (ret
== CONTIG_NONE
)
4171 ocfs2_free_path(left_path
);
4173 ocfs2_free_path(right_path
);
4178 static void ocfs2_figure_contig_type(struct inode
*inode
,
4179 struct ocfs2_insert_type
*insert
,
4180 struct ocfs2_extent_list
*el
,
4181 struct ocfs2_extent_rec
*insert_rec
,
4182 struct ocfs2_extent_tree
*et
)
4185 enum ocfs2_contig_type contig_type
= CONTIG_NONE
;
4187 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
4189 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
); i
++) {
4190 contig_type
= ocfs2_extent_contig(inode
, &el
->l_recs
[i
],
4192 if (contig_type
!= CONTIG_NONE
) {
4193 insert
->ins_contig_index
= i
;
4197 insert
->ins_contig
= contig_type
;
4199 if (insert
->ins_contig
!= CONTIG_NONE
) {
4200 struct ocfs2_extent_rec
*rec
=
4201 &el
->l_recs
[insert
->ins_contig_index
];
4202 unsigned int len
= le16_to_cpu(rec
->e_leaf_clusters
) +
4203 le16_to_cpu(insert_rec
->e_leaf_clusters
);
4206 * Caller might want us to limit the size of extents, don't
4207 * calculate contiguousness if we might exceed that limit.
4209 if (et
->et_max_leaf_clusters
&&
4210 (len
> et
->et_max_leaf_clusters
))
4211 insert
->ins_contig
= CONTIG_NONE
;
4216 * This should only be called against the righmost leaf extent list.
4218 * ocfs2_figure_appending_type() will figure out whether we'll have to
4219 * insert at the tail of the rightmost leaf.
4221 * This should also work against the root extent list for tree's with 0
4222 * depth. If we consider the root extent list to be the rightmost leaf node
4223 * then the logic here makes sense.
4225 static void ocfs2_figure_appending_type(struct ocfs2_insert_type
*insert
,
4226 struct ocfs2_extent_list
*el
,
4227 struct ocfs2_extent_rec
*insert_rec
)
4230 u32 cpos
= le32_to_cpu(insert_rec
->e_cpos
);
4231 struct ocfs2_extent_rec
*rec
;
4233 insert
->ins_appending
= APPEND_NONE
;
4235 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
4237 if (!el
->l_next_free_rec
)
4238 goto set_tail_append
;
4240 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
4241 /* Were all records empty? */
4242 if (le16_to_cpu(el
->l_next_free_rec
) == 1)
4243 goto set_tail_append
;
4246 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
4247 rec
= &el
->l_recs
[i
];
4250 (le32_to_cpu(rec
->e_cpos
) + le16_to_cpu(rec
->e_leaf_clusters
)))
4251 goto set_tail_append
;
4256 insert
->ins_appending
= APPEND_TAIL
;
4260 * Helper function called at the begining of an insert.
4262 * This computes a few things that are commonly used in the process of
4263 * inserting into the btree:
4264 * - Whether the new extent is contiguous with an existing one.
4265 * - The current tree depth.
4266 * - Whether the insert is an appending one.
4267 * - The total # of free records in the tree.
4269 * All of the information is stored on the ocfs2_insert_type
4272 static int ocfs2_figure_insert_type(struct inode
*inode
,
4273 struct ocfs2_extent_tree
*et
,
4274 struct buffer_head
**last_eb_bh
,
4275 struct ocfs2_extent_rec
*insert_rec
,
4277 struct ocfs2_insert_type
*insert
)
4280 struct ocfs2_extent_block
*eb
;
4281 struct ocfs2_extent_list
*el
;
4282 struct ocfs2_path
*path
= NULL
;
4283 struct buffer_head
*bh
= NULL
;
4285 insert
->ins_split
= SPLIT_NONE
;
4287 el
= et
->et_root_el
;
4288 insert
->ins_tree_depth
= le16_to_cpu(el
->l_tree_depth
);
4290 if (el
->l_tree_depth
) {
4292 * If we have tree depth, we read in the
4293 * rightmost extent block ahead of time as
4294 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4295 * may want it later.
4297 ret
= ocfs2_read_block(inode
, ocfs2_et_get_last_eb_blk(et
), &bh
);
4302 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
4307 * Unless we have a contiguous insert, we'll need to know if
4308 * there is room left in our allocation tree for another
4311 * XXX: This test is simplistic, we can search for empty
4312 * extent records too.
4314 *free_records
= le16_to_cpu(el
->l_count
) -
4315 le16_to_cpu(el
->l_next_free_rec
);
4317 if (!insert
->ins_tree_depth
) {
4318 ocfs2_figure_contig_type(inode
, insert
, el
, insert_rec
, et
);
4319 ocfs2_figure_appending_type(insert
, el
, insert_rec
);
4323 path
= ocfs2_new_path(et
->et_root_bh
, et
->et_root_el
);
4331 * In the case that we're inserting past what the tree
4332 * currently accounts for, ocfs2_find_path() will return for
4333 * us the rightmost tree path. This is accounted for below in
4334 * the appending code.
4336 ret
= ocfs2_find_path(inode
, path
, le32_to_cpu(insert_rec
->e_cpos
));
4342 el
= path_leaf_el(path
);
4345 * Now that we have the path, there's two things we want to determine:
4346 * 1) Contiguousness (also set contig_index if this is so)
4348 * 2) Are we doing an append? We can trivially break this up
4349 * into two types of appends: simple record append, or a
4350 * rotate inside the tail leaf.
4352 ocfs2_figure_contig_type(inode
, insert
, el
, insert_rec
, et
);
4355 * The insert code isn't quite ready to deal with all cases of
4356 * left contiguousness. Specifically, if it's an insert into
4357 * the 1st record in a leaf, it will require the adjustment of
4358 * cluster count on the last record of the path directly to it's
4359 * left. For now, just catch that case and fool the layers
4360 * above us. This works just fine for tree_depth == 0, which
4361 * is why we allow that above.
4363 if (insert
->ins_contig
== CONTIG_LEFT
&&
4364 insert
->ins_contig_index
== 0)
4365 insert
->ins_contig
= CONTIG_NONE
;
4368 * Ok, so we can simply compare against last_eb to figure out
4369 * whether the path doesn't exist. This will only happen in
4370 * the case that we're doing a tail append, so maybe we can
4371 * take advantage of that information somehow.
4373 if (ocfs2_et_get_last_eb_blk(et
) ==
4374 path_leaf_bh(path
)->b_blocknr
) {
4376 * Ok, ocfs2_find_path() returned us the rightmost
4377 * tree path. This might be an appending insert. There are
4379 * 1) We're doing a true append at the tail:
4380 * -This might even be off the end of the leaf
4381 * 2) We're "appending" by rotating in the tail
4383 ocfs2_figure_appending_type(insert
, el
, insert_rec
);
4387 ocfs2_free_path(path
);
4397 * Insert an extent into an inode btree.
4399 * The caller needs to update fe->i_clusters
4401 int ocfs2_insert_extent(struct ocfs2_super
*osb
,
4403 struct inode
*inode
,
4404 struct ocfs2_extent_tree
*et
,
4409 struct ocfs2_alloc_context
*meta_ac
)
4412 int uninitialized_var(free_records
);
4413 struct buffer_head
*last_eb_bh
= NULL
;
4414 struct ocfs2_insert_type insert
= {0, };
4415 struct ocfs2_extent_rec rec
;
4417 mlog(0, "add %u clusters at position %u to inode %llu\n",
4418 new_clusters
, cpos
, (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
4420 memset(&rec
, 0, sizeof(rec
));
4421 rec
.e_cpos
= cpu_to_le32(cpos
);
4422 rec
.e_blkno
= cpu_to_le64(start_blk
);
4423 rec
.e_leaf_clusters
= cpu_to_le16(new_clusters
);
4424 rec
.e_flags
= flags
;
4425 status
= ocfs2_et_insert_check(inode
, et
, &rec
);
4431 status
= ocfs2_figure_insert_type(inode
, et
, &last_eb_bh
, &rec
,
4432 &free_records
, &insert
);
4438 mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4439 "Insert.contig_index: %d, Insert.free_records: %d, "
4440 "Insert.tree_depth: %d\n",
4441 insert
.ins_appending
, insert
.ins_contig
, insert
.ins_contig_index
,
4442 free_records
, insert
.ins_tree_depth
);
4444 if (insert
.ins_contig
== CONTIG_NONE
&& free_records
== 0) {
4445 status
= ocfs2_grow_tree(inode
, handle
, et
,
4446 &insert
.ins_tree_depth
, &last_eb_bh
,
4454 /* Finally, we can add clusters. This might rotate the tree for us. */
4455 status
= ocfs2_do_insert_extent(inode
, handle
, et
, &rec
, &insert
);
4458 else if (et
->et_ops
== &ocfs2_dinode_et_ops
)
4459 ocfs2_extent_map_insert_rec(inode
, &rec
);
4469 * Allcate and add clusters into the extent b-tree.
4470 * The new clusters(clusters_to_add) will be inserted at logical_offset.
4471 * The extent b-tree's root is specified by et, and
4472 * it is not limited to the file storage. Any extent tree can use this
4473 * function if it implements the proper ocfs2_extent_tree.
4475 int ocfs2_add_clusters_in_btree(struct ocfs2_super
*osb
,
4476 struct inode
*inode
,
4477 u32
*logical_offset
,
4478 u32 clusters_to_add
,
4480 struct ocfs2_extent_tree
*et
,
4482 struct ocfs2_alloc_context
*data_ac
,
4483 struct ocfs2_alloc_context
*meta_ac
,
4484 enum ocfs2_alloc_restarted
*reason_ret
)
4488 enum ocfs2_alloc_restarted reason
= RESTART_NONE
;
4489 u32 bit_off
, num_bits
;
4493 BUG_ON(!clusters_to_add
);
4496 flags
= OCFS2_EXT_UNWRITTEN
;
4498 free_extents
= ocfs2_num_free_extents(osb
, inode
, et
);
4499 if (free_extents
< 0) {
4500 status
= free_extents
;
4505 /* there are two cases which could cause us to EAGAIN in the
4506 * we-need-more-metadata case:
4507 * 1) we haven't reserved *any*
4508 * 2) we are so fragmented, we've needed to add metadata too
4510 if (!free_extents
&& !meta_ac
) {
4511 mlog(0, "we haven't reserved any metadata!\n");
4513 reason
= RESTART_META
;
4515 } else if ((!free_extents
)
4516 && (ocfs2_alloc_context_bits_left(meta_ac
)
4517 < ocfs2_extend_meta_needed(et
->et_root_el
))) {
4518 mlog(0, "filesystem is really fragmented...\n");
4520 reason
= RESTART_META
;
4524 status
= __ocfs2_claim_clusters(osb
, handle
, data_ac
, 1,
4525 clusters_to_add
, &bit_off
, &num_bits
);
4527 if (status
!= -ENOSPC
)
4532 BUG_ON(num_bits
> clusters_to_add
);
4534 /* reserve our write early -- insert_extent may update the inode */
4535 status
= ocfs2_journal_access(handle
, inode
, et
->et_root_bh
,
4536 OCFS2_JOURNAL_ACCESS_WRITE
);
4542 block
= ocfs2_clusters_to_blocks(osb
->sb
, bit_off
);
4543 mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
4544 num_bits
, bit_off
, (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
4545 status
= ocfs2_insert_extent(osb
, handle
, inode
, et
,
4546 *logical_offset
, block
,
4547 num_bits
, flags
, meta_ac
);
4553 status
= ocfs2_journal_dirty(handle
, et
->et_root_bh
);
4559 clusters_to_add
-= num_bits
;
4560 *logical_offset
+= num_bits
;
4562 if (clusters_to_add
) {
4563 mlog(0, "need to alloc once more, wanted = %u\n",
4566 reason
= RESTART_TRANS
;
4572 *reason_ret
= reason
;
4576 static void ocfs2_make_right_split_rec(struct super_block
*sb
,
4577 struct ocfs2_extent_rec
*split_rec
,
4579 struct ocfs2_extent_rec
*rec
)
4581 u32 rec_cpos
= le32_to_cpu(rec
->e_cpos
);
4582 u32 rec_range
= rec_cpos
+ le16_to_cpu(rec
->e_leaf_clusters
);
4584 memset(split_rec
, 0, sizeof(struct ocfs2_extent_rec
));
4586 split_rec
->e_cpos
= cpu_to_le32(cpos
);
4587 split_rec
->e_leaf_clusters
= cpu_to_le16(rec_range
- cpos
);
4589 split_rec
->e_blkno
= rec
->e_blkno
;
4590 le64_add_cpu(&split_rec
->e_blkno
,
4591 ocfs2_clusters_to_blocks(sb
, cpos
- rec_cpos
));
4593 split_rec
->e_flags
= rec
->e_flags
;
4596 static int ocfs2_split_and_insert(struct inode
*inode
,
4598 struct ocfs2_path
*path
,
4599 struct ocfs2_extent_tree
*et
,
4600 struct buffer_head
**last_eb_bh
,
4602 struct ocfs2_extent_rec
*orig_split_rec
,
4603 struct ocfs2_alloc_context
*meta_ac
)
4606 unsigned int insert_range
, rec_range
, do_leftright
= 0;
4607 struct ocfs2_extent_rec tmprec
;
4608 struct ocfs2_extent_list
*rightmost_el
;
4609 struct ocfs2_extent_rec rec
;
4610 struct ocfs2_extent_rec split_rec
= *orig_split_rec
;
4611 struct ocfs2_insert_type insert
;
4612 struct ocfs2_extent_block
*eb
;
4616 * Store a copy of the record on the stack - it might move
4617 * around as the tree is manipulated below.
4619 rec
= path_leaf_el(path
)->l_recs
[split_index
];
4621 rightmost_el
= et
->et_root_el
;
4623 depth
= le16_to_cpu(rightmost_el
->l_tree_depth
);
4625 BUG_ON(!(*last_eb_bh
));
4626 eb
= (struct ocfs2_extent_block
*) (*last_eb_bh
)->b_data
;
4627 rightmost_el
= &eb
->h_list
;
4630 if (le16_to_cpu(rightmost_el
->l_next_free_rec
) ==
4631 le16_to_cpu(rightmost_el
->l_count
)) {
4632 ret
= ocfs2_grow_tree(inode
, handle
, et
,
4633 &depth
, last_eb_bh
, meta_ac
);
4640 memset(&insert
, 0, sizeof(struct ocfs2_insert_type
));
4641 insert
.ins_appending
= APPEND_NONE
;
4642 insert
.ins_contig
= CONTIG_NONE
;
4643 insert
.ins_tree_depth
= depth
;
4645 insert_range
= le32_to_cpu(split_rec
.e_cpos
) +
4646 le16_to_cpu(split_rec
.e_leaf_clusters
);
4647 rec_range
= le32_to_cpu(rec
.e_cpos
) +
4648 le16_to_cpu(rec
.e_leaf_clusters
);
4650 if (split_rec
.e_cpos
== rec
.e_cpos
) {
4651 insert
.ins_split
= SPLIT_LEFT
;
4652 } else if (insert_range
== rec_range
) {
4653 insert
.ins_split
= SPLIT_RIGHT
;
4656 * Left/right split. We fake this as a right split
4657 * first and then make a second pass as a left split.
4659 insert
.ins_split
= SPLIT_RIGHT
;
4661 ocfs2_make_right_split_rec(inode
->i_sb
, &tmprec
, insert_range
,
4666 BUG_ON(do_leftright
);
4670 ret
= ocfs2_do_insert_extent(inode
, handle
, et
, &split_rec
, &insert
);
4676 if (do_leftright
== 1) {
4678 struct ocfs2_extent_list
*el
;
4681 split_rec
= *orig_split_rec
;
4683 ocfs2_reinit_path(path
, 1);
4685 cpos
= le32_to_cpu(split_rec
.e_cpos
);
4686 ret
= ocfs2_find_path(inode
, path
, cpos
);
4692 el
= path_leaf_el(path
);
4693 split_index
= ocfs2_search_extent_list(el
, cpos
);
4702 * Mark part or all of the extent record at split_index in the leaf
4703 * pointed to by path as written. This removes the unwritten
4706 * Care is taken to handle contiguousness so as to not grow the tree.
4708 * meta_ac is not strictly necessary - we only truly need it if growth
4709 * of the tree is required. All other cases will degrade into a less
4710 * optimal tree layout.
4712 * last_eb_bh should be the rightmost leaf block for any extent
4713 * btree. Since a split may grow the tree or a merge might shrink it,
4714 * the caller cannot trust the contents of that buffer after this call.
4716 * This code is optimized for readability - several passes might be
4717 * made over certain portions of the tree. All of those blocks will
4718 * have been brought into cache (and pinned via the journal), so the
4719 * extra overhead is not expressed in terms of disk reads.
4721 static int __ocfs2_mark_extent_written(struct inode
*inode
,
4722 struct ocfs2_extent_tree
*et
,
4724 struct ocfs2_path
*path
,
4726 struct ocfs2_extent_rec
*split_rec
,
4727 struct ocfs2_alloc_context
*meta_ac
,
4728 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
4731 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
4732 struct buffer_head
*last_eb_bh
= NULL
;
4733 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[split_index
];
4734 struct ocfs2_merge_ctxt ctxt
;
4735 struct ocfs2_extent_list
*rightmost_el
;
4737 if (!(rec
->e_flags
& OCFS2_EXT_UNWRITTEN
)) {
4743 if (le32_to_cpu(rec
->e_cpos
) > le32_to_cpu(split_rec
->e_cpos
) ||
4744 ((le32_to_cpu(rec
->e_cpos
) + le16_to_cpu(rec
->e_leaf_clusters
)) <
4745 (le32_to_cpu(split_rec
->e_cpos
) + le16_to_cpu(split_rec
->e_leaf_clusters
)))) {
4751 ctxt
.c_contig_type
= ocfs2_figure_merge_contig_type(inode
, path
, el
,
4756 * The core merge / split code wants to know how much room is
4757 * left in this inodes allocation tree, so we pass the
4758 * rightmost extent list.
4760 if (path
->p_tree_depth
) {
4761 struct ocfs2_extent_block
*eb
;
4763 ret
= ocfs2_read_block(inode
, ocfs2_et_get_last_eb_blk(et
),
4770 eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
4771 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
4772 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
, eb
);
4777 rightmost_el
= &eb
->h_list
;
4779 rightmost_el
= path_root_el(path
);
4781 if (rec
->e_cpos
== split_rec
->e_cpos
&&
4782 rec
->e_leaf_clusters
== split_rec
->e_leaf_clusters
)
4783 ctxt
.c_split_covers_rec
= 1;
4785 ctxt
.c_split_covers_rec
= 0;
4787 ctxt
.c_has_empty_extent
= ocfs2_is_empty_extent(&el
->l_recs
[0]);
4789 mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
4790 split_index
, ctxt
.c_contig_type
, ctxt
.c_has_empty_extent
,
4791 ctxt
.c_split_covers_rec
);
4793 if (ctxt
.c_contig_type
== CONTIG_NONE
) {
4794 if (ctxt
.c_split_covers_rec
)
4795 el
->l_recs
[split_index
] = *split_rec
;
4797 ret
= ocfs2_split_and_insert(inode
, handle
, path
, et
,
4798 &last_eb_bh
, split_index
,
4799 split_rec
, meta_ac
);
4803 ret
= ocfs2_try_to_merge_extent(inode
, handle
, path
,
4804 split_index
, split_rec
,
4805 dealloc
, &ctxt
, et
);
4816 * Mark the already-existing extent at cpos as written for len clusters.
4818 * If the existing extent is larger than the request, initiate a
4819 * split. An attempt will be made at merging with adjacent extents.
4821 * The caller is responsible for passing down meta_ac if we'll need it.
4823 int ocfs2_mark_extent_written(struct inode
*inode
,
4824 struct ocfs2_extent_tree
*et
,
4825 handle_t
*handle
, u32 cpos
, u32 len
, u32 phys
,
4826 struct ocfs2_alloc_context
*meta_ac
,
4827 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
4830 u64 start_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, phys
);
4831 struct ocfs2_extent_rec split_rec
;
4832 struct ocfs2_path
*left_path
= NULL
;
4833 struct ocfs2_extent_list
*el
;
4835 mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
4836 inode
->i_ino
, cpos
, len
, phys
, (unsigned long long)start_blkno
);
4838 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode
->i_sb
))) {
4839 ocfs2_error(inode
->i_sb
, "Inode %llu has unwritten extents "
4840 "that are being written to, but the feature bit "
4841 "is not set in the super block.",
4842 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
4848 * XXX: This should be fixed up so that we just re-insert the
4849 * next extent records.
4851 * XXX: This is a hack on the extent tree, maybe it should be
4854 if (et
->et_ops
== &ocfs2_dinode_et_ops
)
4855 ocfs2_extent_map_trunc(inode
, 0);
4857 left_path
= ocfs2_new_path(et
->et_root_bh
, et
->et_root_el
);
4864 ret
= ocfs2_find_path(inode
, left_path
, cpos
);
4869 el
= path_leaf_el(left_path
);
4871 index
= ocfs2_search_extent_list(el
, cpos
);
4872 if (index
== -1 || index
>= le16_to_cpu(el
->l_next_free_rec
)) {
4873 ocfs2_error(inode
->i_sb
,
4874 "Inode %llu has an extent at cpos %u which can no "
4875 "longer be found.\n",
4876 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, cpos
);
4881 memset(&split_rec
, 0, sizeof(struct ocfs2_extent_rec
));
4882 split_rec
.e_cpos
= cpu_to_le32(cpos
);
4883 split_rec
.e_leaf_clusters
= cpu_to_le16(len
);
4884 split_rec
.e_blkno
= cpu_to_le64(start_blkno
);
4885 split_rec
.e_flags
= path_leaf_el(left_path
)->l_recs
[index
].e_flags
;
4886 split_rec
.e_flags
&= ~OCFS2_EXT_UNWRITTEN
;
4888 ret
= __ocfs2_mark_extent_written(inode
, et
, handle
, left_path
,
4889 index
, &split_rec
, meta_ac
,
4895 ocfs2_free_path(left_path
);
4899 static int ocfs2_split_tree(struct inode
*inode
, struct ocfs2_extent_tree
*et
,
4900 handle_t
*handle
, struct ocfs2_path
*path
,
4901 int index
, u32 new_range
,
4902 struct ocfs2_alloc_context
*meta_ac
)
4904 int ret
, depth
, credits
= handle
->h_buffer_credits
;
4905 struct buffer_head
*last_eb_bh
= NULL
;
4906 struct ocfs2_extent_block
*eb
;
4907 struct ocfs2_extent_list
*rightmost_el
, *el
;
4908 struct ocfs2_extent_rec split_rec
;
4909 struct ocfs2_extent_rec
*rec
;
4910 struct ocfs2_insert_type insert
;
4913 * Setup the record to split before we grow the tree.
4915 el
= path_leaf_el(path
);
4916 rec
= &el
->l_recs
[index
];
4917 ocfs2_make_right_split_rec(inode
->i_sb
, &split_rec
, new_range
, rec
);
4919 depth
= path
->p_tree_depth
;
4921 ret
= ocfs2_read_block(inode
, ocfs2_et_get_last_eb_blk(et
),
4928 eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
4929 rightmost_el
= &eb
->h_list
;
4931 rightmost_el
= path_leaf_el(path
);
4933 credits
+= path
->p_tree_depth
+
4934 ocfs2_extend_meta_needed(et
->et_root_el
);
4935 ret
= ocfs2_extend_trans(handle
, credits
);
4941 if (le16_to_cpu(rightmost_el
->l_next_free_rec
) ==
4942 le16_to_cpu(rightmost_el
->l_count
)) {
4943 ret
= ocfs2_grow_tree(inode
, handle
, et
, &depth
, &last_eb_bh
,
4951 memset(&insert
, 0, sizeof(struct ocfs2_insert_type
));
4952 insert
.ins_appending
= APPEND_NONE
;
4953 insert
.ins_contig
= CONTIG_NONE
;
4954 insert
.ins_split
= SPLIT_RIGHT
;
4955 insert
.ins_tree_depth
= depth
;
4957 ret
= ocfs2_do_insert_extent(inode
, handle
, et
, &split_rec
, &insert
);
4966 static int ocfs2_truncate_rec(struct inode
*inode
, handle_t
*handle
,
4967 struct ocfs2_path
*path
, int index
,
4968 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
4970 struct ocfs2_extent_tree
*et
)
4973 u32 left_cpos
, rec_range
, trunc_range
;
4974 int wants_rotate
= 0, is_rightmost_tree_rec
= 0;
4975 struct super_block
*sb
= inode
->i_sb
;
4976 struct ocfs2_path
*left_path
= NULL
;
4977 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
4978 struct ocfs2_extent_rec
*rec
;
4979 struct ocfs2_extent_block
*eb
;
4981 if (ocfs2_is_empty_extent(&el
->l_recs
[0]) && index
> 0) {
4982 ret
= ocfs2_rotate_tree_left(inode
, handle
, path
, dealloc
, et
);
4991 if (index
== (le16_to_cpu(el
->l_next_free_rec
) - 1) &&
4992 path
->p_tree_depth
) {
4994 * Check whether this is the rightmost tree record. If
4995 * we remove all of this record or part of its right
4996 * edge then an update of the record lengths above it
4999 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
5000 if (eb
->h_next_leaf_blk
== 0)
5001 is_rightmost_tree_rec
= 1;
5004 rec
= &el
->l_recs
[index
];
5005 if (index
== 0 && path
->p_tree_depth
&&
5006 le32_to_cpu(rec
->e_cpos
) == cpos
) {
5008 * Changing the leftmost offset (via partial or whole
5009 * record truncate) of an interior (or rightmost) path
5010 * means we have to update the subtree that is formed
5011 * by this leaf and the one to it's left.
5013 * There are two cases we can skip:
5014 * 1) Path is the leftmost one in our inode tree.
5015 * 2) The leaf is rightmost and will be empty after
5016 * we remove the extent record - the rotate code
5017 * knows how to update the newly formed edge.
5020 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
, path
,
5027 if (left_cpos
&& le16_to_cpu(el
->l_next_free_rec
) > 1) {
5028 left_path
= ocfs2_new_path(path_root_bh(path
),
5029 path_root_el(path
));
5036 ret
= ocfs2_find_path(inode
, left_path
, left_cpos
);
5044 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
5045 handle
->h_buffer_credits
,
5052 ret
= ocfs2_journal_access_path(inode
, handle
, path
);
5058 ret
= ocfs2_journal_access_path(inode
, handle
, left_path
);
5064 rec_range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
5065 trunc_range
= cpos
+ len
;
5067 if (le32_to_cpu(rec
->e_cpos
) == cpos
&& rec_range
== trunc_range
) {
5070 memset(rec
, 0, sizeof(*rec
));
5071 ocfs2_cleanup_merge(el
, index
);
5074 next_free
= le16_to_cpu(el
->l_next_free_rec
);
5075 if (is_rightmost_tree_rec
&& next_free
> 1) {
5077 * We skip the edge update if this path will
5078 * be deleted by the rotate code.
5080 rec
= &el
->l_recs
[next_free
- 1];
5081 ocfs2_adjust_rightmost_records(inode
, handle
, path
,
5084 } else if (le32_to_cpu(rec
->e_cpos
) == cpos
) {
5085 /* Remove leftmost portion of the record. */
5086 le32_add_cpu(&rec
->e_cpos
, len
);
5087 le64_add_cpu(&rec
->e_blkno
, ocfs2_clusters_to_blocks(sb
, len
));
5088 le16_add_cpu(&rec
->e_leaf_clusters
, -len
);
5089 } else if (rec_range
== trunc_range
) {
5090 /* Remove rightmost portion of the record */
5091 le16_add_cpu(&rec
->e_leaf_clusters
, -len
);
5092 if (is_rightmost_tree_rec
)
5093 ocfs2_adjust_rightmost_records(inode
, handle
, path
, rec
);
5095 /* Caller should have trapped this. */
5096 mlog(ML_ERROR
, "Inode %llu: Invalid record truncate: (%u, %u) "
5097 "(%u, %u)\n", (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
5098 le32_to_cpu(rec
->e_cpos
),
5099 le16_to_cpu(rec
->e_leaf_clusters
), cpos
, len
);
5106 subtree_index
= ocfs2_find_subtree_root(inode
, left_path
, path
);
5107 ocfs2_complete_edge_insert(inode
, handle
, left_path
, path
,
5111 ocfs2_journal_dirty(handle
, path_leaf_bh(path
));
5113 ret
= ocfs2_rotate_tree_left(inode
, handle
, path
, dealloc
, et
);
5120 ocfs2_free_path(left_path
);
5124 int ocfs2_remove_extent(struct inode
*inode
,
5125 struct ocfs2_extent_tree
*et
,
5126 u32 cpos
, u32 len
, handle_t
*handle
,
5127 struct ocfs2_alloc_context
*meta_ac
,
5128 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
5131 u32 rec_range
, trunc_range
;
5132 struct ocfs2_extent_rec
*rec
;
5133 struct ocfs2_extent_list
*el
;
5134 struct ocfs2_path
*path
= NULL
;
5136 ocfs2_extent_map_trunc(inode
, 0);
5138 path
= ocfs2_new_path(et
->et_root_bh
, et
->et_root_el
);
5145 ret
= ocfs2_find_path(inode
, path
, cpos
);
5151 el
= path_leaf_el(path
);
5152 index
= ocfs2_search_extent_list(el
, cpos
);
5153 if (index
== -1 || index
>= le16_to_cpu(el
->l_next_free_rec
)) {
5154 ocfs2_error(inode
->i_sb
,
5155 "Inode %llu has an extent at cpos %u which can no "
5156 "longer be found.\n",
5157 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, cpos
);
5163 * We have 3 cases of extent removal:
5164 * 1) Range covers the entire extent rec
5165 * 2) Range begins or ends on one edge of the extent rec
5166 * 3) Range is in the middle of the extent rec (no shared edges)
5168 * For case 1 we remove the extent rec and left rotate to
5171 * For case 2 we just shrink the existing extent rec, with a
5172 * tree update if the shrinking edge is also the edge of an
5175 * For case 3 we do a right split to turn the extent rec into
5176 * something case 2 can handle.
5178 rec
= &el
->l_recs
[index
];
5179 rec_range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
5180 trunc_range
= cpos
+ len
;
5182 BUG_ON(cpos
< le32_to_cpu(rec
->e_cpos
) || trunc_range
> rec_range
);
5184 mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
5185 "(cpos %u, len %u)\n",
5186 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, cpos
, len
, index
,
5187 le32_to_cpu(rec
->e_cpos
), ocfs2_rec_clusters(el
, rec
));
5189 if (le32_to_cpu(rec
->e_cpos
) == cpos
|| rec_range
== trunc_range
) {
5190 ret
= ocfs2_truncate_rec(inode
, handle
, path
, index
, dealloc
,
5197 ret
= ocfs2_split_tree(inode
, et
, handle
, path
, index
,
5198 trunc_range
, meta_ac
);
5205 * The split could have manipulated the tree enough to
5206 * move the record location, so we have to look for it again.
5208 ocfs2_reinit_path(path
, 1);
5210 ret
= ocfs2_find_path(inode
, path
, cpos
);
5216 el
= path_leaf_el(path
);
5217 index
= ocfs2_search_extent_list(el
, cpos
);
5218 if (index
== -1 || index
>= le16_to_cpu(el
->l_next_free_rec
)) {
5219 ocfs2_error(inode
->i_sb
,
5220 "Inode %llu: split at cpos %u lost record.",
5221 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
5228 * Double check our values here. If anything is fishy,
5229 * it's easier to catch it at the top level.
5231 rec
= &el
->l_recs
[index
];
5232 rec_range
= le32_to_cpu(rec
->e_cpos
) +
5233 ocfs2_rec_clusters(el
, rec
);
5234 if (rec_range
!= trunc_range
) {
5235 ocfs2_error(inode
->i_sb
,
5236 "Inode %llu: error after split at cpos %u"
5237 "trunc len %u, existing record is (%u,%u)",
5238 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
5239 cpos
, len
, le32_to_cpu(rec
->e_cpos
),
5240 ocfs2_rec_clusters(el
, rec
));
5245 ret
= ocfs2_truncate_rec(inode
, handle
, path
, index
, dealloc
,
5254 ocfs2_free_path(path
);
5258 int ocfs2_truncate_log_needs_flush(struct ocfs2_super
*osb
)
5260 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5261 struct ocfs2_dinode
*di
;
5262 struct ocfs2_truncate_log
*tl
;
5264 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5265 tl
= &di
->id2
.i_dealloc
;
5267 mlog_bug_on_msg(le16_to_cpu(tl
->tl_used
) > le16_to_cpu(tl
->tl_count
),
5268 "slot %d, invalid truncate log parameters: used = "
5269 "%u, count = %u\n", osb
->slot_num
,
5270 le16_to_cpu(tl
->tl_used
), le16_to_cpu(tl
->tl_count
));
5271 return le16_to_cpu(tl
->tl_used
) == le16_to_cpu(tl
->tl_count
);
5274 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log
*tl
,
5275 unsigned int new_start
)
5277 unsigned int tail_index
;
5278 unsigned int current_tail
;
5280 /* No records, nothing to coalesce */
5281 if (!le16_to_cpu(tl
->tl_used
))
5284 tail_index
= le16_to_cpu(tl
->tl_used
) - 1;
5285 current_tail
= le32_to_cpu(tl
->tl_recs
[tail_index
].t_start
);
5286 current_tail
+= le32_to_cpu(tl
->tl_recs
[tail_index
].t_clusters
);
5288 return current_tail
== new_start
;
5291 int ocfs2_truncate_log_append(struct ocfs2_super
*osb
,
5294 unsigned int num_clusters
)
5297 unsigned int start_cluster
, tl_count
;
5298 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5299 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5300 struct ocfs2_dinode
*di
;
5301 struct ocfs2_truncate_log
*tl
;
5303 mlog_entry("start_blk = %llu, num_clusters = %u\n",
5304 (unsigned long long)start_blk
, num_clusters
);
5306 BUG_ON(mutex_trylock(&tl_inode
->i_mutex
));
5308 start_cluster
= ocfs2_blocks_to_clusters(osb
->sb
, start_blk
);
5310 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5311 tl
= &di
->id2
.i_dealloc
;
5312 if (!OCFS2_IS_VALID_DINODE(di
)) {
5313 OCFS2_RO_ON_INVALID_DINODE(osb
->sb
, di
);
5318 tl_count
= le16_to_cpu(tl
->tl_count
);
5319 mlog_bug_on_msg(tl_count
> ocfs2_truncate_recs_per_inode(osb
->sb
) ||
5321 "Truncate record count on #%llu invalid "
5322 "wanted %u, actual %u\n",
5323 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
,
5324 ocfs2_truncate_recs_per_inode(osb
->sb
),
5325 le16_to_cpu(tl
->tl_count
));
5327 /* Caller should have known to flush before calling us. */
5328 index
= le16_to_cpu(tl
->tl_used
);
5329 if (index
>= tl_count
) {
5335 status
= ocfs2_journal_access(handle
, tl_inode
, tl_bh
,
5336 OCFS2_JOURNAL_ACCESS_WRITE
);
5342 mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5343 "%llu (index = %d)\n", num_clusters
, start_cluster
,
5344 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
, index
);
5346 if (ocfs2_truncate_log_can_coalesce(tl
, start_cluster
)) {
5348 * Move index back to the record we are coalescing with.
5349 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5353 num_clusters
+= le32_to_cpu(tl
->tl_recs
[index
].t_clusters
);
5354 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5355 index
, le32_to_cpu(tl
->tl_recs
[index
].t_start
),
5358 tl
->tl_recs
[index
].t_start
= cpu_to_le32(start_cluster
);
5359 tl
->tl_used
= cpu_to_le16(index
+ 1);
5361 tl
->tl_recs
[index
].t_clusters
= cpu_to_le32(num_clusters
);
5363 status
= ocfs2_journal_dirty(handle
, tl_bh
);
5374 static int ocfs2_replay_truncate_records(struct ocfs2_super
*osb
,
5376 struct inode
*data_alloc_inode
,
5377 struct buffer_head
*data_alloc_bh
)
5381 unsigned int num_clusters
;
5383 struct ocfs2_truncate_rec rec
;
5384 struct ocfs2_dinode
*di
;
5385 struct ocfs2_truncate_log
*tl
;
5386 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5387 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5391 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5392 tl
= &di
->id2
.i_dealloc
;
5393 i
= le16_to_cpu(tl
->tl_used
) - 1;
5395 /* Caller has given us at least enough credits to
5396 * update the truncate log dinode */
5397 status
= ocfs2_journal_access(handle
, tl_inode
, tl_bh
,
5398 OCFS2_JOURNAL_ACCESS_WRITE
);
5404 tl
->tl_used
= cpu_to_le16(i
);
5406 status
= ocfs2_journal_dirty(handle
, tl_bh
);
5412 /* TODO: Perhaps we can calculate the bulk of the
5413 * credits up front rather than extending like
5415 status
= ocfs2_extend_trans(handle
,
5416 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC
);
5422 rec
= tl
->tl_recs
[i
];
5423 start_blk
= ocfs2_clusters_to_blocks(data_alloc_inode
->i_sb
,
5424 le32_to_cpu(rec
.t_start
));
5425 num_clusters
= le32_to_cpu(rec
.t_clusters
);
5427 /* if start_blk is not set, we ignore the record as
5430 mlog(0, "free record %d, start = %u, clusters = %u\n",
5431 i
, le32_to_cpu(rec
.t_start
), num_clusters
);
5433 status
= ocfs2_free_clusters(handle
, data_alloc_inode
,
5434 data_alloc_bh
, start_blk
,
5449 /* Expects you to already be holding tl_inode->i_mutex */
5450 int __ocfs2_flush_truncate_log(struct ocfs2_super
*osb
)
5453 unsigned int num_to_flush
;
5455 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5456 struct inode
*data_alloc_inode
= NULL
;
5457 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5458 struct buffer_head
*data_alloc_bh
= NULL
;
5459 struct ocfs2_dinode
*di
;
5460 struct ocfs2_truncate_log
*tl
;
5464 BUG_ON(mutex_trylock(&tl_inode
->i_mutex
));
5466 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5467 tl
= &di
->id2
.i_dealloc
;
5468 if (!OCFS2_IS_VALID_DINODE(di
)) {
5469 OCFS2_RO_ON_INVALID_DINODE(osb
->sb
, di
);
5474 num_to_flush
= le16_to_cpu(tl
->tl_used
);
5475 mlog(0, "Flush %u records from truncate log #%llu\n",
5476 num_to_flush
, (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
);
5477 if (!num_to_flush
) {
5482 data_alloc_inode
= ocfs2_get_system_file_inode(osb
,
5483 GLOBAL_BITMAP_SYSTEM_INODE
,
5484 OCFS2_INVALID_SLOT
);
5485 if (!data_alloc_inode
) {
5487 mlog(ML_ERROR
, "Could not get bitmap inode!\n");
5491 mutex_lock(&data_alloc_inode
->i_mutex
);
5493 status
= ocfs2_inode_lock(data_alloc_inode
, &data_alloc_bh
, 1);
5499 handle
= ocfs2_start_trans(osb
, OCFS2_TRUNCATE_LOG_UPDATE
);
5500 if (IS_ERR(handle
)) {
5501 status
= PTR_ERR(handle
);
5506 status
= ocfs2_replay_truncate_records(osb
, handle
, data_alloc_inode
,
5511 ocfs2_commit_trans(osb
, handle
);
5514 brelse(data_alloc_bh
);
5515 ocfs2_inode_unlock(data_alloc_inode
, 1);
5518 mutex_unlock(&data_alloc_inode
->i_mutex
);
5519 iput(data_alloc_inode
);
5526 int ocfs2_flush_truncate_log(struct ocfs2_super
*osb
)
5529 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5531 mutex_lock(&tl_inode
->i_mutex
);
5532 status
= __ocfs2_flush_truncate_log(osb
);
5533 mutex_unlock(&tl_inode
->i_mutex
);
5538 static void ocfs2_truncate_log_worker(struct work_struct
*work
)
5541 struct ocfs2_super
*osb
=
5542 container_of(work
, struct ocfs2_super
,
5543 osb_truncate_log_wq
.work
);
5547 status
= ocfs2_flush_truncate_log(osb
);
5551 ocfs2_init_inode_steal_slot(osb
);
5556 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5557 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super
*osb
,
5560 if (osb
->osb_tl_inode
) {
5561 /* We want to push off log flushes while truncates are
5564 cancel_delayed_work(&osb
->osb_truncate_log_wq
);
5566 queue_delayed_work(ocfs2_wq
, &osb
->osb_truncate_log_wq
,
5567 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL
);
5571 static int ocfs2_get_truncate_log_info(struct ocfs2_super
*osb
,
5573 struct inode
**tl_inode
,
5574 struct buffer_head
**tl_bh
)
5577 struct inode
*inode
= NULL
;
5578 struct buffer_head
*bh
= NULL
;
5580 inode
= ocfs2_get_system_file_inode(osb
,
5581 TRUNCATE_LOG_SYSTEM_INODE
,
5585 mlog(ML_ERROR
, "Could not get load truncate log inode!\n");
5589 status
= ocfs2_read_block(inode
, OCFS2_I(inode
)->ip_blkno
, &bh
);
5603 /* called during the 1st stage of node recovery. we stamp a clean
5604 * truncate log and pass back a copy for processing later. if the
5605 * truncate log does not require processing, a *tl_copy is set to
5607 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super
*osb
,
5609 struct ocfs2_dinode
**tl_copy
)
5612 struct inode
*tl_inode
= NULL
;
5613 struct buffer_head
*tl_bh
= NULL
;
5614 struct ocfs2_dinode
*di
;
5615 struct ocfs2_truncate_log
*tl
;
5619 mlog(0, "recover truncate log from slot %d\n", slot_num
);
5621 status
= ocfs2_get_truncate_log_info(osb
, slot_num
, &tl_inode
, &tl_bh
);
5627 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5628 tl
= &di
->id2
.i_dealloc
;
5629 if (!OCFS2_IS_VALID_DINODE(di
)) {
5630 OCFS2_RO_ON_INVALID_DINODE(tl_inode
->i_sb
, di
);
5635 if (le16_to_cpu(tl
->tl_used
)) {
5636 mlog(0, "We'll have %u logs to recover\n",
5637 le16_to_cpu(tl
->tl_used
));
5639 *tl_copy
= kmalloc(tl_bh
->b_size
, GFP_KERNEL
);
5646 /* Assuming the write-out below goes well, this copy
5647 * will be passed back to recovery for processing. */
5648 memcpy(*tl_copy
, tl_bh
->b_data
, tl_bh
->b_size
);
5650 /* All we need to do to clear the truncate log is set
5654 status
= ocfs2_write_block(osb
, tl_bh
, tl_inode
);
5666 if (status
< 0 && (*tl_copy
)) {
5675 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super
*osb
,
5676 struct ocfs2_dinode
*tl_copy
)
5680 unsigned int clusters
, num_recs
, start_cluster
;
5683 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5684 struct ocfs2_truncate_log
*tl
;
5688 if (OCFS2_I(tl_inode
)->ip_blkno
== le64_to_cpu(tl_copy
->i_blkno
)) {
5689 mlog(ML_ERROR
, "Asked to recover my own truncate log!\n");
5693 tl
= &tl_copy
->id2
.i_dealloc
;
5694 num_recs
= le16_to_cpu(tl
->tl_used
);
5695 mlog(0, "cleanup %u records from %llu\n", num_recs
,
5696 (unsigned long long)le64_to_cpu(tl_copy
->i_blkno
));
5698 mutex_lock(&tl_inode
->i_mutex
);
5699 for(i
= 0; i
< num_recs
; i
++) {
5700 if (ocfs2_truncate_log_needs_flush(osb
)) {
5701 status
= __ocfs2_flush_truncate_log(osb
);
5708 handle
= ocfs2_start_trans(osb
, OCFS2_TRUNCATE_LOG_UPDATE
);
5709 if (IS_ERR(handle
)) {
5710 status
= PTR_ERR(handle
);
5715 clusters
= le32_to_cpu(tl
->tl_recs
[i
].t_clusters
);
5716 start_cluster
= le32_to_cpu(tl
->tl_recs
[i
].t_start
);
5717 start_blk
= ocfs2_clusters_to_blocks(osb
->sb
, start_cluster
);
5719 status
= ocfs2_truncate_log_append(osb
, handle
,
5720 start_blk
, clusters
);
5721 ocfs2_commit_trans(osb
, handle
);
5729 mutex_unlock(&tl_inode
->i_mutex
);
5735 void ocfs2_truncate_log_shutdown(struct ocfs2_super
*osb
)
5738 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5743 cancel_delayed_work(&osb
->osb_truncate_log_wq
);
5744 flush_workqueue(ocfs2_wq
);
5746 status
= ocfs2_flush_truncate_log(osb
);
5750 brelse(osb
->osb_tl_bh
);
5751 iput(osb
->osb_tl_inode
);
5757 int ocfs2_truncate_log_init(struct ocfs2_super
*osb
)
5760 struct inode
*tl_inode
= NULL
;
5761 struct buffer_head
*tl_bh
= NULL
;
5765 status
= ocfs2_get_truncate_log_info(osb
,
5772 /* ocfs2_truncate_log_shutdown keys on the existence of
5773 * osb->osb_tl_inode so we don't set any of the osb variables
5774 * until we're sure all is well. */
5775 INIT_DELAYED_WORK(&osb
->osb_truncate_log_wq
,
5776 ocfs2_truncate_log_worker
);
5777 osb
->osb_tl_bh
= tl_bh
;
5778 osb
->osb_tl_inode
= tl_inode
;
5785 * Delayed de-allocation of suballocator blocks.
5787 * Some sets of block de-allocations might involve multiple suballocator inodes.
5789 * The locking for this can get extremely complicated, especially when
5790 * the suballocator inodes to delete from aren't known until deep
5791 * within an unrelated codepath.
5793 * ocfs2_extent_block structures are a good example of this - an inode
5794 * btree could have been grown by any number of nodes each allocating
5795 * out of their own suballoc inode.
5797 * These structures allow the delay of block de-allocation until a
5798 * later time, when locking of multiple cluster inodes won't cause
5803 * Describes a single block free from a suballocator
5805 struct ocfs2_cached_block_free
{
5806 struct ocfs2_cached_block_free
*free_next
;
5808 unsigned int free_bit
;
5811 struct ocfs2_per_slot_free_list
{
5812 struct ocfs2_per_slot_free_list
*f_next_suballocator
;
5815 struct ocfs2_cached_block_free
*f_first
;
5818 static int ocfs2_free_cached_items(struct ocfs2_super
*osb
,
5821 struct ocfs2_cached_block_free
*head
)
5826 struct inode
*inode
;
5827 struct buffer_head
*di_bh
= NULL
;
5828 struct ocfs2_cached_block_free
*tmp
;
5830 inode
= ocfs2_get_system_file_inode(osb
, sysfile_type
, slot
);
5837 mutex_lock(&inode
->i_mutex
);
5839 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
5845 handle
= ocfs2_start_trans(osb
, OCFS2_SUBALLOC_FREE
);
5846 if (IS_ERR(handle
)) {
5847 ret
= PTR_ERR(handle
);
5853 bg_blkno
= ocfs2_which_suballoc_group(head
->free_blk
,
5855 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
5856 head
->free_bit
, (unsigned long long)head
->free_blk
);
5858 ret
= ocfs2_free_suballoc_bits(handle
, inode
, di_bh
,
5859 head
->free_bit
, bg_blkno
, 1);
5865 ret
= ocfs2_extend_trans(handle
, OCFS2_SUBALLOC_FREE
);
5872 head
= head
->free_next
;
5877 ocfs2_commit_trans(osb
, handle
);
5880 ocfs2_inode_unlock(inode
, 1);
5883 mutex_unlock(&inode
->i_mutex
);
5887 /* Premature exit may have left some dangling items. */
5889 head
= head
->free_next
;
5896 int ocfs2_run_deallocs(struct ocfs2_super
*osb
,
5897 struct ocfs2_cached_dealloc_ctxt
*ctxt
)
5900 struct ocfs2_per_slot_free_list
*fl
;
5905 while (ctxt
->c_first_suballocator
) {
5906 fl
= ctxt
->c_first_suballocator
;
5909 mlog(0, "Free items: (type %u, slot %d)\n",
5910 fl
->f_inode_type
, fl
->f_slot
);
5911 ret2
= ocfs2_free_cached_items(osb
, fl
->f_inode_type
,
5912 fl
->f_slot
, fl
->f_first
);
5919 ctxt
->c_first_suballocator
= fl
->f_next_suballocator
;
5926 static struct ocfs2_per_slot_free_list
*
5927 ocfs2_find_per_slot_free_list(int type
,
5929 struct ocfs2_cached_dealloc_ctxt
*ctxt
)
5931 struct ocfs2_per_slot_free_list
*fl
= ctxt
->c_first_suballocator
;
5934 if (fl
->f_inode_type
== type
&& fl
->f_slot
== slot
)
5937 fl
= fl
->f_next_suballocator
;
5940 fl
= kmalloc(sizeof(*fl
), GFP_NOFS
);
5942 fl
->f_inode_type
= type
;
5945 fl
->f_next_suballocator
= ctxt
->c_first_suballocator
;
5947 ctxt
->c_first_suballocator
= fl
;
5952 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
5953 int type
, int slot
, u64 blkno
,
5957 struct ocfs2_per_slot_free_list
*fl
;
5958 struct ocfs2_cached_block_free
*item
;
5960 fl
= ocfs2_find_per_slot_free_list(type
, slot
, ctxt
);
5967 item
= kmalloc(sizeof(*item
), GFP_NOFS
);
5974 mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
5975 type
, slot
, bit
, (unsigned long long)blkno
);
5977 item
->free_blk
= blkno
;
5978 item
->free_bit
= bit
;
5979 item
->free_next
= fl
->f_first
;
5988 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
5989 struct ocfs2_extent_block
*eb
)
5991 return ocfs2_cache_block_dealloc(ctxt
, EXTENT_ALLOC_SYSTEM_INODE
,
5992 le16_to_cpu(eb
->h_suballoc_slot
),
5993 le64_to_cpu(eb
->h_blkno
),
5994 le16_to_cpu(eb
->h_suballoc_bit
));
5997 /* This function will figure out whether the currently last extent
5998 * block will be deleted, and if it will, what the new last extent
5999 * block will be so we can update his h_next_leaf_blk field, as well
6000 * as the dinodes i_last_eb_blk */
6001 static int ocfs2_find_new_last_ext_blk(struct inode
*inode
,
6002 unsigned int clusters_to_del
,
6003 struct ocfs2_path
*path
,
6004 struct buffer_head
**new_last_eb
)
6006 int next_free
, ret
= 0;
6008 struct ocfs2_extent_rec
*rec
;
6009 struct ocfs2_extent_block
*eb
;
6010 struct ocfs2_extent_list
*el
;
6011 struct buffer_head
*bh
= NULL
;
6013 *new_last_eb
= NULL
;
6015 /* we have no tree, so of course, no last_eb. */
6016 if (!path
->p_tree_depth
)
6019 /* trunc to zero special case - this makes tree_depth = 0
6020 * regardless of what it is. */
6021 if (OCFS2_I(inode
)->ip_clusters
== clusters_to_del
)
6024 el
= path_leaf_el(path
);
6025 BUG_ON(!el
->l_next_free_rec
);
6028 * Make sure that this extent list will actually be empty
6029 * after we clear away the data. We can shortcut out if
6030 * there's more than one non-empty extent in the
6031 * list. Otherwise, a check of the remaining extent is
6034 next_free
= le16_to_cpu(el
->l_next_free_rec
);
6036 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
6040 /* We may have a valid extent in index 1, check it. */
6042 rec
= &el
->l_recs
[1];
6045 * Fall through - no more nonempty extents, so we want
6046 * to delete this leaf.
6052 rec
= &el
->l_recs
[0];
6057 * Check it we'll only be trimming off the end of this
6060 if (le16_to_cpu(rec
->e_leaf_clusters
) > clusters_to_del
)
6064 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
, path
, &cpos
);
6070 ret
= ocfs2_find_leaf(inode
, path_root_el(path
), cpos
, &bh
);
6076 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
6078 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
6079 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
, eb
);
6085 get_bh(*new_last_eb
);
6086 mlog(0, "returning block %llu, (cpos: %u)\n",
6087 (unsigned long long)le64_to_cpu(eb
->h_blkno
), cpos
);
6095 * Trim some clusters off the rightmost edge of a tree. Only called
6098 * The caller needs to:
6099 * - start journaling of each path component.
6100 * - compute and fully set up any new last ext block
6102 static int ocfs2_trim_tree(struct inode
*inode
, struct ocfs2_path
*path
,
6103 handle_t
*handle
, struct ocfs2_truncate_context
*tc
,
6104 u32 clusters_to_del
, u64
*delete_start
)
6106 int ret
, i
, index
= path
->p_tree_depth
;
6109 struct buffer_head
*bh
;
6110 struct ocfs2_extent_list
*el
;
6111 struct ocfs2_extent_rec
*rec
;
6115 while (index
>= 0) {
6116 bh
= path
->p_node
[index
].bh
;
6117 el
= path
->p_node
[index
].el
;
6119 mlog(0, "traveling tree (index = %d, block = %llu)\n",
6120 index
, (unsigned long long)bh
->b_blocknr
);
6122 BUG_ON(le16_to_cpu(el
->l_next_free_rec
) == 0);
6125 (path
->p_tree_depth
- le16_to_cpu(el
->l_tree_depth
))) {
6126 ocfs2_error(inode
->i_sb
,
6127 "Inode %lu has invalid ext. block %llu",
6129 (unsigned long long)bh
->b_blocknr
);
6135 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
6136 rec
= &el
->l_recs
[i
];
6138 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
6139 "next = %u\n", i
, le32_to_cpu(rec
->e_cpos
),
6140 ocfs2_rec_clusters(el
, rec
),
6141 (unsigned long long)le64_to_cpu(rec
->e_blkno
),
6142 le16_to_cpu(el
->l_next_free_rec
));
6144 BUG_ON(ocfs2_rec_clusters(el
, rec
) < clusters_to_del
);
6146 if (le16_to_cpu(el
->l_tree_depth
) == 0) {
6148 * If the leaf block contains a single empty
6149 * extent and no records, we can just remove
6152 if (i
== 0 && ocfs2_is_empty_extent(rec
)) {
6154 sizeof(struct ocfs2_extent_rec
));
6155 el
->l_next_free_rec
= cpu_to_le16(0);
6161 * Remove any empty extents by shifting things
6162 * left. That should make life much easier on
6163 * the code below. This condition is rare
6164 * enough that we shouldn't see a performance
6167 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
6168 le16_add_cpu(&el
->l_next_free_rec
, -1);
6171 i
< le16_to_cpu(el
->l_next_free_rec
); i
++)
6172 el
->l_recs
[i
] = el
->l_recs
[i
+ 1];
6174 memset(&el
->l_recs
[i
], 0,
6175 sizeof(struct ocfs2_extent_rec
));
6178 * We've modified our extent list. The
6179 * simplest way to handle this change
6180 * is to being the search from the
6183 goto find_tail_record
;
6186 le16_add_cpu(&rec
->e_leaf_clusters
, -clusters_to_del
);
6189 * We'll use "new_edge" on our way back up the
6190 * tree to know what our rightmost cpos is.
6192 new_edge
= le16_to_cpu(rec
->e_leaf_clusters
);
6193 new_edge
+= le32_to_cpu(rec
->e_cpos
);
6196 * The caller will use this to delete data blocks.
6198 *delete_start
= le64_to_cpu(rec
->e_blkno
)
6199 + ocfs2_clusters_to_blocks(inode
->i_sb
,
6200 le16_to_cpu(rec
->e_leaf_clusters
));
6203 * If it's now empty, remove this record.
6205 if (le16_to_cpu(rec
->e_leaf_clusters
) == 0) {
6207 sizeof(struct ocfs2_extent_rec
));
6208 le16_add_cpu(&el
->l_next_free_rec
, -1);
6211 if (le64_to_cpu(rec
->e_blkno
) == deleted_eb
) {
6213 sizeof(struct ocfs2_extent_rec
));
6214 le16_add_cpu(&el
->l_next_free_rec
, -1);
6219 /* Can this actually happen? */
6220 if (le16_to_cpu(el
->l_next_free_rec
) == 0)
6224 * We never actually deleted any clusters
6225 * because our leaf was empty. There's no
6226 * reason to adjust the rightmost edge then.
6231 rec
->e_int_clusters
= cpu_to_le32(new_edge
);
6232 le32_add_cpu(&rec
->e_int_clusters
,
6233 -le32_to_cpu(rec
->e_cpos
));
6236 * A deleted child record should have been
6239 BUG_ON(le32_to_cpu(rec
->e_int_clusters
) == 0);
6243 ret
= ocfs2_journal_dirty(handle
, bh
);
6249 mlog(0, "extent list container %llu, after: record %d: "
6250 "(%u, %u, %llu), next = %u.\n",
6251 (unsigned long long)bh
->b_blocknr
, i
,
6252 le32_to_cpu(rec
->e_cpos
), ocfs2_rec_clusters(el
, rec
),
6253 (unsigned long long)le64_to_cpu(rec
->e_blkno
),
6254 le16_to_cpu(el
->l_next_free_rec
));
6257 * We must be careful to only attempt delete of an
6258 * extent block (and not the root inode block).
6260 if (index
> 0 && le16_to_cpu(el
->l_next_free_rec
) == 0) {
6261 struct ocfs2_extent_block
*eb
=
6262 (struct ocfs2_extent_block
*)bh
->b_data
;
6265 * Save this for use when processing the
6268 deleted_eb
= le64_to_cpu(eb
->h_blkno
);
6270 mlog(0, "deleting this extent block.\n");
6272 ocfs2_remove_from_cache(inode
, bh
);
6274 BUG_ON(ocfs2_rec_clusters(el
, &el
->l_recs
[0]));
6275 BUG_ON(le32_to_cpu(el
->l_recs
[0].e_cpos
));
6276 BUG_ON(le64_to_cpu(el
->l_recs
[0].e_blkno
));
6278 ret
= ocfs2_cache_extent_block_free(&tc
->tc_dealloc
, eb
);
6279 /* An error here is not fatal. */
6294 static int ocfs2_do_truncate(struct ocfs2_super
*osb
,
6295 unsigned int clusters_to_del
,
6296 struct inode
*inode
,
6297 struct buffer_head
*fe_bh
,
6299 struct ocfs2_truncate_context
*tc
,
6300 struct ocfs2_path
*path
)
6303 struct ocfs2_dinode
*fe
;
6304 struct ocfs2_extent_block
*last_eb
= NULL
;
6305 struct ocfs2_extent_list
*el
;
6306 struct buffer_head
*last_eb_bh
= NULL
;
6309 fe
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
6311 status
= ocfs2_find_new_last_ext_blk(inode
, clusters_to_del
,
6319 * Each component will be touched, so we might as well journal
6320 * here to avoid having to handle errors later.
6322 status
= ocfs2_journal_access_path(inode
, handle
, path
);
6329 status
= ocfs2_journal_access(handle
, inode
, last_eb_bh
,
6330 OCFS2_JOURNAL_ACCESS_WRITE
);
6336 last_eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
6339 el
= &(fe
->id2
.i_list
);
6342 * Lower levels depend on this never happening, but it's best
6343 * to check it up here before changing the tree.
6345 if (el
->l_tree_depth
&& el
->l_recs
[0].e_int_clusters
== 0) {
6346 ocfs2_error(inode
->i_sb
,
6347 "Inode %lu has an empty extent record, depth %u\n",
6348 inode
->i_ino
, le16_to_cpu(el
->l_tree_depth
));
6353 spin_lock(&OCFS2_I(inode
)->ip_lock
);
6354 OCFS2_I(inode
)->ip_clusters
= le32_to_cpu(fe
->i_clusters
) -
6356 spin_unlock(&OCFS2_I(inode
)->ip_lock
);
6357 le32_add_cpu(&fe
->i_clusters
, -clusters_to_del
);
6358 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
6360 status
= ocfs2_trim_tree(inode
, path
, handle
, tc
,
6361 clusters_to_del
, &delete_blk
);
6367 if (le32_to_cpu(fe
->i_clusters
) == 0) {
6368 /* trunc to zero is a special case. */
6369 el
->l_tree_depth
= 0;
6370 fe
->i_last_eb_blk
= 0;
6372 fe
->i_last_eb_blk
= last_eb
->h_blkno
;
6374 status
= ocfs2_journal_dirty(handle
, fe_bh
);
6381 /* If there will be a new last extent block, then by
6382 * definition, there cannot be any leaves to the right of
6384 last_eb
->h_next_leaf_blk
= 0;
6385 status
= ocfs2_journal_dirty(handle
, last_eb_bh
);
6393 status
= ocfs2_truncate_log_append(osb
, handle
, delete_blk
,
6407 static int ocfs2_zero_func(handle_t
*handle
, struct buffer_head
*bh
)
6409 set_buffer_uptodate(bh
);
6410 mark_buffer_dirty(bh
);
6414 static void ocfs2_map_and_dirty_page(struct inode
*inode
, handle_t
*handle
,
6415 unsigned int from
, unsigned int to
,
6416 struct page
*page
, int zero
, u64
*phys
)
6418 int ret
, partial
= 0;
6420 ret
= ocfs2_map_page_blocks(page
, phys
, inode
, from
, to
, 0);
6425 zero_user_segment(page
, from
, to
);
6428 * Need to set the buffers we zero'd into uptodate
6429 * here if they aren't - ocfs2_map_page_blocks()
6430 * might've skipped some
6432 ret
= walk_page_buffers(handle
, page_buffers(page
),
6437 else if (ocfs2_should_order_data(inode
)) {
6438 ret
= ocfs2_jbd2_file_inode(handle
, inode
);
6439 #ifdef CONFIG_OCFS2_COMPAT_JBD
6440 ret
= walk_page_buffers(handle
, page_buffers(page
),
6442 ocfs2_journal_dirty_data
);
6449 SetPageUptodate(page
);
6451 flush_dcache_page(page
);
6454 static void ocfs2_zero_cluster_pages(struct inode
*inode
, loff_t start
,
6455 loff_t end
, struct page
**pages
,
6456 int numpages
, u64 phys
, handle_t
*handle
)
6460 unsigned int from
, to
= PAGE_CACHE_SIZE
;
6461 struct super_block
*sb
= inode
->i_sb
;
6463 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb
)));
6468 to
= PAGE_CACHE_SIZE
;
6469 for(i
= 0; i
< numpages
; i
++) {
6472 from
= start
& (PAGE_CACHE_SIZE
- 1);
6473 if ((end
>> PAGE_CACHE_SHIFT
) == page
->index
)
6474 to
= end
& (PAGE_CACHE_SIZE
- 1);
6476 BUG_ON(from
> PAGE_CACHE_SIZE
);
6477 BUG_ON(to
> PAGE_CACHE_SIZE
);
6479 ocfs2_map_and_dirty_page(inode
, handle
, from
, to
, page
, 1,
6482 start
= (page
->index
+ 1) << PAGE_CACHE_SHIFT
;
6486 ocfs2_unlock_and_free_pages(pages
, numpages
);
6489 static int ocfs2_grab_eof_pages(struct inode
*inode
, loff_t start
, loff_t end
,
6490 struct page
**pages
, int *num
)
6492 int numpages
, ret
= 0;
6493 struct super_block
*sb
= inode
->i_sb
;
6494 struct address_space
*mapping
= inode
->i_mapping
;
6495 unsigned long index
;
6496 loff_t last_page_bytes
;
6498 BUG_ON(start
> end
);
6500 BUG_ON(start
>> OCFS2_SB(sb
)->s_clustersize_bits
!=
6501 (end
- 1) >> OCFS2_SB(sb
)->s_clustersize_bits
);
6504 last_page_bytes
= PAGE_ALIGN(end
);
6505 index
= start
>> PAGE_CACHE_SHIFT
;
6507 pages
[numpages
] = grab_cache_page(mapping
, index
);
6508 if (!pages
[numpages
]) {
6516 } while (index
< (last_page_bytes
>> PAGE_CACHE_SHIFT
));
6521 ocfs2_unlock_and_free_pages(pages
, numpages
);
6531 * Zero the area past i_size but still within an allocated
6532 * cluster. This avoids exposing nonzero data on subsequent file
6535 * We need to call this before i_size is updated on the inode because
6536 * otherwise block_write_full_page() will skip writeout of pages past
6537 * i_size. The new_i_size parameter is passed for this reason.
6539 int ocfs2_zero_range_for_truncate(struct inode
*inode
, handle_t
*handle
,
6540 u64 range_start
, u64 range_end
)
6542 int ret
= 0, numpages
;
6543 struct page
**pages
= NULL
;
6545 unsigned int ext_flags
;
6546 struct super_block
*sb
= inode
->i_sb
;
6549 * File systems which don't support sparse files zero on every
6552 if (!ocfs2_sparse_alloc(OCFS2_SB(sb
)))
6555 pages
= kcalloc(ocfs2_pages_per_cluster(sb
),
6556 sizeof(struct page
*), GFP_NOFS
);
6557 if (pages
== NULL
) {
6563 if (range_start
== range_end
)
6566 ret
= ocfs2_extent_map_get_blocks(inode
,
6567 range_start
>> sb
->s_blocksize_bits
,
6568 &phys
, NULL
, &ext_flags
);
6575 * Tail is a hole, or is marked unwritten. In either case, we
6576 * can count on read and write to return/push zero's.
6578 if (phys
== 0 || ext_flags
& OCFS2_EXT_UNWRITTEN
)
6581 ret
= ocfs2_grab_eof_pages(inode
, range_start
, range_end
, pages
,
6588 ocfs2_zero_cluster_pages(inode
, range_start
, range_end
, pages
,
6589 numpages
, phys
, handle
);
6592 * Initiate writeout of the pages we zero'd here. We don't
6593 * wait on them - the truncate_inode_pages() call later will
6596 ret
= do_sync_mapping_range(inode
->i_mapping
, range_start
,
6597 range_end
- 1, SYNC_FILE_RANGE_WRITE
);
6608 static void ocfs2_zero_dinode_id2_with_xattr(struct inode
*inode
,
6609 struct ocfs2_dinode
*di
)
6611 unsigned int blocksize
= 1 << inode
->i_sb
->s_blocksize_bits
;
6612 unsigned int xattrsize
= le16_to_cpu(di
->i_xattr_inline_size
);
6614 if (le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_XATTR_FL
)
6615 memset(&di
->id2
, 0, blocksize
-
6616 offsetof(struct ocfs2_dinode
, id2
) -
6619 memset(&di
->id2
, 0, blocksize
-
6620 offsetof(struct ocfs2_dinode
, id2
));
6623 void ocfs2_dinode_new_extent_list(struct inode
*inode
,
6624 struct ocfs2_dinode
*di
)
6626 ocfs2_zero_dinode_id2_with_xattr(inode
, di
);
6627 di
->id2
.i_list
.l_tree_depth
= 0;
6628 di
->id2
.i_list
.l_next_free_rec
= 0;
6629 di
->id2
.i_list
.l_count
= cpu_to_le16(
6630 ocfs2_extent_recs_per_inode_with_xattr(inode
->i_sb
, di
));
6633 void ocfs2_set_inode_data_inline(struct inode
*inode
, struct ocfs2_dinode
*di
)
6635 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
6636 struct ocfs2_inline_data
*idata
= &di
->id2
.i_data
;
6638 spin_lock(&oi
->ip_lock
);
6639 oi
->ip_dyn_features
|= OCFS2_INLINE_DATA_FL
;
6640 di
->i_dyn_features
= cpu_to_le16(oi
->ip_dyn_features
);
6641 spin_unlock(&oi
->ip_lock
);
6644 * We clear the entire i_data structure here so that all
6645 * fields can be properly initialized.
6647 ocfs2_zero_dinode_id2_with_xattr(inode
, di
);
6649 idata
->id_count
= cpu_to_le16(
6650 ocfs2_max_inline_data_with_xattr(inode
->i_sb
, di
));
6653 int ocfs2_convert_inline_data_to_extents(struct inode
*inode
,
6654 struct buffer_head
*di_bh
)
6656 int ret
, i
, has_data
, num_pages
= 0;
6658 u64
uninitialized_var(block
);
6659 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
6660 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
6661 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
6662 struct ocfs2_alloc_context
*data_ac
= NULL
;
6663 struct page
**pages
= NULL
;
6664 loff_t end
= osb
->s_clustersize
;
6665 struct ocfs2_extent_tree et
;
6667 has_data
= i_size_read(inode
) ? 1 : 0;
6670 pages
= kcalloc(ocfs2_pages_per_cluster(osb
->sb
),
6671 sizeof(struct page
*), GFP_NOFS
);
6672 if (pages
== NULL
) {
6678 ret
= ocfs2_reserve_clusters(osb
, 1, &data_ac
);
6685 handle
= ocfs2_start_trans(osb
, OCFS2_INLINE_TO_EXTENTS_CREDITS
);
6686 if (IS_ERR(handle
)) {
6687 ret
= PTR_ERR(handle
);
6692 ret
= ocfs2_journal_access(handle
, inode
, di_bh
,
6693 OCFS2_JOURNAL_ACCESS_WRITE
);
6701 unsigned int page_end
;
6704 ret
= ocfs2_claim_clusters(osb
, handle
, data_ac
, 1, &bit_off
,
6712 * Save two copies, one for insert, and one that can
6713 * be changed by ocfs2_map_and_dirty_page() below.
6715 block
= phys
= ocfs2_clusters_to_blocks(inode
->i_sb
, bit_off
);
6718 * Non sparse file systems zero on extend, so no need
6721 if (!ocfs2_sparse_alloc(osb
) &&
6722 PAGE_CACHE_SIZE
< osb
->s_clustersize
)
6723 end
= PAGE_CACHE_SIZE
;
6725 ret
= ocfs2_grab_eof_pages(inode
, 0, end
, pages
, &num_pages
);
6732 * This should populate the 1st page for us and mark
6735 ret
= ocfs2_read_inline_data(inode
, pages
[0], di_bh
);
6741 page_end
= PAGE_CACHE_SIZE
;
6742 if (PAGE_CACHE_SIZE
> osb
->s_clustersize
)
6743 page_end
= osb
->s_clustersize
;
6745 for (i
= 0; i
< num_pages
; i
++)
6746 ocfs2_map_and_dirty_page(inode
, handle
, 0, page_end
,
6747 pages
[i
], i
> 0, &phys
);
6750 spin_lock(&oi
->ip_lock
);
6751 oi
->ip_dyn_features
&= ~OCFS2_INLINE_DATA_FL
;
6752 di
->i_dyn_features
= cpu_to_le16(oi
->ip_dyn_features
);
6753 spin_unlock(&oi
->ip_lock
);
6755 ocfs2_dinode_new_extent_list(inode
, di
);
6757 ocfs2_journal_dirty(handle
, di_bh
);
6761 * An error at this point should be extremely rare. If
6762 * this proves to be false, we could always re-build
6763 * the in-inode data from our pages.
6765 ocfs2_init_dinode_extent_tree(&et
, inode
, di_bh
);
6766 ret
= ocfs2_insert_extent(osb
, handle
, inode
, &et
,
6767 0, block
, 1, 0, NULL
);
6773 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
6777 ocfs2_commit_trans(osb
, handle
);
6781 ocfs2_free_alloc_context(data_ac
);
6785 ocfs2_unlock_and_free_pages(pages
, num_pages
);
6793 * It is expected, that by the time you call this function,
6794 * inode->i_size and fe->i_size have been adjusted.
6796 * WARNING: This will kfree the truncate context
6798 int ocfs2_commit_truncate(struct ocfs2_super
*osb
,
6799 struct inode
*inode
,
6800 struct buffer_head
*fe_bh
,
6801 struct ocfs2_truncate_context
*tc
)
6803 int status
, i
, credits
, tl_sem
= 0;
6804 u32 clusters_to_del
, new_highest_cpos
, range
;
6805 struct ocfs2_extent_list
*el
;
6806 handle_t
*handle
= NULL
;
6807 struct inode
*tl_inode
= osb
->osb_tl_inode
;
6808 struct ocfs2_path
*path
= NULL
;
6809 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)fe_bh
->b_data
;
6813 new_highest_cpos
= ocfs2_clusters_for_bytes(osb
->sb
,
6814 i_size_read(inode
));
6816 path
= ocfs2_new_path(fe_bh
, &di
->id2
.i_list
);
6823 ocfs2_extent_map_trunc(inode
, new_highest_cpos
);
6827 * Check that we still have allocation to delete.
6829 if (OCFS2_I(inode
)->ip_clusters
== 0) {
6835 * Truncate always works against the rightmost tree branch.
6837 status
= ocfs2_find_path(inode
, path
, UINT_MAX
);
6843 mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
6844 OCFS2_I(inode
)->ip_clusters
, path
->p_tree_depth
);
6847 * By now, el will point to the extent list on the bottom most
6848 * portion of this tree. Only the tail record is considered in
6851 * We handle the following cases, in order:
6852 * - empty extent: delete the remaining branch
6853 * - remove the entire record
6854 * - remove a partial record
6855 * - no record needs to be removed (truncate has completed)
6857 el
= path_leaf_el(path
);
6858 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
6859 ocfs2_error(inode
->i_sb
,
6860 "Inode %llu has empty extent block at %llu\n",
6861 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
6862 (unsigned long long)path_leaf_bh(path
)->b_blocknr
);
6867 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
6868 range
= le32_to_cpu(el
->l_recs
[i
].e_cpos
) +
6869 ocfs2_rec_clusters(el
, &el
->l_recs
[i
]);
6870 if (i
== 0 && ocfs2_is_empty_extent(&el
->l_recs
[i
])) {
6871 clusters_to_del
= 0;
6872 } else if (le32_to_cpu(el
->l_recs
[i
].e_cpos
) >= new_highest_cpos
) {
6873 clusters_to_del
= ocfs2_rec_clusters(el
, &el
->l_recs
[i
]);
6874 } else if (range
> new_highest_cpos
) {
6875 clusters_to_del
= (ocfs2_rec_clusters(el
, &el
->l_recs
[i
]) +
6876 le32_to_cpu(el
->l_recs
[i
].e_cpos
)) -
6883 mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
6884 clusters_to_del
, (unsigned long long)path_leaf_bh(path
)->b_blocknr
);
6886 mutex_lock(&tl_inode
->i_mutex
);
6888 /* ocfs2_truncate_log_needs_flush guarantees us at least one
6889 * record is free for use. If there isn't any, we flush to get
6890 * an empty truncate log. */
6891 if (ocfs2_truncate_log_needs_flush(osb
)) {
6892 status
= __ocfs2_flush_truncate_log(osb
);
6899 credits
= ocfs2_calc_tree_trunc_credits(osb
->sb
, clusters_to_del
,
6900 (struct ocfs2_dinode
*)fe_bh
->b_data
,
6902 handle
= ocfs2_start_trans(osb
, credits
);
6903 if (IS_ERR(handle
)) {
6904 status
= PTR_ERR(handle
);
6910 status
= ocfs2_do_truncate(osb
, clusters_to_del
, inode
, fe_bh
, handle
,
6917 mutex_unlock(&tl_inode
->i_mutex
);
6920 ocfs2_commit_trans(osb
, handle
);
6923 ocfs2_reinit_path(path
, 1);
6926 * The check above will catch the case where we've truncated
6927 * away all allocation.
6933 ocfs2_schedule_truncate_log_flush(osb
, 1);
6936 mutex_unlock(&tl_inode
->i_mutex
);
6939 ocfs2_commit_trans(osb
, handle
);
6941 ocfs2_run_deallocs(osb
, &tc
->tc_dealloc
);
6943 ocfs2_free_path(path
);
6945 /* This will drop the ext_alloc cluster lock for us */
6946 ocfs2_free_truncate_context(tc
);
6953 * Expects the inode to already be locked.
6955 int ocfs2_prepare_truncate(struct ocfs2_super
*osb
,
6956 struct inode
*inode
,
6957 struct buffer_head
*fe_bh
,
6958 struct ocfs2_truncate_context
**tc
)
6961 unsigned int new_i_clusters
;
6962 struct ocfs2_dinode
*fe
;
6963 struct ocfs2_extent_block
*eb
;
6964 struct buffer_head
*last_eb_bh
= NULL
;
6970 new_i_clusters
= ocfs2_clusters_for_bytes(osb
->sb
,
6971 i_size_read(inode
));
6972 fe
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
6974 mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
6975 "%llu\n", le32_to_cpu(fe
->i_clusters
), new_i_clusters
,
6976 (unsigned long long)le64_to_cpu(fe
->i_size
));
6978 *tc
= kzalloc(sizeof(struct ocfs2_truncate_context
), GFP_KERNEL
);
6984 ocfs2_init_dealloc_ctxt(&(*tc
)->tc_dealloc
);
6986 if (fe
->id2
.i_list
.l_tree_depth
) {
6987 status
= ocfs2_read_block(inode
, le64_to_cpu(fe
->i_last_eb_blk
),
6993 eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
6994 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
6995 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
, eb
);
7003 (*tc
)->tc_last_eb_bh
= last_eb_bh
;
7009 ocfs2_free_truncate_context(*tc
);
7017 * 'start' is inclusive, 'end' is not.
7019 int ocfs2_truncate_inline(struct inode
*inode
, struct buffer_head
*di_bh
,
7020 unsigned int start
, unsigned int end
, int trunc
)
7023 unsigned int numbytes
;
7025 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
7026 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
7027 struct ocfs2_inline_data
*idata
= &di
->id2
.i_data
;
7029 if (end
> i_size_read(inode
))
7030 end
= i_size_read(inode
);
7032 BUG_ON(start
>= end
);
7034 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) ||
7035 !(le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_DATA_FL
) ||
7036 !ocfs2_supports_inline_data(osb
)) {
7037 ocfs2_error(inode
->i_sb
,
7038 "Inline data flags for inode %llu don't agree! "
7039 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7040 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
7041 le16_to_cpu(di
->i_dyn_features
),
7042 OCFS2_I(inode
)->ip_dyn_features
,
7043 osb
->s_feature_incompat
);
7048 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
7049 if (IS_ERR(handle
)) {
7050 ret
= PTR_ERR(handle
);
7055 ret
= ocfs2_journal_access(handle
, inode
, di_bh
,
7056 OCFS2_JOURNAL_ACCESS_WRITE
);
7062 numbytes
= end
- start
;
7063 memset(idata
->id_data
+ start
, 0, numbytes
);
7066 * No need to worry about the data page here - it's been
7067 * truncated already and inline data doesn't need it for
7068 * pushing zero's to disk, so we'll let readpage pick it up
7072 i_size_write(inode
, start
);
7073 di
->i_size
= cpu_to_le64(start
);
7076 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
7077 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
7079 di
->i_ctime
= di
->i_mtime
= cpu_to_le64(inode
->i_ctime
.tv_sec
);
7080 di
->i_ctime_nsec
= di
->i_mtime_nsec
= cpu_to_le32(inode
->i_ctime
.tv_nsec
);
7082 ocfs2_journal_dirty(handle
, di_bh
);
7085 ocfs2_commit_trans(osb
, handle
);
7091 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context
*tc
)
7094 * The caller is responsible for completing deallocation
7095 * before freeing the context.
7097 if (tc
->tc_dealloc
.c_first_suballocator
!= NULL
)
7099 "Truncate completion has non-empty dealloc context\n");
7101 brelse(tc
->tc_last_eb_bh
);