[PATCH] build fix: CONFIG_MEMORY_HOTPLUG=y on i386
[linux-2.6/sactl.git] / net / ipv4 / tcp.c
blobe2b7b80550371dd836d3b32635c999b2a46f6fcc
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp.c,v 1.216 2002/02/01 22:01:04 davem Exp $
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Fixes:
23 * Alan Cox : Numerous verify_area() calls
24 * Alan Cox : Set the ACK bit on a reset
25 * Alan Cox : Stopped it crashing if it closed while
26 * sk->inuse=1 and was trying to connect
27 * (tcp_err()).
28 * Alan Cox : All icmp error handling was broken
29 * pointers passed where wrong and the
30 * socket was looked up backwards. Nobody
31 * tested any icmp error code obviously.
32 * Alan Cox : tcp_err() now handled properly. It
33 * wakes people on errors. poll
34 * behaves and the icmp error race
35 * has gone by moving it into sock.c
36 * Alan Cox : tcp_send_reset() fixed to work for
37 * everything not just packets for
38 * unknown sockets.
39 * Alan Cox : tcp option processing.
40 * Alan Cox : Reset tweaked (still not 100%) [Had
41 * syn rule wrong]
42 * Herp Rosmanith : More reset fixes
43 * Alan Cox : No longer acks invalid rst frames.
44 * Acking any kind of RST is right out.
45 * Alan Cox : Sets an ignore me flag on an rst
46 * receive otherwise odd bits of prattle
47 * escape still
48 * Alan Cox : Fixed another acking RST frame bug.
49 * Should stop LAN workplace lockups.
50 * Alan Cox : Some tidyups using the new skb list
51 * facilities
52 * Alan Cox : sk->keepopen now seems to work
53 * Alan Cox : Pulls options out correctly on accepts
54 * Alan Cox : Fixed assorted sk->rqueue->next errors
55 * Alan Cox : PSH doesn't end a TCP read. Switched a
56 * bit to skb ops.
57 * Alan Cox : Tidied tcp_data to avoid a potential
58 * nasty.
59 * Alan Cox : Added some better commenting, as the
60 * tcp is hard to follow
61 * Alan Cox : Removed incorrect check for 20 * psh
62 * Michael O'Reilly : ack < copied bug fix.
63 * Johannes Stille : Misc tcp fixes (not all in yet).
64 * Alan Cox : FIN with no memory -> CRASH
65 * Alan Cox : Added socket option proto entries.
66 * Also added awareness of them to accept.
67 * Alan Cox : Added TCP options (SOL_TCP)
68 * Alan Cox : Switched wakeup calls to callbacks,
69 * so the kernel can layer network
70 * sockets.
71 * Alan Cox : Use ip_tos/ip_ttl settings.
72 * Alan Cox : Handle FIN (more) properly (we hope).
73 * Alan Cox : RST frames sent on unsynchronised
74 * state ack error.
75 * Alan Cox : Put in missing check for SYN bit.
76 * Alan Cox : Added tcp_select_window() aka NET2E
77 * window non shrink trick.
78 * Alan Cox : Added a couple of small NET2E timer
79 * fixes
80 * Charles Hedrick : TCP fixes
81 * Toomas Tamm : TCP window fixes
82 * Alan Cox : Small URG fix to rlogin ^C ack fight
83 * Charles Hedrick : Rewrote most of it to actually work
84 * Linus : Rewrote tcp_read() and URG handling
85 * completely
86 * Gerhard Koerting: Fixed some missing timer handling
87 * Matthew Dillon : Reworked TCP machine states as per RFC
88 * Gerhard Koerting: PC/TCP workarounds
89 * Adam Caldwell : Assorted timer/timing errors
90 * Matthew Dillon : Fixed another RST bug
91 * Alan Cox : Move to kernel side addressing changes.
92 * Alan Cox : Beginning work on TCP fastpathing
93 * (not yet usable)
94 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
95 * Alan Cox : TCP fast path debugging
96 * Alan Cox : Window clamping
97 * Michael Riepe : Bug in tcp_check()
98 * Matt Dillon : More TCP improvements and RST bug fixes
99 * Matt Dillon : Yet more small nasties remove from the
100 * TCP code (Be very nice to this man if
101 * tcp finally works 100%) 8)
102 * Alan Cox : BSD accept semantics.
103 * Alan Cox : Reset on closedown bug.
104 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
105 * Michael Pall : Handle poll() after URG properly in
106 * all cases.
107 * Michael Pall : Undo the last fix in tcp_read_urg()
108 * (multi URG PUSH broke rlogin).
109 * Michael Pall : Fix the multi URG PUSH problem in
110 * tcp_readable(), poll() after URG
111 * works now.
112 * Michael Pall : recv(...,MSG_OOB) never blocks in the
113 * BSD api.
114 * Alan Cox : Changed the semantics of sk->socket to
115 * fix a race and a signal problem with
116 * accept() and async I/O.
117 * Alan Cox : Relaxed the rules on tcp_sendto().
118 * Yury Shevchuk : Really fixed accept() blocking problem.
119 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
120 * clients/servers which listen in on
121 * fixed ports.
122 * Alan Cox : Cleaned the above up and shrank it to
123 * a sensible code size.
124 * Alan Cox : Self connect lockup fix.
125 * Alan Cox : No connect to multicast.
126 * Ross Biro : Close unaccepted children on master
127 * socket close.
128 * Alan Cox : Reset tracing code.
129 * Alan Cox : Spurious resets on shutdown.
130 * Alan Cox : Giant 15 minute/60 second timer error
131 * Alan Cox : Small whoops in polling before an
132 * accept.
133 * Alan Cox : Kept the state trace facility since
134 * it's handy for debugging.
135 * Alan Cox : More reset handler fixes.
136 * Alan Cox : Started rewriting the code based on
137 * the RFC's for other useful protocol
138 * references see: Comer, KA9Q NOS, and
139 * for a reference on the difference
140 * between specifications and how BSD
141 * works see the 4.4lite source.
142 * A.N.Kuznetsov : Don't time wait on completion of tidy
143 * close.
144 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
145 * Linus Torvalds : Fixed BSD port reuse to work first syn
146 * Alan Cox : Reimplemented timers as per the RFC
147 * and using multiple timers for sanity.
148 * Alan Cox : Small bug fixes, and a lot of new
149 * comments.
150 * Alan Cox : Fixed dual reader crash by locking
151 * the buffers (much like datagram.c)
152 * Alan Cox : Fixed stuck sockets in probe. A probe
153 * now gets fed up of retrying without
154 * (even a no space) answer.
155 * Alan Cox : Extracted closing code better
156 * Alan Cox : Fixed the closing state machine to
157 * resemble the RFC.
158 * Alan Cox : More 'per spec' fixes.
159 * Jorge Cwik : Even faster checksumming.
160 * Alan Cox : tcp_data() doesn't ack illegal PSH
161 * only frames. At least one pc tcp stack
162 * generates them.
163 * Alan Cox : Cache last socket.
164 * Alan Cox : Per route irtt.
165 * Matt Day : poll()->select() match BSD precisely on error
166 * Alan Cox : New buffers
167 * Marc Tamsky : Various sk->prot->retransmits and
168 * sk->retransmits misupdating fixed.
169 * Fixed tcp_write_timeout: stuck close,
170 * and TCP syn retries gets used now.
171 * Mark Yarvis : In tcp_read_wakeup(), don't send an
172 * ack if state is TCP_CLOSED.
173 * Alan Cox : Look up device on a retransmit - routes may
174 * change. Doesn't yet cope with MSS shrink right
175 * but it's a start!
176 * Marc Tamsky : Closing in closing fixes.
177 * Mike Shaver : RFC1122 verifications.
178 * Alan Cox : rcv_saddr errors.
179 * Alan Cox : Block double connect().
180 * Alan Cox : Small hooks for enSKIP.
181 * Alexey Kuznetsov: Path MTU discovery.
182 * Alan Cox : Support soft errors.
183 * Alan Cox : Fix MTU discovery pathological case
184 * when the remote claims no mtu!
185 * Marc Tamsky : TCP_CLOSE fix.
186 * Colin (G3TNE) : Send a reset on syn ack replies in
187 * window but wrong (fixes NT lpd problems)
188 * Pedro Roque : Better TCP window handling, delayed ack.
189 * Joerg Reuter : No modification of locked buffers in
190 * tcp_do_retransmit()
191 * Eric Schenk : Changed receiver side silly window
192 * avoidance algorithm to BSD style
193 * algorithm. This doubles throughput
194 * against machines running Solaris,
195 * and seems to result in general
196 * improvement.
197 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
198 * Willy Konynenberg : Transparent proxying support.
199 * Mike McLagan : Routing by source
200 * Keith Owens : Do proper merging with partial SKB's in
201 * tcp_do_sendmsg to avoid burstiness.
202 * Eric Schenk : Fix fast close down bug with
203 * shutdown() followed by close().
204 * Andi Kleen : Make poll agree with SIGIO
205 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
206 * lingertime == 0 (RFC 793 ABORT Call)
207 * Hirokazu Takahashi : Use copy_from_user() instead of
208 * csum_and_copy_from_user() if possible.
210 * This program is free software; you can redistribute it and/or
211 * modify it under the terms of the GNU General Public License
212 * as published by the Free Software Foundation; either version
213 * 2 of the License, or(at your option) any later version.
215 * Description of States:
217 * TCP_SYN_SENT sent a connection request, waiting for ack
219 * TCP_SYN_RECV received a connection request, sent ack,
220 * waiting for final ack in three-way handshake.
222 * TCP_ESTABLISHED connection established
224 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
225 * transmission of remaining buffered data
227 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
228 * to shutdown
230 * TCP_CLOSING both sides have shutdown but we still have
231 * data we have to finish sending
233 * TCP_TIME_WAIT timeout to catch resent junk before entering
234 * closed, can only be entered from FIN_WAIT2
235 * or CLOSING. Required because the other end
236 * may not have gotten our last ACK causing it
237 * to retransmit the data packet (which we ignore)
239 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
240 * us to finish writing our data and to shutdown
241 * (we have to close() to move on to LAST_ACK)
243 * TCP_LAST_ACK out side has shutdown after remote has
244 * shutdown. There may still be data in our
245 * buffer that we have to finish sending
247 * TCP_CLOSE socket is finished
250 #include <linux/config.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/smp_lock.h>
257 #include <linux/fs.h>
258 #include <linux/random.h>
259 #include <linux/bootmem.h>
260 #include <linux/cache.h>
262 #include <net/icmp.h>
263 #include <net/tcp.h>
264 #include <net/xfrm.h>
265 #include <net/ip.h>
268 #include <asm/uaccess.h>
269 #include <asm/ioctls.h>
271 int sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
273 DEFINE_SNMP_STAT(struct tcp_mib, tcp_statistics) __read_mostly;
275 atomic_t tcp_orphan_count = ATOMIC_INIT(0);
277 EXPORT_SYMBOL_GPL(tcp_orphan_count);
279 int sysctl_tcp_mem[3] __read_mostly;
280 int sysctl_tcp_wmem[3] __read_mostly;
281 int sysctl_tcp_rmem[3] __read_mostly;
283 EXPORT_SYMBOL(sysctl_tcp_mem);
284 EXPORT_SYMBOL(sysctl_tcp_rmem);
285 EXPORT_SYMBOL(sysctl_tcp_wmem);
287 atomic_t tcp_memory_allocated; /* Current allocated memory. */
288 atomic_t tcp_sockets_allocated; /* Current number of TCP sockets. */
290 EXPORT_SYMBOL(tcp_memory_allocated);
291 EXPORT_SYMBOL(tcp_sockets_allocated);
294 * Pressure flag: try to collapse.
295 * Technical note: it is used by multiple contexts non atomically.
296 * All the sk_stream_mem_schedule() is of this nature: accounting
297 * is strict, actions are advisory and have some latency.
299 int tcp_memory_pressure;
301 EXPORT_SYMBOL(tcp_memory_pressure);
303 void tcp_enter_memory_pressure(void)
305 if (!tcp_memory_pressure) {
306 NET_INC_STATS(LINUX_MIB_TCPMEMORYPRESSURES);
307 tcp_memory_pressure = 1;
311 EXPORT_SYMBOL(tcp_enter_memory_pressure);
314 * Wait for a TCP event.
316 * Note that we don't need to lock the socket, as the upper poll layers
317 * take care of normal races (between the test and the event) and we don't
318 * go look at any of the socket buffers directly.
320 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
322 unsigned int mask;
323 struct sock *sk = sock->sk;
324 struct tcp_sock *tp = tcp_sk(sk);
326 poll_wait(file, sk->sk_sleep, wait);
327 if (sk->sk_state == TCP_LISTEN)
328 return inet_csk_listen_poll(sk);
330 /* Socket is not locked. We are protected from async events
331 by poll logic and correct handling of state changes
332 made by another threads is impossible in any case.
335 mask = 0;
336 if (sk->sk_err)
337 mask = POLLERR;
340 * POLLHUP is certainly not done right. But poll() doesn't
341 * have a notion of HUP in just one direction, and for a
342 * socket the read side is more interesting.
344 * Some poll() documentation says that POLLHUP is incompatible
345 * with the POLLOUT/POLLWR flags, so somebody should check this
346 * all. But careful, it tends to be safer to return too many
347 * bits than too few, and you can easily break real applications
348 * if you don't tell them that something has hung up!
350 * Check-me.
352 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
353 * our fs/select.c). It means that after we received EOF,
354 * poll always returns immediately, making impossible poll() on write()
355 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
356 * if and only if shutdown has been made in both directions.
357 * Actually, it is interesting to look how Solaris and DUX
358 * solve this dilemma. I would prefer, if PULLHUP were maskable,
359 * then we could set it on SND_SHUTDOWN. BTW examples given
360 * in Stevens' books assume exactly this behaviour, it explains
361 * why PULLHUP is incompatible with POLLOUT. --ANK
363 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
364 * blocking on fresh not-connected or disconnected socket. --ANK
366 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
367 mask |= POLLHUP;
368 if (sk->sk_shutdown & RCV_SHUTDOWN)
369 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
371 /* Connected? */
372 if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
373 /* Potential race condition. If read of tp below will
374 * escape above sk->sk_state, we can be illegally awaken
375 * in SYN_* states. */
376 if ((tp->rcv_nxt != tp->copied_seq) &&
377 (tp->urg_seq != tp->copied_seq ||
378 tp->rcv_nxt != tp->copied_seq + 1 ||
379 sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data))
380 mask |= POLLIN | POLLRDNORM;
382 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
383 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
384 mask |= POLLOUT | POLLWRNORM;
385 } else { /* send SIGIO later */
386 set_bit(SOCK_ASYNC_NOSPACE,
387 &sk->sk_socket->flags);
388 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
390 /* Race breaker. If space is freed after
391 * wspace test but before the flags are set,
392 * IO signal will be lost.
394 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
395 mask |= POLLOUT | POLLWRNORM;
399 if (tp->urg_data & TCP_URG_VALID)
400 mask |= POLLPRI;
402 return mask;
405 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
407 struct tcp_sock *tp = tcp_sk(sk);
408 int answ;
410 switch (cmd) {
411 case SIOCINQ:
412 if (sk->sk_state == TCP_LISTEN)
413 return -EINVAL;
415 lock_sock(sk);
416 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
417 answ = 0;
418 else if (sock_flag(sk, SOCK_URGINLINE) ||
419 !tp->urg_data ||
420 before(tp->urg_seq, tp->copied_seq) ||
421 !before(tp->urg_seq, tp->rcv_nxt)) {
422 answ = tp->rcv_nxt - tp->copied_seq;
424 /* Subtract 1, if FIN is in queue. */
425 if (answ && !skb_queue_empty(&sk->sk_receive_queue))
426 answ -=
427 ((struct sk_buff *)sk->sk_receive_queue.prev)->h.th->fin;
428 } else
429 answ = tp->urg_seq - tp->copied_seq;
430 release_sock(sk);
431 break;
432 case SIOCATMARK:
433 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
434 break;
435 case SIOCOUTQ:
436 if (sk->sk_state == TCP_LISTEN)
437 return -EINVAL;
439 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
440 answ = 0;
441 else
442 answ = tp->write_seq - tp->snd_una;
443 break;
444 default:
445 return -ENOIOCTLCMD;
448 return put_user(answ, (int __user *)arg);
451 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
453 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
454 tp->pushed_seq = tp->write_seq;
457 static inline int forced_push(struct tcp_sock *tp)
459 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
462 static inline void skb_entail(struct sock *sk, struct tcp_sock *tp,
463 struct sk_buff *skb)
465 skb->csum = 0;
466 TCP_SKB_CB(skb)->seq = tp->write_seq;
467 TCP_SKB_CB(skb)->end_seq = tp->write_seq;
468 TCP_SKB_CB(skb)->flags = TCPCB_FLAG_ACK;
469 TCP_SKB_CB(skb)->sacked = 0;
470 skb_header_release(skb);
471 __skb_queue_tail(&sk->sk_write_queue, skb);
472 sk_charge_skb(sk, skb);
473 if (!sk->sk_send_head)
474 sk->sk_send_head = skb;
475 if (tp->nonagle & TCP_NAGLE_PUSH)
476 tp->nonagle &= ~TCP_NAGLE_PUSH;
479 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags,
480 struct sk_buff *skb)
482 if (flags & MSG_OOB) {
483 tp->urg_mode = 1;
484 tp->snd_up = tp->write_seq;
485 TCP_SKB_CB(skb)->sacked |= TCPCB_URG;
489 static inline void tcp_push(struct sock *sk, struct tcp_sock *tp, int flags,
490 int mss_now, int nonagle)
492 if (sk->sk_send_head) {
493 struct sk_buff *skb = sk->sk_write_queue.prev;
494 if (!(flags & MSG_MORE) || forced_push(tp))
495 tcp_mark_push(tp, skb);
496 tcp_mark_urg(tp, flags, skb);
497 __tcp_push_pending_frames(sk, tp, mss_now,
498 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
502 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
503 size_t psize, int flags)
505 struct tcp_sock *tp = tcp_sk(sk);
506 int mss_now, size_goal;
507 int err;
508 ssize_t copied;
509 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
511 /* Wait for a connection to finish. */
512 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
513 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
514 goto out_err;
516 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
518 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
519 size_goal = tp->xmit_size_goal;
520 copied = 0;
522 err = -EPIPE;
523 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
524 goto do_error;
526 while (psize > 0) {
527 struct sk_buff *skb = sk->sk_write_queue.prev;
528 struct page *page = pages[poffset / PAGE_SIZE];
529 int copy, i, can_coalesce;
530 int offset = poffset % PAGE_SIZE;
531 int size = min_t(size_t, psize, PAGE_SIZE - offset);
533 if (!sk->sk_send_head || (copy = size_goal - skb->len) <= 0) {
534 new_segment:
535 if (!sk_stream_memory_free(sk))
536 goto wait_for_sndbuf;
538 skb = sk_stream_alloc_pskb(sk, 0, 0,
539 sk->sk_allocation);
540 if (!skb)
541 goto wait_for_memory;
543 skb_entail(sk, tp, skb);
544 copy = size_goal;
547 if (copy > size)
548 copy = size;
550 i = skb_shinfo(skb)->nr_frags;
551 can_coalesce = skb_can_coalesce(skb, i, page, offset);
552 if (!can_coalesce && i >= MAX_SKB_FRAGS) {
553 tcp_mark_push(tp, skb);
554 goto new_segment;
556 if (!sk_stream_wmem_schedule(sk, copy))
557 goto wait_for_memory;
559 if (can_coalesce) {
560 skb_shinfo(skb)->frags[i - 1].size += copy;
561 } else {
562 get_page(page);
563 skb_fill_page_desc(skb, i, page, offset, copy);
566 skb->len += copy;
567 skb->data_len += copy;
568 skb->truesize += copy;
569 sk->sk_wmem_queued += copy;
570 sk->sk_forward_alloc -= copy;
571 skb->ip_summed = CHECKSUM_HW;
572 tp->write_seq += copy;
573 TCP_SKB_CB(skb)->end_seq += copy;
574 skb_shinfo(skb)->tso_segs = 0;
576 if (!copied)
577 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
579 copied += copy;
580 poffset += copy;
581 if (!(psize -= copy))
582 goto out;
584 if (skb->len < mss_now || (flags & MSG_OOB))
585 continue;
587 if (forced_push(tp)) {
588 tcp_mark_push(tp, skb);
589 __tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_PUSH);
590 } else if (skb == sk->sk_send_head)
591 tcp_push_one(sk, mss_now);
592 continue;
594 wait_for_sndbuf:
595 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
596 wait_for_memory:
597 if (copied)
598 tcp_push(sk, tp, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
600 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
601 goto do_error;
603 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
604 size_goal = tp->xmit_size_goal;
607 out:
608 if (copied)
609 tcp_push(sk, tp, flags, mss_now, tp->nonagle);
610 return copied;
612 do_error:
613 if (copied)
614 goto out;
615 out_err:
616 return sk_stream_error(sk, flags, err);
619 ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset,
620 size_t size, int flags)
622 ssize_t res;
623 struct sock *sk = sock->sk;
625 #define TCP_ZC_CSUM_FLAGS (NETIF_F_IP_CSUM | NETIF_F_NO_CSUM | NETIF_F_HW_CSUM)
627 if (!(sk->sk_route_caps & NETIF_F_SG) ||
628 !(sk->sk_route_caps & TCP_ZC_CSUM_FLAGS))
629 return sock_no_sendpage(sock, page, offset, size, flags);
631 #undef TCP_ZC_CSUM_FLAGS
633 lock_sock(sk);
634 TCP_CHECK_TIMER(sk);
635 res = do_tcp_sendpages(sk, &page, offset, size, flags);
636 TCP_CHECK_TIMER(sk);
637 release_sock(sk);
638 return res;
641 #define TCP_PAGE(sk) (sk->sk_sndmsg_page)
642 #define TCP_OFF(sk) (sk->sk_sndmsg_off)
644 static inline int select_size(struct sock *sk, struct tcp_sock *tp)
646 int tmp = tp->mss_cache;
648 if (sk->sk_route_caps & NETIF_F_SG) {
649 if (sk->sk_route_caps & NETIF_F_TSO)
650 tmp = 0;
651 else {
652 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
654 if (tmp >= pgbreak &&
655 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
656 tmp = pgbreak;
660 return tmp;
663 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
664 size_t size)
666 struct iovec *iov;
667 struct tcp_sock *tp = tcp_sk(sk);
668 struct sk_buff *skb;
669 int iovlen, flags;
670 int mss_now, size_goal;
671 int err, copied;
672 long timeo;
674 lock_sock(sk);
675 TCP_CHECK_TIMER(sk);
677 flags = msg->msg_flags;
678 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
680 /* Wait for a connection to finish. */
681 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
682 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
683 goto out_err;
685 /* This should be in poll */
686 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
688 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
689 size_goal = tp->xmit_size_goal;
691 /* Ok commence sending. */
692 iovlen = msg->msg_iovlen;
693 iov = msg->msg_iov;
694 copied = 0;
696 err = -EPIPE;
697 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
698 goto do_error;
700 while (--iovlen >= 0) {
701 int seglen = iov->iov_len;
702 unsigned char __user *from = iov->iov_base;
704 iov++;
706 while (seglen > 0) {
707 int copy;
709 skb = sk->sk_write_queue.prev;
711 if (!sk->sk_send_head ||
712 (copy = size_goal - skb->len) <= 0) {
714 new_segment:
715 /* Allocate new segment. If the interface is SG,
716 * allocate skb fitting to single page.
718 if (!sk_stream_memory_free(sk))
719 goto wait_for_sndbuf;
721 skb = sk_stream_alloc_pskb(sk, select_size(sk, tp),
722 0, sk->sk_allocation);
723 if (!skb)
724 goto wait_for_memory;
727 * Check whether we can use HW checksum.
729 if (sk->sk_route_caps &
730 (NETIF_F_IP_CSUM | NETIF_F_NO_CSUM |
731 NETIF_F_HW_CSUM))
732 skb->ip_summed = CHECKSUM_HW;
734 skb_entail(sk, tp, skb);
735 copy = size_goal;
738 /* Try to append data to the end of skb. */
739 if (copy > seglen)
740 copy = seglen;
742 /* Where to copy to? */
743 if (skb_tailroom(skb) > 0) {
744 /* We have some space in skb head. Superb! */
745 if (copy > skb_tailroom(skb))
746 copy = skb_tailroom(skb);
747 if ((err = skb_add_data(skb, from, copy)) != 0)
748 goto do_fault;
749 } else {
750 int merge = 0;
751 int i = skb_shinfo(skb)->nr_frags;
752 struct page *page = TCP_PAGE(sk);
753 int off = TCP_OFF(sk);
755 if (skb_can_coalesce(skb, i, page, off) &&
756 off != PAGE_SIZE) {
757 /* We can extend the last page
758 * fragment. */
759 merge = 1;
760 } else if (i == MAX_SKB_FRAGS ||
761 (!i &&
762 !(sk->sk_route_caps & NETIF_F_SG))) {
763 /* Need to add new fragment and cannot
764 * do this because interface is non-SG,
765 * or because all the page slots are
766 * busy. */
767 tcp_mark_push(tp, skb);
768 goto new_segment;
769 } else if (page) {
770 if (off == PAGE_SIZE) {
771 put_page(page);
772 TCP_PAGE(sk) = page = NULL;
773 off = 0;
775 } else
776 off = 0;
778 if (copy > PAGE_SIZE - off)
779 copy = PAGE_SIZE - off;
781 if (!sk_stream_wmem_schedule(sk, copy))
782 goto wait_for_memory;
784 if (!page) {
785 /* Allocate new cache page. */
786 if (!(page = sk_stream_alloc_page(sk)))
787 goto wait_for_memory;
790 /* Time to copy data. We are close to
791 * the end! */
792 err = skb_copy_to_page(sk, from, skb, page,
793 off, copy);
794 if (err) {
795 /* If this page was new, give it to the
796 * socket so it does not get leaked.
798 if (!TCP_PAGE(sk)) {
799 TCP_PAGE(sk) = page;
800 TCP_OFF(sk) = 0;
802 goto do_error;
805 /* Update the skb. */
806 if (merge) {
807 skb_shinfo(skb)->frags[i - 1].size +=
808 copy;
809 } else {
810 skb_fill_page_desc(skb, i, page, off, copy);
811 if (TCP_PAGE(sk)) {
812 get_page(page);
813 } else if (off + copy < PAGE_SIZE) {
814 get_page(page);
815 TCP_PAGE(sk) = page;
819 TCP_OFF(sk) = off + copy;
822 if (!copied)
823 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
825 tp->write_seq += copy;
826 TCP_SKB_CB(skb)->end_seq += copy;
827 skb_shinfo(skb)->tso_segs = 0;
829 from += copy;
830 copied += copy;
831 if ((seglen -= copy) == 0 && iovlen == 0)
832 goto out;
834 if (skb->len < mss_now || (flags & MSG_OOB))
835 continue;
837 if (forced_push(tp)) {
838 tcp_mark_push(tp, skb);
839 __tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_PUSH);
840 } else if (skb == sk->sk_send_head)
841 tcp_push_one(sk, mss_now);
842 continue;
844 wait_for_sndbuf:
845 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
846 wait_for_memory:
847 if (copied)
848 tcp_push(sk, tp, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
850 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
851 goto do_error;
853 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
854 size_goal = tp->xmit_size_goal;
858 out:
859 if (copied)
860 tcp_push(sk, tp, flags, mss_now, tp->nonagle);
861 TCP_CHECK_TIMER(sk);
862 release_sock(sk);
863 return copied;
865 do_fault:
866 if (!skb->len) {
867 if (sk->sk_send_head == skb)
868 sk->sk_send_head = NULL;
869 __skb_unlink(skb, &sk->sk_write_queue);
870 sk_stream_free_skb(sk, skb);
873 do_error:
874 if (copied)
875 goto out;
876 out_err:
877 err = sk_stream_error(sk, flags, err);
878 TCP_CHECK_TIMER(sk);
879 release_sock(sk);
880 return err;
884 * Handle reading urgent data. BSD has very simple semantics for
885 * this, no blocking and very strange errors 8)
888 static int tcp_recv_urg(struct sock *sk, long timeo,
889 struct msghdr *msg, int len, int flags,
890 int *addr_len)
892 struct tcp_sock *tp = tcp_sk(sk);
894 /* No URG data to read. */
895 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
896 tp->urg_data == TCP_URG_READ)
897 return -EINVAL; /* Yes this is right ! */
899 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
900 return -ENOTCONN;
902 if (tp->urg_data & TCP_URG_VALID) {
903 int err = 0;
904 char c = tp->urg_data;
906 if (!(flags & MSG_PEEK))
907 tp->urg_data = TCP_URG_READ;
909 /* Read urgent data. */
910 msg->msg_flags |= MSG_OOB;
912 if (len > 0) {
913 if (!(flags & MSG_TRUNC))
914 err = memcpy_toiovec(msg->msg_iov, &c, 1);
915 len = 1;
916 } else
917 msg->msg_flags |= MSG_TRUNC;
919 return err ? -EFAULT : len;
922 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
923 return 0;
925 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
926 * the available implementations agree in this case:
927 * this call should never block, independent of the
928 * blocking state of the socket.
929 * Mike <pall@rz.uni-karlsruhe.de>
931 return -EAGAIN;
934 /* Clean up the receive buffer for full frames taken by the user,
935 * then send an ACK if necessary. COPIED is the number of bytes
936 * tcp_recvmsg has given to the user so far, it speeds up the
937 * calculation of whether or not we must ACK for the sake of
938 * a window update.
940 static void cleanup_rbuf(struct sock *sk, int copied)
942 struct tcp_sock *tp = tcp_sk(sk);
943 int time_to_ack = 0;
945 #if TCP_DEBUG
946 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
948 BUG_TRAP(!skb || before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq));
949 #endif
951 if (inet_csk_ack_scheduled(sk)) {
952 const struct inet_connection_sock *icsk = inet_csk(sk);
953 /* Delayed ACKs frequently hit locked sockets during bulk
954 * receive. */
955 if (icsk->icsk_ack.blocked ||
956 /* Once-per-two-segments ACK was not sent by tcp_input.c */
957 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
959 * If this read emptied read buffer, we send ACK, if
960 * connection is not bidirectional, user drained
961 * receive buffer and there was a small segment
962 * in queue.
964 (copied > 0 && (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
965 !icsk->icsk_ack.pingpong && !atomic_read(&sk->sk_rmem_alloc)))
966 time_to_ack = 1;
969 /* We send an ACK if we can now advertise a non-zero window
970 * which has been raised "significantly".
972 * Even if window raised up to infinity, do not send window open ACK
973 * in states, where we will not receive more. It is useless.
975 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
976 __u32 rcv_window_now = tcp_receive_window(tp);
978 /* Optimize, __tcp_select_window() is not cheap. */
979 if (2*rcv_window_now <= tp->window_clamp) {
980 __u32 new_window = __tcp_select_window(sk);
982 /* Send ACK now, if this read freed lots of space
983 * in our buffer. Certainly, new_window is new window.
984 * We can advertise it now, if it is not less than current one.
985 * "Lots" means "at least twice" here.
987 if (new_window && new_window >= 2 * rcv_window_now)
988 time_to_ack = 1;
991 if (time_to_ack)
992 tcp_send_ack(sk);
995 static void tcp_prequeue_process(struct sock *sk)
997 struct sk_buff *skb;
998 struct tcp_sock *tp = tcp_sk(sk);
1000 NET_INC_STATS_USER(LINUX_MIB_TCPPREQUEUED);
1002 /* RX process wants to run with disabled BHs, though it is not
1003 * necessary */
1004 local_bh_disable();
1005 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1006 sk->sk_backlog_rcv(sk, skb);
1007 local_bh_enable();
1009 /* Clear memory counter. */
1010 tp->ucopy.memory = 0;
1013 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1015 struct sk_buff *skb;
1016 u32 offset;
1018 skb_queue_walk(&sk->sk_receive_queue, skb) {
1019 offset = seq - TCP_SKB_CB(skb)->seq;
1020 if (skb->h.th->syn)
1021 offset--;
1022 if (offset < skb->len || skb->h.th->fin) {
1023 *off = offset;
1024 return skb;
1027 return NULL;
1031 * This routine provides an alternative to tcp_recvmsg() for routines
1032 * that would like to handle copying from skbuffs directly in 'sendfile'
1033 * fashion.
1034 * Note:
1035 * - It is assumed that the socket was locked by the caller.
1036 * - The routine does not block.
1037 * - At present, there is no support for reading OOB data
1038 * or for 'peeking' the socket using this routine
1039 * (although both would be easy to implement).
1041 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1042 sk_read_actor_t recv_actor)
1044 struct sk_buff *skb;
1045 struct tcp_sock *tp = tcp_sk(sk);
1046 u32 seq = tp->copied_seq;
1047 u32 offset;
1048 int copied = 0;
1050 if (sk->sk_state == TCP_LISTEN)
1051 return -ENOTCONN;
1052 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1053 if (offset < skb->len) {
1054 size_t used, len;
1056 len = skb->len - offset;
1057 /* Stop reading if we hit a patch of urgent data */
1058 if (tp->urg_data) {
1059 u32 urg_offset = tp->urg_seq - seq;
1060 if (urg_offset < len)
1061 len = urg_offset;
1062 if (!len)
1063 break;
1065 used = recv_actor(desc, skb, offset, len);
1066 if (used <= len) {
1067 seq += used;
1068 copied += used;
1069 offset += used;
1071 if (offset != skb->len)
1072 break;
1074 if (skb->h.th->fin) {
1075 sk_eat_skb(sk, skb);
1076 ++seq;
1077 break;
1079 sk_eat_skb(sk, skb);
1080 if (!desc->count)
1081 break;
1083 tp->copied_seq = seq;
1085 tcp_rcv_space_adjust(sk);
1087 /* Clean up data we have read: This will do ACK frames. */
1088 if (copied)
1089 cleanup_rbuf(sk, copied);
1090 return copied;
1094 * This routine copies from a sock struct into the user buffer.
1096 * Technical note: in 2.3 we work on _locked_ socket, so that
1097 * tricks with *seq access order and skb->users are not required.
1098 * Probably, code can be easily improved even more.
1101 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1102 size_t len, int nonblock, int flags, int *addr_len)
1104 struct tcp_sock *tp = tcp_sk(sk);
1105 int copied = 0;
1106 u32 peek_seq;
1107 u32 *seq;
1108 unsigned long used;
1109 int err;
1110 int target; /* Read at least this many bytes */
1111 long timeo;
1112 struct task_struct *user_recv = NULL;
1114 lock_sock(sk);
1116 TCP_CHECK_TIMER(sk);
1118 err = -ENOTCONN;
1119 if (sk->sk_state == TCP_LISTEN)
1120 goto out;
1122 timeo = sock_rcvtimeo(sk, nonblock);
1124 /* Urgent data needs to be handled specially. */
1125 if (flags & MSG_OOB)
1126 goto recv_urg;
1128 seq = &tp->copied_seq;
1129 if (flags & MSG_PEEK) {
1130 peek_seq = tp->copied_seq;
1131 seq = &peek_seq;
1134 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1136 do {
1137 struct sk_buff *skb;
1138 u32 offset;
1140 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1141 if (tp->urg_data && tp->urg_seq == *seq) {
1142 if (copied)
1143 break;
1144 if (signal_pending(current)) {
1145 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1146 break;
1150 /* Next get a buffer. */
1152 skb = skb_peek(&sk->sk_receive_queue);
1153 do {
1154 if (!skb)
1155 break;
1157 /* Now that we have two receive queues this
1158 * shouldn't happen.
1160 if (before(*seq, TCP_SKB_CB(skb)->seq)) {
1161 printk(KERN_INFO "recvmsg bug: copied %X "
1162 "seq %X\n", *seq, TCP_SKB_CB(skb)->seq);
1163 break;
1165 offset = *seq - TCP_SKB_CB(skb)->seq;
1166 if (skb->h.th->syn)
1167 offset--;
1168 if (offset < skb->len)
1169 goto found_ok_skb;
1170 if (skb->h.th->fin)
1171 goto found_fin_ok;
1172 BUG_TRAP(flags & MSG_PEEK);
1173 skb = skb->next;
1174 } while (skb != (struct sk_buff *)&sk->sk_receive_queue);
1176 /* Well, if we have backlog, try to process it now yet. */
1178 if (copied >= target && !sk->sk_backlog.tail)
1179 break;
1181 if (copied) {
1182 if (sk->sk_err ||
1183 sk->sk_state == TCP_CLOSE ||
1184 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1185 !timeo ||
1186 signal_pending(current) ||
1187 (flags & MSG_PEEK))
1188 break;
1189 } else {
1190 if (sock_flag(sk, SOCK_DONE))
1191 break;
1193 if (sk->sk_err) {
1194 copied = sock_error(sk);
1195 break;
1198 if (sk->sk_shutdown & RCV_SHUTDOWN)
1199 break;
1201 if (sk->sk_state == TCP_CLOSE) {
1202 if (!sock_flag(sk, SOCK_DONE)) {
1203 /* This occurs when user tries to read
1204 * from never connected socket.
1206 copied = -ENOTCONN;
1207 break;
1209 break;
1212 if (!timeo) {
1213 copied = -EAGAIN;
1214 break;
1217 if (signal_pending(current)) {
1218 copied = sock_intr_errno(timeo);
1219 break;
1223 cleanup_rbuf(sk, copied);
1225 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1226 /* Install new reader */
1227 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1228 user_recv = current;
1229 tp->ucopy.task = user_recv;
1230 tp->ucopy.iov = msg->msg_iov;
1233 tp->ucopy.len = len;
1235 BUG_TRAP(tp->copied_seq == tp->rcv_nxt ||
1236 (flags & (MSG_PEEK | MSG_TRUNC)));
1238 /* Ugly... If prequeue is not empty, we have to
1239 * process it before releasing socket, otherwise
1240 * order will be broken at second iteration.
1241 * More elegant solution is required!!!
1243 * Look: we have the following (pseudo)queues:
1245 * 1. packets in flight
1246 * 2. backlog
1247 * 3. prequeue
1248 * 4. receive_queue
1250 * Each queue can be processed only if the next ones
1251 * are empty. At this point we have empty receive_queue.
1252 * But prequeue _can_ be not empty after 2nd iteration,
1253 * when we jumped to start of loop because backlog
1254 * processing added something to receive_queue.
1255 * We cannot release_sock(), because backlog contains
1256 * packets arrived _after_ prequeued ones.
1258 * Shortly, algorithm is clear --- to process all
1259 * the queues in order. We could make it more directly,
1260 * requeueing packets from backlog to prequeue, if
1261 * is not empty. It is more elegant, but eats cycles,
1262 * unfortunately.
1264 if (!skb_queue_empty(&tp->ucopy.prequeue))
1265 goto do_prequeue;
1267 /* __ Set realtime policy in scheduler __ */
1270 if (copied >= target) {
1271 /* Do not sleep, just process backlog. */
1272 release_sock(sk);
1273 lock_sock(sk);
1274 } else
1275 sk_wait_data(sk, &timeo);
1277 if (user_recv) {
1278 int chunk;
1280 /* __ Restore normal policy in scheduler __ */
1282 if ((chunk = len - tp->ucopy.len) != 0) {
1283 NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1284 len -= chunk;
1285 copied += chunk;
1288 if (tp->rcv_nxt == tp->copied_seq &&
1289 !skb_queue_empty(&tp->ucopy.prequeue)) {
1290 do_prequeue:
1291 tcp_prequeue_process(sk);
1293 if ((chunk = len - tp->ucopy.len) != 0) {
1294 NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1295 len -= chunk;
1296 copied += chunk;
1300 if ((flags & MSG_PEEK) && peek_seq != tp->copied_seq) {
1301 if (net_ratelimit())
1302 printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1303 current->comm, current->pid);
1304 peek_seq = tp->copied_seq;
1306 continue;
1308 found_ok_skb:
1309 /* Ok so how much can we use? */
1310 used = skb->len - offset;
1311 if (len < used)
1312 used = len;
1314 /* Do we have urgent data here? */
1315 if (tp->urg_data) {
1316 u32 urg_offset = tp->urg_seq - *seq;
1317 if (urg_offset < used) {
1318 if (!urg_offset) {
1319 if (!sock_flag(sk, SOCK_URGINLINE)) {
1320 ++*seq;
1321 offset++;
1322 used--;
1323 if (!used)
1324 goto skip_copy;
1326 } else
1327 used = urg_offset;
1331 if (!(flags & MSG_TRUNC)) {
1332 err = skb_copy_datagram_iovec(skb, offset,
1333 msg->msg_iov, used);
1334 if (err) {
1335 /* Exception. Bailout! */
1336 if (!copied)
1337 copied = -EFAULT;
1338 break;
1342 *seq += used;
1343 copied += used;
1344 len -= used;
1346 tcp_rcv_space_adjust(sk);
1348 skip_copy:
1349 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1350 tp->urg_data = 0;
1351 tcp_fast_path_check(sk, tp);
1353 if (used + offset < skb->len)
1354 continue;
1356 if (skb->h.th->fin)
1357 goto found_fin_ok;
1358 if (!(flags & MSG_PEEK))
1359 sk_eat_skb(sk, skb);
1360 continue;
1362 found_fin_ok:
1363 /* Process the FIN. */
1364 ++*seq;
1365 if (!(flags & MSG_PEEK))
1366 sk_eat_skb(sk, skb);
1367 break;
1368 } while (len > 0);
1370 if (user_recv) {
1371 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1372 int chunk;
1374 tp->ucopy.len = copied > 0 ? len : 0;
1376 tcp_prequeue_process(sk);
1378 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1379 NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1380 len -= chunk;
1381 copied += chunk;
1385 tp->ucopy.task = NULL;
1386 tp->ucopy.len = 0;
1389 /* According to UNIX98, msg_name/msg_namelen are ignored
1390 * on connected socket. I was just happy when found this 8) --ANK
1393 /* Clean up data we have read: This will do ACK frames. */
1394 cleanup_rbuf(sk, copied);
1396 TCP_CHECK_TIMER(sk);
1397 release_sock(sk);
1398 return copied;
1400 out:
1401 TCP_CHECK_TIMER(sk);
1402 release_sock(sk);
1403 return err;
1405 recv_urg:
1406 err = tcp_recv_urg(sk, timeo, msg, len, flags, addr_len);
1407 goto out;
1411 * State processing on a close. This implements the state shift for
1412 * sending our FIN frame. Note that we only send a FIN for some
1413 * states. A shutdown() may have already sent the FIN, or we may be
1414 * closed.
1417 static const unsigned char new_state[16] = {
1418 /* current state: new state: action: */
1419 /* (Invalid) */ TCP_CLOSE,
1420 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1421 /* TCP_SYN_SENT */ TCP_CLOSE,
1422 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1423 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
1424 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
1425 /* TCP_TIME_WAIT */ TCP_CLOSE,
1426 /* TCP_CLOSE */ TCP_CLOSE,
1427 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
1428 /* TCP_LAST_ACK */ TCP_LAST_ACK,
1429 /* TCP_LISTEN */ TCP_CLOSE,
1430 /* TCP_CLOSING */ TCP_CLOSING,
1433 static int tcp_close_state(struct sock *sk)
1435 int next = (int)new_state[sk->sk_state];
1436 int ns = next & TCP_STATE_MASK;
1438 tcp_set_state(sk, ns);
1440 return next & TCP_ACTION_FIN;
1444 * Shutdown the sending side of a connection. Much like close except
1445 * that we don't receive shut down or set_sock_flag(sk, SOCK_DEAD).
1448 void tcp_shutdown(struct sock *sk, int how)
1450 /* We need to grab some memory, and put together a FIN,
1451 * and then put it into the queue to be sent.
1452 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1454 if (!(how & SEND_SHUTDOWN))
1455 return;
1457 /* If we've already sent a FIN, or it's a closed state, skip this. */
1458 if ((1 << sk->sk_state) &
1459 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1460 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1461 /* Clear out any half completed packets. FIN if needed. */
1462 if (tcp_close_state(sk))
1463 tcp_send_fin(sk);
1467 void tcp_close(struct sock *sk, long timeout)
1469 struct sk_buff *skb;
1470 int data_was_unread = 0;
1471 int state;
1473 lock_sock(sk);
1474 sk->sk_shutdown = SHUTDOWN_MASK;
1476 if (sk->sk_state == TCP_LISTEN) {
1477 tcp_set_state(sk, TCP_CLOSE);
1479 /* Special case. */
1480 inet_csk_listen_stop(sk);
1482 goto adjudge_to_death;
1485 /* We need to flush the recv. buffs. We do this only on the
1486 * descriptor close, not protocol-sourced closes, because the
1487 * reader process may not have drained the data yet!
1489 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1490 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1491 skb->h.th->fin;
1492 data_was_unread += len;
1493 __kfree_skb(skb);
1496 sk_stream_mem_reclaim(sk);
1498 /* As outlined in draft-ietf-tcpimpl-prob-03.txt, section
1499 * 3.10, we send a RST here because data was lost. To
1500 * witness the awful effects of the old behavior of always
1501 * doing a FIN, run an older 2.1.x kernel or 2.0.x, start
1502 * a bulk GET in an FTP client, suspend the process, wait
1503 * for the client to advertise a zero window, then kill -9
1504 * the FTP client, wheee... Note: timeout is always zero
1505 * in such a case.
1507 if (data_was_unread) {
1508 /* Unread data was tossed, zap the connection. */
1509 NET_INC_STATS_USER(LINUX_MIB_TCPABORTONCLOSE);
1510 tcp_set_state(sk, TCP_CLOSE);
1511 tcp_send_active_reset(sk, GFP_KERNEL);
1512 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1513 /* Check zero linger _after_ checking for unread data. */
1514 sk->sk_prot->disconnect(sk, 0);
1515 NET_INC_STATS_USER(LINUX_MIB_TCPABORTONDATA);
1516 } else if (tcp_close_state(sk)) {
1517 /* We FIN if the application ate all the data before
1518 * zapping the connection.
1521 /* RED-PEN. Formally speaking, we have broken TCP state
1522 * machine. State transitions:
1524 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1525 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
1526 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1528 * are legal only when FIN has been sent (i.e. in window),
1529 * rather than queued out of window. Purists blame.
1531 * F.e. "RFC state" is ESTABLISHED,
1532 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1534 * The visible declinations are that sometimes
1535 * we enter time-wait state, when it is not required really
1536 * (harmless), do not send active resets, when they are
1537 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1538 * they look as CLOSING or LAST_ACK for Linux)
1539 * Probably, I missed some more holelets.
1540 * --ANK
1542 tcp_send_fin(sk);
1545 sk_stream_wait_close(sk, timeout);
1547 adjudge_to_death:
1548 state = sk->sk_state;
1549 sock_hold(sk);
1550 sock_orphan(sk);
1551 atomic_inc(sk->sk_prot->orphan_count);
1553 /* It is the last release_sock in its life. It will remove backlog. */
1554 release_sock(sk);
1557 /* Now socket is owned by kernel and we acquire BH lock
1558 to finish close. No need to check for user refs.
1560 local_bh_disable();
1561 bh_lock_sock(sk);
1562 BUG_TRAP(!sock_owned_by_user(sk));
1564 /* Have we already been destroyed by a softirq or backlog? */
1565 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1566 goto out;
1568 /* This is a (useful) BSD violating of the RFC. There is a
1569 * problem with TCP as specified in that the other end could
1570 * keep a socket open forever with no application left this end.
1571 * We use a 3 minute timeout (about the same as BSD) then kill
1572 * our end. If they send after that then tough - BUT: long enough
1573 * that we won't make the old 4*rto = almost no time - whoops
1574 * reset mistake.
1576 * Nope, it was not mistake. It is really desired behaviour
1577 * f.e. on http servers, when such sockets are useless, but
1578 * consume significant resources. Let's do it with special
1579 * linger2 option. --ANK
1582 if (sk->sk_state == TCP_FIN_WAIT2) {
1583 struct tcp_sock *tp = tcp_sk(sk);
1584 if (tp->linger2 < 0) {
1585 tcp_set_state(sk, TCP_CLOSE);
1586 tcp_send_active_reset(sk, GFP_ATOMIC);
1587 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONLINGER);
1588 } else {
1589 const int tmo = tcp_fin_time(sk);
1591 if (tmo > TCP_TIMEWAIT_LEN) {
1592 inet_csk_reset_keepalive_timer(sk, tcp_fin_time(sk));
1593 } else {
1594 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
1595 goto out;
1599 if (sk->sk_state != TCP_CLOSE) {
1600 sk_stream_mem_reclaim(sk);
1601 if (atomic_read(sk->sk_prot->orphan_count) > sysctl_tcp_max_orphans ||
1602 (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
1603 atomic_read(&tcp_memory_allocated) > sysctl_tcp_mem[2])) {
1604 if (net_ratelimit())
1605 printk(KERN_INFO "TCP: too many of orphaned "
1606 "sockets\n");
1607 tcp_set_state(sk, TCP_CLOSE);
1608 tcp_send_active_reset(sk, GFP_ATOMIC);
1609 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONMEMORY);
1613 if (sk->sk_state == TCP_CLOSE)
1614 inet_csk_destroy_sock(sk);
1615 /* Otherwise, socket is reprieved until protocol close. */
1617 out:
1618 bh_unlock_sock(sk);
1619 local_bh_enable();
1620 sock_put(sk);
1623 /* These states need RST on ABORT according to RFC793 */
1625 static inline int tcp_need_reset(int state)
1627 return (1 << state) &
1628 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
1629 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
1632 int tcp_disconnect(struct sock *sk, int flags)
1634 struct inet_sock *inet = inet_sk(sk);
1635 struct inet_connection_sock *icsk = inet_csk(sk);
1636 struct tcp_sock *tp = tcp_sk(sk);
1637 int err = 0;
1638 int old_state = sk->sk_state;
1640 if (old_state != TCP_CLOSE)
1641 tcp_set_state(sk, TCP_CLOSE);
1643 /* ABORT function of RFC793 */
1644 if (old_state == TCP_LISTEN) {
1645 inet_csk_listen_stop(sk);
1646 } else if (tcp_need_reset(old_state) ||
1647 (tp->snd_nxt != tp->write_seq &&
1648 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
1649 /* The last check adjusts for discrepancy of Linux wrt. RFC
1650 * states
1652 tcp_send_active_reset(sk, gfp_any());
1653 sk->sk_err = ECONNRESET;
1654 } else if (old_state == TCP_SYN_SENT)
1655 sk->sk_err = ECONNRESET;
1657 tcp_clear_xmit_timers(sk);
1658 __skb_queue_purge(&sk->sk_receive_queue);
1659 sk_stream_writequeue_purge(sk);
1660 __skb_queue_purge(&tp->out_of_order_queue);
1662 inet->dport = 0;
1664 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1665 inet_reset_saddr(sk);
1667 sk->sk_shutdown = 0;
1668 sock_reset_flag(sk, SOCK_DONE);
1669 tp->srtt = 0;
1670 if ((tp->write_seq += tp->max_window + 2) == 0)
1671 tp->write_seq = 1;
1672 icsk->icsk_backoff = 0;
1673 tp->snd_cwnd = 2;
1674 icsk->icsk_probes_out = 0;
1675 tp->packets_out = 0;
1676 tp->snd_ssthresh = 0x7fffffff;
1677 tp->snd_cwnd_cnt = 0;
1678 tp->bytes_acked = 0;
1679 tcp_set_ca_state(sk, TCP_CA_Open);
1680 tcp_clear_retrans(tp);
1681 inet_csk_delack_init(sk);
1682 sk->sk_send_head = NULL;
1683 tp->rx_opt.saw_tstamp = 0;
1684 tcp_sack_reset(&tp->rx_opt);
1685 __sk_dst_reset(sk);
1687 BUG_TRAP(!inet->num || icsk->icsk_bind_hash);
1689 sk->sk_error_report(sk);
1690 return err;
1694 * Socket option code for TCP.
1696 static int do_tcp_setsockopt(struct sock *sk, int level,
1697 int optname, char __user *optval, int optlen)
1699 struct tcp_sock *tp = tcp_sk(sk);
1700 struct inet_connection_sock *icsk = inet_csk(sk);
1701 int val;
1702 int err = 0;
1704 /* This is a string value all the others are int's */
1705 if (optname == TCP_CONGESTION) {
1706 char name[TCP_CA_NAME_MAX];
1708 if (optlen < 1)
1709 return -EINVAL;
1711 val = strncpy_from_user(name, optval,
1712 min(TCP_CA_NAME_MAX-1, optlen));
1713 if (val < 0)
1714 return -EFAULT;
1715 name[val] = 0;
1717 lock_sock(sk);
1718 err = tcp_set_congestion_control(sk, name);
1719 release_sock(sk);
1720 return err;
1723 if (optlen < sizeof(int))
1724 return -EINVAL;
1726 if (get_user(val, (int __user *)optval))
1727 return -EFAULT;
1729 lock_sock(sk);
1731 switch (optname) {
1732 case TCP_MAXSEG:
1733 /* Values greater than interface MTU won't take effect. However
1734 * at the point when this call is done we typically don't yet
1735 * know which interface is going to be used */
1736 if (val < 8 || val > MAX_TCP_WINDOW) {
1737 err = -EINVAL;
1738 break;
1740 tp->rx_opt.user_mss = val;
1741 break;
1743 case TCP_NODELAY:
1744 if (val) {
1745 /* TCP_NODELAY is weaker than TCP_CORK, so that
1746 * this option on corked socket is remembered, but
1747 * it is not activated until cork is cleared.
1749 * However, when TCP_NODELAY is set we make
1750 * an explicit push, which overrides even TCP_CORK
1751 * for currently queued segments.
1753 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
1754 tcp_push_pending_frames(sk, tp);
1755 } else {
1756 tp->nonagle &= ~TCP_NAGLE_OFF;
1758 break;
1760 case TCP_CORK:
1761 /* When set indicates to always queue non-full frames.
1762 * Later the user clears this option and we transmit
1763 * any pending partial frames in the queue. This is
1764 * meant to be used alongside sendfile() to get properly
1765 * filled frames when the user (for example) must write
1766 * out headers with a write() call first and then use
1767 * sendfile to send out the data parts.
1769 * TCP_CORK can be set together with TCP_NODELAY and it is
1770 * stronger than TCP_NODELAY.
1772 if (val) {
1773 tp->nonagle |= TCP_NAGLE_CORK;
1774 } else {
1775 tp->nonagle &= ~TCP_NAGLE_CORK;
1776 if (tp->nonagle&TCP_NAGLE_OFF)
1777 tp->nonagle |= TCP_NAGLE_PUSH;
1778 tcp_push_pending_frames(sk, tp);
1780 break;
1782 case TCP_KEEPIDLE:
1783 if (val < 1 || val > MAX_TCP_KEEPIDLE)
1784 err = -EINVAL;
1785 else {
1786 tp->keepalive_time = val * HZ;
1787 if (sock_flag(sk, SOCK_KEEPOPEN) &&
1788 !((1 << sk->sk_state) &
1789 (TCPF_CLOSE | TCPF_LISTEN))) {
1790 __u32 elapsed = tcp_time_stamp - tp->rcv_tstamp;
1791 if (tp->keepalive_time > elapsed)
1792 elapsed = tp->keepalive_time - elapsed;
1793 else
1794 elapsed = 0;
1795 inet_csk_reset_keepalive_timer(sk, elapsed);
1798 break;
1799 case TCP_KEEPINTVL:
1800 if (val < 1 || val > MAX_TCP_KEEPINTVL)
1801 err = -EINVAL;
1802 else
1803 tp->keepalive_intvl = val * HZ;
1804 break;
1805 case TCP_KEEPCNT:
1806 if (val < 1 || val > MAX_TCP_KEEPCNT)
1807 err = -EINVAL;
1808 else
1809 tp->keepalive_probes = val;
1810 break;
1811 case TCP_SYNCNT:
1812 if (val < 1 || val > MAX_TCP_SYNCNT)
1813 err = -EINVAL;
1814 else
1815 icsk->icsk_syn_retries = val;
1816 break;
1818 case TCP_LINGER2:
1819 if (val < 0)
1820 tp->linger2 = -1;
1821 else if (val > sysctl_tcp_fin_timeout / HZ)
1822 tp->linger2 = 0;
1823 else
1824 tp->linger2 = val * HZ;
1825 break;
1827 case TCP_DEFER_ACCEPT:
1828 icsk->icsk_accept_queue.rskq_defer_accept = 0;
1829 if (val > 0) {
1830 /* Translate value in seconds to number of
1831 * retransmits */
1832 while (icsk->icsk_accept_queue.rskq_defer_accept < 32 &&
1833 val > ((TCP_TIMEOUT_INIT / HZ) <<
1834 icsk->icsk_accept_queue.rskq_defer_accept))
1835 icsk->icsk_accept_queue.rskq_defer_accept++;
1836 icsk->icsk_accept_queue.rskq_defer_accept++;
1838 break;
1840 case TCP_WINDOW_CLAMP:
1841 if (!val) {
1842 if (sk->sk_state != TCP_CLOSE) {
1843 err = -EINVAL;
1844 break;
1846 tp->window_clamp = 0;
1847 } else
1848 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
1849 SOCK_MIN_RCVBUF / 2 : val;
1850 break;
1852 case TCP_QUICKACK:
1853 if (!val) {
1854 icsk->icsk_ack.pingpong = 1;
1855 } else {
1856 icsk->icsk_ack.pingpong = 0;
1857 if ((1 << sk->sk_state) &
1858 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
1859 inet_csk_ack_scheduled(sk)) {
1860 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1861 cleanup_rbuf(sk, 1);
1862 if (!(val & 1))
1863 icsk->icsk_ack.pingpong = 1;
1866 break;
1868 default:
1869 err = -ENOPROTOOPT;
1870 break;
1872 release_sock(sk);
1873 return err;
1876 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
1877 int optlen)
1879 struct inet_connection_sock *icsk = inet_csk(sk);
1881 if (level != SOL_TCP)
1882 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
1883 optval, optlen);
1884 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
1887 #ifdef CONFIG_COMPAT
1888 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
1889 char __user *optval, int optlen)
1891 if (level != SOL_TCP)
1892 return inet_csk_compat_setsockopt(sk, level, optname,
1893 optval, optlen);
1894 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
1897 EXPORT_SYMBOL(compat_tcp_setsockopt);
1898 #endif
1900 /* Return information about state of tcp endpoint in API format. */
1901 void tcp_get_info(struct sock *sk, struct tcp_info *info)
1903 struct tcp_sock *tp = tcp_sk(sk);
1904 const struct inet_connection_sock *icsk = inet_csk(sk);
1905 u32 now = tcp_time_stamp;
1907 memset(info, 0, sizeof(*info));
1909 info->tcpi_state = sk->sk_state;
1910 info->tcpi_ca_state = icsk->icsk_ca_state;
1911 info->tcpi_retransmits = icsk->icsk_retransmits;
1912 info->tcpi_probes = icsk->icsk_probes_out;
1913 info->tcpi_backoff = icsk->icsk_backoff;
1915 if (tp->rx_opt.tstamp_ok)
1916 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
1917 if (tp->rx_opt.sack_ok)
1918 info->tcpi_options |= TCPI_OPT_SACK;
1919 if (tp->rx_opt.wscale_ok) {
1920 info->tcpi_options |= TCPI_OPT_WSCALE;
1921 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
1922 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
1925 if (tp->ecn_flags&TCP_ECN_OK)
1926 info->tcpi_options |= TCPI_OPT_ECN;
1928 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
1929 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
1930 info->tcpi_snd_mss = tp->mss_cache;
1931 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
1933 info->tcpi_unacked = tp->packets_out;
1934 info->tcpi_sacked = tp->sacked_out;
1935 info->tcpi_lost = tp->lost_out;
1936 info->tcpi_retrans = tp->retrans_out;
1937 info->tcpi_fackets = tp->fackets_out;
1939 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
1940 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
1941 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
1943 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
1944 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
1945 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
1946 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
1947 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
1948 info->tcpi_snd_cwnd = tp->snd_cwnd;
1949 info->tcpi_advmss = tp->advmss;
1950 info->tcpi_reordering = tp->reordering;
1952 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
1953 info->tcpi_rcv_space = tp->rcvq_space.space;
1955 info->tcpi_total_retrans = tp->total_retrans;
1958 EXPORT_SYMBOL_GPL(tcp_get_info);
1960 static int do_tcp_getsockopt(struct sock *sk, int level,
1961 int optname, char __user *optval, int __user *optlen)
1963 struct inet_connection_sock *icsk = inet_csk(sk);
1964 struct tcp_sock *tp = tcp_sk(sk);
1965 int val, len;
1967 if (get_user(len, optlen))
1968 return -EFAULT;
1970 len = min_t(unsigned int, len, sizeof(int));
1972 if (len < 0)
1973 return -EINVAL;
1975 switch (optname) {
1976 case TCP_MAXSEG:
1977 val = tp->mss_cache;
1978 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
1979 val = tp->rx_opt.user_mss;
1980 break;
1981 case TCP_NODELAY:
1982 val = !!(tp->nonagle&TCP_NAGLE_OFF);
1983 break;
1984 case TCP_CORK:
1985 val = !!(tp->nonagle&TCP_NAGLE_CORK);
1986 break;
1987 case TCP_KEEPIDLE:
1988 val = (tp->keepalive_time ? : sysctl_tcp_keepalive_time) / HZ;
1989 break;
1990 case TCP_KEEPINTVL:
1991 val = (tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl) / HZ;
1992 break;
1993 case TCP_KEEPCNT:
1994 val = tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
1995 break;
1996 case TCP_SYNCNT:
1997 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
1998 break;
1999 case TCP_LINGER2:
2000 val = tp->linger2;
2001 if (val >= 0)
2002 val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2003 break;
2004 case TCP_DEFER_ACCEPT:
2005 val = !icsk->icsk_accept_queue.rskq_defer_accept ? 0 :
2006 ((TCP_TIMEOUT_INIT / HZ) << (icsk->icsk_accept_queue.rskq_defer_accept - 1));
2007 break;
2008 case TCP_WINDOW_CLAMP:
2009 val = tp->window_clamp;
2010 break;
2011 case TCP_INFO: {
2012 struct tcp_info info;
2014 if (get_user(len, optlen))
2015 return -EFAULT;
2017 tcp_get_info(sk, &info);
2019 len = min_t(unsigned int, len, sizeof(info));
2020 if (put_user(len, optlen))
2021 return -EFAULT;
2022 if (copy_to_user(optval, &info, len))
2023 return -EFAULT;
2024 return 0;
2026 case TCP_QUICKACK:
2027 val = !icsk->icsk_ack.pingpong;
2028 break;
2030 case TCP_CONGESTION:
2031 if (get_user(len, optlen))
2032 return -EFAULT;
2033 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2034 if (put_user(len, optlen))
2035 return -EFAULT;
2036 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2037 return -EFAULT;
2038 return 0;
2039 default:
2040 return -ENOPROTOOPT;
2043 if (put_user(len, optlen))
2044 return -EFAULT;
2045 if (copy_to_user(optval, &val, len))
2046 return -EFAULT;
2047 return 0;
2050 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2051 int __user *optlen)
2053 struct inet_connection_sock *icsk = inet_csk(sk);
2055 if (level != SOL_TCP)
2056 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2057 optval, optlen);
2058 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2061 #ifdef CONFIG_COMPAT
2062 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2063 char __user *optval, int __user *optlen)
2065 if (level != SOL_TCP)
2066 return inet_csk_compat_getsockopt(sk, level, optname,
2067 optval, optlen);
2068 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2071 EXPORT_SYMBOL(compat_tcp_getsockopt);
2072 #endif
2074 extern void __skb_cb_too_small_for_tcp(int, int);
2075 extern struct tcp_congestion_ops tcp_reno;
2077 static __initdata unsigned long thash_entries;
2078 static int __init set_thash_entries(char *str)
2080 if (!str)
2081 return 0;
2082 thash_entries = simple_strtoul(str, &str, 0);
2083 return 1;
2085 __setup("thash_entries=", set_thash_entries);
2087 void __init tcp_init(void)
2089 struct sk_buff *skb = NULL;
2090 unsigned long limit;
2091 int order, i, max_share;
2093 if (sizeof(struct tcp_skb_cb) > sizeof(skb->cb))
2094 __skb_cb_too_small_for_tcp(sizeof(struct tcp_skb_cb),
2095 sizeof(skb->cb));
2097 tcp_hashinfo.bind_bucket_cachep =
2098 kmem_cache_create("tcp_bind_bucket",
2099 sizeof(struct inet_bind_bucket), 0,
2100 SLAB_HWCACHE_ALIGN, NULL, NULL);
2101 if (!tcp_hashinfo.bind_bucket_cachep)
2102 panic("tcp_init: Cannot alloc tcp_bind_bucket cache.");
2104 /* Size and allocate the main established and bind bucket
2105 * hash tables.
2107 * The methodology is similar to that of the buffer cache.
2109 tcp_hashinfo.ehash =
2110 alloc_large_system_hash("TCP established",
2111 sizeof(struct inet_ehash_bucket),
2112 thash_entries,
2113 (num_physpages >= 128 * 1024) ?
2114 13 : 15,
2115 HASH_HIGHMEM,
2116 &tcp_hashinfo.ehash_size,
2117 NULL,
2119 tcp_hashinfo.ehash_size = (1 << tcp_hashinfo.ehash_size) >> 1;
2120 for (i = 0; i < (tcp_hashinfo.ehash_size << 1); i++) {
2121 rwlock_init(&tcp_hashinfo.ehash[i].lock);
2122 INIT_HLIST_HEAD(&tcp_hashinfo.ehash[i].chain);
2125 tcp_hashinfo.bhash =
2126 alloc_large_system_hash("TCP bind",
2127 sizeof(struct inet_bind_hashbucket),
2128 tcp_hashinfo.ehash_size,
2129 (num_physpages >= 128 * 1024) ?
2130 13 : 15,
2131 HASH_HIGHMEM,
2132 &tcp_hashinfo.bhash_size,
2133 NULL,
2134 64 * 1024);
2135 tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
2136 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
2137 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
2138 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
2141 /* Try to be a bit smarter and adjust defaults depending
2142 * on available memory.
2144 for (order = 0; ((1 << order) << PAGE_SHIFT) <
2145 (tcp_hashinfo.bhash_size * sizeof(struct inet_bind_hashbucket));
2146 order++)
2148 if (order >= 4) {
2149 sysctl_local_port_range[0] = 32768;
2150 sysctl_local_port_range[1] = 61000;
2151 tcp_death_row.sysctl_max_tw_buckets = 180000;
2152 sysctl_tcp_max_orphans = 4096 << (order - 4);
2153 sysctl_max_syn_backlog = 1024;
2154 } else if (order < 3) {
2155 sysctl_local_port_range[0] = 1024 * (3 - order);
2156 tcp_death_row.sysctl_max_tw_buckets >>= (3 - order);
2157 sysctl_tcp_max_orphans >>= (3 - order);
2158 sysctl_max_syn_backlog = 128;
2161 sysctl_tcp_mem[0] = 768 << order;
2162 sysctl_tcp_mem[1] = 1024 << order;
2163 sysctl_tcp_mem[2] = 1536 << order;
2165 limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
2166 max_share = min(4UL*1024*1024, limit);
2168 sysctl_tcp_wmem[0] = SK_STREAM_MEM_QUANTUM;
2169 sysctl_tcp_wmem[1] = 16*1024;
2170 sysctl_tcp_wmem[2] = max(64*1024, max_share);
2172 sysctl_tcp_rmem[0] = SK_STREAM_MEM_QUANTUM;
2173 sysctl_tcp_rmem[1] = 87380;
2174 sysctl_tcp_rmem[2] = max(87380, max_share);
2176 printk(KERN_INFO "TCP: Hash tables configured "
2177 "(established %d bind %d)\n",
2178 tcp_hashinfo.ehash_size << 1, tcp_hashinfo.bhash_size);
2180 tcp_register_congestion_control(&tcp_reno);
2183 EXPORT_SYMBOL(tcp_close);
2184 EXPORT_SYMBOL(tcp_disconnect);
2185 EXPORT_SYMBOL(tcp_getsockopt);
2186 EXPORT_SYMBOL(tcp_ioctl);
2187 EXPORT_SYMBOL(tcp_poll);
2188 EXPORT_SYMBOL(tcp_read_sock);
2189 EXPORT_SYMBOL(tcp_recvmsg);
2190 EXPORT_SYMBOL(tcp_sendmsg);
2191 EXPORT_SYMBOL(tcp_sendpage);
2192 EXPORT_SYMBOL(tcp_setsockopt);
2193 EXPORT_SYMBOL(tcp_shutdown);
2194 EXPORT_SYMBOL(tcp_statistics);