2 * linux/drivers/block/ll_rw_blk.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
6 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
7 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
8 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
13 * This handles all read/write requests to block devices
15 #include <linux/config.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/backing-dev.h>
19 #include <linux/bio.h>
20 #include <linux/blkdev.h>
21 #include <linux/highmem.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/blkdev.h>
36 #include <scsi/scsi_cmnd.h>
38 static void blk_unplug_work(void *data
);
39 static void blk_unplug_timeout(unsigned long data
);
40 static void drive_stat_acct(struct request
*rq
, int nr_sectors
, int new_io
);
43 * For the allocated request tables
45 static kmem_cache_t
*request_cachep
;
48 * For queue allocation
50 static kmem_cache_t
*requestq_cachep
;
53 * For io context allocations
55 static kmem_cache_t
*iocontext_cachep
;
57 static wait_queue_head_t congestion_wqh
[2] = {
58 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh
[0]),
59 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh
[1])
63 * Controlling structure to kblockd
65 static struct workqueue_struct
*kblockd_workqueue
;
67 unsigned long blk_max_low_pfn
, blk_max_pfn
;
69 EXPORT_SYMBOL(blk_max_low_pfn
);
70 EXPORT_SYMBOL(blk_max_pfn
);
72 /* Amount of time in which a process may batch requests */
73 #define BLK_BATCH_TIME (HZ/50UL)
75 /* Number of requests a "batching" process may submit */
76 #define BLK_BATCH_REQ 32
79 * Return the threshold (number of used requests) at which the queue is
80 * considered to be congested. It include a little hysteresis to keep the
81 * context switch rate down.
83 static inline int queue_congestion_on_threshold(struct request_queue
*q
)
85 return q
->nr_congestion_on
;
89 * The threshold at which a queue is considered to be uncongested
91 static inline int queue_congestion_off_threshold(struct request_queue
*q
)
93 return q
->nr_congestion_off
;
96 static void blk_queue_congestion_threshold(struct request_queue
*q
)
100 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
101 if (nr
> q
->nr_requests
)
103 q
->nr_congestion_on
= nr
;
105 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
108 q
->nr_congestion_off
= nr
;
112 * A queue has just exitted congestion. Note this in the global counter of
113 * congested queues, and wake up anyone who was waiting for requests to be
116 static void clear_queue_congested(request_queue_t
*q
, int rw
)
119 wait_queue_head_t
*wqh
= &congestion_wqh
[rw
];
121 bit
= (rw
== WRITE
) ? BDI_write_congested
: BDI_read_congested
;
122 clear_bit(bit
, &q
->backing_dev_info
.state
);
123 smp_mb__after_clear_bit();
124 if (waitqueue_active(wqh
))
129 * A queue has just entered congestion. Flag that in the queue's VM-visible
130 * state flags and increment the global gounter of congested queues.
132 static void set_queue_congested(request_queue_t
*q
, int rw
)
136 bit
= (rw
== WRITE
) ? BDI_write_congested
: BDI_read_congested
;
137 set_bit(bit
, &q
->backing_dev_info
.state
);
141 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
144 * Locates the passed device's request queue and returns the address of its
147 * Will return NULL if the request queue cannot be located.
149 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
151 struct backing_dev_info
*ret
= NULL
;
152 request_queue_t
*q
= bdev_get_queue(bdev
);
155 ret
= &q
->backing_dev_info
;
159 EXPORT_SYMBOL(blk_get_backing_dev_info
);
161 void blk_queue_activity_fn(request_queue_t
*q
, activity_fn
*fn
, void *data
)
164 q
->activity_data
= data
;
167 EXPORT_SYMBOL(blk_queue_activity_fn
);
170 * blk_queue_prep_rq - set a prepare_request function for queue
172 * @pfn: prepare_request function
174 * It's possible for a queue to register a prepare_request callback which
175 * is invoked before the request is handed to the request_fn. The goal of
176 * the function is to prepare a request for I/O, it can be used to build a
177 * cdb from the request data for instance.
180 void blk_queue_prep_rq(request_queue_t
*q
, prep_rq_fn
*pfn
)
185 EXPORT_SYMBOL(blk_queue_prep_rq
);
188 * blk_queue_merge_bvec - set a merge_bvec function for queue
190 * @mbfn: merge_bvec_fn
192 * Usually queues have static limitations on the max sectors or segments that
193 * we can put in a request. Stacking drivers may have some settings that
194 * are dynamic, and thus we have to query the queue whether it is ok to
195 * add a new bio_vec to a bio at a given offset or not. If the block device
196 * has such limitations, it needs to register a merge_bvec_fn to control
197 * the size of bio's sent to it. Note that a block device *must* allow a
198 * single page to be added to an empty bio. The block device driver may want
199 * to use the bio_split() function to deal with these bio's. By default
200 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
203 void blk_queue_merge_bvec(request_queue_t
*q
, merge_bvec_fn
*mbfn
)
205 q
->merge_bvec_fn
= mbfn
;
208 EXPORT_SYMBOL(blk_queue_merge_bvec
);
211 * blk_queue_make_request - define an alternate make_request function for a device
212 * @q: the request queue for the device to be affected
213 * @mfn: the alternate make_request function
216 * The normal way for &struct bios to be passed to a device
217 * driver is for them to be collected into requests on a request
218 * queue, and then to allow the device driver to select requests
219 * off that queue when it is ready. This works well for many block
220 * devices. However some block devices (typically virtual devices
221 * such as md or lvm) do not benefit from the processing on the
222 * request queue, and are served best by having the requests passed
223 * directly to them. This can be achieved by providing a function
224 * to blk_queue_make_request().
227 * The driver that does this *must* be able to deal appropriately
228 * with buffers in "highmemory". This can be accomplished by either calling
229 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
230 * blk_queue_bounce() to create a buffer in normal memory.
232 void blk_queue_make_request(request_queue_t
* q
, make_request_fn
* mfn
)
237 q
->nr_requests
= BLKDEV_MAX_RQ
;
238 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
239 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
240 q
->make_request_fn
= mfn
;
241 q
->backing_dev_info
.ra_pages
= (VM_MAX_READAHEAD
* 1024) / PAGE_CACHE_SIZE
;
242 q
->backing_dev_info
.state
= 0;
243 q
->backing_dev_info
.capabilities
= BDI_CAP_MAP_COPY
;
244 blk_queue_max_sectors(q
, MAX_SECTORS
);
245 blk_queue_hardsect_size(q
, 512);
246 blk_queue_dma_alignment(q
, 511);
247 blk_queue_congestion_threshold(q
);
248 q
->nr_batching
= BLK_BATCH_REQ
;
250 q
->unplug_thresh
= 4; /* hmm */
251 q
->unplug_delay
= (3 * HZ
) / 1000; /* 3 milliseconds */
252 if (q
->unplug_delay
== 0)
255 INIT_WORK(&q
->unplug_work
, blk_unplug_work
, q
);
257 q
->unplug_timer
.function
= blk_unplug_timeout
;
258 q
->unplug_timer
.data
= (unsigned long)q
;
261 * by default assume old behaviour and bounce for any highmem page
263 blk_queue_bounce_limit(q
, BLK_BOUNCE_HIGH
);
265 blk_queue_activity_fn(q
, NULL
, NULL
);
268 EXPORT_SYMBOL(blk_queue_make_request
);
270 static inline void rq_init(request_queue_t
*q
, struct request
*rq
)
272 INIT_LIST_HEAD(&rq
->queuelist
);
275 rq
->rq_status
= RQ_ACTIVE
;
276 rq
->bio
= rq
->biotail
= NULL
;
285 rq
->nr_phys_segments
= 0;
288 rq
->end_io_data
= NULL
;
292 * blk_queue_ordered - does this queue support ordered writes
293 * @q: the request queue
297 * For journalled file systems, doing ordered writes on a commit
298 * block instead of explicitly doing wait_on_buffer (which is bad
299 * for performance) can be a big win. Block drivers supporting this
300 * feature should call this function and indicate so.
303 void blk_queue_ordered(request_queue_t
*q
, int flag
)
306 case QUEUE_ORDERED_NONE
:
308 kmem_cache_free(request_cachep
, q
->flush_rq
);
312 case QUEUE_ORDERED_TAG
:
315 case QUEUE_ORDERED_FLUSH
:
318 q
->flush_rq
= kmem_cache_alloc(request_cachep
,
322 printk("blk_queue_ordered: bad value %d\n", flag
);
327 EXPORT_SYMBOL(blk_queue_ordered
);
330 * blk_queue_issue_flush_fn - set function for issuing a flush
331 * @q: the request queue
332 * @iff: the function to be called issuing the flush
335 * If a driver supports issuing a flush command, the support is notified
336 * to the block layer by defining it through this call.
339 void blk_queue_issue_flush_fn(request_queue_t
*q
, issue_flush_fn
*iff
)
341 q
->issue_flush_fn
= iff
;
344 EXPORT_SYMBOL(blk_queue_issue_flush_fn
);
347 * Cache flushing for ordered writes handling
349 static void blk_pre_flush_end_io(struct request
*flush_rq
)
351 struct request
*rq
= flush_rq
->end_io_data
;
352 request_queue_t
*q
= rq
->q
;
354 elv_completed_request(q
, flush_rq
);
356 rq
->flags
|= REQ_BAR_PREFLUSH
;
358 if (!flush_rq
->errors
)
359 elv_requeue_request(q
, rq
);
361 q
->end_flush_fn(q
, flush_rq
);
362 clear_bit(QUEUE_FLAG_FLUSH
, &q
->queue_flags
);
367 static void blk_post_flush_end_io(struct request
*flush_rq
)
369 struct request
*rq
= flush_rq
->end_io_data
;
370 request_queue_t
*q
= rq
->q
;
372 elv_completed_request(q
, flush_rq
);
374 rq
->flags
|= REQ_BAR_POSTFLUSH
;
376 q
->end_flush_fn(q
, flush_rq
);
377 clear_bit(QUEUE_FLAG_FLUSH
, &q
->queue_flags
);
381 struct request
*blk_start_pre_flush(request_queue_t
*q
, struct request
*rq
)
383 struct request
*flush_rq
= q
->flush_rq
;
385 BUG_ON(!blk_barrier_rq(rq
));
387 if (test_and_set_bit(QUEUE_FLAG_FLUSH
, &q
->queue_flags
))
390 rq_init(q
, flush_rq
);
391 flush_rq
->elevator_private
= NULL
;
392 flush_rq
->flags
= REQ_BAR_FLUSH
;
393 flush_rq
->rq_disk
= rq
->rq_disk
;
397 * prepare_flush returns 0 if no flush is needed, just mark both
398 * pre and post flush as done in that case
400 if (!q
->prepare_flush_fn(q
, flush_rq
)) {
401 rq
->flags
|= REQ_BAR_PREFLUSH
| REQ_BAR_POSTFLUSH
;
402 clear_bit(QUEUE_FLAG_FLUSH
, &q
->queue_flags
);
407 * some drivers dequeue requests right away, some only after io
408 * completion. make sure the request is dequeued.
410 if (!list_empty(&rq
->queuelist
))
411 blkdev_dequeue_request(rq
);
413 flush_rq
->end_io_data
= rq
;
414 flush_rq
->end_io
= blk_pre_flush_end_io
;
416 __elv_add_request(q
, flush_rq
, ELEVATOR_INSERT_FRONT
, 0);
420 static void blk_start_post_flush(request_queue_t
*q
, struct request
*rq
)
422 struct request
*flush_rq
= q
->flush_rq
;
424 BUG_ON(!blk_barrier_rq(rq
));
426 rq_init(q
, flush_rq
);
427 flush_rq
->elevator_private
= NULL
;
428 flush_rq
->flags
= REQ_BAR_FLUSH
;
429 flush_rq
->rq_disk
= rq
->rq_disk
;
432 if (q
->prepare_flush_fn(q
, flush_rq
)) {
433 flush_rq
->end_io_data
= rq
;
434 flush_rq
->end_io
= blk_post_flush_end_io
;
436 __elv_add_request(q
, flush_rq
, ELEVATOR_INSERT_FRONT
, 0);
441 static inline int blk_check_end_barrier(request_queue_t
*q
, struct request
*rq
,
444 if (sectors
> rq
->nr_sectors
)
445 sectors
= rq
->nr_sectors
;
447 rq
->nr_sectors
-= sectors
;
448 return rq
->nr_sectors
;
451 static int __blk_complete_barrier_rq(request_queue_t
*q
, struct request
*rq
,
452 int sectors
, int queue_locked
)
454 if (q
->ordered
!= QUEUE_ORDERED_FLUSH
)
456 if (!blk_fs_request(rq
) || !blk_barrier_rq(rq
))
458 if (blk_barrier_postflush(rq
))
461 if (!blk_check_end_barrier(q
, rq
, sectors
)) {
462 unsigned long flags
= 0;
465 spin_lock_irqsave(q
->queue_lock
, flags
);
467 blk_start_post_flush(q
, rq
);
470 spin_unlock_irqrestore(q
->queue_lock
, flags
);
477 * blk_complete_barrier_rq - complete possible barrier request
478 * @q: the request queue for the device
480 * @sectors: number of sectors to complete
483 * Used in driver end_io handling to determine whether to postpone
484 * completion of a barrier request until a post flush has been done. This
485 * is the unlocked variant, used if the caller doesn't already hold the
488 int blk_complete_barrier_rq(request_queue_t
*q
, struct request
*rq
, int sectors
)
490 return __blk_complete_barrier_rq(q
, rq
, sectors
, 0);
492 EXPORT_SYMBOL(blk_complete_barrier_rq
);
495 * blk_complete_barrier_rq_locked - complete possible barrier request
496 * @q: the request queue for the device
498 * @sectors: number of sectors to complete
501 * See blk_complete_barrier_rq(). This variant must be used if the caller
502 * holds the queue lock.
504 int blk_complete_barrier_rq_locked(request_queue_t
*q
, struct request
*rq
,
507 return __blk_complete_barrier_rq(q
, rq
, sectors
, 1);
509 EXPORT_SYMBOL(blk_complete_barrier_rq_locked
);
512 * blk_queue_bounce_limit - set bounce buffer limit for queue
513 * @q: the request queue for the device
514 * @dma_addr: bus address limit
517 * Different hardware can have different requirements as to what pages
518 * it can do I/O directly to. A low level driver can call
519 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
520 * buffers for doing I/O to pages residing above @page. By default
521 * the block layer sets this to the highest numbered "low" memory page.
523 void blk_queue_bounce_limit(request_queue_t
*q
, u64 dma_addr
)
525 unsigned long bounce_pfn
= dma_addr
>> PAGE_SHIFT
;
528 * set appropriate bounce gfp mask -- unfortunately we don't have a
529 * full 4GB zone, so we have to resort to low memory for any bounces.
530 * ISA has its own < 16MB zone.
532 if (bounce_pfn
< blk_max_low_pfn
) {
533 BUG_ON(dma_addr
< BLK_BOUNCE_ISA
);
534 init_emergency_isa_pool();
535 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
537 q
->bounce_gfp
= GFP_NOIO
;
539 q
->bounce_pfn
= bounce_pfn
;
542 EXPORT_SYMBOL(blk_queue_bounce_limit
);
545 * blk_queue_max_sectors - set max sectors for a request for this queue
546 * @q: the request queue for the device
547 * @max_sectors: max sectors in the usual 512b unit
550 * Enables a low level driver to set an upper limit on the size of
553 void blk_queue_max_sectors(request_queue_t
*q
, unsigned short max_sectors
)
555 if ((max_sectors
<< 9) < PAGE_CACHE_SIZE
) {
556 max_sectors
= 1 << (PAGE_CACHE_SHIFT
- 9);
557 printk("%s: set to minimum %d\n", __FUNCTION__
, max_sectors
);
560 q
->max_sectors
= q
->max_hw_sectors
= max_sectors
;
563 EXPORT_SYMBOL(blk_queue_max_sectors
);
566 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
567 * @q: the request queue for the device
568 * @max_segments: max number of segments
571 * Enables a low level driver to set an upper limit on the number of
572 * physical data segments in a request. This would be the largest sized
573 * scatter list the driver could handle.
575 void blk_queue_max_phys_segments(request_queue_t
*q
, unsigned short max_segments
)
579 printk("%s: set to minimum %d\n", __FUNCTION__
, max_segments
);
582 q
->max_phys_segments
= max_segments
;
585 EXPORT_SYMBOL(blk_queue_max_phys_segments
);
588 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
589 * @q: the request queue for the device
590 * @max_segments: max number of segments
593 * Enables a low level driver to set an upper limit on the number of
594 * hw data segments in a request. This would be the largest number of
595 * address/length pairs the host adapter can actually give as once
598 void blk_queue_max_hw_segments(request_queue_t
*q
, unsigned short max_segments
)
602 printk("%s: set to minimum %d\n", __FUNCTION__
, max_segments
);
605 q
->max_hw_segments
= max_segments
;
608 EXPORT_SYMBOL(blk_queue_max_hw_segments
);
611 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
612 * @q: the request queue for the device
613 * @max_size: max size of segment in bytes
616 * Enables a low level driver to set an upper limit on the size of a
619 void blk_queue_max_segment_size(request_queue_t
*q
, unsigned int max_size
)
621 if (max_size
< PAGE_CACHE_SIZE
) {
622 max_size
= PAGE_CACHE_SIZE
;
623 printk("%s: set to minimum %d\n", __FUNCTION__
, max_size
);
626 q
->max_segment_size
= max_size
;
629 EXPORT_SYMBOL(blk_queue_max_segment_size
);
632 * blk_queue_hardsect_size - set hardware sector size for the queue
633 * @q: the request queue for the device
634 * @size: the hardware sector size, in bytes
637 * This should typically be set to the lowest possible sector size
638 * that the hardware can operate on (possible without reverting to
639 * even internal read-modify-write operations). Usually the default
640 * of 512 covers most hardware.
642 void blk_queue_hardsect_size(request_queue_t
*q
, unsigned short size
)
644 q
->hardsect_size
= size
;
647 EXPORT_SYMBOL(blk_queue_hardsect_size
);
650 * Returns the minimum that is _not_ zero, unless both are zero.
652 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
655 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
656 * @t: the stacking driver (top)
657 * @b: the underlying device (bottom)
659 void blk_queue_stack_limits(request_queue_t
*t
, request_queue_t
*b
)
661 /* zero is "infinity" */
662 t
->max_sectors
= t
->max_hw_sectors
=
663 min_not_zero(t
->max_sectors
,b
->max_sectors
);
665 t
->max_phys_segments
= min(t
->max_phys_segments
,b
->max_phys_segments
);
666 t
->max_hw_segments
= min(t
->max_hw_segments
,b
->max_hw_segments
);
667 t
->max_segment_size
= min(t
->max_segment_size
,b
->max_segment_size
);
668 t
->hardsect_size
= max(t
->hardsect_size
,b
->hardsect_size
);
671 EXPORT_SYMBOL(blk_queue_stack_limits
);
674 * blk_queue_segment_boundary - set boundary rules for segment merging
675 * @q: the request queue for the device
676 * @mask: the memory boundary mask
678 void blk_queue_segment_boundary(request_queue_t
*q
, unsigned long mask
)
680 if (mask
< PAGE_CACHE_SIZE
- 1) {
681 mask
= PAGE_CACHE_SIZE
- 1;
682 printk("%s: set to minimum %lx\n", __FUNCTION__
, mask
);
685 q
->seg_boundary_mask
= mask
;
688 EXPORT_SYMBOL(blk_queue_segment_boundary
);
691 * blk_queue_dma_alignment - set dma length and memory alignment
692 * @q: the request queue for the device
693 * @mask: alignment mask
696 * set required memory and length aligment for direct dma transactions.
697 * this is used when buiding direct io requests for the queue.
700 void blk_queue_dma_alignment(request_queue_t
*q
, int mask
)
702 q
->dma_alignment
= mask
;
705 EXPORT_SYMBOL(blk_queue_dma_alignment
);
708 * blk_queue_find_tag - find a request by its tag and queue
709 * @q: The request queue for the device
710 * @tag: The tag of the request
713 * Should be used when a device returns a tag and you want to match
716 * no locks need be held.
718 struct request
*blk_queue_find_tag(request_queue_t
*q
, int tag
)
720 struct blk_queue_tag
*bqt
= q
->queue_tags
;
722 if (unlikely(bqt
== NULL
|| tag
>= bqt
->real_max_depth
))
725 return bqt
->tag_index
[tag
];
728 EXPORT_SYMBOL(blk_queue_find_tag
);
731 * __blk_queue_free_tags - release tag maintenance info
732 * @q: the request queue for the device
735 * blk_cleanup_queue() will take care of calling this function, if tagging
736 * has been used. So there's no need to call this directly.
738 static void __blk_queue_free_tags(request_queue_t
*q
)
740 struct blk_queue_tag
*bqt
= q
->queue_tags
;
745 if (atomic_dec_and_test(&bqt
->refcnt
)) {
747 BUG_ON(!list_empty(&bqt
->busy_list
));
749 kfree(bqt
->tag_index
);
750 bqt
->tag_index
= NULL
;
758 q
->queue_tags
= NULL
;
759 q
->queue_flags
&= ~(1 << QUEUE_FLAG_QUEUED
);
763 * blk_queue_free_tags - release tag maintenance info
764 * @q: the request queue for the device
767 * This is used to disabled tagged queuing to a device, yet leave
770 void blk_queue_free_tags(request_queue_t
*q
)
772 clear_bit(QUEUE_FLAG_QUEUED
, &q
->queue_flags
);
775 EXPORT_SYMBOL(blk_queue_free_tags
);
778 init_tag_map(request_queue_t
*q
, struct blk_queue_tag
*tags
, int depth
)
780 struct request
**tag_index
;
781 unsigned long *tag_map
;
784 if (depth
> q
->nr_requests
* 2) {
785 depth
= q
->nr_requests
* 2;
786 printk(KERN_ERR
"%s: adjusted depth to %d\n",
787 __FUNCTION__
, depth
);
790 tag_index
= kmalloc(depth
* sizeof(struct request
*), GFP_ATOMIC
);
794 nr_ulongs
= ALIGN(depth
, BITS_PER_LONG
) / BITS_PER_LONG
;
795 tag_map
= kmalloc(nr_ulongs
* sizeof(unsigned long), GFP_ATOMIC
);
799 memset(tag_index
, 0, depth
* sizeof(struct request
*));
800 memset(tag_map
, 0, nr_ulongs
* sizeof(unsigned long));
801 tags
->real_max_depth
= depth
;
802 tags
->max_depth
= depth
;
803 tags
->tag_index
= tag_index
;
804 tags
->tag_map
= tag_map
;
813 * blk_queue_init_tags - initialize the queue tag info
814 * @q: the request queue for the device
815 * @depth: the maximum queue depth supported
816 * @tags: the tag to use
818 int blk_queue_init_tags(request_queue_t
*q
, int depth
,
819 struct blk_queue_tag
*tags
)
823 BUG_ON(tags
&& q
->queue_tags
&& tags
!= q
->queue_tags
);
825 if (!tags
&& !q
->queue_tags
) {
826 tags
= kmalloc(sizeof(struct blk_queue_tag
), GFP_ATOMIC
);
830 if (init_tag_map(q
, tags
, depth
))
833 INIT_LIST_HEAD(&tags
->busy_list
);
835 atomic_set(&tags
->refcnt
, 1);
836 } else if (q
->queue_tags
) {
837 if ((rc
= blk_queue_resize_tags(q
, depth
)))
839 set_bit(QUEUE_FLAG_QUEUED
, &q
->queue_flags
);
842 atomic_inc(&tags
->refcnt
);
845 * assign it, all done
847 q
->queue_tags
= tags
;
848 q
->queue_flags
|= (1 << QUEUE_FLAG_QUEUED
);
855 EXPORT_SYMBOL(blk_queue_init_tags
);
858 * blk_queue_resize_tags - change the queueing depth
859 * @q: the request queue for the device
860 * @new_depth: the new max command queueing depth
863 * Must be called with the queue lock held.
865 int blk_queue_resize_tags(request_queue_t
*q
, int new_depth
)
867 struct blk_queue_tag
*bqt
= q
->queue_tags
;
868 struct request
**tag_index
;
869 unsigned long *tag_map
;
870 int max_depth
, nr_ulongs
;
876 * if we already have large enough real_max_depth. just
877 * adjust max_depth. *NOTE* as requests with tag value
878 * between new_depth and real_max_depth can be in-flight, tag
879 * map can not be shrunk blindly here.
881 if (new_depth
<= bqt
->real_max_depth
) {
882 bqt
->max_depth
= new_depth
;
887 * save the old state info, so we can copy it back
889 tag_index
= bqt
->tag_index
;
890 tag_map
= bqt
->tag_map
;
891 max_depth
= bqt
->real_max_depth
;
893 if (init_tag_map(q
, bqt
, new_depth
))
896 memcpy(bqt
->tag_index
, tag_index
, max_depth
* sizeof(struct request
*));
897 nr_ulongs
= ALIGN(max_depth
, BITS_PER_LONG
) / BITS_PER_LONG
;
898 memcpy(bqt
->tag_map
, tag_map
, nr_ulongs
* sizeof(unsigned long));
905 EXPORT_SYMBOL(blk_queue_resize_tags
);
908 * blk_queue_end_tag - end tag operations for a request
909 * @q: the request queue for the device
910 * @rq: the request that has completed
913 * Typically called when end_that_request_first() returns 0, meaning
914 * all transfers have been done for a request. It's important to call
915 * this function before end_that_request_last(), as that will put the
916 * request back on the free list thus corrupting the internal tag list.
919 * queue lock must be held.
921 void blk_queue_end_tag(request_queue_t
*q
, struct request
*rq
)
923 struct blk_queue_tag
*bqt
= q
->queue_tags
;
928 if (unlikely(tag
>= bqt
->real_max_depth
))
930 * This can happen after tag depth has been reduced.
931 * FIXME: how about a warning or info message here?
935 if (unlikely(!__test_and_clear_bit(tag
, bqt
->tag_map
))) {
936 printk(KERN_ERR
"%s: attempt to clear non-busy tag (%d)\n",
941 list_del_init(&rq
->queuelist
);
942 rq
->flags
&= ~REQ_QUEUED
;
945 if (unlikely(bqt
->tag_index
[tag
] == NULL
))
946 printk(KERN_ERR
"%s: tag %d is missing\n",
949 bqt
->tag_index
[tag
] = NULL
;
953 EXPORT_SYMBOL(blk_queue_end_tag
);
956 * blk_queue_start_tag - find a free tag and assign it
957 * @q: the request queue for the device
958 * @rq: the block request that needs tagging
961 * This can either be used as a stand-alone helper, or possibly be
962 * assigned as the queue &prep_rq_fn (in which case &struct request
963 * automagically gets a tag assigned). Note that this function
964 * assumes that any type of request can be queued! if this is not
965 * true for your device, you must check the request type before
966 * calling this function. The request will also be removed from
967 * the request queue, so it's the drivers responsibility to readd
968 * it if it should need to be restarted for some reason.
971 * queue lock must be held.
973 int blk_queue_start_tag(request_queue_t
*q
, struct request
*rq
)
975 struct blk_queue_tag
*bqt
= q
->queue_tags
;
978 if (unlikely((rq
->flags
& REQ_QUEUED
))) {
980 "%s: request %p for device [%s] already tagged %d",
982 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->tag
);
986 tag
= find_first_zero_bit(bqt
->tag_map
, bqt
->max_depth
);
987 if (tag
>= bqt
->max_depth
)
990 __set_bit(tag
, bqt
->tag_map
);
992 rq
->flags
|= REQ_QUEUED
;
994 bqt
->tag_index
[tag
] = rq
;
995 blkdev_dequeue_request(rq
);
996 list_add(&rq
->queuelist
, &bqt
->busy_list
);
1001 EXPORT_SYMBOL(blk_queue_start_tag
);
1004 * blk_queue_invalidate_tags - invalidate all pending tags
1005 * @q: the request queue for the device
1008 * Hardware conditions may dictate a need to stop all pending requests.
1009 * In this case, we will safely clear the block side of the tag queue and
1010 * readd all requests to the request queue in the right order.
1013 * queue lock must be held.
1015 void blk_queue_invalidate_tags(request_queue_t
*q
)
1017 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1018 struct list_head
*tmp
, *n
;
1021 list_for_each_safe(tmp
, n
, &bqt
->busy_list
) {
1022 rq
= list_entry_rq(tmp
);
1024 if (rq
->tag
== -1) {
1026 "%s: bad tag found on list\n", __FUNCTION__
);
1027 list_del_init(&rq
->queuelist
);
1028 rq
->flags
&= ~REQ_QUEUED
;
1030 blk_queue_end_tag(q
, rq
);
1032 rq
->flags
&= ~REQ_STARTED
;
1033 __elv_add_request(q
, rq
, ELEVATOR_INSERT_BACK
, 0);
1037 EXPORT_SYMBOL(blk_queue_invalidate_tags
);
1039 static char *rq_flags
[] = {
1059 "REQ_DRIVE_TASKFILE",
1066 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
1070 printk("%s: dev %s: flags = ", msg
,
1071 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?");
1074 if (rq
->flags
& (1 << bit
))
1075 printk("%s ", rq_flags
[bit
]);
1077 } while (bit
< __REQ_NR_BITS
);
1079 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq
->sector
,
1081 rq
->current_nr_sectors
);
1082 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq
->bio
, rq
->biotail
, rq
->buffer
, rq
->data
, rq
->data_len
);
1084 if (rq
->flags
& (REQ_BLOCK_PC
| REQ_PC
)) {
1086 for (bit
= 0; bit
< sizeof(rq
->cmd
); bit
++)
1087 printk("%02x ", rq
->cmd
[bit
]);
1092 EXPORT_SYMBOL(blk_dump_rq_flags
);
1094 void blk_recount_segments(request_queue_t
*q
, struct bio
*bio
)
1096 struct bio_vec
*bv
, *bvprv
= NULL
;
1097 int i
, nr_phys_segs
, nr_hw_segs
, seg_size
, hw_seg_size
, cluster
;
1098 int high
, highprv
= 1;
1100 if (unlikely(!bio
->bi_io_vec
))
1103 cluster
= q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
);
1104 hw_seg_size
= seg_size
= nr_phys_segs
= nr_hw_segs
= 0;
1105 bio_for_each_segment(bv
, bio
, i
) {
1107 * the trick here is making sure that a high page is never
1108 * considered part of another segment, since that might
1109 * change with the bounce page.
1111 high
= page_to_pfn(bv
->bv_page
) >= q
->bounce_pfn
;
1112 if (high
|| highprv
)
1113 goto new_hw_segment
;
1115 if (seg_size
+ bv
->bv_len
> q
->max_segment_size
)
1117 if (!BIOVEC_PHYS_MERGEABLE(bvprv
, bv
))
1119 if (!BIOVEC_SEG_BOUNDARY(q
, bvprv
, bv
))
1121 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size
+ bv
->bv_len
))
1122 goto new_hw_segment
;
1124 seg_size
+= bv
->bv_len
;
1125 hw_seg_size
+= bv
->bv_len
;
1130 if (BIOVEC_VIRT_MERGEABLE(bvprv
, bv
) &&
1131 !BIOVEC_VIRT_OVERSIZE(hw_seg_size
+ bv
->bv_len
)) {
1132 hw_seg_size
+= bv
->bv_len
;
1135 if (hw_seg_size
> bio
->bi_hw_front_size
)
1136 bio
->bi_hw_front_size
= hw_seg_size
;
1137 hw_seg_size
= BIOVEC_VIRT_START_SIZE(bv
) + bv
->bv_len
;
1143 seg_size
= bv
->bv_len
;
1146 if (hw_seg_size
> bio
->bi_hw_back_size
)
1147 bio
->bi_hw_back_size
= hw_seg_size
;
1148 if (nr_hw_segs
== 1 && hw_seg_size
> bio
->bi_hw_front_size
)
1149 bio
->bi_hw_front_size
= hw_seg_size
;
1150 bio
->bi_phys_segments
= nr_phys_segs
;
1151 bio
->bi_hw_segments
= nr_hw_segs
;
1152 bio
->bi_flags
|= (1 << BIO_SEG_VALID
);
1156 static int blk_phys_contig_segment(request_queue_t
*q
, struct bio
*bio
,
1159 if (!(q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
)))
1162 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio
), __BVEC_START(nxt
)))
1164 if (bio
->bi_size
+ nxt
->bi_size
> q
->max_segment_size
)
1168 * bio and nxt are contigous in memory, check if the queue allows
1169 * these two to be merged into one
1171 if (BIO_SEG_BOUNDARY(q
, bio
, nxt
))
1177 static int blk_hw_contig_segment(request_queue_t
*q
, struct bio
*bio
,
1180 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1181 blk_recount_segments(q
, bio
);
1182 if (unlikely(!bio_flagged(nxt
, BIO_SEG_VALID
)))
1183 blk_recount_segments(q
, nxt
);
1184 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio
), __BVEC_START(nxt
)) ||
1185 BIOVEC_VIRT_OVERSIZE(bio
->bi_hw_front_size
+ bio
->bi_hw_back_size
))
1187 if (bio
->bi_size
+ nxt
->bi_size
> q
->max_segment_size
)
1194 * map a request to scatterlist, return number of sg entries setup. Caller
1195 * must make sure sg can hold rq->nr_phys_segments entries
1197 int blk_rq_map_sg(request_queue_t
*q
, struct request
*rq
, struct scatterlist
*sg
)
1199 struct bio_vec
*bvec
, *bvprv
;
1201 int nsegs
, i
, cluster
;
1204 cluster
= q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
);
1207 * for each bio in rq
1210 rq_for_each_bio(bio
, rq
) {
1212 * for each segment in bio
1214 bio_for_each_segment(bvec
, bio
, i
) {
1215 int nbytes
= bvec
->bv_len
;
1217 if (bvprv
&& cluster
) {
1218 if (sg
[nsegs
- 1].length
+ nbytes
> q
->max_segment_size
)
1221 if (!BIOVEC_PHYS_MERGEABLE(bvprv
, bvec
))
1223 if (!BIOVEC_SEG_BOUNDARY(q
, bvprv
, bvec
))
1226 sg
[nsegs
- 1].length
+= nbytes
;
1229 memset(&sg
[nsegs
],0,sizeof(struct scatterlist
));
1230 sg
[nsegs
].page
= bvec
->bv_page
;
1231 sg
[nsegs
].length
= nbytes
;
1232 sg
[nsegs
].offset
= bvec
->bv_offset
;
1237 } /* segments in bio */
1243 EXPORT_SYMBOL(blk_rq_map_sg
);
1246 * the standard queue merge functions, can be overridden with device
1247 * specific ones if so desired
1250 static inline int ll_new_mergeable(request_queue_t
*q
,
1251 struct request
*req
,
1254 int nr_phys_segs
= bio_phys_segments(q
, bio
);
1256 if (req
->nr_phys_segments
+ nr_phys_segs
> q
->max_phys_segments
) {
1257 req
->flags
|= REQ_NOMERGE
;
1258 if (req
== q
->last_merge
)
1259 q
->last_merge
= NULL
;
1264 * A hw segment is just getting larger, bump just the phys
1267 req
->nr_phys_segments
+= nr_phys_segs
;
1271 static inline int ll_new_hw_segment(request_queue_t
*q
,
1272 struct request
*req
,
1275 int nr_hw_segs
= bio_hw_segments(q
, bio
);
1276 int nr_phys_segs
= bio_phys_segments(q
, bio
);
1278 if (req
->nr_hw_segments
+ nr_hw_segs
> q
->max_hw_segments
1279 || req
->nr_phys_segments
+ nr_phys_segs
> q
->max_phys_segments
) {
1280 req
->flags
|= REQ_NOMERGE
;
1281 if (req
== q
->last_merge
)
1282 q
->last_merge
= NULL
;
1287 * This will form the start of a new hw segment. Bump both
1290 req
->nr_hw_segments
+= nr_hw_segs
;
1291 req
->nr_phys_segments
+= nr_phys_segs
;
1295 static int ll_back_merge_fn(request_queue_t
*q
, struct request
*req
,
1300 if (req
->nr_sectors
+ bio_sectors(bio
) > q
->max_sectors
) {
1301 req
->flags
|= REQ_NOMERGE
;
1302 if (req
== q
->last_merge
)
1303 q
->last_merge
= NULL
;
1306 if (unlikely(!bio_flagged(req
->biotail
, BIO_SEG_VALID
)))
1307 blk_recount_segments(q
, req
->biotail
);
1308 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1309 blk_recount_segments(q
, bio
);
1310 len
= req
->biotail
->bi_hw_back_size
+ bio
->bi_hw_front_size
;
1311 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req
->biotail
), __BVEC_START(bio
)) &&
1312 !BIOVEC_VIRT_OVERSIZE(len
)) {
1313 int mergeable
= ll_new_mergeable(q
, req
, bio
);
1316 if (req
->nr_hw_segments
== 1)
1317 req
->bio
->bi_hw_front_size
= len
;
1318 if (bio
->bi_hw_segments
== 1)
1319 bio
->bi_hw_back_size
= len
;
1324 return ll_new_hw_segment(q
, req
, bio
);
1327 static int ll_front_merge_fn(request_queue_t
*q
, struct request
*req
,
1332 if (req
->nr_sectors
+ bio_sectors(bio
) > q
->max_sectors
) {
1333 req
->flags
|= REQ_NOMERGE
;
1334 if (req
== q
->last_merge
)
1335 q
->last_merge
= NULL
;
1338 len
= bio
->bi_hw_back_size
+ req
->bio
->bi_hw_front_size
;
1339 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1340 blk_recount_segments(q
, bio
);
1341 if (unlikely(!bio_flagged(req
->bio
, BIO_SEG_VALID
)))
1342 blk_recount_segments(q
, req
->bio
);
1343 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio
), __BVEC_START(req
->bio
)) &&
1344 !BIOVEC_VIRT_OVERSIZE(len
)) {
1345 int mergeable
= ll_new_mergeable(q
, req
, bio
);
1348 if (bio
->bi_hw_segments
== 1)
1349 bio
->bi_hw_front_size
= len
;
1350 if (req
->nr_hw_segments
== 1)
1351 req
->biotail
->bi_hw_back_size
= len
;
1356 return ll_new_hw_segment(q
, req
, bio
);
1359 static int ll_merge_requests_fn(request_queue_t
*q
, struct request
*req
,
1360 struct request
*next
)
1362 int total_phys_segments
;
1363 int total_hw_segments
;
1366 * First check if the either of the requests are re-queued
1367 * requests. Can't merge them if they are.
1369 if (req
->special
|| next
->special
)
1373 * Will it become too large?
1375 if ((req
->nr_sectors
+ next
->nr_sectors
) > q
->max_sectors
)
1378 total_phys_segments
= req
->nr_phys_segments
+ next
->nr_phys_segments
;
1379 if (blk_phys_contig_segment(q
, req
->biotail
, next
->bio
))
1380 total_phys_segments
--;
1382 if (total_phys_segments
> q
->max_phys_segments
)
1385 total_hw_segments
= req
->nr_hw_segments
+ next
->nr_hw_segments
;
1386 if (blk_hw_contig_segment(q
, req
->biotail
, next
->bio
)) {
1387 int len
= req
->biotail
->bi_hw_back_size
+ next
->bio
->bi_hw_front_size
;
1389 * propagate the combined length to the end of the requests
1391 if (req
->nr_hw_segments
== 1)
1392 req
->bio
->bi_hw_front_size
= len
;
1393 if (next
->nr_hw_segments
== 1)
1394 next
->biotail
->bi_hw_back_size
= len
;
1395 total_hw_segments
--;
1398 if (total_hw_segments
> q
->max_hw_segments
)
1401 /* Merge is OK... */
1402 req
->nr_phys_segments
= total_phys_segments
;
1403 req
->nr_hw_segments
= total_hw_segments
;
1408 * "plug" the device if there are no outstanding requests: this will
1409 * force the transfer to start only after we have put all the requests
1412 * This is called with interrupts off and no requests on the queue and
1413 * with the queue lock held.
1415 void blk_plug_device(request_queue_t
*q
)
1417 WARN_ON(!irqs_disabled());
1420 * don't plug a stopped queue, it must be paired with blk_start_queue()
1421 * which will restart the queueing
1423 if (test_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
))
1426 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
))
1427 mod_timer(&q
->unplug_timer
, jiffies
+ q
->unplug_delay
);
1430 EXPORT_SYMBOL(blk_plug_device
);
1433 * remove the queue from the plugged list, if present. called with
1434 * queue lock held and interrupts disabled.
1436 int blk_remove_plug(request_queue_t
*q
)
1438 WARN_ON(!irqs_disabled());
1440 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
))
1443 del_timer(&q
->unplug_timer
);
1447 EXPORT_SYMBOL(blk_remove_plug
);
1450 * remove the plug and let it rip..
1452 void __generic_unplug_device(request_queue_t
*q
)
1454 if (unlikely(test_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
)))
1457 if (!blk_remove_plug(q
))
1462 EXPORT_SYMBOL(__generic_unplug_device
);
1465 * generic_unplug_device - fire a request queue
1466 * @q: The &request_queue_t in question
1469 * Linux uses plugging to build bigger requests queues before letting
1470 * the device have at them. If a queue is plugged, the I/O scheduler
1471 * is still adding and merging requests on the queue. Once the queue
1472 * gets unplugged, the request_fn defined for the queue is invoked and
1473 * transfers started.
1475 void generic_unplug_device(request_queue_t
*q
)
1477 spin_lock_irq(q
->queue_lock
);
1478 __generic_unplug_device(q
);
1479 spin_unlock_irq(q
->queue_lock
);
1481 EXPORT_SYMBOL(generic_unplug_device
);
1483 static void blk_backing_dev_unplug(struct backing_dev_info
*bdi
,
1486 request_queue_t
*q
= bdi
->unplug_io_data
;
1489 * devices don't necessarily have an ->unplug_fn defined
1495 static void blk_unplug_work(void *data
)
1497 request_queue_t
*q
= data
;
1502 static void blk_unplug_timeout(unsigned long data
)
1504 request_queue_t
*q
= (request_queue_t
*)data
;
1506 kblockd_schedule_work(&q
->unplug_work
);
1510 * blk_start_queue - restart a previously stopped queue
1511 * @q: The &request_queue_t in question
1514 * blk_start_queue() will clear the stop flag on the queue, and call
1515 * the request_fn for the queue if it was in a stopped state when
1516 * entered. Also see blk_stop_queue(). Queue lock must be held.
1518 void blk_start_queue(request_queue_t
*q
)
1520 clear_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
1523 * one level of recursion is ok and is much faster than kicking
1524 * the unplug handling
1526 if (!test_and_set_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
)) {
1528 clear_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
);
1531 kblockd_schedule_work(&q
->unplug_work
);
1535 EXPORT_SYMBOL(blk_start_queue
);
1538 * blk_stop_queue - stop a queue
1539 * @q: The &request_queue_t in question
1542 * The Linux block layer assumes that a block driver will consume all
1543 * entries on the request queue when the request_fn strategy is called.
1544 * Often this will not happen, because of hardware limitations (queue
1545 * depth settings). If a device driver gets a 'queue full' response,
1546 * or if it simply chooses not to queue more I/O at one point, it can
1547 * call this function to prevent the request_fn from being called until
1548 * the driver has signalled it's ready to go again. This happens by calling
1549 * blk_start_queue() to restart queue operations. Queue lock must be held.
1551 void blk_stop_queue(request_queue_t
*q
)
1554 set_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
1556 EXPORT_SYMBOL(blk_stop_queue
);
1559 * blk_sync_queue - cancel any pending callbacks on a queue
1563 * The block layer may perform asynchronous callback activity
1564 * on a queue, such as calling the unplug function after a timeout.
1565 * A block device may call blk_sync_queue to ensure that any
1566 * such activity is cancelled, thus allowing it to release resources
1567 * the the callbacks might use. The caller must already have made sure
1568 * that its ->make_request_fn will not re-add plugging prior to calling
1572 void blk_sync_queue(struct request_queue
*q
)
1574 del_timer_sync(&q
->unplug_timer
);
1577 EXPORT_SYMBOL(blk_sync_queue
);
1580 * blk_run_queue - run a single device queue
1581 * @q: The queue to run
1583 void blk_run_queue(struct request_queue
*q
)
1585 unsigned long flags
;
1587 spin_lock_irqsave(q
->queue_lock
, flags
);
1589 if (!elv_queue_empty(q
))
1591 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1593 EXPORT_SYMBOL(blk_run_queue
);
1596 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1597 * @q: the request queue to be released
1600 * blk_cleanup_queue is the pair to blk_init_queue() or
1601 * blk_queue_make_request(). It should be called when a request queue is
1602 * being released; typically when a block device is being de-registered.
1603 * Currently, its primary task it to free all the &struct request
1604 * structures that were allocated to the queue and the queue itself.
1607 * Hopefully the low level driver will have finished any
1608 * outstanding requests first...
1610 void blk_cleanup_queue(request_queue_t
* q
)
1612 struct request_list
*rl
= &q
->rq
;
1614 if (!atomic_dec_and_test(&q
->refcnt
))
1618 elevator_exit(q
->elevator
);
1623 mempool_destroy(rl
->rq_pool
);
1626 __blk_queue_free_tags(q
);
1628 blk_queue_ordered(q
, QUEUE_ORDERED_NONE
);
1630 kmem_cache_free(requestq_cachep
, q
);
1633 EXPORT_SYMBOL(blk_cleanup_queue
);
1635 static int blk_init_free_list(request_queue_t
*q
)
1637 struct request_list
*rl
= &q
->rq
;
1639 rl
->count
[READ
] = rl
->count
[WRITE
] = 0;
1640 rl
->starved
[READ
] = rl
->starved
[WRITE
] = 0;
1642 init_waitqueue_head(&rl
->wait
[READ
]);
1643 init_waitqueue_head(&rl
->wait
[WRITE
]);
1645 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
1646 mempool_free_slab
, request_cachep
, q
->node
);
1654 static int __make_request(request_queue_t
*, struct bio
*);
1656 request_queue_t
*blk_alloc_queue(gfp_t gfp_mask
)
1658 return blk_alloc_queue_node(gfp_mask
, -1);
1660 EXPORT_SYMBOL(blk_alloc_queue
);
1662 request_queue_t
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
1666 q
= kmem_cache_alloc_node(requestq_cachep
, gfp_mask
, node_id
);
1670 memset(q
, 0, sizeof(*q
));
1671 init_timer(&q
->unplug_timer
);
1672 atomic_set(&q
->refcnt
, 1);
1674 q
->backing_dev_info
.unplug_io_fn
= blk_backing_dev_unplug
;
1675 q
->backing_dev_info
.unplug_io_data
= q
;
1679 EXPORT_SYMBOL(blk_alloc_queue_node
);
1682 * blk_init_queue - prepare a request queue for use with a block device
1683 * @rfn: The function to be called to process requests that have been
1684 * placed on the queue.
1685 * @lock: Request queue spin lock
1688 * If a block device wishes to use the standard request handling procedures,
1689 * which sorts requests and coalesces adjacent requests, then it must
1690 * call blk_init_queue(). The function @rfn will be called when there
1691 * are requests on the queue that need to be processed. If the device
1692 * supports plugging, then @rfn may not be called immediately when requests
1693 * are available on the queue, but may be called at some time later instead.
1694 * Plugged queues are generally unplugged when a buffer belonging to one
1695 * of the requests on the queue is needed, or due to memory pressure.
1697 * @rfn is not required, or even expected, to remove all requests off the
1698 * queue, but only as many as it can handle at a time. If it does leave
1699 * requests on the queue, it is responsible for arranging that the requests
1700 * get dealt with eventually.
1702 * The queue spin lock must be held while manipulating the requests on the
1705 * Function returns a pointer to the initialized request queue, or NULL if
1706 * it didn't succeed.
1709 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1710 * when the block device is deactivated (such as at module unload).
1713 request_queue_t
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
1715 return blk_init_queue_node(rfn
, lock
, -1);
1717 EXPORT_SYMBOL(blk_init_queue
);
1720 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
1722 request_queue_t
*q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
1728 if (blk_init_free_list(q
))
1732 * if caller didn't supply a lock, they get per-queue locking with
1736 spin_lock_init(&q
->__queue_lock
);
1737 lock
= &q
->__queue_lock
;
1740 q
->request_fn
= rfn
;
1741 q
->back_merge_fn
= ll_back_merge_fn
;
1742 q
->front_merge_fn
= ll_front_merge_fn
;
1743 q
->merge_requests_fn
= ll_merge_requests_fn
;
1744 q
->prep_rq_fn
= NULL
;
1745 q
->unplug_fn
= generic_unplug_device
;
1746 q
->queue_flags
= (1 << QUEUE_FLAG_CLUSTER
);
1747 q
->queue_lock
= lock
;
1749 blk_queue_segment_boundary(q
, 0xffffffff);
1751 blk_queue_make_request(q
, __make_request
);
1752 blk_queue_max_segment_size(q
, MAX_SEGMENT_SIZE
);
1754 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
1755 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
1760 if (!elevator_init(q
, NULL
)) {
1761 blk_queue_congestion_threshold(q
);
1765 blk_cleanup_queue(q
);
1767 kmem_cache_free(requestq_cachep
, q
);
1770 EXPORT_SYMBOL(blk_init_queue_node
);
1772 int blk_get_queue(request_queue_t
*q
)
1774 if (likely(!test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
))) {
1775 atomic_inc(&q
->refcnt
);
1782 EXPORT_SYMBOL(blk_get_queue
);
1784 static inline void blk_free_request(request_queue_t
*q
, struct request
*rq
)
1786 if (rq
->flags
& REQ_ELVPRIV
)
1787 elv_put_request(q
, rq
);
1788 mempool_free(rq
, q
->rq
.rq_pool
);
1791 static inline struct request
*
1792 blk_alloc_request(request_queue_t
*q
, int rw
, struct bio
*bio
,
1793 int priv
, gfp_t gfp_mask
)
1795 struct request
*rq
= mempool_alloc(q
->rq
.rq_pool
, gfp_mask
);
1801 * first three bits are identical in rq->flags and bio->bi_rw,
1802 * see bio.h and blkdev.h
1807 if (unlikely(elv_set_request(q
, rq
, bio
, gfp_mask
))) {
1808 mempool_free(rq
, q
->rq
.rq_pool
);
1811 rq
->flags
|= REQ_ELVPRIV
;
1818 * ioc_batching returns true if the ioc is a valid batching request and
1819 * should be given priority access to a request.
1821 static inline int ioc_batching(request_queue_t
*q
, struct io_context
*ioc
)
1827 * Make sure the process is able to allocate at least 1 request
1828 * even if the batch times out, otherwise we could theoretically
1831 return ioc
->nr_batch_requests
== q
->nr_batching
||
1832 (ioc
->nr_batch_requests
> 0
1833 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
1837 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1838 * will cause the process to be a "batcher" on all queues in the system. This
1839 * is the behaviour we want though - once it gets a wakeup it should be given
1842 static void ioc_set_batching(request_queue_t
*q
, struct io_context
*ioc
)
1844 if (!ioc
|| ioc_batching(q
, ioc
))
1847 ioc
->nr_batch_requests
= q
->nr_batching
;
1848 ioc
->last_waited
= jiffies
;
1851 static void __freed_request(request_queue_t
*q
, int rw
)
1853 struct request_list
*rl
= &q
->rq
;
1855 if (rl
->count
[rw
] < queue_congestion_off_threshold(q
))
1856 clear_queue_congested(q
, rw
);
1858 if (rl
->count
[rw
] + 1 <= q
->nr_requests
) {
1859 if (waitqueue_active(&rl
->wait
[rw
]))
1860 wake_up(&rl
->wait
[rw
]);
1862 blk_clear_queue_full(q
, rw
);
1867 * A request has just been released. Account for it, update the full and
1868 * congestion status, wake up any waiters. Called under q->queue_lock.
1870 static void freed_request(request_queue_t
*q
, int rw
, int priv
)
1872 struct request_list
*rl
= &q
->rq
;
1878 __freed_request(q
, rw
);
1880 if (unlikely(rl
->starved
[rw
^ 1]))
1881 __freed_request(q
, rw
^ 1);
1884 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
1886 * Get a free request, queue_lock must be held.
1887 * Returns NULL on failure, with queue_lock held.
1888 * Returns !NULL on success, with queue_lock *not held*.
1890 static struct request
*get_request(request_queue_t
*q
, int rw
, struct bio
*bio
,
1893 struct request
*rq
= NULL
;
1894 struct request_list
*rl
= &q
->rq
;
1895 struct io_context
*ioc
= current_io_context(GFP_ATOMIC
);
1898 if (rl
->count
[rw
]+1 >= q
->nr_requests
) {
1900 * The queue will fill after this allocation, so set it as
1901 * full, and mark this process as "batching". This process
1902 * will be allowed to complete a batch of requests, others
1905 if (!blk_queue_full(q
, rw
)) {
1906 ioc_set_batching(q
, ioc
);
1907 blk_set_queue_full(q
, rw
);
1911 switch (elv_may_queue(q
, rw
, bio
)) {
1914 case ELV_MQUEUE_MAY
:
1916 case ELV_MQUEUE_MUST
:
1920 if (blk_queue_full(q
, rw
) && !ioc_batching(q
, ioc
)) {
1922 * The queue is full and the allocating process is not a
1923 * "batcher", and not exempted by the IO scheduler
1930 * Only allow batching queuers to allocate up to 50% over the defined
1931 * limit of requests, otherwise we could have thousands of requests
1932 * allocated with any setting of ->nr_requests
1934 if (rl
->count
[rw
] >= (3 * q
->nr_requests
/ 2))
1938 rl
->starved
[rw
] = 0;
1939 if (rl
->count
[rw
] >= queue_congestion_on_threshold(q
))
1940 set_queue_congested(q
, rw
);
1942 priv
= !test_bit(QUEUE_FLAG_ELVSWITCH
, &q
->queue_flags
);
1946 spin_unlock_irq(q
->queue_lock
);
1948 rq
= blk_alloc_request(q
, rw
, bio
, priv
, gfp_mask
);
1951 * Allocation failed presumably due to memory. Undo anything
1952 * we might have messed up.
1954 * Allocating task should really be put onto the front of the
1955 * wait queue, but this is pretty rare.
1957 spin_lock_irq(q
->queue_lock
);
1958 freed_request(q
, rw
, priv
);
1961 * in the very unlikely event that allocation failed and no
1962 * requests for this direction was pending, mark us starved
1963 * so that freeing of a request in the other direction will
1964 * notice us. another possible fix would be to split the
1965 * rq mempool into READ and WRITE
1968 if (unlikely(rl
->count
[rw
] == 0))
1969 rl
->starved
[rw
] = 1;
1974 if (ioc_batching(q
, ioc
))
1975 ioc
->nr_batch_requests
--;
1984 * No available requests for this queue, unplug the device and wait for some
1985 * requests to become available.
1987 * Called with q->queue_lock held, and returns with it unlocked.
1989 static struct request
*get_request_wait(request_queue_t
*q
, int rw
,
1994 rq
= get_request(q
, rw
, bio
, GFP_NOIO
);
1997 struct request_list
*rl
= &q
->rq
;
1999 prepare_to_wait_exclusive(&rl
->wait
[rw
], &wait
,
2000 TASK_UNINTERRUPTIBLE
);
2002 rq
= get_request(q
, rw
, bio
, GFP_NOIO
);
2005 struct io_context
*ioc
;
2007 __generic_unplug_device(q
);
2008 spin_unlock_irq(q
->queue_lock
);
2012 * After sleeping, we become a "batching" process and
2013 * will be able to allocate at least one request, and
2014 * up to a big batch of them for a small period time.
2015 * See ioc_batching, ioc_set_batching
2017 ioc
= current_io_context(GFP_NOIO
);
2018 ioc_set_batching(q
, ioc
);
2020 spin_lock_irq(q
->queue_lock
);
2022 finish_wait(&rl
->wait
[rw
], &wait
);
2028 struct request
*blk_get_request(request_queue_t
*q
, int rw
, gfp_t gfp_mask
)
2032 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
2034 spin_lock_irq(q
->queue_lock
);
2035 if (gfp_mask
& __GFP_WAIT
) {
2036 rq
= get_request_wait(q
, rw
, NULL
);
2038 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
2040 spin_unlock_irq(q
->queue_lock
);
2042 /* q->queue_lock is unlocked at this point */
2046 EXPORT_SYMBOL(blk_get_request
);
2049 * blk_requeue_request - put a request back on queue
2050 * @q: request queue where request should be inserted
2051 * @rq: request to be inserted
2054 * Drivers often keep queueing requests until the hardware cannot accept
2055 * more, when that condition happens we need to put the request back
2056 * on the queue. Must be called with queue lock held.
2058 void blk_requeue_request(request_queue_t
*q
, struct request
*rq
)
2060 if (blk_rq_tagged(rq
))
2061 blk_queue_end_tag(q
, rq
);
2063 elv_requeue_request(q
, rq
);
2066 EXPORT_SYMBOL(blk_requeue_request
);
2069 * blk_insert_request - insert a special request in to a request queue
2070 * @q: request queue where request should be inserted
2071 * @rq: request to be inserted
2072 * @at_head: insert request at head or tail of queue
2073 * @data: private data
2076 * Many block devices need to execute commands asynchronously, so they don't
2077 * block the whole kernel from preemption during request execution. This is
2078 * accomplished normally by inserting aritficial requests tagged as
2079 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2080 * scheduled for actual execution by the request queue.
2082 * We have the option of inserting the head or the tail of the queue.
2083 * Typically we use the tail for new ioctls and so forth. We use the head
2084 * of the queue for things like a QUEUE_FULL message from a device, or a
2085 * host that is unable to accept a particular command.
2087 void blk_insert_request(request_queue_t
*q
, struct request
*rq
,
2088 int at_head
, void *data
)
2090 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
2091 unsigned long flags
;
2094 * tell I/O scheduler that this isn't a regular read/write (ie it
2095 * must not attempt merges on this) and that it acts as a soft
2098 rq
->flags
|= REQ_SPECIAL
| REQ_SOFTBARRIER
;
2102 spin_lock_irqsave(q
->queue_lock
, flags
);
2105 * If command is tagged, release the tag
2107 if (blk_rq_tagged(rq
))
2108 blk_queue_end_tag(q
, rq
);
2110 drive_stat_acct(rq
, rq
->nr_sectors
, 1);
2111 __elv_add_request(q
, rq
, where
, 0);
2113 if (blk_queue_plugged(q
))
2114 __generic_unplug_device(q
);
2117 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2120 EXPORT_SYMBOL(blk_insert_request
);
2123 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2124 * @q: request queue where request should be inserted
2125 * @rq: request structure to fill
2126 * @ubuf: the user buffer
2127 * @len: length of user data
2130 * Data will be mapped directly for zero copy io, if possible. Otherwise
2131 * a kernel bounce buffer is used.
2133 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2134 * still in process context.
2136 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2137 * before being submitted to the device, as pages mapped may be out of
2138 * reach. It's the callers responsibility to make sure this happens. The
2139 * original bio must be passed back in to blk_rq_unmap_user() for proper
2142 int blk_rq_map_user(request_queue_t
*q
, struct request
*rq
, void __user
*ubuf
,
2145 unsigned long uaddr
;
2149 if (len
> (q
->max_sectors
<< 9))
2154 reading
= rq_data_dir(rq
) == READ
;
2157 * if alignment requirement is satisfied, map in user pages for
2158 * direct dma. else, set up kernel bounce buffers
2160 uaddr
= (unsigned long) ubuf
;
2161 if (!(uaddr
& queue_dma_alignment(q
)) && !(len
& queue_dma_alignment(q
)))
2162 bio
= bio_map_user(q
, NULL
, uaddr
, len
, reading
);
2164 bio
= bio_copy_user(q
, uaddr
, len
, reading
);
2167 rq
->bio
= rq
->biotail
= bio
;
2168 blk_rq_bio_prep(q
, rq
, bio
);
2170 rq
->buffer
= rq
->data
= NULL
;
2176 * bio is the err-ptr
2178 return PTR_ERR(bio
);
2181 EXPORT_SYMBOL(blk_rq_map_user
);
2184 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2185 * @q: request queue where request should be inserted
2186 * @rq: request to map data to
2187 * @iov: pointer to the iovec
2188 * @iov_count: number of elements in the iovec
2191 * Data will be mapped directly for zero copy io, if possible. Otherwise
2192 * a kernel bounce buffer is used.
2194 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2195 * still in process context.
2197 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2198 * before being submitted to the device, as pages mapped may be out of
2199 * reach. It's the callers responsibility to make sure this happens. The
2200 * original bio must be passed back in to blk_rq_unmap_user() for proper
2203 int blk_rq_map_user_iov(request_queue_t
*q
, struct request
*rq
,
2204 struct sg_iovec
*iov
, int iov_count
)
2208 if (!iov
|| iov_count
<= 0)
2211 /* we don't allow misaligned data like bio_map_user() does. If the
2212 * user is using sg, they're expected to know the alignment constraints
2213 * and respect them accordingly */
2214 bio
= bio_map_user_iov(q
, NULL
, iov
, iov_count
, rq_data_dir(rq
)== READ
);
2216 return PTR_ERR(bio
);
2218 rq
->bio
= rq
->biotail
= bio
;
2219 blk_rq_bio_prep(q
, rq
, bio
);
2220 rq
->buffer
= rq
->data
= NULL
;
2221 rq
->data_len
= bio
->bi_size
;
2225 EXPORT_SYMBOL(blk_rq_map_user_iov
);
2228 * blk_rq_unmap_user - unmap a request with user data
2229 * @bio: bio to be unmapped
2230 * @ulen: length of user buffer
2233 * Unmap a bio previously mapped by blk_rq_map_user().
2235 int blk_rq_unmap_user(struct bio
*bio
, unsigned int ulen
)
2240 if (bio_flagged(bio
, BIO_USER_MAPPED
))
2241 bio_unmap_user(bio
);
2243 ret
= bio_uncopy_user(bio
);
2249 EXPORT_SYMBOL(blk_rq_unmap_user
);
2252 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2253 * @q: request queue where request should be inserted
2254 * @rq: request to fill
2255 * @kbuf: the kernel buffer
2256 * @len: length of user data
2257 * @gfp_mask: memory allocation flags
2259 int blk_rq_map_kern(request_queue_t
*q
, struct request
*rq
, void *kbuf
,
2260 unsigned int len
, gfp_t gfp_mask
)
2264 if (len
> (q
->max_sectors
<< 9))
2269 bio
= bio_map_kern(q
, kbuf
, len
, gfp_mask
);
2271 return PTR_ERR(bio
);
2273 if (rq_data_dir(rq
) == WRITE
)
2274 bio
->bi_rw
|= (1 << BIO_RW
);
2276 rq
->bio
= rq
->biotail
= bio
;
2277 blk_rq_bio_prep(q
, rq
, bio
);
2279 rq
->buffer
= rq
->data
= NULL
;
2284 EXPORT_SYMBOL(blk_rq_map_kern
);
2287 * blk_execute_rq_nowait - insert a request into queue for execution
2288 * @q: queue to insert the request in
2289 * @bd_disk: matching gendisk
2290 * @rq: request to insert
2291 * @at_head: insert request at head or tail of queue
2292 * @done: I/O completion handler
2295 * Insert a fully prepared request at the back of the io scheduler queue
2296 * for execution. Don't wait for completion.
2298 void blk_execute_rq_nowait(request_queue_t
*q
, struct gendisk
*bd_disk
,
2299 struct request
*rq
, int at_head
,
2300 void (*done
)(struct request
*))
2302 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
2304 rq
->rq_disk
= bd_disk
;
2305 rq
->flags
|= REQ_NOMERGE
;
2307 elv_add_request(q
, rq
, where
, 1);
2308 generic_unplug_device(q
);
2312 * blk_execute_rq - insert a request into queue for execution
2313 * @q: queue to insert the request in
2314 * @bd_disk: matching gendisk
2315 * @rq: request to insert
2316 * @at_head: insert request at head or tail of queue
2319 * Insert a fully prepared request at the back of the io scheduler queue
2320 * for execution and wait for completion.
2322 int blk_execute_rq(request_queue_t
*q
, struct gendisk
*bd_disk
,
2323 struct request
*rq
, int at_head
)
2325 DECLARE_COMPLETION(wait
);
2326 char sense
[SCSI_SENSE_BUFFERSIZE
];
2330 * we need an extra reference to the request, so we can look at
2331 * it after io completion
2336 memset(sense
, 0, sizeof(sense
));
2341 rq
->waiting
= &wait
;
2342 blk_execute_rq_nowait(q
, bd_disk
, rq
, at_head
, blk_end_sync_rq
);
2343 wait_for_completion(&wait
);
2352 EXPORT_SYMBOL(blk_execute_rq
);
2355 * blkdev_issue_flush - queue a flush
2356 * @bdev: blockdev to issue flush for
2357 * @error_sector: error sector
2360 * Issue a flush for the block device in question. Caller can supply
2361 * room for storing the error offset in case of a flush error, if they
2362 * wish to. Caller must run wait_for_completion() on its own.
2364 int blkdev_issue_flush(struct block_device
*bdev
, sector_t
*error_sector
)
2368 if (bdev
->bd_disk
== NULL
)
2371 q
= bdev_get_queue(bdev
);
2374 if (!q
->issue_flush_fn
)
2377 return q
->issue_flush_fn(q
, bdev
->bd_disk
, error_sector
);
2380 EXPORT_SYMBOL(blkdev_issue_flush
);
2382 static void drive_stat_acct(struct request
*rq
, int nr_sectors
, int new_io
)
2384 int rw
= rq_data_dir(rq
);
2386 if (!blk_fs_request(rq
) || !rq
->rq_disk
)
2390 __disk_stat_inc(rq
->rq_disk
, merges
[rw
]);
2392 disk_round_stats(rq
->rq_disk
);
2393 rq
->rq_disk
->in_flight
++;
2398 * add-request adds a request to the linked list.
2399 * queue lock is held and interrupts disabled, as we muck with the
2400 * request queue list.
2402 static inline void add_request(request_queue_t
* q
, struct request
* req
)
2404 drive_stat_acct(req
, req
->nr_sectors
, 1);
2407 q
->activity_fn(q
->activity_data
, rq_data_dir(req
));
2410 * elevator indicated where it wants this request to be
2411 * inserted at elevator_merge time
2413 __elv_add_request(q
, req
, ELEVATOR_INSERT_SORT
, 0);
2417 * disk_round_stats() - Round off the performance stats on a struct
2420 * The average IO queue length and utilisation statistics are maintained
2421 * by observing the current state of the queue length and the amount of
2422 * time it has been in this state for.
2424 * Normally, that accounting is done on IO completion, but that can result
2425 * in more than a second's worth of IO being accounted for within any one
2426 * second, leading to >100% utilisation. To deal with that, we call this
2427 * function to do a round-off before returning the results when reading
2428 * /proc/diskstats. This accounts immediately for all queue usage up to
2429 * the current jiffies and restarts the counters again.
2431 void disk_round_stats(struct gendisk
*disk
)
2433 unsigned long now
= jiffies
;
2435 if (now
== disk
->stamp
)
2438 if (disk
->in_flight
) {
2439 __disk_stat_add(disk
, time_in_queue
,
2440 disk
->in_flight
* (now
- disk
->stamp
));
2441 __disk_stat_add(disk
, io_ticks
, (now
- disk
->stamp
));
2447 * queue lock must be held
2449 static void __blk_put_request(request_queue_t
*q
, struct request
*req
)
2451 struct request_list
*rl
= req
->rl
;
2455 if (unlikely(--req
->ref_count
))
2458 elv_completed_request(q
, req
);
2460 req
->rq_status
= RQ_INACTIVE
;
2464 * Request may not have originated from ll_rw_blk. if not,
2465 * it didn't come out of our reserved rq pools
2468 int rw
= rq_data_dir(req
);
2469 int priv
= req
->flags
& REQ_ELVPRIV
;
2471 BUG_ON(!list_empty(&req
->queuelist
));
2473 blk_free_request(q
, req
);
2474 freed_request(q
, rw
, priv
);
2478 void blk_put_request(struct request
*req
)
2480 unsigned long flags
;
2481 request_queue_t
*q
= req
->q
;
2484 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2485 * following if (q) test.
2488 spin_lock_irqsave(q
->queue_lock
, flags
);
2489 __blk_put_request(q
, req
);
2490 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2494 EXPORT_SYMBOL(blk_put_request
);
2497 * blk_end_sync_rq - executes a completion event on a request
2498 * @rq: request to complete
2500 void blk_end_sync_rq(struct request
*rq
)
2502 struct completion
*waiting
= rq
->waiting
;
2505 __blk_put_request(rq
->q
, rq
);
2508 * complete last, if this is a stack request the process (and thus
2509 * the rq pointer) could be invalid right after this complete()
2513 EXPORT_SYMBOL(blk_end_sync_rq
);
2516 * blk_congestion_wait - wait for a queue to become uncongested
2517 * @rw: READ or WRITE
2518 * @timeout: timeout in jiffies
2520 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2521 * If no queues are congested then just wait for the next request to be
2524 long blk_congestion_wait(int rw
, long timeout
)
2528 wait_queue_head_t
*wqh
= &congestion_wqh
[rw
];
2530 prepare_to_wait(wqh
, &wait
, TASK_UNINTERRUPTIBLE
);
2531 ret
= io_schedule_timeout(timeout
);
2532 finish_wait(wqh
, &wait
);
2536 EXPORT_SYMBOL(blk_congestion_wait
);
2539 * Has to be called with the request spinlock acquired
2541 static int attempt_merge(request_queue_t
*q
, struct request
*req
,
2542 struct request
*next
)
2544 if (!rq_mergeable(req
) || !rq_mergeable(next
))
2550 if (req
->sector
+ req
->nr_sectors
!= next
->sector
)
2553 if (rq_data_dir(req
) != rq_data_dir(next
)
2554 || req
->rq_disk
!= next
->rq_disk
2555 || next
->waiting
|| next
->special
)
2559 * If we are allowed to merge, then append bio list
2560 * from next to rq and release next. merge_requests_fn
2561 * will have updated segment counts, update sector
2564 if (!q
->merge_requests_fn(q
, req
, next
))
2568 * At this point we have either done a back merge
2569 * or front merge. We need the smaller start_time of
2570 * the merged requests to be the current request
2571 * for accounting purposes.
2573 if (time_after(req
->start_time
, next
->start_time
))
2574 req
->start_time
= next
->start_time
;
2576 req
->biotail
->bi_next
= next
->bio
;
2577 req
->biotail
= next
->biotail
;
2579 req
->nr_sectors
= req
->hard_nr_sectors
+= next
->hard_nr_sectors
;
2581 elv_merge_requests(q
, req
, next
);
2584 disk_round_stats(req
->rq_disk
);
2585 req
->rq_disk
->in_flight
--;
2588 req
->ioprio
= ioprio_best(req
->ioprio
, next
->ioprio
);
2590 __blk_put_request(q
, next
);
2594 static inline int attempt_back_merge(request_queue_t
*q
, struct request
*rq
)
2596 struct request
*next
= elv_latter_request(q
, rq
);
2599 return attempt_merge(q
, rq
, next
);
2604 static inline int attempt_front_merge(request_queue_t
*q
, struct request
*rq
)
2606 struct request
*prev
= elv_former_request(q
, rq
);
2609 return attempt_merge(q
, prev
, rq
);
2615 * blk_attempt_remerge - attempt to remerge active head with next request
2616 * @q: The &request_queue_t belonging to the device
2617 * @rq: The head request (usually)
2620 * For head-active devices, the queue can easily be unplugged so quickly
2621 * that proper merging is not done on the front request. This may hurt
2622 * performance greatly for some devices. The block layer cannot safely
2623 * do merging on that first request for these queues, but the driver can
2624 * call this function and make it happen any way. Only the driver knows
2625 * when it is safe to do so.
2627 void blk_attempt_remerge(request_queue_t
*q
, struct request
*rq
)
2629 unsigned long flags
;
2631 spin_lock_irqsave(q
->queue_lock
, flags
);
2632 attempt_back_merge(q
, rq
);
2633 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2636 EXPORT_SYMBOL(blk_attempt_remerge
);
2638 static int __make_request(request_queue_t
*q
, struct bio
*bio
)
2640 struct request
*req
;
2641 int el_ret
, rw
, nr_sectors
, cur_nr_sectors
, barrier
, err
, sync
;
2642 unsigned short prio
;
2645 sector
= bio
->bi_sector
;
2646 nr_sectors
= bio_sectors(bio
);
2647 cur_nr_sectors
= bio_cur_sectors(bio
);
2648 prio
= bio_prio(bio
);
2650 rw
= bio_data_dir(bio
);
2651 sync
= bio_sync(bio
);
2654 * low level driver can indicate that it wants pages above a
2655 * certain limit bounced to low memory (ie for highmem, or even
2656 * ISA dma in theory)
2658 blk_queue_bounce(q
, &bio
);
2660 spin_lock_prefetch(q
->queue_lock
);
2662 barrier
= bio_barrier(bio
);
2663 if (unlikely(barrier
) && (q
->ordered
== QUEUE_ORDERED_NONE
)) {
2668 spin_lock_irq(q
->queue_lock
);
2670 if (unlikely(barrier
) || elv_queue_empty(q
))
2673 el_ret
= elv_merge(q
, &req
, bio
);
2675 case ELEVATOR_BACK_MERGE
:
2676 BUG_ON(!rq_mergeable(req
));
2678 if (!q
->back_merge_fn(q
, req
, bio
))
2681 req
->biotail
->bi_next
= bio
;
2683 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
2684 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
2685 drive_stat_acct(req
, nr_sectors
, 0);
2686 if (!attempt_back_merge(q
, req
))
2687 elv_merged_request(q
, req
);
2690 case ELEVATOR_FRONT_MERGE
:
2691 BUG_ON(!rq_mergeable(req
));
2693 if (!q
->front_merge_fn(q
, req
, bio
))
2696 bio
->bi_next
= req
->bio
;
2700 * may not be valid. if the low level driver said
2701 * it didn't need a bounce buffer then it better
2702 * not touch req->buffer either...
2704 req
->buffer
= bio_data(bio
);
2705 req
->current_nr_sectors
= cur_nr_sectors
;
2706 req
->hard_cur_sectors
= cur_nr_sectors
;
2707 req
->sector
= req
->hard_sector
= sector
;
2708 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
2709 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
2710 drive_stat_acct(req
, nr_sectors
, 0);
2711 if (!attempt_front_merge(q
, req
))
2712 elv_merged_request(q
, req
);
2715 /* ELV_NO_MERGE: elevator says don't/can't merge. */
2722 * Grab a free request. This is might sleep but can not fail.
2723 * Returns with the queue unlocked.
2725 req
= get_request_wait(q
, rw
, bio
);
2728 * After dropping the lock and possibly sleeping here, our request
2729 * may now be mergeable after it had proven unmergeable (above).
2730 * We don't worry about that case for efficiency. It won't happen
2731 * often, and the elevators are able to handle it.
2734 req
->flags
|= REQ_CMD
;
2737 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2739 if (bio_rw_ahead(bio
) || bio_failfast(bio
))
2740 req
->flags
|= REQ_FAILFAST
;
2743 * REQ_BARRIER implies no merging, but lets make it explicit
2745 if (unlikely(barrier
))
2746 req
->flags
|= (REQ_HARDBARRIER
| REQ_NOMERGE
);
2749 req
->hard_sector
= req
->sector
= sector
;
2750 req
->hard_nr_sectors
= req
->nr_sectors
= nr_sectors
;
2751 req
->current_nr_sectors
= req
->hard_cur_sectors
= cur_nr_sectors
;
2752 req
->nr_phys_segments
= bio_phys_segments(q
, bio
);
2753 req
->nr_hw_segments
= bio_hw_segments(q
, bio
);
2754 req
->buffer
= bio_data(bio
); /* see ->buffer comment above */
2755 req
->waiting
= NULL
;
2756 req
->bio
= req
->biotail
= bio
;
2758 req
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2759 req
->start_time
= jiffies
;
2761 spin_lock_irq(q
->queue_lock
);
2762 if (elv_queue_empty(q
))
2764 add_request(q
, req
);
2767 __generic_unplug_device(q
);
2769 spin_unlock_irq(q
->queue_lock
);
2773 bio_endio(bio
, nr_sectors
<< 9, err
);
2778 * If bio->bi_dev is a partition, remap the location
2780 static inline void blk_partition_remap(struct bio
*bio
)
2782 struct block_device
*bdev
= bio
->bi_bdev
;
2784 if (bdev
!= bdev
->bd_contains
) {
2785 struct hd_struct
*p
= bdev
->bd_part
;
2786 const int rw
= bio_data_dir(bio
);
2788 p
->sectors
[rw
] += bio_sectors(bio
);
2791 bio
->bi_sector
+= p
->start_sect
;
2792 bio
->bi_bdev
= bdev
->bd_contains
;
2796 static void handle_bad_sector(struct bio
*bio
)
2798 char b
[BDEVNAME_SIZE
];
2800 printk(KERN_INFO
"attempt to access beyond end of device\n");
2801 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
2802 bdevname(bio
->bi_bdev
, b
),
2804 (unsigned long long)bio
->bi_sector
+ bio_sectors(bio
),
2805 (long long)(bio
->bi_bdev
->bd_inode
->i_size
>> 9));
2807 set_bit(BIO_EOF
, &bio
->bi_flags
);
2811 * generic_make_request: hand a buffer to its device driver for I/O
2812 * @bio: The bio describing the location in memory and on the device.
2814 * generic_make_request() is used to make I/O requests of block
2815 * devices. It is passed a &struct bio, which describes the I/O that needs
2818 * generic_make_request() does not return any status. The
2819 * success/failure status of the request, along with notification of
2820 * completion, is delivered asynchronously through the bio->bi_end_io
2821 * function described (one day) else where.
2823 * The caller of generic_make_request must make sure that bi_io_vec
2824 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2825 * set to describe the device address, and the
2826 * bi_end_io and optionally bi_private are set to describe how
2827 * completion notification should be signaled.
2829 * generic_make_request and the drivers it calls may use bi_next if this
2830 * bio happens to be merged with someone else, and may change bi_dev and
2831 * bi_sector for remaps as it sees fit. So the values of these fields
2832 * should NOT be depended on after the call to generic_make_request.
2834 void generic_make_request(struct bio
*bio
)
2838 int ret
, nr_sectors
= bio_sectors(bio
);
2841 /* Test device or partition size, when known. */
2842 maxsector
= bio
->bi_bdev
->bd_inode
->i_size
>> 9;
2844 sector_t sector
= bio
->bi_sector
;
2846 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
2848 * This may well happen - the kernel calls bread()
2849 * without checking the size of the device, e.g., when
2850 * mounting a device.
2852 handle_bad_sector(bio
);
2858 * Resolve the mapping until finished. (drivers are
2859 * still free to implement/resolve their own stacking
2860 * by explicitly returning 0)
2862 * NOTE: we don't repeat the blk_size check for each new device.
2863 * Stacking drivers are expected to know what they are doing.
2866 char b
[BDEVNAME_SIZE
];
2868 q
= bdev_get_queue(bio
->bi_bdev
);
2871 "generic_make_request: Trying to access "
2872 "nonexistent block-device %s (%Lu)\n",
2873 bdevname(bio
->bi_bdev
, b
),
2874 (long long) bio
->bi_sector
);
2876 bio_endio(bio
, bio
->bi_size
, -EIO
);
2880 if (unlikely(bio_sectors(bio
) > q
->max_hw_sectors
)) {
2881 printk("bio too big device %s (%u > %u)\n",
2882 bdevname(bio
->bi_bdev
, b
),
2888 if (unlikely(test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)))
2892 * If this device has partitions, remap block n
2893 * of partition p to block n+start(p) of the disk.
2895 blk_partition_remap(bio
);
2897 ret
= q
->make_request_fn(q
, bio
);
2901 EXPORT_SYMBOL(generic_make_request
);
2904 * submit_bio: submit a bio to the block device layer for I/O
2905 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2906 * @bio: The &struct bio which describes the I/O
2908 * submit_bio() is very similar in purpose to generic_make_request(), and
2909 * uses that function to do most of the work. Both are fairly rough
2910 * interfaces, @bio must be presetup and ready for I/O.
2913 void submit_bio(int rw
, struct bio
*bio
)
2915 int count
= bio_sectors(bio
);
2917 BIO_BUG_ON(!bio
->bi_size
);
2918 BIO_BUG_ON(!bio
->bi_io_vec
);
2921 mod_page_state(pgpgout
, count
);
2923 mod_page_state(pgpgin
, count
);
2925 if (unlikely(block_dump
)) {
2926 char b
[BDEVNAME_SIZE
];
2927 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s\n",
2928 current
->comm
, current
->pid
,
2929 (rw
& WRITE
) ? "WRITE" : "READ",
2930 (unsigned long long)bio
->bi_sector
,
2931 bdevname(bio
->bi_bdev
,b
));
2934 generic_make_request(bio
);
2937 EXPORT_SYMBOL(submit_bio
);
2939 static void blk_recalc_rq_segments(struct request
*rq
)
2941 struct bio
*bio
, *prevbio
= NULL
;
2942 int nr_phys_segs
, nr_hw_segs
;
2943 unsigned int phys_size
, hw_size
;
2944 request_queue_t
*q
= rq
->q
;
2949 phys_size
= hw_size
= nr_phys_segs
= nr_hw_segs
= 0;
2950 rq_for_each_bio(bio
, rq
) {
2951 /* Force bio hw/phys segs to be recalculated. */
2952 bio
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
2954 nr_phys_segs
+= bio_phys_segments(q
, bio
);
2955 nr_hw_segs
+= bio_hw_segments(q
, bio
);
2957 int pseg
= phys_size
+ prevbio
->bi_size
+ bio
->bi_size
;
2958 int hseg
= hw_size
+ prevbio
->bi_size
+ bio
->bi_size
;
2960 if (blk_phys_contig_segment(q
, prevbio
, bio
) &&
2961 pseg
<= q
->max_segment_size
) {
2963 phys_size
+= prevbio
->bi_size
+ bio
->bi_size
;
2967 if (blk_hw_contig_segment(q
, prevbio
, bio
) &&
2968 hseg
<= q
->max_segment_size
) {
2970 hw_size
+= prevbio
->bi_size
+ bio
->bi_size
;
2977 rq
->nr_phys_segments
= nr_phys_segs
;
2978 rq
->nr_hw_segments
= nr_hw_segs
;
2981 static void blk_recalc_rq_sectors(struct request
*rq
, int nsect
)
2983 if (blk_fs_request(rq
)) {
2984 rq
->hard_sector
+= nsect
;
2985 rq
->hard_nr_sectors
-= nsect
;
2988 * Move the I/O submission pointers ahead if required.
2990 if ((rq
->nr_sectors
>= rq
->hard_nr_sectors
) &&
2991 (rq
->sector
<= rq
->hard_sector
)) {
2992 rq
->sector
= rq
->hard_sector
;
2993 rq
->nr_sectors
= rq
->hard_nr_sectors
;
2994 rq
->hard_cur_sectors
= bio_cur_sectors(rq
->bio
);
2995 rq
->current_nr_sectors
= rq
->hard_cur_sectors
;
2996 rq
->buffer
= bio_data(rq
->bio
);
3000 * if total number of sectors is less than the first segment
3001 * size, something has gone terribly wrong
3003 if (rq
->nr_sectors
< rq
->current_nr_sectors
) {
3004 printk("blk: request botched\n");
3005 rq
->nr_sectors
= rq
->current_nr_sectors
;
3010 static int __end_that_request_first(struct request
*req
, int uptodate
,
3013 int total_bytes
, bio_nbytes
, error
, next_idx
= 0;
3017 * extend uptodate bool to allow < 0 value to be direct io error
3020 if (end_io_error(uptodate
))
3021 error
= !uptodate
? -EIO
: uptodate
;
3024 * for a REQ_BLOCK_PC request, we want to carry any eventual
3025 * sense key with us all the way through
3027 if (!blk_pc_request(req
))
3031 if (blk_fs_request(req
) && !(req
->flags
& REQ_QUIET
))
3032 printk("end_request: I/O error, dev %s, sector %llu\n",
3033 req
->rq_disk
? req
->rq_disk
->disk_name
: "?",
3034 (unsigned long long)req
->sector
);
3037 if (blk_fs_request(req
) && req
->rq_disk
) {
3038 const int rw
= rq_data_dir(req
);
3040 __disk_stat_add(req
->rq_disk
, sectors
[rw
], nr_bytes
>> 9);
3043 total_bytes
= bio_nbytes
= 0;
3044 while ((bio
= req
->bio
) != NULL
) {
3047 if (nr_bytes
>= bio
->bi_size
) {
3048 req
->bio
= bio
->bi_next
;
3049 nbytes
= bio
->bi_size
;
3050 bio_endio(bio
, nbytes
, error
);
3054 int idx
= bio
->bi_idx
+ next_idx
;
3056 if (unlikely(bio
->bi_idx
>= bio
->bi_vcnt
)) {
3057 blk_dump_rq_flags(req
, "__end_that");
3058 printk("%s: bio idx %d >= vcnt %d\n",
3060 bio
->bi_idx
, bio
->bi_vcnt
);
3064 nbytes
= bio_iovec_idx(bio
, idx
)->bv_len
;
3065 BIO_BUG_ON(nbytes
> bio
->bi_size
);
3068 * not a complete bvec done
3070 if (unlikely(nbytes
> nr_bytes
)) {
3071 bio_nbytes
+= nr_bytes
;
3072 total_bytes
+= nr_bytes
;
3077 * advance to the next vector
3080 bio_nbytes
+= nbytes
;
3083 total_bytes
+= nbytes
;
3086 if ((bio
= req
->bio
)) {
3088 * end more in this run, or just return 'not-done'
3090 if (unlikely(nr_bytes
<= 0))
3102 * if the request wasn't completed, update state
3105 bio_endio(bio
, bio_nbytes
, error
);
3106 bio
->bi_idx
+= next_idx
;
3107 bio_iovec(bio
)->bv_offset
+= nr_bytes
;
3108 bio_iovec(bio
)->bv_len
-= nr_bytes
;
3111 blk_recalc_rq_sectors(req
, total_bytes
>> 9);
3112 blk_recalc_rq_segments(req
);
3117 * end_that_request_first - end I/O on a request
3118 * @req: the request being processed
3119 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3120 * @nr_sectors: number of sectors to end I/O on
3123 * Ends I/O on a number of sectors attached to @req, and sets it up
3124 * for the next range of segments (if any) in the cluster.
3127 * 0 - we are done with this request, call end_that_request_last()
3128 * 1 - still buffers pending for this request
3130 int end_that_request_first(struct request
*req
, int uptodate
, int nr_sectors
)
3132 return __end_that_request_first(req
, uptodate
, nr_sectors
<< 9);
3135 EXPORT_SYMBOL(end_that_request_first
);
3138 * end_that_request_chunk - end I/O on a request
3139 * @req: the request being processed
3140 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3141 * @nr_bytes: number of bytes to complete
3144 * Ends I/O on a number of bytes attached to @req, and sets it up
3145 * for the next range of segments (if any). Like end_that_request_first(),
3146 * but deals with bytes instead of sectors.
3149 * 0 - we are done with this request, call end_that_request_last()
3150 * 1 - still buffers pending for this request
3152 int end_that_request_chunk(struct request
*req
, int uptodate
, int nr_bytes
)
3154 return __end_that_request_first(req
, uptodate
, nr_bytes
);
3157 EXPORT_SYMBOL(end_that_request_chunk
);
3160 * queue lock must be held
3162 void end_that_request_last(struct request
*req
)
3164 struct gendisk
*disk
= req
->rq_disk
;
3166 if (unlikely(laptop_mode
) && blk_fs_request(req
))
3167 laptop_io_completion();
3169 if (disk
&& blk_fs_request(req
)) {
3170 unsigned long duration
= jiffies
- req
->start_time
;
3171 const int rw
= rq_data_dir(req
);
3173 __disk_stat_inc(disk
, ios
[rw
]);
3174 __disk_stat_add(disk
, ticks
[rw
], duration
);
3175 disk_round_stats(disk
);
3181 __blk_put_request(req
->q
, req
);
3184 EXPORT_SYMBOL(end_that_request_last
);
3186 void end_request(struct request
*req
, int uptodate
)
3188 if (!end_that_request_first(req
, uptodate
, req
->hard_cur_sectors
)) {
3189 add_disk_randomness(req
->rq_disk
);
3190 blkdev_dequeue_request(req
);
3191 end_that_request_last(req
);
3195 EXPORT_SYMBOL(end_request
);
3197 void blk_rq_bio_prep(request_queue_t
*q
, struct request
*rq
, struct bio
*bio
)
3199 /* first three bits are identical in rq->flags and bio->bi_rw */
3200 rq
->flags
|= (bio
->bi_rw
& 7);
3202 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
3203 rq
->nr_hw_segments
= bio_hw_segments(q
, bio
);
3204 rq
->current_nr_sectors
= bio_cur_sectors(bio
);
3205 rq
->hard_cur_sectors
= rq
->current_nr_sectors
;
3206 rq
->hard_nr_sectors
= rq
->nr_sectors
= bio_sectors(bio
);
3207 rq
->buffer
= bio_data(bio
);
3209 rq
->bio
= rq
->biotail
= bio
;
3212 EXPORT_SYMBOL(blk_rq_bio_prep
);
3214 int kblockd_schedule_work(struct work_struct
*work
)
3216 return queue_work(kblockd_workqueue
, work
);
3219 EXPORT_SYMBOL(kblockd_schedule_work
);
3221 void kblockd_flush(void)
3223 flush_workqueue(kblockd_workqueue
);
3225 EXPORT_SYMBOL(kblockd_flush
);
3227 int __init
blk_dev_init(void)
3229 kblockd_workqueue
= create_workqueue("kblockd");
3230 if (!kblockd_workqueue
)
3231 panic("Failed to create kblockd\n");
3233 request_cachep
= kmem_cache_create("blkdev_requests",
3234 sizeof(struct request
), 0, SLAB_PANIC
, NULL
, NULL
);
3236 requestq_cachep
= kmem_cache_create("blkdev_queue",
3237 sizeof(request_queue_t
), 0, SLAB_PANIC
, NULL
, NULL
);
3239 iocontext_cachep
= kmem_cache_create("blkdev_ioc",
3240 sizeof(struct io_context
), 0, SLAB_PANIC
, NULL
, NULL
);
3242 blk_max_low_pfn
= max_low_pfn
;
3243 blk_max_pfn
= max_pfn
;
3249 * IO Context helper functions
3251 void put_io_context(struct io_context
*ioc
)
3256 BUG_ON(atomic_read(&ioc
->refcount
) == 0);
3258 if (atomic_dec_and_test(&ioc
->refcount
)) {
3259 if (ioc
->aic
&& ioc
->aic
->dtor
)
3260 ioc
->aic
->dtor(ioc
->aic
);
3261 if (ioc
->cic
&& ioc
->cic
->dtor
)
3262 ioc
->cic
->dtor(ioc
->cic
);
3264 kmem_cache_free(iocontext_cachep
, ioc
);
3267 EXPORT_SYMBOL(put_io_context
);
3269 /* Called by the exitting task */
3270 void exit_io_context(void)
3272 unsigned long flags
;
3273 struct io_context
*ioc
;
3275 local_irq_save(flags
);
3277 ioc
= current
->io_context
;
3278 current
->io_context
= NULL
;
3280 task_unlock(current
);
3281 local_irq_restore(flags
);
3283 if (ioc
->aic
&& ioc
->aic
->exit
)
3284 ioc
->aic
->exit(ioc
->aic
);
3285 if (ioc
->cic
&& ioc
->cic
->exit
)
3286 ioc
->cic
->exit(ioc
->cic
);
3288 put_io_context(ioc
);
3292 * If the current task has no IO context then create one and initialise it.
3293 * Otherwise, return its existing IO context.
3295 * This returned IO context doesn't have a specifically elevated refcount,
3296 * but since the current task itself holds a reference, the context can be
3297 * used in general code, so long as it stays within `current` context.
3299 struct io_context
*current_io_context(gfp_t gfp_flags
)
3301 struct task_struct
*tsk
= current
;
3302 struct io_context
*ret
;
3304 ret
= tsk
->io_context
;
3308 ret
= kmem_cache_alloc(iocontext_cachep
, gfp_flags
);
3310 atomic_set(&ret
->refcount
, 1);
3311 ret
->task
= current
;
3312 ret
->set_ioprio
= NULL
;
3313 ret
->last_waited
= jiffies
; /* doesn't matter... */
3314 ret
->nr_batch_requests
= 0; /* because this is 0 */
3317 tsk
->io_context
= ret
;
3322 EXPORT_SYMBOL(current_io_context
);
3325 * If the current task has no IO context then create one and initialise it.
3326 * If it does have a context, take a ref on it.
3328 * This is always called in the context of the task which submitted the I/O.
3330 struct io_context
*get_io_context(gfp_t gfp_flags
)
3332 struct io_context
*ret
;
3333 ret
= current_io_context(gfp_flags
);
3335 atomic_inc(&ret
->refcount
);
3338 EXPORT_SYMBOL(get_io_context
);
3340 void copy_io_context(struct io_context
**pdst
, struct io_context
**psrc
)
3342 struct io_context
*src
= *psrc
;
3343 struct io_context
*dst
= *pdst
;
3346 BUG_ON(atomic_read(&src
->refcount
) == 0);
3347 atomic_inc(&src
->refcount
);
3348 put_io_context(dst
);
3352 EXPORT_SYMBOL(copy_io_context
);
3354 void swap_io_context(struct io_context
**ioc1
, struct io_context
**ioc2
)
3356 struct io_context
*temp
;
3361 EXPORT_SYMBOL(swap_io_context
);
3366 struct queue_sysfs_entry
{
3367 struct attribute attr
;
3368 ssize_t (*show
)(struct request_queue
*, char *);
3369 ssize_t (*store
)(struct request_queue
*, const char *, size_t);
3373 queue_var_show(unsigned int var
, char *page
)
3375 return sprintf(page
, "%d\n", var
);
3379 queue_var_store(unsigned long *var
, const char *page
, size_t count
)
3381 char *p
= (char *) page
;
3383 *var
= simple_strtoul(p
, &p
, 10);
3387 static ssize_t
queue_requests_show(struct request_queue
*q
, char *page
)
3389 return queue_var_show(q
->nr_requests
, (page
));
3393 queue_requests_store(struct request_queue
*q
, const char *page
, size_t count
)
3395 struct request_list
*rl
= &q
->rq
;
3397 int ret
= queue_var_store(&q
->nr_requests
, page
, count
);
3398 if (q
->nr_requests
< BLKDEV_MIN_RQ
)
3399 q
->nr_requests
= BLKDEV_MIN_RQ
;
3400 blk_queue_congestion_threshold(q
);
3402 if (rl
->count
[READ
] >= queue_congestion_on_threshold(q
))
3403 set_queue_congested(q
, READ
);
3404 else if (rl
->count
[READ
] < queue_congestion_off_threshold(q
))
3405 clear_queue_congested(q
, READ
);
3407 if (rl
->count
[WRITE
] >= queue_congestion_on_threshold(q
))
3408 set_queue_congested(q
, WRITE
);
3409 else if (rl
->count
[WRITE
] < queue_congestion_off_threshold(q
))
3410 clear_queue_congested(q
, WRITE
);
3412 if (rl
->count
[READ
] >= q
->nr_requests
) {
3413 blk_set_queue_full(q
, READ
);
3414 } else if (rl
->count
[READ
]+1 <= q
->nr_requests
) {
3415 blk_clear_queue_full(q
, READ
);
3416 wake_up(&rl
->wait
[READ
]);
3419 if (rl
->count
[WRITE
] >= q
->nr_requests
) {
3420 blk_set_queue_full(q
, WRITE
);
3421 } else if (rl
->count
[WRITE
]+1 <= q
->nr_requests
) {
3422 blk_clear_queue_full(q
, WRITE
);
3423 wake_up(&rl
->wait
[WRITE
]);
3428 static ssize_t
queue_ra_show(struct request_queue
*q
, char *page
)
3430 int ra_kb
= q
->backing_dev_info
.ra_pages
<< (PAGE_CACHE_SHIFT
- 10);
3432 return queue_var_show(ra_kb
, (page
));
3436 queue_ra_store(struct request_queue
*q
, const char *page
, size_t count
)
3438 unsigned long ra_kb
;
3439 ssize_t ret
= queue_var_store(&ra_kb
, page
, count
);
3441 spin_lock_irq(q
->queue_lock
);
3442 if (ra_kb
> (q
->max_sectors
>> 1))
3443 ra_kb
= (q
->max_sectors
>> 1);
3445 q
->backing_dev_info
.ra_pages
= ra_kb
>> (PAGE_CACHE_SHIFT
- 10);
3446 spin_unlock_irq(q
->queue_lock
);
3451 static ssize_t
queue_max_sectors_show(struct request_queue
*q
, char *page
)
3453 int max_sectors_kb
= q
->max_sectors
>> 1;
3455 return queue_var_show(max_sectors_kb
, (page
));
3459 queue_max_sectors_store(struct request_queue
*q
, const char *page
, size_t count
)
3461 unsigned long max_sectors_kb
,
3462 max_hw_sectors_kb
= q
->max_hw_sectors
>> 1,
3463 page_kb
= 1 << (PAGE_CACHE_SHIFT
- 10);
3464 ssize_t ret
= queue_var_store(&max_sectors_kb
, page
, count
);
3467 if (max_sectors_kb
> max_hw_sectors_kb
|| max_sectors_kb
< page_kb
)
3470 * Take the queue lock to update the readahead and max_sectors
3471 * values synchronously:
3473 spin_lock_irq(q
->queue_lock
);
3475 * Trim readahead window as well, if necessary:
3477 ra_kb
= q
->backing_dev_info
.ra_pages
<< (PAGE_CACHE_SHIFT
- 10);
3478 if (ra_kb
> max_sectors_kb
)
3479 q
->backing_dev_info
.ra_pages
=
3480 max_sectors_kb
>> (PAGE_CACHE_SHIFT
- 10);
3482 q
->max_sectors
= max_sectors_kb
<< 1;
3483 spin_unlock_irq(q
->queue_lock
);
3488 static ssize_t
queue_max_hw_sectors_show(struct request_queue
*q
, char *page
)
3490 int max_hw_sectors_kb
= q
->max_hw_sectors
>> 1;
3492 return queue_var_show(max_hw_sectors_kb
, (page
));
3496 static struct queue_sysfs_entry queue_requests_entry
= {
3497 .attr
= {.name
= "nr_requests", .mode
= S_IRUGO
| S_IWUSR
},
3498 .show
= queue_requests_show
,
3499 .store
= queue_requests_store
,
3502 static struct queue_sysfs_entry queue_ra_entry
= {
3503 .attr
= {.name
= "read_ahead_kb", .mode
= S_IRUGO
| S_IWUSR
},
3504 .show
= queue_ra_show
,
3505 .store
= queue_ra_store
,
3508 static struct queue_sysfs_entry queue_max_sectors_entry
= {
3509 .attr
= {.name
= "max_sectors_kb", .mode
= S_IRUGO
| S_IWUSR
},
3510 .show
= queue_max_sectors_show
,
3511 .store
= queue_max_sectors_store
,
3514 static struct queue_sysfs_entry queue_max_hw_sectors_entry
= {
3515 .attr
= {.name
= "max_hw_sectors_kb", .mode
= S_IRUGO
},
3516 .show
= queue_max_hw_sectors_show
,
3519 static struct queue_sysfs_entry queue_iosched_entry
= {
3520 .attr
= {.name
= "scheduler", .mode
= S_IRUGO
| S_IWUSR
},
3521 .show
= elv_iosched_show
,
3522 .store
= elv_iosched_store
,
3525 static struct attribute
*default_attrs
[] = {
3526 &queue_requests_entry
.attr
,
3527 &queue_ra_entry
.attr
,
3528 &queue_max_hw_sectors_entry
.attr
,
3529 &queue_max_sectors_entry
.attr
,
3530 &queue_iosched_entry
.attr
,
3534 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3537 queue_attr_show(struct kobject
*kobj
, struct attribute
*attr
, char *page
)
3539 struct queue_sysfs_entry
*entry
= to_queue(attr
);
3540 struct request_queue
*q
;
3542 q
= container_of(kobj
, struct request_queue
, kobj
);
3546 return entry
->show(q
, page
);
3550 queue_attr_store(struct kobject
*kobj
, struct attribute
*attr
,
3551 const char *page
, size_t length
)
3553 struct queue_sysfs_entry
*entry
= to_queue(attr
);
3554 struct request_queue
*q
;
3556 q
= container_of(kobj
, struct request_queue
, kobj
);
3560 return entry
->store(q
, page
, length
);
3563 static struct sysfs_ops queue_sysfs_ops
= {
3564 .show
= queue_attr_show
,
3565 .store
= queue_attr_store
,
3568 static struct kobj_type queue_ktype
= {
3569 .sysfs_ops
= &queue_sysfs_ops
,
3570 .default_attrs
= default_attrs
,
3573 int blk_register_queue(struct gendisk
*disk
)
3577 request_queue_t
*q
= disk
->queue
;
3579 if (!q
|| !q
->request_fn
)
3582 q
->kobj
.parent
= kobject_get(&disk
->kobj
);
3583 if (!q
->kobj
.parent
)
3586 snprintf(q
->kobj
.name
, KOBJ_NAME_LEN
, "%s", "queue");
3587 q
->kobj
.ktype
= &queue_ktype
;
3589 ret
= kobject_register(&q
->kobj
);
3593 ret
= elv_register_queue(q
);
3595 kobject_unregister(&q
->kobj
);
3602 void blk_unregister_queue(struct gendisk
*disk
)
3604 request_queue_t
*q
= disk
->queue
;
3606 if (q
&& q
->request_fn
) {
3607 elv_unregister_queue(q
);
3609 kobject_unregister(&q
->kobj
);
3610 kobject_put(&disk
->kobj
);